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1 Introduction

The research around community structures can be seen as a contribution to
the well-establish research of clustering and graph partitioning. The partition
of graphs have been intensively studied with various measures to evaluate their
quality, see e.g. [2,7,14,17,19] for an overview.

A standard abstract model for any kind of social networks such as Facebook
or Linkedin is a graph, in which vertices are members of the network and edges
are relationships between members. In such model ‘a community’ intuitively
corresponds to a subgraph that has ‘more relationships’ inside the subgraph
than outside of it. More generally, ‘a community structure’ corresponds to a
partition of a graph into communities.

There have been several attempts to define the concept of communities
formally, a good introduction including the motivation can be found in [1,6,
11,18,20]. One of the first definitions of a community was motivated by the
searching links in web graphs and introduced by Flake et al. [13]. It defines a
community as a set of vertices C such that each vertex in C' has at least as
many neighbours inside C' as outside. The same notion called an ‘alliance in
graphs’ were introduced by Kristiansen et al. [16] and investigated further in
various papers. The concept of communities and community structures have
received a significant attention in further research where also some modified
definitions of communities were studied e.g. the difference between the number
of outside and inside neighbours should be larger than a given constant, the
community should also be a dominating set, see e.g. [4,5,15] for overview and
further references.

In this paper we study the structural and complexity problems of the recent
definition of a community structure that reflects the sizes of communities too
[10,11,18]. This new approach to communities is supported by the practical
experiments showing the importance of capturing the sizes of communities for
a better description of their properties [18].

The general concept of a community structure does not put any restric-
tion on the number of communities. This paper focuses on a partition with
two communities where the problems are already appealing. The presented
techniques offer some possibilities for an extension to a larger number of com-
munities. Informally, a 2-community structure is a partition of the vertex set
into two parts A, B such that for each vertex, say from part A, the ratio ‘the
number of neighbours in part A’ over the size of A (excluding the vertex itself)
is at least as large as ‘the number of neighbours in part B’ over the size of B.
To generalise, in a k-community structure, the ratio must be valid for every
two communities. We also introduce a weak community structure in which the
vertex itself contributes to the ratio. The ratio condition in the latter defini-
tion is weaker, but it reflects the reasonable requirement that each member
should be considered as a part of its own community (see Section 2 for the
technical details). Even if there are minor differences between the definitions,
the structural and complexity results for the two problems are very different
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as it is presented in this paper. Both definitions are relevant to describe the
community structures, the choice depends on the suitability of the model.

We also study the 2-communities problems with additional constraints such
as connectivity or equality of sizes for both parts (a balanced partition). The
connectivity request corresponds to the essential condition that each member
in the community should ‘indirectly know’ all members in its own community,
where the ‘indirectly know’ relation corresponds to a path between two vertices
in the graph. The study of balanced communities is motived by the practical
interest for equal size of the communities. In general, the balanced graph par-
titions are well studied, e.g. due to its applications in the divide-and-conquer
algorithms, see e.g. [8]. In the balanced partition problem, which can be seen
as a generalisation of the bisection problem to any given number of parts, the
goal is to minimise the number of edges between partitions. It is known that
the problem cannot be approximated within any finite factor in polynomial
time in general graphs and it remains APX-hard even on trees of constant
maximum degree [12]. It demonstrates that some graph partitions problems
that are related to e.g. balanced communities are hard to solve even for re-
stricted graph classes and indicates hardness of various problems related to a
community structure too. Hence all positive results in community structure
problems would be important to get better understanding of the differences
between community and partition problems.

Furthermore, a community structure is in fact a graph partition with a
restricted number of edges between parts, therefore the new results for com-
munities may find applications in the areas similar to a graph partition such
as parallel-computing, VLSI-circuit design, route planning [9] and divide-and-
conquer algorithms [21].

There are only a few results related to this new definition of a community.
Olsen [18] proved that a community structure (without the condition on the
exact number of communities) can be found in polynomial time in any graph
with at least 4 vertices, except a star. Recently, Estivill-Castro et al. [11]
claimed that the problem to find a k-community structure with restriction
to all communities to be connected and equal size is NP-complete in general
graphs, but polynomially solvable in trees. In [18] Olsen also proved that it is
NP-complete to decide, whether there is a community structure in a graph in
which a given set of vertices is included in a community.

Our contribution

The following overview summarises our results achieved in this paper. All
considered graphs are of size at least 4 and are not stars. If a 2-community
structure with certain properties exists for a graph class, then it exists for all
the graphs from the class.
(i) trees:
— a connected 2-community structure exists and can be found in linear
time (Theorem 1),
— there are trees with a balanced 2-community structure, but without a
connected balanced weak 2-community structure (Remark 2),
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(ii) graphs of mazimum degree 3:
— a connected 2-community structure exists and can be found in polyno-
mial time (Theorem 2),
— a balanced weak 2-community structure exists and can be found in
polynomial time (Theorem 6),
— there are graphs without a balanced 2-community structure (Remark 1),
— there are graphs with a balanced 2-community structure, but without
a connected balanced weak 2-community structure (Remark 2)

(iii) graphs of minimum degree (V| — 3), complements of bipartite graphs,
graphs with minimum degree f%] where c is the size of an inclusion-

wise maximal clique in the graph:

— a connected 2-community structure exists and can be found in polyno-

mial time (Theorems 3, 4, 5)

(iv) graphs of bounded tree-width:
— there are graphs without a balanced 2-community structure (Remark 1),
but to decide whether such a structure exists and if it exists, find it, can
be done in polynomial time (Remark 3)

Estivill-Castro et al. [10] proved that the problem of finding a balanced 2-
community structure is NP-complete in general graphs. In Section 4 we show
that the same result also holds for a weak community, even with additional
constraint of connectivity for both parts. We also present a shorter proof of the
known NP-complete result for a balanced 2-community structure in general
graphs based on an alternative definition of community structure [4], which
also implies NP-completeness for a connected balanced 2-community structure.

