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Abstra
tIn this paper, we present an approa
h, based on dynami
 programming, for solving the0-1 multi-obje
tive knapsa
k problem. The main idea of the approa
h relies on the use ofseveral 
omplementary dominan
e relations to dis
ard partial solutions that 
annot leadto new non-dominated 
riterion ve
tors. This way, we obtain an e�
ient method thatoutperforms the existing methods both in terms of CPU time and size of solved instan
es.Extensive numeri
al experiments on various types of instan
es are reported. A 
om-parison with other exa
t methods is also performed. In addition, for the �rst time to ourknowledge, we present experiments in the three-obje
tive 
ase.Keywords: multi-obje
tive knapsa
k problem, non-dominated 
riterion ve
tors, e�
ientsolutions, dynami
 programming, dominan
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1 Introdu
tionIn multi-obje
tive 
ombinatorial optimization, a major 
hallenge is to develop e�
ient pro-
edures to generate e�
ient solutions, that have the property that no improvement on anyobje
tive is possible without sa
ri�
ing on at least another obje
tive. The aim is thus to �ndthe e�
ient set (whi
h 
onsists of all the e�
ient solutions) or, more often, a redu
ed e�
ientset (whi
h 
onsists of only one solution for ea
h non-dominated 
riterion ve
tor). A surveyand an annotated bibliography about multi-obje
tive 
ombinatorial optimization 
an be foundin [1℄ and [2℄.This paper deals with a parti
ular multi-obje
tive 
ombinatorial optimization problem:the 0-1 multi-obje
tive knapsa
k problem. The single-obje
tive version of this problem hasbeen studied extensively in the literature (see, e.g., [3, 4℄). Moreover, in the multi-obje
tive
ase, many real-world appli
ations are reported dealing with 
apital budgeting [5℄, sele
tionof transportation investment alternatives [6℄, relo
ation issues arising in 
onservation biology[7℄, and planning remediation of 
ontaminated lightstation sites [8℄.Several exa
t approa
hes have been proposed in the literature to �nd the e�
ient set or aredu
ed e�
ient set for the multi-obje
tive knapsa
k problem. We �rst mention a theoreti
alwork [9℄, without experimental results, where several dynami
 programming formulations arepresented. Two spe
i�
 methods, with extensive experimental results, have been proposed:the two-phase method in
luding a bran
h and bound algorithm proposed in [10℄, and themethod of Captivo et al. presented in [11℄, based on a transformation of the problem into abi-obje
tive shortest path problem whi
h is solved using a labeling algorithm. We 
an alsomention the re
ent work of Silva et al. [12℄. All these methods have been espe
ially designedfor the bi-obje
tive 
ase. Besides exa
t methods investigated in this paper, approximationalgorithms [13℄ and metaheuristi
s [14, 15, 16℄ have been proposed.In this paper, we present a new approa
h based on dynami
 programming. The main ideaof the approa
h relies on the use of several 
omplementary dominan
e relations to dis
ardpartial solutions that 
annot lead to new non-dominated 
riterion ve
tors. This way, weobtain an e�
ient method that outperforms the existing methods both in terms of CPU timeand size of solved instan
es (up to 4000 items in less than 2 hours in the bi-obje
tive 
ase).In our experiments, we 
ompare our approa
h with the method proposed in [11℄, whi
h is themost e�
ient method 
urrently known, and with an exa
t method based on a 
ommer
ialInteger Programming solver. In addition, for the �rst time to our knowledge, we presentexperiments in the three-obje
tive 
ase.This paper is organized as follows. In se
tion 2, we review basi
 
on
epts about multi-obje
tive optimization and formally de�ne the multi-obje
tive knapsa
k problem. Se
tion 3presents and establishes the validity of a dynami
 programming approa
h based on severaldominan
e relations. Se
tion 4 is devoted to implementation issues. Computational experi-ments and results are reported in se
tion 5. Con
lusions are provided in a �nal se
tion.2



2 Preliminaries2.1 Multi-obje
tive optimizationConsider a multi-obje
tive optimization problem with p 
riteria or obje
tives where X denotesthe �nite set of feasible solutions. Ea
h solution x ∈ X is represented in the 
riterion spa
eby its 
orresponding 
riterion ve
tor f(x) = (f1(x), . . . , fp(x)). We assume in the followingthat ea
h 
riterion has to be maximized.From these p 
riteria, the dominan
e relation de�ned on X, denoted by ∆, states that afeasible solution x dominates a feasible solution x′, x∆x′, if and only if fi(x) ≥ fi(x
′) for i =

1, . . . , p. We denote by ∆ the asymmetri
 part of ∆. A solution x is e�
ient if and only ifthere is no other feasible solution x′ ∈ X su
h that x′∆ x, and its 
orresponding 
riterionve
tor is said to be non-dominated. Thus, the e�
ient set is de�ned as E(X) = {x ∈ X :

∀x′ ∈ X, not(x′∆x)}. The set of non-dominated 
riterion ve
tors, whi
h 
orresponds to theimage of the e�
ient set in the 
riterion spa
e, is denoted by ND . Sin
e the e�
ient set 
an
ontain di�erent solutions 
orresponding to the same 
riterion ve
tor, any subset of E(X) that
ontains one and only one solution for every non-dominated 
riterion ve
tor is 
alled a redu
ede�
ient set. Observe that X ′ ⊆ X is a redu
ed e�
ient set if and only if it is a 
overing andindependent set of X with respe
t to ∆. We re
all that, given % a binary relation de�ned ona �nite set A,
• B ⊆ A is a 
overing (or dominating) set of A with respe
t to % if and only if for all

a ∈ A\B there exists b ∈ B su
h that b%a,
• B ⊆ A is an independent (or stable) set with respe
t to % if and only if for all b, b′ ∈

B, b 6= b′, not(b%b′).2.2 The 0− 1 multi-obje
tive knapsa
k problemAn instan
e of the 0 − 1 multi-obje
tive knapsa
k problem 
onsists of an integer 
apa
ity
W > 0 and n items. Ea
h item k has a positive integer weight wk and p non negative integerpro�ts vk

1 , . . . , vk
p (k = 1, . . . , n). A feasible solution is represented by a ve
tor x = (x1, . . . , xn)of binary de
ision variables xk, su
h that xk = 1 if item k is in
luded in the solution and 0otherwise, whi
h satis�es the weight 
onstraint ∑n

k=1 wkxk ≤ W . The value of a feasiblesolution x ∈ X on the ith obje
tive is fi(x) =
∑n

k=1 vk
i xk (i = 1, . . . , p). For any instan
e ofthis problem, we aim at determining the set of non-dominated 
riterion ve
tors.3 Dynami
 Programming and dominan
e relationsWe �rst des
ribe the sequential pro
ess used in Dynami
 Programming (DP) and introdu
esome basi
 
on
epts of DP (se
tion 3.1). Then, we present the 
on
ept of multiple dominan
e3



relations in DP (se
tion 3.2). Se
tion 3.3 indi
ates a manner to use e�
iently a dominan
erelation.3.1 Sequential pro
ess and basi
 
on
epts of DPThe sequential pro
ess used in DP 
onsists of n phases. At any phase k we generate the setof states Sk whi
h represents all the feasible solutions made up of items belonging ex
lusivelyto the k �rst items (k = 1, . . . , n). A state sk = (sk
1 , . . . , s

k
p, s

k
p+1) ∈ Sk represents a feasiblesolution of value sk

i on the ith obje
tive (i = 1, . . . , p) and of weight sk
p+1. Thus, we have Sk =

Sk−1 ∪ {(sk−1
1 + vk

1 , . . . , sk−1
p + vk

p , sk−1
p+1 + wk) : sk−1

p+1 + wk ≤W, sk−1 ∈ Sk−1} for k = 1, . . . , nwhere the initial set of states S0 
ontains only the state s0 = (0, . . . , 0) 
orresponding to theempty knapsa
k. In the following, we identify a state and its 
orresponding feasible solution.As a 
onsequen
e, relation ∆ de�ned on X is also valid on Sk, and we have sk∆s̃k if and onlyif sk
i ≥ s̃k

i , i = 1, . . . , p.De�nition 1 (Completion, extension, restri
tion) For any state sk ∈ Sk (k < n), a
ompletion of sk is any, possibly empty, subset J ⊆ {k+1, . . . , n} su
h that sk
p+1 +

