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GENERATIVE MODELS
CONTEXT

In the past few years, generative models have made significant progress in various domains of application.

Text Generation
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GENERATIVE MODELS
CONTEXT

In the past few years, generative models have made significant progress in various domains of application.

Text Generation Image/Video Generation Sound Generation Molecular Generation

eg: Code Completion eg: Media Industry eg: Speech Synthesis eg: Drug Discovery
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THE VARIOUS PERFORMANCES OF GENERATIVE MODELS
MOTIVATION

As the generation becomes better, the evaluation becomes more challenging.

?

Midjourney v5 (2023)DALL·E 2 (2023)

Prompt: A dog playing with a child.
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OUTLINE

In this presentation, we discuss on evaluating, optimizing and improving quality and diversity of generative models:

1. Evaluating: How can we assess quality and diversity independently in Generative Models?

2. Optimizing: Can we optimize a specific trade-off between quality and diversity?

3. Improving: How can we improve the quality and diversity of a pre-trained generative models?
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SECTION 1: EVALUATING

Evaluating:
How can we assess quality and

diversity independtly
in Generative Models?
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GENERATIVE MODELS
FRAMEWORK
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▶ Assumption: There is an unknown target distribution P in X ⊂ Rd.
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▶ Assumption: There is an unknown target distribution P in X ⊂ Rd.
▶ Goal: Learn a parameterized distribution P̂G that approximate P:

1. Consider a distribution Q in a latent space X ⊂ Rm, usually N (0, Im).
2. Take a generator model G represented by a neural network. Take P̂G = G#Q.
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GENERATIVE MODELS
IN PRACTICE
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PRECISION AND RECALL FOR GENERATIVE MODELS
METRICS TO EVALUATE QUALITY AND DIVERSITY

To assess models, we use the notion of Precision and Recall, inspired from Information Retrieval:

Quality Diversity
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METRICS TO EVALUATE QUALITY AND DIVERSITY

To assess models, we use the notion of Precision and Recall, inspired from Information Retrieval:

Quality Diversity

↓ ↓
Precision Recall

= =
What proportion of generated samples are realistic? What proportion of real samples can be generated?
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PRECISION AND RECALL FOR GENERATIVE MODELS
FOR FINITE SUPPORT
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PRECISION AND RECALL FOR GENERATIVE MODELS
FOR FINITE SUPPORT

Definition 2.1 (Support-Based Precision and Recall - Kynkäänniemi et al. [8].)

For any distributions P ∈ P(X ) and P̂ ∈ P(X ), we say that the distribution P has precision ᾱ at recall β̄ with respect to P̂ if

ᾱ := P̂(Supp(P)) and β̄ := P(Supp(P̂)). (1)
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PRECISION AND RECALL FOR GENERATIVE MODELS
FOR FINITE SUPPORT

Precision for finite support is the proportion of generated data that lies on the support of the real data:

ᾱ = P̂(Supp(P)).
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PRECISION AND RECALL FOR GENERATIVE MODELS
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Recall for finite support is the proportion of the support of the real data that is covered by the generated data:

β̄ = P(Supp(P̂)).
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PRECISION AND RECALL FOR GENERATIVE MODELS
ESTIMATING THE PRECISION AND RECALL

?
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PRECISION AND RECALL FOR GENERATIVE MODELS
IN PRACTICE

MNIST Dataset [14]
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PRECISION AND RECALL FOR GENERATIVE MODELS
IN PRACTICE

MNIST Dataset [14] High Precision Low Recall

Precision: 0.80 Recall: 0.70

Low Precision High Recall

Precision: 0.54 Recall: 0.91
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PRECISION AND RECALL FOR GENERATIVE MODELS
FOR LLMS
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PRECISION AND RECALL FOR GENERATIVE MODELS
FOR LLMS

On open-ended generation, the quality and
diversity of LLMs can be evaluated using

Precision and Recall for instance on Webtext:
Bronnec et al. [3]
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PRECISION AND RECALL FOR GENERATIVE MODELS
FOR LLMS

We can also evaluate the quality and diversity of LLMs on Chatbot open-ended generation. We can for instance check
the impact of In-Context examples on the quality and diversity of the generated text. For instance on Wikipedia
Biographies generation:

2 4 6 8 10 12

Number of In-Context Examples

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

2 4 6 8 10 12

Number of In-Context Examples

0.0

0.2

0.4

0.6

0.8

1.0

R
ec

al
l Llama

Llama-2 7B Chat

Llama-2 13B Chat

Llama-2 70B Chat

Mistral
Mistral 7B Instruct

Vicuna
Vicuna 7B

VERINE - SEMINAR LPSM - QUALITY AND DIVERSITY IN GENERATIVE MODELS 16 / 67



PRECISION AND RECALL FOR GENERATIVE MODELS
FOR INIFINITE SUPPORT

p(
x

)

x

Target P

Model P̂

p(
x

)

x

Target P

Model P̂

VERINE - SEMINAR LPSM - QUALITY AND DIVERSITY IN GENERATIVE MODELS 17 / 67



PRECISION AND RECALL FOR GENERATIVE MODELS
FOR INIFINITE SUPPORT
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Both distributions have perfect Precision and Recall.
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PR-CURVE FOR GENERATIVE MODELS
DEFINITION

Definition 2.2 (PR-Curve for Generative Models - Sajjadi et al. [11], Simon et al. [12])

Let P, P̂ ∈ P(X ) be two distributions such that P, P̂ ≪ µ. The PR-Curve is the set PRD(P, P̂) defined as:

PRD(P, P̂) = {(αλ, βλ) |λ ∈ [0,∞]} (2)

with:

αλ =

∫
X
min (λp(x), p̂(x))dµ(x) and βλ =

∫
X
min (p(x), p̂(x)/λ)dµ(x). (3)
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PR-CURVE FOR GENERATIVE MODELS
DEFINITION

For the Precision, λp is compared to p̂ for different threshold λ ∈ [0,+∞]:

αλ =

∫
X
min (λp(x), p̂(x))dµ(x) (4)
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PR-CURVE FOR GENERATIVE MODELS
DEFINITION

For the Recall, p is compared to p̂/λ for different threshold λ ∈ [0,+∞]:

βλ =

∫
X
min (p(x), p̂(x)/λ)dµ(x) (5)
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PR-CURVE FOR GENERATIVE MODELS
EXAMPLES
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Figure. Learning distribution with low recall and high precision.
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PR-CURVE AND SUPPORT-BASED PRECISION AND RECALL
RELATION

The PR-Curve is a generalization of the Precision and Recall for finite support:

Theorem 2.3 (Support-based and PR-Curves - Siry et al. [13])

Let P, P̂ ∈ P(X ) be two distributions. Then, the support-based Precision and Recall (ᾱ, β̄) are related to the PR-Curve values
PRD(P, P̂) for λ = 0 and λ = ∞:

ᾱ = max
λ

αλ = α∞ and β̄ = max
λ

βλ = β0. (6)
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PR-CURVE AND SUPPORT-BASED PRECISION AND RECALL
RELATION
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PR-CURVE AND SUPPORT-BASED PRECISION AND RECALL
RELATION
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PR-CURVE FOR GENERATIVE MODELS
IN PRACTICE
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PR-CURVE FOR GENERATIVE MODELS
IN NLP
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Figure. PR-Curve for distributions journal articles: AG News.
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SECTION 2: OPTIMIZING

Optimizing:
Can we optimize a specific
trade-off between Precision

and Recall?
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TUNING PRECISION AND RECALL IN GENERATIVE MODELS
TRUNCATION

Hard Trunctation
Karras et al. [6]

Soft Trunctation
Kingma and Dhariwal [7]
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SECTION 2: OPTIMIZING
HARD TRUNCATION

Figure. From left to right: ψ = 0.0, ψ = 0.3 ψ = 0.7 ψ = 1.0.
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Figure. Source: [8]
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SECTION 2: OPTIMIZING
SOFT TRUNCATION

(a) ψ = 0.04 (b) ψ = 0.5 (c) ψ = 1.0 (d) ψ = 2.0

Figure. Soft-Truncation on BigGAN. Source:[2].
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TRAINING A GENERATIVE MODEL
IN GENERAL