The paper is structured as follows. In Section 2 we introduce formally
some notations and definitions of studied problems. In Section 3 we show that
in some well-studied graph classes a 2-community structure always exists and
can be found in polynomial time, even with additional request for connectivity
in both parts. In Section 4 we focus on the balanced 2-community structure
and present the structural and algorithmic results in general graphs and some
graph classes. Conclusions and open problems are provided in Section 5.

2 Preliminaries

In the paper, all considered graphs are simple, undirected and connected. Let
G = (V,E) be a graph. For a vertex v € V, let d(v) be the degree of the
vertex v and for any subgraph H of the graph G let Ny (v) be the set of the
neighbours of v in H, Ng[v] = Ng(v) U {v} and let dg(v) = |Ng(v)|. For
a given partition of V' into two parts (a 2-partition), let an in-neighbour of
v (resp. out-neighbour) be a neighbour in its own part (resp. out of its part)
and d;, (v) (resp. dout(v)) denote the number of in-neighbours of v (resp. out-
neighbours). For a graph G and a subset of vertices S C V| let G[S] denote
the subgraph of G induced by S. A partition {C1,Cs2} of V' is connected if the
subgraphs G[C4] and G[C3] are connected and it is balanced if the sizes of C;
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and (' differ by at most 1. The cut size of a 2-partition is the number of edges
that have end vertices in the different parts of the partition. A graph is said
to be of minimum (resp. maximum) degree k if any vertex of the graph has
degree at least (resp. at most) k. A pendant vertex of G is any vertex of degree
1. A star is a complete bipartite graph K ¢ for any £ > 1. The complement
graph G = (V, E) of a graph G = (V, E) is the graph in which {u,v} € E iff
{u,v} ¢ E for all vertices u,v € V. A graph G is 2-colourable if there exists a
partition {C}, C2} of V such that G[C1], G|Cs] contain only isolated vertices.

Now we introduce Olsen’s definition of a k-community structure from [18].

Definition 1 A k-community structure for a connected graph G = (V, E) is
a partition IT = {C1,...,Cr} of V| k > 2, such that Vi € {1,...,k},|C;| > 2,
and Yv € C;,VC; € 11, j # 1, the following holds

INe, )] _ Ve, ()
ICi| =1 = |Cy]

For a weak k-community structure, the condition above is replaced by a “weaker”
condition
[Ne[v]] [N, (v)]
>
|Cil |C5]

Notice that a k-community structure is obviously a weak k-community

INg, [v]] INc, (v)[+1 [Nc, (v)] G
‘CC‘” = \Cc,_-\lerl > \Ci|j1 , but the opposite is not true

structure since
(see Fig. 1).

Fig. 1 A weak 2-community structure of a graph (presented by the colours black and white)
in which the vertex v does not satisfy the condition of a 2-community structure but satisfies
the condition of a weak 2-community structure from Definition 1.

In this paper we investigate a community structure for a fixed number of
two communities and also study some variants of the 2-COMMUNITY problem:
2-COMMUNITY
Input: A graph G = (V, E).

Question: Does G have a 2-community structure?
It means, is there a 2-partition {C1, Ca} of the vertex set V such that |Cy|, |Ca| >
2, and for each vertex v € C;, i € {1,2},

[New(v)] o [Noyi(v)]
|ICil =1 = |C3-]

(1)

Obviously, if G has a 2-community structure, it must have at least 4 vertices
and be non-isomorphic to a star which we assume in the paper even without
explicitly mentioning that in some informal parts.
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In the WEAK 2-COMMUNITY problem we are looking for a weak 2-community
structure in a graph where the condition (1) is replaced by

|NC1[U]| > |NCB—1’(U)|
Cil — |Cs—

(2)

Adding the balanced condition to the 2-COMMUNITY problem, we obtain
the BALANCED 2-COMMUNITY problem introduced by Estivill-Castro et al.
[10]. Similarly we can define the BALANCED WEAK 2-COMMUNITY problem.

The additional constraint which asks for subgraphs induced by each part
of the partition to be connected is a natural condition useful for the problems
related to the connectedness. The CONNECTED 2-COMMUNITY problem is to
decide if a graph has a connected 2-community structure, i.e. a 2-community
structure {C7, C2} such that the subgraphs induced by Cy, Cs are connected.
We can define analogous problems for weak and balanced versions.

3 Connected 2-community structures in some graph classes

In this section we show that if a graph has certain structural properties, then
it has a connected 2-community structure which can be found in polynomial
time. More precisely, we prove that such a statement is valid for trees and
graphs of high minimum or low maximum degrees.

Theorem 1 Every tree with at least 4 vertices (except a star) has a connected
2-community structure that can be found in linear time.

Proof Let G = (V, E) be a tree not isomorphic to a star. We prove that there
exists an edge e € F such that two connected components of G \ e form a
2-partition which is a connected 2-community structure.

Let ¢ = {u,v} be an edge in E such that d(v), d(u) > 2 (due to the
assumption about G such an edge e must exist). Consider a partition {X,,, X, }
of V with X,, (resp. X,) be the set of vertices of the connected component of
G\ e containing u (resp. v).