∑
j∈J wj ≤

W . We assume that any state sn ∈ Sn admits the empty set as unique 
ompletion. A state
sn ∈ Sn is an extension of sk ∈ Sk (k ≤ n) if and only if there exists a 
ompletion J of sksu
h that sn

i = sk
i +

∑
j∈J vj

i for i = 1, . . . , p and sn
p+1 = sk

p+1+
∑

j∈J wj . The set of extensionsof sk is denoted by Ext(sk) (k ≤ n). Finally, sk ∈ Sk (k ≤ n) is a restri
tion at phase k ofstate sn ∈ Sn if and only if sn is an extension of sk.3.2 Dominan
e relations in Dynami
 ProgrammingThe e�
ien
y of DP depends 
ru
ially on the possibility of redu
ing the set of states at ea
hphase. For this purpose, dominan
e relations between states are used to dis
ard states at anyphase. A dominan
e relation is de�ned as follows.De�nition 2 (Dominan
e relation between states) A relation Dk on Sk, k = 1, . . . , n,is a dominan
e relation, if for all sk, s̃k ∈ Sk,
skDks̃k ⇒ ∀s̃n ∈ Ext(s̃k),∃sn ∈ Ext(sk), sn∆s̃n (1)Although dominan
e relations are not transitive by de�nition, they are usually transitive by
onstru
tion. This is the 
ase, indeed, with the three relations used in our implementation(see Se
tion 4.2). Observe also that if Dk is a dominan
e relation then its transitive 
losure

D̂
k is a dominan
e relation. Finally, if Dk

i , i = 1, . . . ,m, are dominan
e relations then Dk =
⋃m

i=1 Dk
i is also a dominan
e relation, whi
h is generally non-transitive even if relations Dk

iare transitive.In an e�
ient implementation of DP, it is desirable to make use of multiple dominan
erelations Dk
1, . . . ,D

k
m (m ≥ 1) at phase k (k = 1, . . . , n) sin
e ea
h dominan
e relation Dk

i4



(i = 1, . . . ,m) fo
uses on spe
i�
 
onsiderations. We introdu
e now a way of using multipledominan
e relations in Algorithm 1. At ea
h phase k, Algorithm 1 generates a subset ofstates Ck ⊆ Sk. This is a
hieved by �rst 
reating from Ck−1 a temporary subset Ck
0 ⊆ Sk.Then, we apply dominan
e relations Dk

1, . . . ,D
k
m sequentially. This is done by retaining for

i = 1, . . . ,m, Ck
i whi
h 
an be any 
overing set of Ck

i−1 with respe
t to Dk
i .Algorithm 1: Dynami
 Programming with multiple dominan
e relations

C0 ← {(0, . . . , 0)};1 for k ← 1 to n do2
Ck

0 ← Ck−1 ∪ {(sk−1
1 + vk

1 , . . . , sk−1
p + vk

p , sk−1
p+1 + wk)|sk−1

p+1 + wk ≤W : sk−1 ∈ Ck−1};3 for i← 1 to m do determine Ck
i any 
overing set of Ck

i−1 with respe
t to Dk
i ;4

Ck ← Ck
m;5 return Cn;6 The following result 
hara
terizes the set Ck

m obtained at the end of ea
h phase k.Proposition 1 For any dominan
e relations Dk
1 , . . . ,D

k
m (m ≥ 1) on Sk, the set Ck

m obtainedby Algorithm 1 at ea
h phase is a 
overing set of Ck
0 with respe
t to Dk =

⋃̂m
i=1 Dk

i (k =

1, . . . , n).Proof : Considering sk ∈ Ck
0 \C

k
m, it has been removed when sele
ting a 
overing set at aniteration of step 4. Let i1 ∈ {1, . . . ,m} be the iteration of step 4 su
h that sk ∈ Ck

i1−1\C
k
i1
.Sin
e Ck

i1
is a 
overing set of Ck

i1−1 with respe
t to Dk
i1
, there exists s̃k

(1) ∈ Ck
i1

su
h that
s̃k
(1)D

k
i1

sk. If s̃k
(1) ∈ Ck

m then the 
overing property holds, sin
e Dk
i1
⊆ Dk. Otherwise, thereexists an iteration i2 > i1, 
orresponding to the iteration of step 4 su
h that s̃k

(1) ∈ Ck
i2−1\C

k
i2
.As before, we establish that there exists s̃k

(2) ∈ Ck
i2
su
h that s̃k

(2)D
k
i2

s̃k
(1). Sin
e Dk

i2
⊆ Dk, weget that s̃k

(2)D
ks̃k

(1)D
ksk and by transitivity of Dk, we ensure that s̃k

(2)D
ksk. By repeating thispro
ess, we establish the existen
e of a state s̃k ∈ Ck

m, su
h that s̃kDksk. �We give now 
onditions under whi
h Algorithm 1 generates the set ND of non-dominated
riterion ve
tors.Theorem 1 For any family of dominan
e relations Dk
i (i = 1, . . . ,m; k = 1, . . . , n), Algo-rithm 1 returns Cn whi
h is a 
overing set of Sn with respe
t to ∆. Moreover, if at phase

n we use at least one relation Dn
i = ∆ and impose that the sele
ted 
overing set Cn

i is alsoindependent with respe
t to Dn
i then Cn represents the set ND of non-dominated 
riterionve
tors.Proof : Considering s̃n ∈ Sn\Cn, all its restri
tions have been removed when retaining a
overing set with respe
t to Dk =

⋃̂m
i=1 Dk

i during phases k ≤ n. Let k1 be the highestphase where Ck1
0 still 
ontains restri
tions of s̃n, whi
h will be removed by applying one5



of the relations Dk1
i (i = 1, . . . ,m). Consider any of these restri
tions, denoted by s̃k1

(n).Sin
e s̃k1

(n) ∈ Ck1
0 \C

k1 , we know from Proposition 1, that there exists sk1 ∈ Ck1 su
h that
sk1Dk1 s̃k1

(n). By (1), sin
e Dk is a dominan
e relation, we have that for all extensions of s̃k1

(n),and in parti
ular for s̃n, there exists sn1 ∈ Ext(sk1) su
h that sn1∆s̃n. If sn1 ∈ Cn, then the
overing property holds. Otherwise, there exists a phase k2 > k1, 
orresponding to the highestphase where Ck2
0 still 
ontains restri
tions of sn1 , whi
h will be removed by applying one of therelation Dk2

i (i = 1, . . . ,m). Consider any of these restri
tions, denoted by sk2

(n1). As before,we establish the existen
e of a state sk2 ∈ Ck2 su
h that there exists sn2 ∈ Ext(sk2) su
h that
sn2∆sn1 . Transitivity of ∆ ensures that sn2∆s̃n. By repeating this pro
ess, we establish theexisten
e of a state sn ∈ Cn, su
h that sn∆s̃n.In addition, by sele
ting a set Cn

i that is independent with respe
t to Dn
i = ∆, this prop-erty remains valid for Cn

m whi
h is a subset of Cn
i . Thus Cn, whi
h 
orresponds to a redu
ede�
ient set, represents the set of non-dominated ve
tors. �The previous theorem only requires that one of the n.m 
overing sets is independent withrespe
t to its 
orresponding dominan
e relation. Even if all other sets Ck

i 
an be any 
overingsets, pra
ti
al e�
ien
y of Algorithm 1 indu
es to sele
t 
overing sets of minimal size.This 
an be easily a
hieved when dominan
e relations Dk
i are transitive, by sele
ting, atstep 4 of Algorithm 1, 
overing sets Ck

i that are independent with respe
t to Dk
i . It is well-know indeed that a 
overing and independent set (i.e. a kernel) with respe
t to a transitiverelation does exist and is a 
overing set of minimal size (see, e.g., [17℄).3.3 Generating 
overing and independent setsWe present now in Algorithm 2 a way of of produ
ing Ck