Traditionally, the goal is to minimize a dissimilarity mea-
sure between the target distribution P and the learned
distribution P̂:

min
G

D(P, P̂G) (6)
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TRAINING A GENERATIVE MODEL
WITH f -DIVERGENCES

Traditionally, the goal is to minimize an f -divergence
between the target distribution P and the learned

distribution P̂:
min

G
Df (P∥P̂G) (6)
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f -DIVERGENCES
DEFINITION

Definition 3.1 (f -divergences)

For any two probability distributions P and P̂ in P(X ) such that P, P̂ ≪ µ. Let p and p̂ be the Radon-Nikodym densities of P and P̂
with respect to µ, respectively. Let f be any convex lower semi-continuous function f : [0,∞] →]−∞,+∞] such that f (1) = 0,
the f -divergence between P and P̂ is

Df (P∥P̂) =
∫
X

p̂(x)f
(

p(x)
p̂(x)

)
dµ(x). (7)
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Definition 3.1 (f -divergences)

For any two probability distributions P and P̂ in P(X ) such that P, P̂ ≪ µ. Let p and p̂ be the Radon-Nikodym densities of P and P̂
with respect to µ, respectively. Let f be any convex lower semi-continuous function f : [0,∞] →]−∞,+∞] such that f (1) = 0,
the f -divergence between P and P̂ is

Df (P∥P̂) =
∫
X

p̂(x)f
(

p(x)
p̂(x)

)
dµ(x). (7)

Usual divergences are f -divergences:
▶ Kullback-Leibler (KL),
▶ Reverse Kullback-Leibler (rKL),
▶ Jensen-Shannon (JS),
▶ Total Variation (TV),
▶ α−divergences.
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ESTIMATING f -DIVERGENCES
DUAL VARIATIONAL FORM

f -divergences are hardly tractable in practice. However, they can be approximated by a dual approximation.
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▶ T be the set of all measurable functions X → R.
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ESTIMATING f -DIVERGENCES
DUAL VARIATIONAL FORM

f -divergences are hardly tractable in practice. However, they can be approximated by a dual approximation.
▶ f ∗(t) = supu∈R {tu − f (u)} be the Fenchel conjugate of f .
▶ T be the set of all measurable functions X → R.

Theorem 3.2 (Dual variational form of an f -divergence- Nguyen et al. [9])

Let P, P̂ ∈ P(X ) two distributions such that P is absolutely continuous with respect to P̂ and f a suitable generator function. The
f -divergence between P and P̂ admits a dual variational form:

Df (P∥P̂) = sup
T∈T

(
Ex∼P [T(x)]− Ex∼P̂ [f

∗(T(x))]
)
. (8)

We use Topt ∈ T to denote the function that achieves the supremum.
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TRAINING A GENERATIVE MODEL WITH f -DIVERGENCES
USING THE DUAL VARIATIONAL FORM

By doing so, we can rewrite the optimization problem as:

min
G

max
T

Ex∼P [T(x)]− Ex∼P̂G
[f ∗(T(x))]︸ ︷︷ ︸

Ddual
f ,T

(9)
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TRAINING A GENERATIVE MODEL WITH f -DIVERGENCES
USING THE DUAL VARIATIONAL FORM

By doing so, we can rewrite the optimization problem as:

min
G

max
T

Ex∼P [T(x)]− Ex∼P̂G
[f ∗(T(x))]︸ ︷︷ ︸

Ddual
f ,T

(9)

▶ The discriminator T is trained to estimate the divergence.
▶ The generator G is trained to minimize the divergence.
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TRAINING A GENERATIVE MODEL WITH f -DIVERGENCES
USING THE DUAL VARIATIONAL FORM

By doing so, we can rewrite the optimization problem as:

min
G

max
T

Ex∼P [log (D(x))]− Ex∼P̂G
[f ∗ (log(D(x)))] (9)

▶ The discriminator T is trained to estimate the divergence.
▶ The generator G is trained to minimize the divergence.