First we notice that only one of the vertices u and v may not satisfy the

condition (1). If this is not true then &Z)I:i < ‘X—lu‘ and % < ﬁ Since
d(u),d(v) > 2, it implies |X,| < S4=} < |X,| - 1 and |X,| < S35 <

|X,| — 1, which is not possible.

If both vertices u and v satisfy the condition (1), then {X,, X, } is obviously
a 2-community structure. If not, then without loss of generality, let the vertex
u satisfy the condition (1) and v do not. Then the UPDATE PROCEDURE is
repeated and if no update is possible, a modified partition {X,, X, } is already
a 2-community structure as it is shown later.

The UPDATE PROCEDURE:

Let v1,v2,...,v4()—1 be the neighbours of v excluding u (there is at least
one such a vertex due to our assumption d(v) > 2). For each i, 1 < i < d(v)—1,
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and e¢; = {v,v;} € E, let X; be the set of vertices of the connected component
in G\ e; containing v;.

Notice that if for all j, 1 < j <d(v) — 1, d(v;) = 1, then v must already
satisfy the condition (1) in the partition {X,, X,} at the beginning of the
UPDATE PROCEDURE.

Hence from now we suppose that v has at least one neighbour of degree
at least 2 excluding u. In the following we show that there exists 7, 1 < j <
d(v) — 1, such that d(v;) > 1 and the vertex v satisfies the condition (1) in
the partition {X;, V' \ X;}. Indeed, suppose that for all j, 1 < j < d(v) — 1,
with d(v;) > 1, this is not true. Notice that for each such j and the partition
{X;,V\ X;} must hold ;28817 < = which implies that

d()|X;| <n -1 (3)
Moreover, for any j, 1 < j < d(v) — 1 with d(v;) = 1 we have | X;| = 1 and
hence

d(w)|X;] <n—1, (4)
since G is not a star. Recall that v doesn’t satisfy the condition (1) in the

partition {X,, X, }, hence I%((Z)I:i

d(v)|Xu| <n-— ]-a (5)

< \X—1| and also

Summing (3), (4) and (5) together, we obtain d(v) Z?(:”l) |X;| = d(v)(n —
1) < d(v)(n — 1), a contradiction.

Hence, there exists ¢, 1 <4 < d(v) — 1 such that d(v;) > 1 and the vertex v
satisfies the condition (1) in the partition {X;, V' \ X;}. Then, relabel v := v
and v := v; and return to the beginning of the UPDATE PROCEDURE.

Each time the labels of u and v are updated, the size of X,, strictly increases
by at least one, hence the whole process always terminates. A final partition
at the end of the process is a connected 2-community structure because both
partitions correspond to two connected components of a tree obtained by re-
moving an edge.

Notice that finding such an edge can be done in O(|V|) operations. First, in
constant time fix an edge e = {u, v} such that d(v),d(u) > 2. Then, consider
G\ e as a union of two trees Ty, and T, where T, is a tree on the vertex set
X, rooted in u (and similarly for T, on X, rooted in v). For each vertex w of
G calculate recursively the size of the subtree of Ty, (or T,) rooted in w which
can be done in time O(|V|). Finally, using the sizes of the subtrees, check if
{Xu, X, } corresponds to a 2-community structure and if needed, update X,,
X, according to the algorithm. The number of such updates is clearly at most
|E|. Since G is a tree, the repetition of the UPDATE PROCEDURE finishes with
a connected 2-community structure in O(|V]) time. O

Very recently, Estivill-Castro et al. proved in [11] the same result using
different methods. Our approach is more structural and the proof for the ex-
istence of an edge that connects two communities results directly in a linear
time algorithm.
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Now we investigate graphs that may contain cycles but that still have low
densities, namely the graphs of maximum degree 3. First, the restrictions on
the size of partitions are discussed to ensure the vertices fulfil the condition
(1) of a 2-community structure.

Lemma 1 Let G = (V,E) be a graph of maximum degree 3 of size n. Let
{C1,C3} be a partition of V' such that [%51] < |C;| < n — [251], i = 1,2.
Then each vertex of degree 3 in G with at most one out-neighbour fulfils the
condition (1) of a 2-community structure.

Furthermore, if for some i € {1,2}, |C;| = [251] (or also |C;| = [252] +
1 in case n = 1 mod 3) then each vertex of degree 3 in C; with two out-
neighbours fulfils the condition (1) too.

Proof Let {C1,C3} be a fixed partition of G such that [251] < |Cy] < n —
[217, 4 =1,2. It is clear that the condition (1) is true for each vertex which
has only neighbours in its own part. Firstly, suppose the vertex v from Cj,
i € {1,2} has exactly one out-neighbour.

Since |Cy| < n—[251], then obviously |C;| < n— 2%
Therefore the cond1t10n (1) is fulfilled for the vertex v.

Now suppose that for ¢ € {1,2} there is a vertex v € C; with exactly
two out-neighbours and |C;| = [251]. Obviously, [25+] < 2#2 and hence

S 73
2[254] — 2 < n — [251] which implies B é 5+ This corresponds

to the condition (1) for the vertex v. Slmllarly if |C; | =217+ landn=1
mod 3: n — 1 = 3[231] which implies O

2 1
and =1 > peaTenk

l—n =1y > n_ l—n n-1977"

Lemma 2 Let G = (V,E) be a graph of mazimum degree 3 of size n. Let
{C1,C3} be a partition of V' such that [252] < |C1| < [2]. Then each vertex
of degree 2 in Cy with at most one out-neighbour fulfils the condition (1) of a
2-community structure.

If the partition is balanced, then each vertex of degree 2 in G with at most
one out-neighbour fulfils the condition (1).