i a 
overing and independent set of
Ck

i−1 with respe
t to a transitive relation Dk
i (step 4 of Algorithm 1).Proposition 2 For any transitive dominan
e relation Dk

i on Sk, Algorithm 2 returns Ck
i a
overing and independent set of Ck

i−1 with respe
t to Dk
i (k = 1, . . . , n; i = 1, . . . ,m).Proof : Clearly, Ck

i is independent with respe
t to Dk
i , sin
e we insert a state sk into Ck

i atstep 12 only if it is not dominated by any other state of Ck
i (step 5) and all states dominatedby sk have been removed from Ck

i (steps 6 and 10).We show now that Ck
i is a 
overing set of Ck

i−1 with respe
t to Dk
i . Consider s̃k ∈ Ck

i−1\C
k
i .This o

urs either be
ause it did not pass the test at step 5 or was removed at step 6 or 10.This is due respe
tively to a state s̄k already in Ck

i or to be in
luded in Ck
i (at step 12) su
hthat s̄kDk

i s̃
k. It may happen that s̄k will be removed from Ck

i at a later iteration of the forloop (at step 6 or 10) if there exists a new state ŝk ∈ Ck
i−1 to be in
luded in Ck

i , su
h that
ŝkDk

i s̄
k. However, transitivity of Dk

i ensures the existen
e, at the end of phase k, of a state
sk ∈ Ck

i su
h that skDk
i s̃

k. �6



Algorithm 2: Compute Ck
i a 
overing and independent set of Ck

i−1 with respe
t to atransitive relation Dk
i/* Assume that Ck

i−1 = {sk(1), . . . , sk(r)} */
Ck

i ← {s
k(1)};1 for h← 2 to r do2 /* Assume that Ck

i = {s̃k(1), . . . , s̃k(ℓh)} */dominated ← false ; dominates ← false ; j ← 1;3 while j ≤ ℓh and not(dominated) and not(dominates) do4 if s̃k(j)Dk
i sk(h) then dominated ← true5 else if sk(h)Dk

i s̃k(j) then Ck
i ← Ck

i \{s̃
k(j)} ; dominates ← true;6

j ← j + 1;7 if not(dominated) then8 while j ≤ ℓh do9 if sk(h)Dk
i s̃k(j) then Ck

i ← Ck
i \{s̃

k(j)};10
j ← j + 1;11

Ck
i ← Ck

i ∪ {s
k(h)};12 return Ck;13 Algorithm 2 
an be improved sin
e it is usually possible to generate states of Ck

i−1 =

{sk(1), . . . , sk(r)} a

ording to a dominan
e preserving order for Dk
i su
h that for all ℓ < j(1 ≤ ℓ,j ≤ r) we have either sk(ℓ)Dk

i s
k(j) or not(sk(j)Dk

i s
k(ℓ)). The following proposition givesa ne
essary and su�
ient 
ondition to establish the existen
e of a dominan
e preserving orderfor a dominan
e relation.Proposition 3 Let Dk be a dominan
e relation on Sk. There exists a dominan
e preservingorder for Dk if and only if Dk does not admit 
y
les in its asymmetri
 part.Proof : ⇒ The existen
e of a 
y
le in the asymmetri
 part of Dk would imply the existen
eof two 
onse
utive states sk(j) and sk(ℓ) on this 
y
le with j > ℓ, a 
ontradi
tion.

⇐ Any topologi
al order based on the asymmetri
 part of Dk is a dominan
e preserving orderfor Dk. �We give in se
tion 4.3.1 an example of a dominan
e preserving order. If states of Ck
i−1are generated a

ording to a dominan
e preserving order for Dk

i , step 6 and loop 9-11 ofAlgorithm 2 
an be omitted.4 Implementation issuesWe �rst present the order in whi
h we 
onsider items in the sequential pro
ess (se
tion 4.1).Then, we present three dominan
e relations that we use in DP (se
tion 4.2) and the way of7



applying them (se
tion 4.3).4.1 Item orderThe order in whi
h items are 
onsidered is a 
ru
ial implementation issue in DP. In the single-obje
tive knapsa
k problem, it is well-known that, in order to obtain a good solution, itemsshould usually be 
onsidered in de
reasing order of value to weight ratios vk/wk (assumingthat ties are solved arbitrarily) [3, 4℄. For the multi-obje
tive version, there is no su
h anatural order.We introdu
e now three orders Osum, Omax, Omin that are derived by aggregating orders
Oi indu
ed by the ratios vk

i /wk for ea
h 
riterion (i = 1, . . . , p). Let rℓ
i be the rank orposition of item ℓ in order Oi. Osum denotes an order a

ording to in
reasing values ofthe sum of the ranks of items in the p orders Oi (i = 1, . . . , p). Omax denotes an ordera

ording to the in
reasing values of the maximum or worst rank of items in the p orders Oi

(i = 1, . . . , p), where the worst rank of item ℓ in the p orders Oi (i = 1, . . . , p) is 
omputedby maxi=1,...,p{r
ℓ
i}+ 1

pn

∑p
i=1 rℓ

i in order to dis
riminate items with the same maximum rank.
Omin denotes an order a

ording to the in
reasing values of the minimum or best rank ofitems in the p orders Oi (i = 1, . . . , p), where the best rank of item ℓ in the p orders Oi

(i = 1, . . . , p) is 
omputed by mini=1,...,p{r
ℓ
i}+ 1

pn

∑p
i=1 rℓ

i in order to dis
riminate items withthe same minimum rank.In the 
omputational experiments, in Se
tion 5.2.1, we show the impa
t of the order onthe e�
ien
y of our approa
h.4.2 Dominan
e relationsEa
h dominan
e relation fo
uses on spe
i�
 
onsiderations. It is then desirable to make use of
omplementary dominan
e relations. Moreover, when de
iding to use a dominan
e relation, atradeo� must be made between its potential ability of dis
arding many states and the time itrequires to be 
he
ked.We present now the three dominan
e relations used in our method. The �rst two relationsare very easy to establish and the last one, although more di�
ult to establish, is 
onsideredowing to its 
omplementarity with the two others.We �rst present a dominan
e relation based on the following observation. When theresidual 
apa
ity asso
iated to a state sk of phase k is greater than or equal to the sum ofthe weights of the remaining items (items k + 1, . . . , n), the only 
ompletion of sk that 
anpossibly lead to an e�
ient solution is the full 
ompletion J = {k + 1, . . . , n}. Thus, in this
ontext, it is unne
essary to generate extensions of sk that do not 
ontain all the remaining
8



items. We de�ne thus the dominan
e relation Dk
r on Sk for k = 1, . . . , n by:for all sk, s̃k ∈ Sk, skDk

r s̃
k ⇔






s̃k ∈ Sk−1,

sk = (s̃k
1 + vk

1 , . . . , s̃k
p + vk

p , s̃k
p+1 + wk), and

s̃k
p+1 ≤W −

∑n
j=k wjThe following proposition shows that Dk

r is indeed a dominan
e relation and gives additionalproperties of Dk
r .Proposition 4 (Relation Dk

r)(a) Dk
r is a dominan
e relation(b) Dk
r is transitive(
) Dk
r admits dominan
e preserving ordersProof : (a) Consider two states sk and s̃k su
h that skDk

r s̃
k. This implies, that sk∆s̃k.Moreover, sin
e sk

p+1 = s̃k
p+1 + wk ≤ W −

∑n
j=k+1 wj , any subset J ⊆ {k + 1, . . . , n} is a
ompletion for s̃k and sk. Thus, for all s̃n ∈ Ext(s̃k), there exists sn ∈ Ext(sk), based on thesame 
ompletion as s̃n, su
h that sn∆s̃n. This establishes that Dk

r satis�es 
ondition (1) ofDe�nition 2.(b) Obvious.(
) By Proposition 3, sin
e Dk
r is transitive. �This dominan
e relation is rather poor, sin
e at ea
h phase k it 
an only appear betweena state that does not 
ontain item k and its extension that 
ontains item k. Nevertheless, itis very easy to 
he
k sin
e, on
e the residual 
apa
ity W −