▶ With T(x) = log(D(x)) with D(x) ∈ [0, 1].
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TRAINING A GENERATIVE MODEL WITH f -DIVERGENCES
USING THE DUAL VARIATIONAL FORM

By doing so, we can rewrite the optimization problem as:

min
G

max
T

Ex∼P [log (D(x))] + Ex∼P̂G
[log (1 − D(x)))] (9)

▶ The discriminator T is trained to estimate the divergence.
▶ The generator G is trained to minimize the divergence.

▶ With T(x) = log(D(x)) with D(x) ∈ [0, 1].
▶ f ∗(t) = f ∗JS(t) = − log(1 − exp(t)) for the Jensen-Shannon divergence.

We recover the original GAN framework.
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TRAINING A GENERATIVE MODEL WITH f -DIVERGENCES
USING THE DUAL VARIATIONAL FORM

By doing so, we can rewrite the optimization problem as:

min
G

max
T

Ex∼P [T(x)]− Ex∼P̂G
[f ∗(T(x))]︸ ︷︷ ︸

Ddual
f ,T

(9)

▶ The discriminator T is trained to estimate the divergence.
▶ The generator G is trained to minimize the divergence.

▶ Generative Adversarial Networks [4] for the Jensen-Shannon divergence.
▶ Extended to other f -divergences by Nowozin et al. [10].
▶ Extend to other generative models such as Normalizing Flows by Grover et al. [5].
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EFFECT OF THE f -DIVERGENCE ON THE LEARNED DISTRIBUTION

All f -divergences are not equal:

Df (P∥P̂) = Ex∼P̂

[
f
(

p(x)
p̂(x)

)]
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u = p(x)/p̂(x)
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fKL
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EFFECT OF THE f -DIVERGENCE ON THE LEARNED DISTRIBUTION

All f -divergences are not equal:

Df (P∥P̂) = Ex∼P̂

[
f
(

p(x)
p̂(x)

)]
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u = p(x)/p̂(x)
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f
(u

)

fKL

frKL

Penalizing high values of p(x)
p̂(x)

Penalizing low values of p(x)
p̂(x)

Favors high recall

Favors high precision
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EXAMPLES OF f -DIVERGENCE MINIMIZATION
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EXAMPLES OF f -DIVERGENCE MINIMIZATION
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SECTION 2: OPTIMIZING
CONTRIBUTIONS

Can we optimize a specific trade-off between Precision and Recall?

▶ What is the relation between the Precision-Recall curve and f -divergences?
▶ Can we optimize a point on the Precision-Recall curve using f -divergences?
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SECTION 2: OPTIMIZING
CONTRIBUTIONS

Can we optimize a specific trade-off between Precision and Recall?

▶ What is the relation between the Precision-Recall curve and f -divergences?
▶ Can we optimize a point on the Precision-Recall curve using f -divergences?

List of contributions:
▶ We show that the PR-Divergence is an f -divergence.
▶ We show that any f -divergence can be written as a weighted average PR-Divergences.
▶ We propose an algorithm to optimize the PR-Divergence.
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PRECISION-RECALL DIVERGENCE
DEFINITION

Definition 3.3 (PR-Divergence generator function fλ)

Given a trade-off parameter λ ∈ [0,+∞], we define the generator function fλ : [0,+∞] →]−∞,+∞] given by

fλ(u) =

{
max(λu, 1)−max(λ, 1) for λ ∈ [0,+∞[,

1{u=0} for λ = +∞.
(10)

0.0 0.5 1.0 2.0 3.0 4.0

u = p(x)/p̂(x)

−1

0

1

2

3

4

f
(u

)

λ = 1/2

λ = 1

λ = 2

VERINE - SEMINAR LPSM - QUALITY AND DIVERSITY IN GENERATIVE MODELS 36 / 67



PRECISION-RECALL DIVERGENCE
PROPERTIES

Proposition 3.4 (PR-Divergence)

For any distributions P, P̂ ∈ P(X ) such that P, P̂ ≪ µ, then for any λ ∈ [0,+∞] the PR-Divergence defined as

Dλ-PR(P∥P̂) =
∫
X

p̂(x)fλ

(
p(x)
p̂(x)

)
dµ(x) (11)

belongs to the class of f -divergences.
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PRECISION-RECALL DIVERGENCE
LINKING THE PR-DIVERGENCE TO THE PR-CURVE

Theorem 3.5 (PR-Curves as a function of Dλ-PR)

Given P, P̂ ∈ P(X ) such that P, P̂ ≪ µ and λ ∈ [0,+∞], the
PR-Curve ∂PRD is related to the PR-Divergence Dλ-PR(P∥P̂) as follows.