Proof Let {Cy,C5} be a partition of V' such that [21] < [Cy| < |[%]. Ob-
viously, any vertex of degree 2 with no neighbours out of its own part fulfils
the condition (1). Moreover any vertex of degree 2 in C; with only one out-

neighbour satisfies ﬁ > ﬁ since |Cy] < |Cy.

If the partition is balanced, then ﬁ > ﬁ and ﬁ > ‘C—ll‘,
hence the vertices of degree 2 from both parts with exactly one out-neighbour

satisfy the condition (1). O

and

Lemma 3 Let G = (V,E) be a graph of mazimum degree 3 of size n and
{C1,Ca} be a partition of V such that [%52] < |Ci| < n— [%52], i =1,2.

If the partition has one of the properties (i)-(iii) where only specified ver-
tices may have out-neighbours (the other ones have only in-neighbours), then
{C1,Cs} is a 2-community structure on G:

(i) The vertices of degree 2 from the smaller part and all the vertices of degree
3 have at most one out-neighbour.
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(i) The wvertices of degree 2 and 3 have at most one out-neighbour and the
partition is balanced.

(iii) The wvertices of degree 2 from the smaller part have at most one out-
neighbour, the vertices of degree 3 in C;, for some i € {1,2}, have at most
two out-neighbours and |C;| = [%52] (or also |Ci| = [252] + 1 if n =1
mod 3) and the vertices of degree 3 in Cs_; have at most one out-neighbour.

Proof In each case (i), (ii), or (iii), all the vertices of the graph G satisfy
the condition (1) due to Lemmas 1 and 2. Hence, {C1, C2} is a 2-community
structure on G. 0O

Lemma 4 Every connected graph of maximum degree 3 on n vertices, n > 4,
(except a star) has a connected partition {Cy,Ca} such that [251] < |Cy] <
n — ("T_l], i = 1,2. Moreover, such a partition can be found in polynomial
time.

Proof Let G = (V, E) be a graph with the given properties. If G is a tree, take
a pendant vertex u € V and let v € V' be its neighbour. If G is not a tree, let
{u,v} be an edge of a cycle in G. Since G is not isomorphic to a star such an
edge must exist.

Initially, put into C the vertices u, v together with their pendant vertices,
if it is applicable. If there is a vertex z of degree 2 adjacent to u and v, update
Cy := C1 U{z}. Define Cy :=V '\ Cf.

The algorithm keeps connectivity of G[C4] and G[C5] and extends C either
by transferring vertices from Cs to C or relabelling a suitable connected part
of the graph until [231] < |Cj| < n — [251],i=1,2.

The algorithm starts with the initial set C; and repeats the UPDATE PRO-
CEDURE until |C1] > [232]. In each run of the procedure only one of the

3
options 1 or 2 is executed.

The UPDATE PROCEDURE:

Let w be a vertex in Cz which has a neighbour in C; (such a vertex must exist
since G is connected).

Option 1: If the subgraph induced by Cs \ {w} is connected, put

Cl = Cl U {w}, CQ = CQ \ {U}}

Option 2: If the subgraph induced by Cj \ {w} is disconnected (w must be
of degree 3), then denote by A, B the vertex-sets of two connected induced
subgraphs of G on Cs \ {w}. Depending on the size of A, the following update
is executed.

o If [A| <n —2[21], put
Cy =04 UAU{’LU},CQ = B.

Notice that |C1] < n — [251], {C1,C2} is a connected partition and the
size of C] strictly increased.
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o If n— 227+ 1 < |A| < n— [251], then notice that [A] > [251] and
put
Cy:=A, Cy:=V\A

Obviously, {C1,Cs} is a connected partition with ("T_l] < |G| £ n-—
[21], i = 1,2, hence the UPDATE PROCEDURE halts.

o If [A] > n— [271], put

Cy =0 UBU{U}}‘7 Cy = A.

Notice that |C1] < [251], {C1,C2} is a connected partition and the size

of (' strictly increased.

If |C1] > [251] after the execution of the option 1 or 2, then the UPDATE
PROCEDURE halts, otherwise the UPDATE PROCEDURE is repeated again.

By our construction, the partition {C7, C2} remains connected during each
run of the UPDATE PROCEDURE

Each time the UPDATE PROCEDURE is executed, the size of C7 strictly
increases, hence the algorithm always terminates.

At the end of the algorithm [251] < |C;| < n — [251], i = 1,2 and the
algorithm clearly runs in a polynomial time O

Theorem 2 Fvery connected graph of maximum degree 3 with at least 4 ver-
tices (except a star) has a connected 2-community structure which can be found
in polynomial time.

Proof Let G = (V, E) be a connected graph of maximum degree 3 on n vertices,
n > 4, not isomorphic to a star. Due to Lemma 4, a connected partition
{C1,C3} of V such that [251] < |C;| < n — [252], i = 1,2, can be found in
polynomial time. Let {C7, C2} be such a partition and notice that the vertices

that do not satisfy the condition (1) can be split into two categories:

(A) if there exists i € {1,2} such that |C;| > [251] in case n # 1 mod 3 or
|C;] > [251] 4+ 1 in case n = 1 mod 3, then all the vertices of degree 3 in
C; with two out-neighbours,

(B) if the partition is not balanced, then all the vertices of degree 2 in the
larger part with one out-neighbour.

The algorithm starts with the initial partition {C},C2} and then the IM-
PROVEMENT PROCEDURE (consisting in three stages) can be applied several
times. The procedure transfers step-by-step all the vertices of degree at least 2
(with exactly one neighbour in its own part) between C7 and C5 or relabel the
sets, until all the vertices satisfy the condition (1). Since the initial partition
is connected, transferring vertices with such a property never disconnects any
part of the partition.