∑n
j=k wj is 
omputed, relation Dk

rrequires only one test to be established between two states.We present now dominan
e relation Dk
∆ that is a generalization to the multi-obje
tive 
aseof the dominan
e relation usually attributed to Weingartner and Ness [18℄ and used in the
lassi
al Nemhauser and Ullmann's algorithm [19℄. This se
ond dominan
e relation is de�nedon Sk for k = 1, . . . , n by:for all sk, s̃k ∈ Sk, skDk
∆s̃k ⇔

{
sk∆s̃k and
sk
p+1 ≤ s̃k

p+1 if k < nObserve that the 
ondition on the weights sk
p+1 and s̃k

p+1 ensures that every 
ompletion for s̃kis also a 
ompletion for sk. The following proposition shows that Dk
∆ is indeed a dominan
erelation and gives additional properties of Dk

∆.Proposition 5 (Relation Dk
∆)(a) Dk

∆ is a dominan
e relation 9



(b) Dk
∆ is transitive(
) Dk
∆ admits dominan
e preserving orders(d) Dn
∆ = ∆Proof : (a) Consider two states sk and s̃k su
h that skDk

∆s̃k. This implies, that sk∆s̃k.Moreover, sin
e sk
p+1 ≤ s̃k

p+1, any subset J ⊆ {k + 1, . . . , n} that is a 
ompletion for s̃k isalso a 
ompletion for sk. Thus, for all s̃n ∈ Ext(s̃n), there exists sn ∈ Ext(sn), based on thesame 
ompletion as s̃n, su
h that sn∆s̃n. This establishes that Dk
∆ satis�es 
ondition (1) ofDe�nition 2.(b) Obvious.(
) By Proposition 3, sin
e Dk

∆ is transitive.(d) By de�nition. �Relation Dk
∆ is a powerful relation sin
e a state 
an possibly dominate all other states oflarger weight. This relation requires at most p + 1 tests to be established between two states.The third dominan
e relation is based on the 
omparison between spe
i�
 extensions of astate and an upper bound of the extensions of another state. An upper bound for a state isde�ned as follows in our 
ontext.De�nition 3 (Upper bound) Criterion ve
tor u = (u1, . . . , up) is an upper bound for astate sk ∈ Sk if and only if for all sn ∈ Ext(sk) we have ui ≥ sn

i , i = 1, . . . , p.We 
an derive a general type of dominan
e relations as follows: 
onsidering two states sk, s̃k ∈

Sk, if there exists a 
ompletion J of sk and an upper bound ũ for s̃k su
h that sk
i +

∑
j∈J vj

i ≥ ũi,

i = 1, . . . , p, then sk dominates s̃k.This type of dominan
e relations 
an be implemented only for spe
i�
 
ompletions andupper bounds. In our experiments, we just 
onsider two spe
i�
 
ompletions J ′ and J ′′obtained by a simple greedy algorithm as follows. After relabeling items k+1, . . . , n a

ordingto order Osum (respe
tively, Omax), 
ompletion J ′ (respe
tively, J ′′) is obtained by insertingsequentially the remaining items into the solution provided that the 
apa
ity 
onstraint isrespe
ted.To 
ompute u, we use the upper bound presented in [3℄ for ea
h 
riterion value. Let us�rst de�ne W (sk) = W − sk
p+1 the residual 
apa
ity asso
iated to state sk ∈ Sk. We denoteby ci = min{ℓi ∈ {k + 1, . . . , n} :

∑ℓi

j=k+1 wj > W (sk)} the position of the �rst item that
annot be added to state sk ∈ Sk when items k +1, . . . , n are relabeled a

ording to order Oi.Thus, a

ording to [3, Th 2.2℄, when items k + 1, . . . , n are relabeled a

ording to order Oi,
10



an upper bound on the ith 
riterion value of sk ∈ Sk is for i = 1, . . . , p:
ui = sk

i +

ci−1∑

j=k+1

vj
i + max

{⌊
W (sk)

vci+1
i

wci+1

⌋
,

⌊
vci

i − (wci −W (sk))
vci−1
i

wci−1

⌋} (2)Finally, we de�ne Dk
b a parti
ular dominan
e relation of this general type for k = 1, . . . , nby: for all sk, s̃k ∈ Sk, skDk

b s̃
k ⇔






sk
i +

∑
j∈J ′ v

j
i ≥ ũi, i = 1, . . . , por

sk
i +

∑
j∈J ′′ v

j
i ≥ ũi, i = 1, . . . , pwhere ũ = (ũ1, . . . , ũp) is the upper bound for s̃k 
omputed a

ording to (2).The following proposition shows that Dk

b is indeed a dominan
e relation and gives addi-tional properties of Dk
b .Proposition 6 (Relation Dk

b )(a) Dk
b is a dominan
e relation(b) Dk
b is transitive(
) Dk
b admits dominan
e preserving orders(d) Dn
b = ∆Proof : (a) Consider states sk and s̃k su
h that skDk

b s̃
k. This implies that there exists

J ∈ {J ′, J ′′} leading to an extension sn of sk su
h that sn∆ũ. Moreover, sin
e ũ is an upperbound of s̃k, we have ũ∆s̃n, for all s̃n ∈ Ext(s̃k). Thus, by transitivity of ∆, we get sn∆s̃n,whi
h establishes that Dk
b satis�es 
ondition (1) of De�nition 2.(b) Consider states sk, s̃k, and s̄k su
h that skDk

b s̃
k and s̃kDk

b s̄
k. This implies that, on theone hand, there exists J1 ∈ {J

′, J ′′} su
h that sk
i +

∑
j∈J1

vj
i ≥ ũi (i = 1, . . . , p), and on theother hand, there exists J2 ∈ {J

′, J ′′} su
h that s̃k
i +

∑
j∈J2

vj
i ≥ ūi (i = 1, . . . , p). Sin
e ũ isan upper bound for s̃k we have ũi ≥ s̃k

i +
∑

j∈J2
vj
i (i = 1, . . . , p). Thus we get skDk

b s̄
k.(
) By Proposition 3, sin
e Dk

b is transitive.(d) By de�nition. �

Dk
b is harder to 
he
k than relations Dk

r and Dk
∆ sin
e it requires mu
h more tests and state-dependent information.Obviously, relation Dk

b would have been ri
her if we had used additional 
ompletions(a

ording to other orders) for sk and 
omputed instead of one upper bound u, an upperbound set using, e.g., the te
hniques presented in [20℄. Nevertheless, in our 
ontext sin
ewe have to 
he
k Dk
b for many states, enri
hing Dk

b in this way would be extremely time
onsuming. 11



4.3 Implementing with multiple dominan
e relationsIn order to be e�
ient, we will use the three dominan
e relations presented in se
tion 4.2 atea
h phase. As underlined in the previous subse
tion, dominan
e relations require more orless 
omputational e�ort to be 
he
ked. Moreover, even if they are partly 
omplementary, itoften happens that several relations are valid for a same pair of states. It is thus natural toapply �rst dominan
e relations whi
h 
an be 
he
ked easily (su
h as Dk
r and Dk

∆) and thentest on a redu
ed set of states dominan
e relations requiring a larger 
omputation time (su
has Dk
b ).We des
ribe now the details of the implementation of these dominan
e relations. Algo-rithm 3, whi
h 
omputes, at ea
h phase k, the subset of 
andidates Ck from subset Ck−1

(k = 1, . . . , n), repla
es step 3 to step 4 of Algorithm 1.The use of relation Dk
r and Dk

∆ is �rst des
ribed (steps 1-8) and then the use of relation
Dk

b (steps 9-24). This algorithm uses two subpro
edures: pro
edure MaintainNonDominated,whi
h removes states Dk
∆-dominated, and pro
edure KeepNonDominated, whi
h is used duringthe appli
ation of relation Dk

b .4.3.1 Generation of Ck
0 and dominating preserving orderGenerating a priori Ck

0 and, then, trimming it using dominan
e relations in order to produ
e
Ck would be ine�
ient. Instead, we generate and trim Ck