αλ(P∥P̂) = min(1, λ)−Dλ-PR(P∥P̂).

βλ(P∥P̂) = min(1, λ)−Dλ-PR(P̂∥P).

0 1
0

1

β

α

with λ = 0.2.

Dλ−PR(P‖P̂ )

Dλ−PR(P‖P̂ )
with λ = 1.

with λ = 5.

Dλ−PR(P‖P̂ )
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Given P, P̂ ∈ P(X ) such that P, P̂ ≪ µ and λ ∈ [0,+∞], the
PR-Curve ∂PRD is related to the PR-Divergence Dλ-PR(P∥P̂) as follows.

αλ(P∥P̂) = min(1, λ)−Dλ-PR(P∥P̂).

βλ(P∥P̂) = min(1, λ)−Dλ-PR(P̂∥P).

A direct consequence of Theorem 3.5:

argmin
P̂∈P(X )

Dλ-PR(P∥P̂) = argmax
P̂∈P(X )

αλ(P∥P̂).
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β
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with λ = 0.2.
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EXPLAINING QUALITY/DIVERSITY
CONNECTION BETWEEN PR-DIVERGENCE AND f -DIVERGENCES

Theorem 3.6 (f -divergences as a weighted average of
PR-Divergences)

For any P, P̂ ∈ P(X ) supported on all X and any λ ∈ [0,+∞], then:

Df (P∥P̂) =
∫ ∞

0

1
λ3 f ′′

(
1
λ

)
Dλ-PR(P∥P̂)dλ,

0 1
0

1

β

α DKL(P‖P̂ )

DrKL(P‖P̂ )
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OPTIMIZING THE PR-DIVERGENCE
EXAMPLES
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OPTIMIZING THE PR-DIVERGENCE
EXAMPLES
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OPTIMIZING THE PR-DIVERGENCE
IN PRACTICE

If we train a model to minimize the PR-Divergence, we can use the dual variational form:

min
G

max
T

Ex∼P [T(x)]− Ex∼P̂G
[f ∗λ(T(x))] . (12)
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G

max
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The naive approach fails to optimize the PR-Divergence.
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OPTIMIZING THE PR-DIVERGENCE
IN PRACTICE

If we train a model to minimize the PR-Divergence, we can use the dual variational form:

min
G

max
T

Ex∼P [T(x)]− Ex∼P̂G
[f ∗λ(T(x))] . (12)
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We propose a new approach to optimize the PR-Divergence.
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OPTIMIZING THE PR-DIVERGENCE
OUR APPROACH

We choose an auxiliary function g to train Tg is trained to estimate the f -divergence Dg:

max
T

Ex∼P [T(x)]− Ex∼P̂ [g
∗(T(x))] (13)
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OPTIMIZING THE PR-DIVERGENCE
OUR APPROACH

We choose an auxiliary function g to train Tg is trained to estimate the f -divergence Dg:

max
T

Ex∼P [T(x)]− Ex∼P̂ [g
∗(T(x))] (13)

At optimality, we have:

∇g∗(Topt
g (x)) =

p(x)
p̂(x)

. (14)
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OPTIMIZING THE PR-DIVERGENCE
OUR APPROACH

We choose an auxiliary function g to train Tg is trained to estimate the f -divergence Dg:

max
T

Ex∼P [T(x)]− Ex∼P̂ [g
∗(T(x))] (13)

At optimality, we have:

∇g∗(Topt
g (x)) =

p(x)
p̂(x)

. (14)

Any f -divergence can be computed using the primal estimation as follows using Tg:

Df (P∥P̂) = Ex∼P̂

[
f
(

p(x)
p̂(x)

)]
= Ex∼P̂

[
f
(
∇g∗(Topt

g (x))
)]
. (15)
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OPTIMIZING THE PR-DIVERGENCE
OUR APPROACH
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CONVERGENCE OF THE PROPOSED APPROACH
BOUNDING THE ESTIMATION ERROR