The IMPROVEMENT PROCEDURE: STAGE 1 (Category (A) vertices)
In this stage we handle vertices in Cs of degree 3 with two out-neighbours by
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transferring them into C1, keeping the size of C; smaller than n — ("T’l] and

ensuring connectivity of the partition {C1, Ca}.

While |C1| < n— [251] and there is a vertex u € Co with two out-neighbours,

update
Cy:=C1 U {u}, Cy:=Cy \ {u}

Notice that each iteration of Stage 1 decreases the size of the cut by at least
one.

The IMPROVEMENT PROCEDURE: STAGE 2 (Category (A) vertices)
Similarly to Stage 1, in Stage 2 we handle vertices in C; of degree 3 with two
out-neighbours by transferring them into Cs, keeping the size of Cy smaller

than n — [251] and ensuring connectivity of the partition {C1, Co}.

While |Ca| < n— [251] and there is a vertez u € Cy with two out-neighbours,

update
Cy:=CyU {u}, CL:=0q \ {u}

Notice that each iteration of Stage 2 decreases the cut-size by at least one.

The IMPROVEMENT PROCEDURE: STAGE 3 (Category (B) vertices)
If the partition is not balanced, the vertices of degree 2 with one out-neighbour
must be transferred from the larger part to the smaller part.

If |C1| > |Cs|, relabel C; := Cy and Cy :=V '\ Cf.

While |C1| < |%] and there exists a verter u of degree 2 in Cy with one

neighbour in C1, update
Cl = Cl U {u}, CQ = CQ \ {u}

Each iteration of the while loop in Stage 3 doesn’t increase the size of the
cut. In the end of Stage 3 if the final partition doesn’t have a 2-community
structure then a vertex of the category (A) must exist in the partition. In that
case, Stage 1 or 2 must be executed before entering Stage 3 again, hence the
cut-size is decreased by at least one. Notice that Stage 3 may again create
vertices of the category (A) even if they didn’t exist before entering Stage 3.

It is easy to see that the algorithm always terminates. Each iteration of the
while loop in Stage 1 (resp. Stage 2) decreases the cut-size by at least one. In
Stage 3 each iteration of the while loop increases the size of the smaller part
by at least one and halts before or when the partition is balanced. Following
the construction, if the IMPROVEMENT PROCEDURE needs to be run again, it
must first run through Stage 1 or 2 which decreases the cut-size by at least one.
Moreover, the algorithm clearly runs in polynomial time.

Let’s discuss the correctness of the algorithm. Suppose the algorithm ter-
minates with the final partition {C7,Cs}. Due to the conditions inside the

algorithm, [251] < |Cj| <n — [251],i=1,2.
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Initially, the partition is connected and remains so after each stage, hence
the final partition is connected too.

Then necessarily, each vertex of degree 1 satisfies the condition (1) since it
must be in the same part as its neighbour. Now there are two options:

— If the final partition is balanced then all vertices of degree 2 and 3 may
have at most one out-neighbour (otherwise the IMPROVEMENT PROCEDURE
could be applied again), hence the final partition {C,C2} is a 2-community
structure due to Lemma 3(ii).

— If the final partition is not balanced, then the partition must have the
properties described in Lemma 3(i) or (iii) (otherwise, one of Stages 1-2 could
be applied again). Hence the final partition {C7, Ca} is a 2-community struc-
ture. 0O

Now we investigate the problem of the existence and finding of a connected
2-community structure in dense graphs. We prove that any graph G = (V, E)
of minimum degree |V| — 3 has a connected 2-community structure which can
be found in polynomial time.

Lemma 5 If the complement of the graph G is 2-colourable (using each colour
for at least 2 vertices), then G has a connected 2-community structure which
can be found in polynomial time.

Proof Let G = (V, E) be a graph such that its complement G is 2-colourable.
Fix a 2-colouring of G (with at least 2 vertices for each colour) and define
{C1,C5} as a partition of V, where each part corresponds to one colour in G.
Obviously, |C1|, |Ca| > 2. Notice that the induced subgraph on the vertex set
C4 (resp. (o) is a clique. Therefore, any vertex v € V satisfies the condition
(1) and the partition {Cy, C2} is a 2-community structure. Since a 2-colouring
can be found in polynomial time, the 2-community structure {Cy,Ca} too.
Obviously, the partition is connected. 0O

This result directly implies the following theorem:

Theorem 3 The complement of any bipartite graph (with at least two vertices
in each part) has a connected 2-community structure which can be found in
polynomial time.

Theorem 4 Any graph (except a star) of minimum degree (n — 3), n > 4,
where n is the order of the graph, has a connected 2-community structure
which can be found in polynomial time.

Proof Let G be a graph of size n and of minimum degree (n — 3) (except a
star), n > 4, and G be the complement of G. Notice that G is of degree at
most 2. If G doesn’t contain an odd cycle, then there exists a 2-colouring of G
with at least 2 vertices for each colour. In such case, a connected 2-community
structure can be found in polynomial time due to Lemma 5.

Now let A be the union of all vertices belonging to an odd cycle in G and
denote by B := V \ A. G[A] is the union of p odd induced cycles with the
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vertex sets Op,...,0p, p > 1. For each i, 1 <4 < p, let v; be any vertex of
O; and fix a 2-colouring of G[O; \ {v;}]. Let 0;.1, O; 2 be the set of vertices
corresponding to each colour, obviously |0; 1] = |0;2|. If |B| > 2, take a 2-
colouring of B and define a partition { By, B2} of B (each part corresponding
to a colour) such that |B;| > |Bz| > 1, otherwise By := B, By := (. Define

= U€:1(Oi,1 U {”Uz}) UbBy, C5:= U?L-):lOi’Q U Bs.