0 progressively, whi
h requiresgenerating new states of Ck
0 a

ording to a dominan
e preserving order for Dk

∆.Let relation ∆lex denote the lexi
ographi
 relation de�ned on Sk by: for all sk, s̃k ∈ Sk,

sk∆lexs̃
k ⇔ sk

j > s̃k
j where j = min{i ∈ {1, . . . , p} : sk

i 6= s̃k
i } or sk

j = s̃k
j , j = 1, . . . , p.Its asymmetri
 part is denoted by ∆lex. Let relation ≥lex denote the lexi
ographi
 relationde�ned on Sk by: for all sk, s̃k ∈ Sk, sk ≥lex s̃k ⇔ sk

p+1 < s̃k
p+1 or (sk

p+1 = s̃k
p+1 and sk∆lexs̃

k).Its asymmetri
 part is denoted by >lex.Proposition 7 The de
reasing order with respe
t to ≥lex is a dominan
e preserving order for
Dk

∆.Proof : Consider a set H = {sk(1), . . . , sk(h)} ⊆ Sk ordered a

ording to de
reasing orderwith respe
t to ≥lex, i.e. su
h that sk(i) ≥lex sk(j) for all i < j (1 ≤ i, j ≤ h). Supposethat H is not ordered a

ording to a dominan
e preserving order for Dk
∆. There exists thus

sk(i), sk(j) ∈ H (i < j, 1 ≤ i, j ≤ h) su
h that sk(j)Dk
∆sk(i) and not(sk(i)Dk

∆sk(j)). Then, wehave either s
k(j)
p+1 < s

k(i)
p+1 or (s

k(j)
p+1 = s

k(i)
p+1 and sk(j)∆lexsk(i)). This implies that sk(j) >lex sk(i),whi
h 
ontradi
ts that H is ordered a

ording to de
reasing order with respe
t to ≥lex. �Observe also that ≥lex is trivially a dominan
e preserving order for Dk

r .Our implementation maintains set Ck, k = 1, . . . , n, sorted a

ording to de
reasing orderwith respe
t to ≥lex. Considering indeed that, at phase k, Ck−1 is sorted a

ording to de-12



j
Ck−1: Generate only ex-tensions with item k(states Dk

r -dominated)
Generate both exten-sions: with item k andwithout item k Generate only exten-sions without item k(extension with item kis not feasible)Figure 1: Extensions of Ck−1 (sorted a

ording to ≥lex)
reasing order with respe
t to ≥lex, we generate progressively states of Ck

0 a

ording to thisdominan
e preserving order, and thus maintain Ck sorted a

ording to the same order.4.3.2 Appli
ation of the three relationsWe present now a detailed des
ription of the appli
ation of ea
h dominan
e relation Dk
r ,

Dk
∆, and Dk

b . Generating Ck
1 from Ck

0 using Dk
r , then redu
ing Ck

1 to Ck
2 using Dk

∆, and�nally redu
ing Ck
2 to Ck

3 using Dk
b would not be 
omputationally e�
ient. Instead, sin
e

Dk
r -dominated states 
an be identi�ed in Ck−1, we generate dire
tly Ck

2 using Dk
∆ and redu
e

Ck
2 to Ck

3 using Dk
b . In the following, we shall not distinguish sets Ck

i , i = 0, . . . , 3, but insteadrefer to a 
urrent set Ck whi
h is progressively redu
ed.Appli
ation of relation Dk
r : The order of states in Ck−1 allows us to �nd easily j, theindex of the �rst state that is not Dk

r -dominated (step 2). Thus, it is unne
essary to generatethe extension without item k for all states sk−1(1), . . . , sk−1(j−1) sin
e they are Dk
r -dominatedby their respe
tive extensions with item k. Figure 1 shows the extensions generated for ea
hstate of Ck−1, due to Dk

r on the one hand, and to infeasibility on the other hand.Appli
ation of relation Dk
∆: Sin
e states are generated progressively a

ording to a dom-inan
e preserving order for Dk

∆, we never remove states from Ck. Indeed, by de�nition of adominan
e preserving order, a state 
andidate to be added in Ck 
annot Dk
∆-dominate statesalready in
luded in Ck.In order to test e�
iently Dk

∆-dominan
e within Ck, we maintain Mk ⊆ Ck, the subsetof non-dominated states of Ck with respe
t to pro�t values only. Indeed, sin
e states aregenerated a

ording to a dominan
e preserving order for Dk
∆, a new state sk 
an be Dk

∆-dominated in Ck if and only if there exists a state in the 
urrent set Mk that ∆-dominates
sk 
onsidering that all states already generated have smaller or equal weight than sk. Thisproperty is useful sin
e Mk is mu
h smaller than Ck (in the worst 
ase, 
ardinality of Ck is in
O(|Mk|×W )). We impose that set Mk is sorted a

ording to de
reasing order with respe
t to13



Algorithm 3: Computing Ck from Ck−1 at ea
h phase k (k = 1, . . . , n)In : Ck−1 = {sk−1(1), . . . , sk−1(r)} su
h that sk−1(i) ≥lex sk−1(j) for all i < j (1 ≤ i, j ≤ r)Out: Ck in whi
h states are sorted a

ording to de
reasing preferen
e with respe
t to ≥lex/* Appli
ation of relations Dk
r and Dk

∆ */
Ck ← ∅ ; Mk ← ∅ ; i← 1 ; j ← 1 ;1 /* Identifi
ation of j, index of the first state that is not Dk

r-dominated */while j ≤ r and s
k−1(j)
p+1 +

∑n

ℓ=k wℓ ≤W do j ← j + 1 ;2 while i ≤ r and s
k−1(i)
p+1 + wk ≤W do3

sk ← (s
k−1(i)
1 + vk

1 , . . . , s
k−1(i)
p + vk

p , s
k−1(i)
p+1 + wk);4 while j ≤ r and sk−1(j) ≥lex sk do5 MaintainNonDominated(sk−1(j),Mk,Ck) ; j ← j + 1 ;6 MaintainNonDominated(sk,Mk,Ck) ; i← i + 1;7 while j ≤ r do MaintainNonDominated(sk−1(j),Mk,Ck) ; j ← j + 1;8 /* Appli
ation of relation Dk

b on Mk × Ck */if k = n then Cn ←Mn9 else10
F ← ∅;11 /* Generation of extensions J ′ and J ′′ for ea
h state of Mk */for order O in {Osum,Omax} do12 forea
h sk ∈Mk do13 Relabel items k + 1, . . . , n a

ording to order O ; sn ← sk;14 for j ← k + 1 to n do15 if sn

p+1 + wj ≤W then sn ← (sn
1 + vj

1, . . . , s
n
p + vj

p, s
n
p+1 + wj);16

F ← KeepNonDominated(sn,F );17 /* Assuming that Ck = {sk(1), . . . , sk(c)} and that Fn = {sn(1), . . . , sn(h)} su
h that
sn(i)∆lexsn(j) for all i < j (1 ≤ i, j ≤ h) */

i← 1 ; remove← true;18 while i ≤ c and remove do19 Compute an upper bound u for sk(i) a

ording to (2);20
j ← 1 ; remove← false;21 while j ≤ h and sn(j)∆lexu and not(remove) do22 if sn(j)∆u then remove ← true else j ← j + 1;23 if remove then Ck ← Ck\{sk(i)} ; i← i + 1 ;24 return Ck25

14



∆lex. The order of Mk is maintained easily by updating the sorted stru
ture at ea
h insertion.Pro
edure MaintainNonDominated(sk,Mk,Ck)/* Assume that Mk = {s̃k(1), . . . , s̃k(ℓ)} su
h that s̃k(i)∆lexs̃k(j) for all i < j (1 ≤ i, j ≤ ℓ) */
i← 1 ; dominated ← false;1 while i ≤ ℓ and s̃k(i)∆lexsk and not(dominated) do2 if s̃k(i)∆sk then dominated ← true else i← i + 1;3 if not(dominated) then4