Theorem 3.7 (Bound on the estimation of an f -divergence using an auxiliary g-divergence)

Let f , g : R+ → R be such that g is µ-strongly convex, f is σ-Lipschitz, and Df , Dg be f -divergences. For any discriminator
T : X → dom(g∗), let r (x) = ∇g∗(T(x)). Then:

Dg(P∥P̂)−Ddual
g,T ≤ ϵ =⇒

∣∣∣Df (P∥P̂)−Dprimal
f ,T (P∥P̂)

∣∣∣ ≤ σ

√
2ϵ
µ
. (16)
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CONVERGENCE OF THE PROPOSED APPROACH
BOUNDING THE ESTIMATION ERROR

Theorem 3.7 (Bound on the estimation of an f -divergence using an auxiliary g-divergence)

Let f , g : R+ → R be such that g is µ-strongly convex, f is σ-Lipschitz, and Df , Dg be f -divergences. For any discriminator
T : X → dom(g∗), let r (x) = ∇g∗(T(x)). Then:

Dg(P∥P̂)−Ddual
g,T ≤ ϵ =⇒

∣∣∣Df (P∥P̂)−Dprimal
f ,T (P∥P̂)

∣∣∣ ≤ σ

√
2ϵ
µ
. (16)

The smaller the error on T is, the smaller the error on estimating
Df using T is.
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CONVERGENCE OF THE PROPOSED APPROACH
EXAMPLES

P

P̂
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OPTIMIZING THE PR-DIVERGENCE WITH OUR APPROACH
IN PRACTICE

(a) λ = 0.1 (b) λ = 1 (c) λ = 10

(d) λ = 0.1 (e) λ = 1 (f) λ = 10

High Rec
all

High Precision
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OPTIMIZING THE PR-DIVERGENCE WITH OUR APPROACH
TRAINING GANS

Model CIFAR-10 32 × 32 CelebA 64 × 64
FID P R FID P R

Baseline Big-
GAN

13.37 86.51 65.66 9.16 78.41 51.42

λ = 0.05 13.29 81.10 70.63 - - -
λ = 0.1 11.62 81.78 74.58 - - -
λ = 0.2 13.36 84.85 65.13 8.79 83.37 44.07
λ = 0.5 14.50 83.27 68.23 6.03 77.60 55.98
λ = 1.0 14.03 83.04 69.35 13.07 81.70 36.85
λ = 2.0 16.94 84.93 59.79 14.23 82.98 32.87
λ = 5.0 32.54 83.39 56.94 22.45 83.96 25.81
λ = 10.0 39.69 84.11 39.29 - - -
λ = 20.0 67.03 90.03 21.81 - - -

When λ increases,

{
Precision ↑
Recall ↓

λ = 0.1 λ = 10
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OPTIMIZING THE PR-DIVERGENCE WITH OUR APPROACH
FINE-TUNING GANS

Model ImageNet 128 × 128 FFHQ 256 × 256
FID P R FID P R

Baseline BigGAN 9.83 28.04 41.21 41.41 65.57 10.17
Soft ψ = 0.7 11.39 23.04 31.13 56.43 76.59 4.87
Soft ψ = 0.5 15.49 20.20 19.83 82.05 84.48 1.58
Hard ψ = 2.0 9.69 25.83 39.89 43.32 68.84 8.66
Hard ψ = 1.0 12.12 21.86 35.42 56.19 76.44 4.76
Hard ψ = 0.5 15.21 21.13 29.55 71.32 80.99 4.84
λ = 0.2 9.92 26.69 42.04 35.66 78.70 9.45
λ = 0.5 10.82 26.83 42.38 35.24 78.41 9.66
λ = 1.0 20.42 29.72 28.21 35.91 78.95 8.32
λ = 2.0 20.21 30.27 30.49 36.33 81.10 8.69
λ = 5.0 20.76 30.87 28.38 38.16 84.31 8.52

When λ increases,

{
Precision ↑
Recall ↓

with better performances than truncation.
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SECTION 3: IMPROVING

Improving:
How can we improve the
quality and diversity of a

pre-trained generative models?
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SAMPLING FROM A GENERATIVE MODEL
GENERAL SETTING

To sample a point from the learned distribution P̂:
▶ Sample z ∼ Q.
▶ Compute x = G(z).