Observe that |C1],|C2| > 2 (|C2] < 1 is only possible for a star or a graph
with 3 vertices). Obviously, every such 2-colouring can be found in polynomial
time. Finally we show that the partition {C1,Cs} is a connected 2-community
structure.

All vertices of Cy satisfy the condition (1) in G since G[C3] is a clique. For
each i, 1 < i < p, all neighbours of v; in G[C1] satisty the condition (1) in G
since they have all vertices of C as neighbours. Moreover, the non-neighbour
of v; in G[C4] and v; itself satisfy the condition (1) in G since |Cy| > |Co|
implies that Igﬂ:? > ‘?g;l.

Observe that the partition {C1, Cs} is connected. Obviously, G[C5] is con-
nected since G[Cy] is a clique. Moreover, any two vertices in C are neighbours
except v; and its neighbour in G[O; 1] for all i, 1 < i < p. If By # 0, such two
vertices must have a common neighbour in B;. If By = (), then either Oy 1] > 3
or p > 2 (due to assumptions on G), and such two vertices have a common
neighbour either in O1,1 or Oj1, j # i. Hence, G[C1] is also connected. O

Theorem 5 Let G = (V, E) be a graph with minimum degree f%] where
c is the size of an inclusion-wise mazximal clique in G, i.e. such a clique is not
a subgraph of another clique. Then, G has a connected 2-community structure
which can be found in polynomial time.

Proof If ¢ > |V| — 1, then for any vertex u € V, d(u) > [%1 >|V|-3
and the rest follows from Theorem 4.

If ¢ < |V]| =2, let C be the inclusion-wise maximal clique in G and take
{C,V'\ C} as a partition. Obviously, the size of both parts is at least 2. C' is
a clique, hence the condition (1) is trivially satisfied for all vertices in C. If a
vertex u € V' \ C has a neighbour in C, then

din(w) (e el doww)

c

[V]—c—17 Vi—c—1 — ¢ = ¢

hence the condition (1) is satisfied for all vertices u € V' \ C with a neighbour
in C. The rest of vertices in V' \ C trivially satisfy the condition (1) since they
do not have a neighbour in C.

Now we prove that the partition {C, V'\ C'} is connected, which is obviously
true for G[C]. Let suppose that G[V'\ C] be disconnected and A be the smallest
connected component of G[V \ C]. Notice that |A| < MT_C and let u € A.
Then “;c)‘v‘ <d(u) < MT_° + ¢ — 2 and hence |V| < % < ¢, which is
impossible. Therefore, G[V \ C] is a connected subgraph. O
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4 Balanced 2-community structure

In this section we study complexity of the problems related to a balanced 2-
community structure. First we prove that every graph of maximum degree 3
has a balanced weak 2-community structure that can be found in polynomial
time. The structural properties of low-degree graphs are crucial to obtain such
a result. In general graphs, the BALANCED WEAK 2-COMMUNITY and BAL-
ANCED 2-COMMUNITY problems are NP-complete as it is shown further in the
section. The latter result is contained as the main result in [10], an alternative
shorter proof is presented in this section. Both NP-completeness results are
extended to a connected balanced 2-community structure.

Remark 1 Due to Theorem 2, every graph of maximum degree 3 has a 2-
community structure, but it is not true for a balanced 2-community structure,
see Fig. 2. The graph is obtained by linking three “cross gadgets”. First notice
that if a balanced 2-community exists for the graph, then all vertices of each
cross gadget must be in the same part. Indeed, each vertex of such community
structure must have two neighbours in its own part. But on the other hand,
this graph is impossible to split into two balanced parts without splitting a

cross gadget.

Fig. 2 A cross gadget and a graph of maximum degree 3 without balanced 2-community
structure.

Nevertheless, if we focus on a weak community, a balanced weak 2-community
always exists in graphs of maximum degree 3, as it is shown in the following
theorem.

Theorem 6 Any graph of mazimum degree 3 with at least 4 vertices has a
balanced weak 2-community structure. Moreover, such a community structure
can be found in polynomial time.

Proof Let G = (V, E) be a connected graph of maximum degree 3. First notice
that in any balanced partition of V:

— each vertex of degree 1 fulfils the condition (2), even if its neighbour is not
in its own part,

— each vertex of degree 2 or 3, which has at least one neighbour in its own
part, satisfies the condition (2).

Therefore, the only vertices which may not satisfy the condition (2) are vertices
of degree 2 or 3 which have no neighbour in their own part.
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Choose any balanced partition {C7, Ca2} of G and repeat the following steps

(S1)-(S2) until it is possible:
(S1) If both parts contain a vertex of degree 2 or 3 that has no neighbour
in its own part (say v1 € Ci, va € Cq), then update: C; := C; U

{va}\{v1}, Co := Co U {v1 }\{va}.

(S2) If there is only one partition that contains a vertex v of degree 2 or 3
that has no neighbour in its own part (without loss of generality suppose
v € (), then choose a vertex w € C3 such that w has at least one
neighbor in C; and update: Cy := C; U{w}\{v}, Co := Cy U {v}\{w}.

First notice that if case (S2) occurs, such a vertex w always exists since
the graph is connected.

Moreover, the partition remains balanced after each step (S1) or (S2).
Besides, the cut size between the partitions C; and Cy always decreases (by
at least 2 in case (S1), by at least 1 in case (S2)) so after a finite number of
iterations (bounded trivially by O(|V|?), every vertex of degree 2 or 3 has at
least one neighbour in its own part. Hence, the algorithm returns a balanced
weak 2-community structure. 0O

Remark 2 Notice that Theorem 6 cannot be extended to a connected case.
There exist graphs of maximum degree 3 in which every balanced weak 2-
community structures is disconnected, see Fig. 3 as an example.