Ck ← Ck ∪ {sk} ; // Insertion at the end of Ck5
Mk ←Mk ∪ {sk}; // Insertion at the ith position in Mk6 while i ≤ ℓ do7 if sk∆s̃k(i) then Mk ←Mk\{s̃k(i)};8

i← i + 1;9 In the bi-obje
tive 
ase, based on the idea of [21℄, using an AVL tree for storing states of
Mk also leads to a signi�
ant improvement of the running time. The AVL tree allows us toperform ea
h sear
h, insertion or deletion in O(log |Mk|). With this stru
ture the while loop 2-3 of pro
edure MaintainNonDominated redu
es to the sear
h of the largest value i⋆ ∈ {1, . . . , ℓ}su
h that s̃

k(i⋆)
1 ≥ sk

1. Then variable dominated is false if and only if s̃
k(i⋆)
2 < sk

2. Moreover,the while loop 7-9 of pro
edure MaintainNonDominated redu
es to removing, from Mk, state
s̃k(i⋆) if s̃

k(i⋆)
1 = sk

1 and states with index i⋆ + 1 to j⋆− 1 where j⋆ ∈ {i⋆, . . . , ℓ} is the smallestvalue su
h that s̃
k(j⋆)
2 > sk

2.Thus, in the bi-obje
tive 
ase, the running time of pro
edure MaintainNonDominated 
anbe bounded by O(z×log |Ck
0 |) where z represents the number of states that have to be removedfrom Mk. For p > 2, a linked list has to be used for storing Mk and the running time 
an bebounded by O(|Ck

0 |) only. Sin
e in the worst 
ase at most |Ck
0 | states have to be inserted in Mkand at most |Ck

0 |−1 states have to be deleted from Mk in the entire exe
ution of Algorithm 3,the exe
ution time of all 
alls of pro
edure MaintainNonDominated, during phase k, is in
O(|Ck

0 | log |C
k
0 |) for p = 2 and in O(|Ck

0 |
2) for p > 2.Appli
ation of relation Dk

b : Relation Dk
b is applied after relations Dk

r and Dk
∆ to redu
ethe set Ck. The purpose of using this relation is to remove states of Ck with small weightsin
e Dk

r and Dk
∆ are not e�
ient to remove these states (for instan
e using Dk

∆ we will neverremove the empty knapsa
k). Thus, we test if states of small weight are Dk
b -dominated. Weapply relation Dk

b between states of Mk, whi
h 
ontains states with non-dominated 
riterionve
tors, and the 
urrent Ck. A state sk(i) of Ck is removed if there exists a state sk 6= sk(i)in Mk su
h that skDk
bs

k(i). To do that, we generate two extensions for all states of Mk withrespe
t to orders Osum and Omax and keep only the non-dominated extensions in F . Thisis done by pro
edure KeepNonDominated that is not detailed here sin
e it is just a simpli�edversion of pro
edure MaintainNonDominated where F repla
es Mk and step 5 is removed.15



Then sk(i) is Dk
b -dominated by a state of Mk, if there exists sn ∈ F su
h that sn∆u, where

u is the upper bound asso
iated to sk(i). Sin
e 
omputing the upper bound for ea
h state istime 
onsuming, we stop 
he
king relation Dk
b as soon as we identify a state of Ck that is not

Dk
b -dominated by a state of Mk.Spe
ial 
ase of phase n First observe that, sin
e Dn

∆ = Dn
b = ∆, it is unne
essary toapply both relations. Thus, due to the order of appli
ation of these relations (Dk

∆ followed by
Dk

b ), we do not apply relation Dk
b at phase n.Se
ond, at phase n it should be noti
ed that Mn 
orresponds to the non-dominated 
rite-rion ve
tors of Sn and thus we take Cn equal to Mn (step 9).5 Computational experiments and results5.1 Experimental designAll experiments presented here were performed on a bi-Xeon 3.4GHz with 3072Mb RAM.All algorithms are written in C++. In the bi-obje
tive 
ase (p = 2), the following types ofinstan
es were 
onsidered:A) Random instan
es: vk

1 ∈R [1, 1000], vk
2 ∈R [1, 1000] and wk ∈R [1, 1000]B) Un
on�i
ting instan
es, where vk

1 is positively 
orrelated with vk
2 : vk

1 ∈R [111, 1000] and
vk
2 ∈R [vk

1 − 100, vk
1 + 100], and wk ∈R [1, 1000]C) Con�i
ting instan
es, where vk

1 and vk
2 are negatively 
orrelated: vk

1 ∈R [1, 1000], vk
2 ∈R

[max{900 − vk
1 ; 1},min{1100 − vk

1 ; 1000}], and wk ∈R [1, 1000]D) Con�i
ting instan
es with 
orrelated weight, where vk
1 and vk

2 are negatively 
orrelated,and wk is positively 
orrelated with vk
1 and vk

2 : vk
1 ∈R [1, 1000], vk

2 ∈R [max{900 −

vk
1 ; 1},min{1100 − vk

1 ; 1000}], and wk ∈R [vk
1 + vk

2 − 200; vk
1 + vk

2 + 200].where ∈R [a, b] denotes uniformly random generated in [a, b]. For all these instan
es, we set
W = ⌊1/2

∑n
k=1 wk⌋.Most of the time in the literature, experiments are only made on instan
es of type A.Sometimes, other instan
es su
h as those of type B, whi
h were introdu
ed in [11℄, are studied.However, instan
es of type B should be viewed as quasi single-
riterion instan
es sin
e theyinvolve two non 
on�i
ting 
riteria. This aspe
t 
an be seen in Figure 2. Nevertheless, in abi-obje
tive 
ontext, 
onsidering 
on�i
ting 
riteria is a more appropriate way of modeling real-world situations. For this reason, we introdu
ed instan
es of types C and D for whi
h 
riterionvalues of items are 
on�i
ting. In this 
ase, items are lo
ated around the line y = −x + 1000.In instan
es of type D, wk is positively 
orrelated with vk

1 , vk
2 . These instan
es were introdu
ed16



in order to verify if positively 
orrelated instan
es are harder than un
orrelated instan
es asin the single-
riterion 
ontext [4℄.For three-obje
tive experiments, we 
onsidered the generalization of random instan
es oftype A where vk
i ∈R [1, 1000] for i = 1, . . . , 3 and wk ∈R [1, 1000] and the generalizationof 
on�i
ting instan
es of type C where vk

1 ∈R [1, 1000], vk
2 ∈R [1, 1001 − vk

1 ], and vk
3 ∈R

[max{900 − vk
1 − vk

2 ; 1},min{1100 − vk
1 − vk

2 ; 1001 − vk
1}], and wk ∈R [1, 1000].For ea
h type of instan
es and ea
h value of n presented in this study, 10 di�erent instan
eswere generated. In the following, we denote by pTn a p 
riteria instan
e of type T with nitems. For example 2A100 denotes a bi-obje
tive instan
e of type A with 100 items.

Figure 2: Repartition in the 
riterion spa
e of values of items for one instan
e of ea
h type5.2 Results in the bi-obje
tive 
aseThe goals of the experiments in the bi-obje
tive 
ase are:(a) to determine the best order to sort items in our approa
h (se
tion 5.2.1)(b) to evaluate the 
ardinality of the set of non-dominated 
riterion ve
tors on di�erent typesof instan
es (se
tion 5.2.2)(
) to analyze the impa
t of using dominan
e relations Dk
∆, Dk

b , and Dk
r (se
tion 5.2.3)(d) to analyze the performan
e of our approa
h on large size instan
es (se
tion 5.2.4)(e) to 
ompare our approa
h with other exa
t methods (se
tion 5.2.5)17



5.2.1 Item orderTable 1: Impa
t of di�erent orders of items in our approa
h (Average CPU time in se
onds)Type n Omax Osum Omin RandomA 300 84.001 (−53%) 100.280 (−44%) 94.598 (−47%) 178.722B 600 1.141 (−99%) 1.084 (−99%) 1.403 (−98%) 77.699C 200 59.986 (−44%) 60.061 (−44%) 85.851 (−20%) 107.973D 90 20.795 (−34%) 23.687 (−25%) 35.426 (+12%) 31.659The in
rease or the de
rease (expressed in per
ent) of CPU time 
ompared to the CPU time obtained whenitems are sele
ted randomly is given in bra
kets.The way of ordering items has a dramati
 impa
t on the CPU time, has shown in Table 1. We
ompare, on 10 instan
es of ea
h type, the results obtained using the three orders presentedin se
tion 4.1 (Omax, Osum, and Omin) and results obtained with a random order of obje
ts.Table 1 shows 
learly that order Omax is signi�
antly better for all types of instan
es. Thus,in the following, items are sorted and labeled a

ording to Omax.5.2.2 Cardinality of the set of non-dominated 
riterion ve
torsFigure 3 shows the evolution of the average 
ardinality of the set of non-dominated 
riterionve
tors for 10 instan
es of ea
h type. As expe
ted, instan
es of type B are quasi single-obje
tive instan
es and have very few non-dominated 
riterion ve
tors. Even if instan
es oftype A have more non-dominated 
riterion ve
tors than instan
es of type B, the 
on�i
tinginstan
es (type C and D) have many more non-dominated 
riterion ve
tors than the othertypes of instan
es.