0.0 0.2 0.4 0.6 0.8 1.0

x

p(
x

) P

P̂
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SAMPLING FROM A GENERATIVE MODEL
GENERAL SETTING

To sample a point from the learned distribution P̂:
▶ Sample z ∼ Q.
▶ Compute x = G(z).

P ̸= P̂
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SAMPLING FROM A GENERATIVE MODEL
GENERAL SETTING

To sample a point from the learned distribution P̂:
▶ Sample z ∼ Q.
▶ Compute x = G(z).

We have an estimation of p(x)
p̂(x) .
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SAMPLING FROM A GENERATIVE MODEL
REJECTION SAMPLING

To sample a point from the refined distribution P̃:
▶ Sample z ∼ Q.
▶ Compute x = G(z).
▶ Accept x with probability a(x).

Using p(x)
p̂(x) in a(x) allows sampling from P.
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SAMPLING FROM A GENERATIVE MODEL
REJECTION SAMPLING

To sample a point from the refined distribution P̃:
▶ Sample z ∼ Q.
▶ Compute x = G(z).
▶ Accept x with probability a(x).

It defines a new distribution P̃.
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SAMPLING FROM A GENERATIVE MODEL
REJECTION SAMPLING

To sample a point from the refined distribution P̃:
▶ Sample z ∼ Q.
▶ Compute x = G(z).
▶ Accept x with probability a(x).

The acceptance rate is :

EP̂ [a(x)] .
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x
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SAMPLING FROM A GENERATIVE MODEL
REJECTION SAMPLING IN HIGH DIMENSION
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BUDGETED REJECTION SAMPLING
TUNING THE ACCEPTANCE RATE

Definition 4.1 (Discriminator Rejection Sampling (DRS) - Azadi et al. [1])
Let γ ∈ R, the acceptance probability is:

aDRS(x) =
r(x)

r(x) (1 − eγ) + Meγ
.

If γ < 0, then the acceptance rate increases.
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SECTION 3: IMPROVING
CONTRIBUTIONS

How can we improve the quality and diversity of a pre-trained generative models?

▶ How can we apply Rejection Sampling with a limited budget?
▶ How does it improve Precision and Recall?
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SECTION 3: IMPROVING
CONTRIBUTIONS

How can we improve the quality and diversity of a pre-trained generative models?

▶ How can we apply Rejection Sampling with a limited budget?
▶ How does it improve Precision and Recall?

List of contributions:
▶ We introduce the Optimal Budgeted Rejection Sampling (OBRS).
▶ We show how OBRS improves the Precision the learned distribution.
▶ We show that training a generative model with OBRS improves the Recall.
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OPTIMAL BUDGETED REJECTION SAMPLING
DEFINITION

Traditionally, the goal is:

min
G

Df (P∥P̂G)
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OPTIMAL BUDGETED REJECTION SAMPLING
DEFINITION

With a given P̂G, our goal is:

min
a

Df (P∥P̃a)

s.t. the acceptance rate is greater than 1/K.
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OPTIMAL BUDGETED REJECTION SAMPLING
DEFINITION

With a given P̂G, our goal is:

min
a

Df (P∥P̃a)

s.t.

{
EP̂ [a(x)] ≥ 1/K,
∀x ∈ X , 0 ≤ a(x) ≤ 1.

(17)
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OPTIMAL BUDGETED REJECTION SAMPLING
DEFINITION

Theorem 4.2 (Optimal Acceptance Function)

For a sampling budget K ≥ 1 and finite X , the solution is,

aOBRS(x) = min

(
p(x)
p̂(x)

cK

M
, 1
)
, (18)

where cK ≥ 1 is such that Ex∼p̂[aOBRS(x)] = 1/K.
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OPTIMAL BUDGETED REJECTION SAMPLING
DEFINITION

Theorem 4.2 (Optimal Acceptance Function)

For a sampling budget K ≥ 1 and finite X , the solution is,

aOBRS(x) = min

(
p(x)
p̂(x)

cK

M
, 1
)
, (18)

where cK ≥ 1 is such that Ex∼p̂[aOBRS(x)] = 1/K.