Fig. 3 A tree of maximum degree 3 in which any balanced 2-community structure (or
even balanced weak 2-community structure) is disconnected (an example of a balanced 2-
community structure is presented by the black and white colours)

Remark 3 It can be observed that the BALANCED 2-COMMUNITY problem
(hence also BALANCED WEAK 2-COMMUNITY) is polynomially solvable for
graphs with bounded tree-width. Such result follows directly from [3] where
the t-DECOMPOSITION problem closely related to communities was studied.
The input to the t-DECOMPOSITION problem is a graph G = (V, E), an integer-
valued function ¢ = ¢(n) such that 0 < t(n) < n for every n € IN, and two
functions a, b : V' — IN such that a(v), b(v) < d(v), for all v € V. The problem
consists of deciding if there is a partition {V3, Va} of V with |V;| = ¢(|V]) such
that dgpv,)(v) > a(v) for every v € Vi and dgp)(v) > b(v) for every v € Va.
In order for {Vi,V2} to be a balanced 2-community structure with |V;| >

(vy) (v) d(w)—davy)(v)
i/‘/211—1 = \_n72]/1 and
analogously for every v € V5 must hold Cfi[/‘ézjliﬂl) > d(v)}s/cgﬂ(”), Thus, BAL-
ANCED 2-COMMUNITY can be condidered as the t~-DECOMPOSITION problem

[Va|, every v € Vi must satisfy the condition GF
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for selected values of the functions ¢, a, b. The conditions for BALANCED 2-
COMMUNITY can be transformed to the conditions of the t-DECOMPOSITION
problem where t(n) = [§], a(v) = b(v) = [n/Q_ld(v)] for n even and

n—1
a(v) = [d(v)/2], b(v) = [C=HRL=L4(v)] for n odd.

Since the t-DECOMPOSITION problem was proved to be polynomial-time
solvable for bounded tree-width in [3], we can conclude the same result for the
BALANCED 2-COMMUNITY problem. Notice that the result cannot be extended
to a connected case for all graphs, see a tree on Fig. 3 as a counterexample.

Now we focus on the problem of BALANCED 2-COMMUNITY in general
graphs. In [8] it has been proved that to find a connected balanced parti-
tion without any additional constraints is an NP-complete problem in gen-
eral graphs. We prove similar results for BALANCED WEAK 2-COMMUNITY
and BALANCED 2-COMMUNITY and their connected variants. To show that
BALANCED WEAK 2-COMMUNITY is NP-complete, we use a reduction from
the BALANCED CO-SATISFACTORY PARTITION problem, proved to be NP-
complete in [5].

The problems is defined as follow:

BALANCED CO-SATISFACTORY PARTITION

Input : A graph G = (V| E) on an even number of vertices.

Question : Is there a balanced partition {Cy,C2} of V' such that for every
v E V; dzn(v) § dout(v)?

Theorem 7 BALANCED WEAK 2-COMMUNITY is NP-complete.

Proof The problem is clearly in NP. In the following we define a polynomial-
time reduction from BALANCED CO-SATISFACTORY PARTITION to BALANCED
WEAK 2-COMMUNITY. Let G be a graph on an even number n of vertices
as an instance of BALANCED CO-SATISFACTORY PARTITION, and let G, the
complement of (G, be an instance of BALANCED WEAK 2-COMMUNITY. If G
admits a balanced co-satisfactory partition {C1,C2} then {C1,Cs} is also a
weak 2-community. Suppose di, (v) < doyt(v) for every vertex v € V' (in the

graph G). Let d;,(v) (resp. doyt(v)) be the number of in-neighbours (resp.
out-neighbours) of v in G. Then, the following holds din(V)+1 =2 —djp(v) >
5 — dout(v) = dout(v), which is the condition (2) for a balanced partition.
Conversely, any balanced weak 2-community in G is a balanced co-satisfactory
partition in G. O

The proof of the NP-completeness of BALANCED CO-SATISFACTORY PAR-
TITION in [5] is based on the graphs G = (V, E), where V = FUT UV, with
some additional properties: F' and T are independent sets, there are no edges
between T" and Vj, and there is a vertex f € F that is not adjacent to any
vertex of V. Any balanced co-satisfactory partition {Cy,C2} of V' must have
the following structure: C; = FU S and Cy = T'U (V5 \ S) where S C Vp. If G
is an instance of BALANCED WEAK 2-COMMUNITY (constructed following the
proof of Theorem 7), one can see that C; is connected since f is adjacent to
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all vertices in F'U S and Cs is connected since T is a clique and every vertex
of T is adjacent to every vertex of Vj \ S. Hence we can conclude that even
the connected version of BALANCED WEAK 2-COMMUNITY is NP-complete.

Theorem 8 CONNECTED BALANCED WEAK 2-COMMUNITY is NP-complete.

Estivill-Castro et al. [10] have shown that BALANCED 2-COMMUNITY is NP-
complete by constructing a reduction from a variant of the CLIQUE problem.
We propose a shorter alternative proof which is also valid for the CONNECTED
BALANCED 2-COMMUNITY problem. The proof is based on the NP-complete
problem BALANCED SATISFACTORY PARTITION which was introduced by Baz-
gan et al. [4] as follows:

BALANCED SATISFACTORY PARTITION

Input : A graph G = (V| E) on an even number of vertices.