Figure 3: Average 
ardinality of the set of non-dominated 
riterion ve
tors as a fun
tion of n18



5.2.3 Impa
t of ea
h dominan
e relationWe 
ompare, in Table 2, the average CPU time obtained using dominan
e relation Dk
∆ alone,relations Dk

r and Dk
∆, relations Dk

∆ and Dk
b , and �nally relations Dk

r , Dk
∆, and Dk

b all together.Table 2 shows 
learly that it is always better to use these three relations together, due to their
omplementarity. Thus, in the following experiments, we always apply these three relationstogether.Table 2: Complementarity of dominan
e relations Dk
r , Dk

∆, and Dk
b in our approa
h (AverageCPU time in se
onds)Type n Dk

∆ Dk
r and Dk

∆ Dk
∆ and Dk

b Dk
r , Dk

∆, and Dk
bA 300 272.628 157.139 (−42.4%) 85.076 (−68.8%) 84.001 (−69.2%)B 600 230.908 174.015 (−24.6%) 1.188 (−99.5%) 1.141 (−99.5%)C 200 122.706 63.557 (−48.2%) 61.696 (−49.7%) 59.986 (−51.1%)D 90 46.137 24.314 (−47.3%) 23.820 (−48.4%) 20.795 (−54.9%)The de
rease (expressed in per
ent) of CPU time 
ompared to the CPU time obtained when using onlyrelation Dk

∆ in our approa
h is given in bra
kets.To illustrate further the impa
t and 
omplementarity of ea
h dominan
e relation, we indi-
ate, in Table 3, the number of states respe
tively removed by relations Dk
r , Dk

∆, and Dk
b forone instan
e (with p = 2, and n = 20) of ea
h type. In addition, the number of non-feasiblestates obtained at ea
h phase and the 
ardinality of Ck is given. For instan
e 2B20, the moste�
ient relation in terms of removed states is relation Dk

b . This is not surprising, sin
e thevalues of the non-dominated extensions of a state sk are not spread, and thus the upper boundfor sk, whi
h is an upper bound on the ideal point asso
iated to the extensions of sk, is very
lose to the values of the extensions of sk. However, even if this relation removes many statesin all others instan
es, the most e�
ient relation, for the others instan
es, is relation Dk
∆. Itremoves up to 4609 states in instan
e 2D20, whereas relations Dk

r and Dk
b remove respe
tively504 and 1990 states, that is less states than the feasibility 
ondition. For all instan
es, relation

Dk
r is the least e�
ient. Nevertheless, this relation is extremely unexpensive in terms of CPUtime. For instan
es of type C and D, even if relations Dk

∆ and Dk
b remove the majority of thestates, relation Dk

r removes a non negligible number of the states.5.2.4 Results on large size instan
esWe present, in Table 4, results of our approa
h on large size instan
es of ea
h type. The largestinstan
es solved here are those of type B with 4000 items and the instan
es with the largestnumber of non-dominated 
riterion ve
tors are those of type D with 250 items for whi
h the
ardinality of the set of non-dominated 
riterion ve
tors is in average of 8154.7.19



Table 3: Impa
t of Dk
r , Dk

∆, and Dk
b on one instan
e of type A, B, C and D for n = 20One instan
e 2A20 where |ND | = 21# StatesPhase Removed by non in

CkDk
r Dk

∆ Dk
b feasible1 0 0 0 0 22 0 0 0 0 43 0 0 2 0 64 0 0 1 0 115 0 3 5 0 146 0 10 1 0 177 0 6 3 0 258 0 16 3 0 319 0 22 3 0 3710 0 22 0 0 5211 0 36 0 0 6812 0 37 0 0 9913 0 75 0 4 11914 0 29 25 12 17215 0 128 7 36 17316 5 67 63 33 17817 0 88 32 51 18518 0 80 44 82 16419 5 38 112 108 6520 14 3 - 51 21Total 24 660 301 377 -

One instan
e 2B20 where |ND | = 1# StatesPhase Removed by non in
CkDk

r Dk
∆ Dk

b feasible1 0 0 1 0 12 0 0 1 0 13 0 0 1 0 14 0 0 1 0 15 0 0 1 0 16 0 0 1 0 17 0 0 0 0 28 0 0 2 0 29 0 0 2 0 210 0 0 1 0 311 0 0 0 0 612 0 3 0 2 713 0 0 2 2 1014 0 0 7 6 715 0 2 2 3 716 0 0 4 7 317 0 0 0 3 318 0 0 0 3 319 0 0 2 3 120 0 0 - 1 1Total 0 5 28 30 -One instan
e 2C20 where |ND| = 31# StatesPhase Removed by non in
CkDk

r Dk
∆ Dk

b feasible1 0 0 0 0 22 0 0 0 0 43 0 1 0 0 74 0 3 1 0 115 0 4 1 0 166 0 8 3 0 227 0 16 0 0 278 0 19 2 0 349 0 16 3 0 5110 0 32 1 0 6611 0 36 0 0 9312 0 67 3 0 11613 0 77 0 10 14414 5 85 39 23 17015 29 83 20 18 18916 21 88 19 54 18917 30 143 30 32 16618 31 46 66 71 14519 47 64 111 35 10820 50 36 - 58 31Total 213 824 299 301 -

One instan
e 2D20 where |ND| = 189# StatesPhase Removed by non in
CkDk

r Dk
∆ Dk

b feasible1 0 0 0 0 22 0 0 0 0 43 0 0 0 0 84 0 0 0 0 165 0 10 0 0 226 0 3 0 0 417 0 9 0 0 738 0 51 0 0 959 0 24 0 0 16610 0 46 0 1 28511 1 66 1 7 49512 8 243 0 13 72613 29 356 67 59 94114 16 415 60 84 130715 60 575 241 180 155816 19 1157 198 269 147317 131 699 412 379 132518 59 599 425 508 105919 113 308 586 446 66520 68 48 - 597 189Total 504 4609 1990 2543 -20



We 
an observe that the results of Figure 3 
on
erning the size of the set of non-dominated
riterion ve
tors are 
on�rmed on large instan
es. The average maximum 
ardinality of Ck,whi
h is a good indi
ator of the memory storage needed to solve the instan
es, 
an be veryhuge. This explains why we 
an only solve instan
es of type D up to 250 items.Table 4: Results of our approa
h on large size instan
esType n
Time in s. |ND | AvgMin Avg Max Min Avg Max maxk{|C

k|}A 100 0.152 0.328 0.600 98 159.3 251 17134.7200 6.768 12.065 21.025 416 529.0 729 209198.9300 57.475 84.001 101.354 905 1130.7 1651 898524.7400 243.215 307.093 369.999 1308 1713.3 2101 2230069.4500 677.398 889.347 1198.190 2034 2537.5 2997 5120514.7600 1833.080 2253.421 3116.670 2792 3593.9 4746 9983975.8700 4046.450 5447.921 7250.530 3768 4814.8 5939 18959181.7B 1000 4.328 8.812 15.100 105 157.0 218 134107.22000 139.836 251.056 394.104 333 477.7 630 1595436.13000 1192.190 1624.517 2180.860 800 966.9 1140 6578947.24000 4172.530 6773.264 8328.280 1304 1542.3 1752 18642759.0C 100 1.564 2.869 4.636 406 558.2 737 103921.5200 43.834 59.986 93.541 1357 1612.8 2018 918162.6300 311.995 373.097 470.429 2510 2893.6 3297 3481238.4400 1069.290 1390.786 1670.500 3763 4631.8 5087 9400565.3500 2433.320 4547.978 6481.970 5111 7112.1 9029 21282280.5D 100 36.450 40.866 54.267 1591 1765.4 2030 1129490.3150 235.634 265.058 338.121 2985 3418.5 3892 4274973.9200 974.528 1145.922 1497.700 4862 5464.0 6639 12450615.5250 2798.040 3383.545 3871.240 7245 8154.7 8742 26999714.85.2.5 Comparison with other exa
t methodsThe results of a 
omparative study, in the bi-obje
tive 
ase, between the exa
t method ofCaptivo et al. [11℄, an exa
t method based on a 
ommer
ial Integer Programming (IP) solver,and our approa
h using Dk
r , Dk