Does not depend on f .

Same acceptance function to improve
Precision and Recall.

VERINE - SEMINAR LPSM - QUALITY AND DIVERSITY IN GENERATIVE MODELS 56 / 67



IMPROVING PRECISION AND RECALL
EFFECT OF THE OBRS

Proposition 4.3 (Precision and Recall Improvement)

Let K ≤ M be the budget for the OBRS. For any (α, β) ∈ PRD(P, P̂) we have (α′, β) ∈ PRD(P, P̃aOBRS) with α′ = min {1,Kα}.
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IMPROVING PRECISION AND RECALL
IN PRACTICE
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F
ID Model

DRS

OBRS

GAN on CelebA

1/K FID P R
0.25 1.57 78.48 86.73
0.50 1.58 78.23 86.05
0.75 1.77 77.94 86.54
1 1.97 77.91 86.62

Diffusion Model on
CIFAR-10
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TRAINING GENERATIVE MODELS WITH OBRS
OBJECTIVE

With a given P̂G, our goal is:

min
a

Df (P∥P̃a)

s.t. the acceptance rate is greater than 1/K.
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TRAINING GENERATIVE MODELS WITH OBRS
OBJECTIVE

We can train G to optimize:

min
G

min
a

Df (P∥P̃a,G)

s.t. the acceptance rate is greater than 1/K.

VERINE - SEMINAR LPSM - QUALITY AND DIVERSITY IN GENERATIVE MODELS 59 / 67



TRAINING GENERATIVE MODELS WITH OBRS
OBJECTIVE

We can train G to optimize:

min
G

min
a

Df (P∥P̃a,G)

s.t. the acceptance rate is greater than 1/K.

VERINE - SEMINAR LPSM - QUALITY AND DIVERSITY IN GENERATIVE MODELS 59 / 67



TRAINING WITH OBRS
EXAMPLE
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TRAINING WITH OBRS
IN PRACTICE

Dataset Method FID P R
CelebA Hinge Loss 9.33 80.23 57.78
64 × 64 Tw/OBRS 3.74 74.40 65.15

ImageNet Hinge Loss 12.18 27.75 34.33
128 × 128 Tw/OBRS 11.65 26.84 46.16

Training with OBRS increases the Recall.
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CONLUSION
AND PERSPECTIVES

▶ Quality and diversity are two important aspects of generative models.
▶ Generally at odds with each other, but can be balanced.
▶ The trade-off must be optimized.
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CONLUSION
AND PERSPECTIVES

▶ Quality and diversity are two important aspects of generative models.
▶ Generally at odds with each other, but can be balanced.
▶ The trade-off must be optimized.

Optimizing the trade-off
▶ Connecting PR-Curves and f -divergences

• Focusing on the AUC
• Building a symmetric PR-Divergence

▶ Minimizing the PR-Divergence
• Apply the method to Diffusion Models
• Investigate other training strategies
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▶ Quality and diversity are two important aspects of generative models.
▶ Generally at odds with each other, but can be balanced.
▶ The trade-off must be optimized.

Optimizing the trade-off
▶ Connecting PR-Curves and f -divergences

• Focusing on the AUC
• Building a symmetric PR-Divergence

▶ Minimizing the PR-Divergence
• Apply the method to Diffusion Models
• Investigate other training strategies

Improving the quality and diversity
▶ Optimal Budgeted Rejection Sampling

• Investigate the density ratio estimation error
• Apply the method during denoising in

Diffusion Models
▶ Training to improve diversity

• Build formal proofs
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BROADER PERSPECTIVES
FAIRNESS IN GENERATIVE MODELS

There are no metrics to distinguish between fair and unfair generations in terms of Precision and Recall.

p(
x

)

x

a
=

0

a
=

1

Target P

Model P̂

0 1
0

1

β

α

∂PRD(P, P̂ )

0 1
0

1

β

α

∂PRD(P0, P̂0)

∂PRD(P1, P̂1)

VERINE - SEMINAR LPSM - QUALITY AND DIVERSITY IN GENERATIVE MODELS 63 / 67



CONCLUSION

Questions
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