Question : Is there a balanced partition {Cy,C2} of V' such that for every
veV, din(v) > @?

It can be proved that these two problems are in fact equivalent when the
number of vertices is even.

Lemma 6 Let G = (V,E) be a graph with n vertices. Consider a partition
{C1,Cs} of Vand v € C1. Then the following assertions are equivalent:
1 din (v) > d(v)

© JC1-1 = n-1
2. dout(v) < d('U)

|C2‘ n—1
dzn('U) > dout(lu)
311 2 TGl

Proof (1) & (2) : 4nl) > [l g dow) > nolCalod g nolCalol

d(v) n— d(v) = n—1 n—1
dout(v) dout(v) [Ca|
d(tv)” = d(fv)v <o
. din(v) dout(v) din(v) d(v)—din(v) 1
B e O Erm 2 Tar © e 2 aar © dellge
1 d(v) din(v) [C1]—-1
o) 2 aoien € Tdy 2 et O

Note. Notice that the third assertion in Lemma 6 is the condition (1) of a
2-community structure.

Lemma 7 Let G = (V, E) be a graph with an even number n of vertices and
{C4,Cs} be a balanced partition of V. Then for any vertex v € V, di(v) =

n2=L 4(v) if and only if d(v) =n — 1.

n—1

Proof 1f d(v) = n — 1, then clearly d;,(v) = § — 1. Suppose now that d;, (v) =
n/2-1 j(v). Notice that (=2)(§ = 1)+ 1(n—1) =1 from which it can be easily

n—1
shown that § — 1 and n — 1 do not have common divisors. This implies that

d(v) is a multiple of n — 1. Thus, d(v) =n—1. O



18 Bazgan, Chlebikova & Pontoizeau

Note. Let {C1,C2} be a balanced partition of G and v € C; be a vertex of
degree n —1. Since v has 5 — 1 neighbours in its own part and 5 in other part,
v does not satisfy the condition of BALANCED SATISFACTORY PARTITION.
However, v satisfies the BALANCED 2-COMMUNITY condition since % =1.
Proposition 1 For any graph with n vertices and mazimum degree (n —
2) the problems BALANCED SATISFACTORY PARTITION and BALANCED 2-

COMMUNITY are equivalent.

Proof Suppose that G = (V| E) is a yes-instance of BALANCED SATISFACTORY
PARTITION. Hence there exists a balanced partition {C4,C2} of V such that
any vertex v € V satisfies the condition d;,(v) > 4d(v), which implies that

din(v) > 2‘%1“:11 d(v) = ‘C;Il_‘zld(v). Thus, G is a yes-instance of BALANCED
2-COMMUNITY.

Suppose now that G is a yes-instance of BALANCED 2-COMMUNITY. Hence
there exists a balanced partition {Cy,C2} of V' such that any vertex v € V

satisfies the condition d;,(v) > %dom(v) that is equivalent to d;,(v) >

%d(v) using Lemma 6. According to Lemma 7, there is no vertex v such

that di, (v) = 122 d(v).

n—1

Now we need to show that for every vertex v € V, din (v) > 1d(v). Suppose
by contradiction that there exists a vertex v € V that does not satisfy the
inequality that is

Ci| -1 1
%d(v) < din(v) < 5d(v)
First, notice that £d(v) — ‘(’;lllzld(v) = 2(n171)d(v) < 1, which means that
there is at most one integer number between %d(v) and 1d(v).
d(v)

Moreover, d(v) cannot be even, since otherwise == would be a whole
number and thus d;, (v) could not be an integer number. Then d(v) is odd and
let d(v) = 2p + 1 for some integer p. We arrive to a contradiction by showing
that p < din(v) < p+ 1. Notice that d(v) < n —1 = % < %d(v)

that implies p < %d(u) < din(v). Then necessarily din(v) > 3d(v) for

every vertex v € V, that is G is a yes-instance of BALANCED SATISFACTORY
PARTITION. O

BALANCED SATISFACTORY PARTITION has already been proved NP-complete
in [4], even if both parts are required to be connected. Moreover, the reduction
used in [4] does not construct a graph with vertices of degree n — 1.

Thus we obtain a similar result as in [10] (the authors have mentioned in
the proof that used technique works also in a connected case).

Theorem 9 CONNECTED BALANCED 2-COMMUNITY is NP-complete.

Finally, it is interesting to notice that there exist graphs in which every
2-community structure is balanced (see Fig. 4).



Structural and algorithmic properties of 2-community structures 19

Fig. 4 An example of a graph in which all 2-community structures are balanced

5 Conclusion and open problems

An interesting open question is to determine if a graph of size at least 4 (except
stars) has always a 2-community structure, even a connected one. In this paper
we prove that the statement is true for trees, graphs of maximum degree 3,
minimum degree |V| — 3 and some other graph classes. Furthermore, such a
structure can be found in polynomial time. The question remains open even
for a weak 2-community structure where the partial positive results are only
known for the same graph classes.

In case of BALANCED 2-COMMUNITY the situation is different. We show
that any graph of maximum degree 3 has a balanced weak 2-community struc-
ture, while we present a graph without a balanced 2-community structure
within the same class. Computationally speaking, finding a balanced weak
2-community structure can be done in polynomial time in graphs of maxi-
mum degree 3 while the BALANCED 2-COMMUNITY problem is NP-complete
in general graphs just as its weak version. The results are similar for connected
communities.

To get better understanding of community structures, there are some in-
teresting problems left open, as to extend 2-community results to other graph
classes, to characterise graph classes where the existential/complexity results
for 2-community/weak 2-community problems and their connected versions
are different or to generalise the results to k-communities for a fixed k, k > 3.
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