∆, and Dk
b are presented in Table 5.The Labeling Approa
h (LA) of Captivo et al. [11℄ was sele
ted sin
e it is the most e�
ientmethod 
urrently known. An exa
t method, of the ε-
onstraint type [22℄, using a 
ommer
ialIP solver was also 
onsidered for two major reasons. First, it is relatively easy to implement.Se
ond, it has mu
h less storage problems than the two other methods, sin
e ea
h e�
ientsolution is found by solving one new 0-1 linear program. This ε-
onstraint method basi
ally
onsists of optimizing the �rst 
riterion while moving iteratively a 
onstraint on the se
ond
riterion. More pre
isely, in order to eliminate weakly e�
ient solutions, a slightly perturbedobje
tive fun
tion is used relying on the fa
t that the 
riterion ve
tors are integer valued (seeAlgorithm 5). Cplex 9.0 is used as an IP solver in Algorithm 5 whi
h is written in C++.21



Algorithm 5: ε-
onstraintGenerate y one optimal solution of maxx∈X f1(x) ; Generate z one optimal solution of maxx∈X f2(x);1 Generate x1 one optimal solution of max{f2(x) : x ∈ X, f1(x) ≥ f1(y)};2
X⋆ ← X⋆ ∪ {x1} ; j ← 1;3 while f2(x

j) < f2(z) do4 /* optimize the fun
tion asso
iated to the line passing through (f1(x
j), f2(x

j)) and
(f1(x

j)− 1, f2(z)) subje
t to a restri
tion on the se
ond obje
tive */Generate xj+1 one optimal solution of5
max{(f2(z)− f2(x

j))f1(x) + f2(x) : x ∈ X, f2(x) ≥ f2(x
j) + 1};

X⋆ ← X⋆ ∪ {xj+1} ; j ← j + 1;6 return X⋆;7 The three methods have been used on the same instan
es and the same 
omputer. ForLA, we used the sour
e 
ode, in C, obtained from the authors. Table 5 presents results, in thebi-obje
tive 
ase, for instan
es of type A, B, C, and D for in
reasing size of n while LA 
ansolve all instan
es of the series 
onsidered. Due to storage requirements, LA 
an only solveinstan
es of type A up to 300 items, of type B up to 800 items, of type C up to 200 items,and of type D up to 100 items. As a 
omparison, we re
all (see Table 4) that our approa
h
an solve mu
h larger size instan
es, respe
tively up to 700, 4000, 500, and 250 items.Table 5: Comparison between the Labeling Approa
h (LA) of Captivo et al. [11℄, ε-
onstraintmethod and our approa
h.Type n
Avg time in s. AvgLA ε-
onstraint Our approa
h |ND|A 100 2.476 5.343 (+116%) 0.328 (−87%) 159.3200 37.745 57.722 (+53%) 12.065 (−68%) 529.0300 163.787 285.406 (+74%) 84.001 (−49%) 1130.7B 600 27.694 27.543 (−1%) 1.141 (−96%) 74.3700 47.527 29.701 (−38%) 2.299 (−95%) 78.6800 75.384 68.453 (−9%) 5.280 (−93%) 118.1C 100 12.763 208.936 (+1537%) 2.869 (−78%) 558.2200 114.171 6584.012 (+5667%) 59.986 (−47%) 1612.8D 100 127.911 23126.926 (+17980%) 40.866 (−68%) 1765.4The de
rease or in
rease (expressed in per
ent) of CPU time 
ompared to the CPU time obtained with the LabelingApproa
h (LA) of Captivo et al. [11℄ is given in bra
kets.Considering CPU time, we 
an 
on
lude that our approa
h is always faster than LA and ε-
onstraint on the 
onsidered instan
es. Moreover, when the number of non-dominated 
riterionve
tors in
reases, CPU time be
omes prohibitive for ε-
onstraint (about 6.5 hours in averagefor instan
es 2D100), while storage limitations be
ome restri
tive for LA.5.3 Results in the three-obje
tive 
aseThe goals of the experiments in the three-obje
tive 
ase are:22



Figure 4: Evolution of the average 
ardinality of the set of non-dominated 
riterion ve
torsfor instan
es of type A and C in the bi-obje
tive and three-obje
tive 
ases in fun
tion of n(a) to evaluate the size of the set of non-dominated 
riterion ve
tors (see Figure 4 and Table 6)(b) to analyze the performan
e of our approa
h on large instan
es (see Table 6)We 
ompare, in Figure 4, the evolution of the 
ardinality of the set of non-dominated 
riterionve
tors in the bi-obje
tive 
ase and in the three-obje
tive 
ase for instan
es of type A andC. We 
an observe that the addition of one 
riterion leads to an explosion of the average
ardinality of the set of non-dominated 
riterion ve
tors for both types of instan
es. Forexample, for n = 50 the in
rease is about a fa
tor 8.5 for instan
es of type A and about 20.5for instan
es of type C.Table 6: Results of our approa
h on instan
es of types A and C in the three-obje
tive 
ase.type n
Time in s. |ND| AvgMin Avg Max Min Avg Max maxk{|C

k|}A 10 <1ms <1ms <1ms 4 8.3 18 20.930 <1ms 0.012 0.028 31 112.9 193 1213.250 0.112 0.611 1.436 266 540.6 930 12146.570 4.204 16.837 44.858 810 1384.4 2145 64535.490 80.469 538.768 2236.230 2503 4020.3 6770 285252.1110 273.597 3326.587 11572.700 3265 6398.3 9394 601784.6C 10 <1ms <1ms 0.004 5 17.7 32 53.420 0.004 0.030 0.184 80 300.2 1270 1557.830 0.016 0.431 2.076 72 649.1 2064 6861.140 1.008 3.684 12.336 1167 1538.9 2740 2383750 4.840 83.594 316.811 1282 3650.9 6566 92155.460 73.704 2572.981 13607.100 3698 9647.9 22713 328238.8We present, in table 6, results of our approa
h 
on
erning large size instan
es of types
A and C in the three-obje
tive 
ase. Observe that the number of non-dominated 
riterion23



ve
tors varies a lot. This explains the variation of the CPU time whi
h is strongly relatedwith the number of non-dominated 
riterion ve
tors. Table 6 
on�rms for the three-obje
tive
ase that instan
es of type A are easier to solve than instan
es of type C, as in the bi-obje
tive
ase.6 Con
lusionsThe purpose of this work has been to develop and experiment a new dynami
 programmingalgorithm to solve the 0−1 multi-obje
tive knapsa
k problem. We showed that by using several
omplementary dominan
e relations, we obtain a method whi
h outperforms experimentallythe existing methods. In addition, our method is extremely e�
ient with regard to the othermethods on the 
on�i
ting instan
es that model real-world appli
ations. Lastly, this methodis the �rst one to our knowledge that 
an be applied for knapsa
k problems with more thantwo obje
tives and the results in the three-obje
tive 
ase are satisfa
tory.While we fo
used in this paper on the 0 − 1 multi-obje
tive knapsa
k problem, we 
ouldenvisage in future resear
h to apply dominan
e relations based on similar ideas to other multi-obje
tive problems, admitting a dire
t dynami
 programming formulation, su
h as the multi-obje
tive shortest path problem or some multi-obje
tive s
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