
Solving e�ientlythe 0-1 multi-objetive knapsak problemCristina Bazgan, Hadrien Hugot∗, and Daniel VanderpootenLAMSADE, Université Paris-Dauphine,Plae du Maréhal de Lattre de Tassigny, 75 775 Paris Cedex 16, FraneFax.: +33 1 44 05 40 91{bazgan,hugot,vdp}�lamsade.dauphine.fr
∗ orresponding author

AbstratIn this paper, we present an approah, based on dynami programming, for solving the0-1 multi-objetive knapsak problem. The main idea of the approah relies on the use ofseveral omplementary dominane relations to disard partial solutions that annot leadto new non-dominated riterion vetors. This way, we obtain an e�ient method thatoutperforms the existing methods both in terms of CPU time and size of solved instanes.Extensive numerial experiments on various types of instanes are reported. A om-parison with other exat methods is also performed. In addition, for the �rst time to ourknowledge, we present experiments in the three-objetive ase.Keywords: multi-objetive knapsak problem, non-dominated riterion vetors, e�ientsolutions, dynami programming, dominane relations, ombinatorial optimization.

1 IntrodutionIn multi-objetive ombinatorial optimization, a major hallenge is to develop e�ient pro-edures to generate e�ient solutions, that have the property that no improvement on anyobjetive is possible without sari�ing on at least another objetive. The aim is thus to �ndthe e�ient set (whih onsists of all the e�ient solutions) or, more often, a redued e�ientset (whih onsists of only one solution for eah non-dominated riterion vetor). A surveyand an annotated bibliography about multi-objetive ombinatorial optimization an be foundin [1℄ and [2℄.This paper deals with a partiular multi-objetive ombinatorial optimization problem:the 0-1 multi-objetive knapsak problem. The single-objetive version of this problem hasbeen studied extensively in the literature (see, e.g., [3, 4℄). Moreover, in the multi-objetivease, many real-world appliations are reported dealing with apital budgeting [5℄, seletionof transportation investment alternatives [6℄, reloation issues arising in onservation biology[7℄, and planning remediation of ontaminated lightstation sites [8℄.Several exat approahes have been proposed in the literature to �nd the e�ient set or aredued e�ient set for the multi-objetive knapsak problem. We �rst mention a theoretialwork [9℄, without experimental results, where several dynami programming formulations arepresented. Two spei� methods, with extensive experimental results, have been proposed:the two-phase method inluding a branh and bound algorithm proposed in [10℄, and themethod of Captivo et al. presented in [11℄, based on a transformation of the problem into abi-objetive shortest path problem whih is solved using a labeling algorithm. We an alsomention the reent work of Silva et al. [12℄. All these methods have been espeially designedfor the bi-objetive ase. Besides exat methods investigated in this paper, approximationalgorithms [13℄ and metaheuristis [14, 15, 16℄ have been proposed.In this paper, we present a new approah based on dynami programming. The main ideaof the approah relies on the use of several omplementary dominane relations to disardpartial solutions that annot lead to new non-dominated riterion vetors. This way, weobtain an e�ient method that outperforms the existing methods both in terms of CPU timeand size of solved instanes (up to 4000 items in less than 2 hours in the bi-objetive ase).In our experiments, we ompare our approah with the method proposed in [11℄, whih is themost e�ient method urrently known, and with an exat method based on a ommerialInteger Programming solver. In addition, for the �rst time to our knowledge, we presentexperiments in the three-objetive ase.This paper is organized as follows. In setion 2, we review basi onepts about multi-objetive optimization and formally de�ne the multi-objetive knapsak problem. Setion 3presents and establishes the validity of a dynami programming approah based on severaldominane relations. Setion 4 is devoted to implementation issues. Computational experi-ments and results are reported in setion 5. Conlusions are provided in a �nal setion.2

2 Preliminaries2.1 Multi-objetive optimizationConsider a multi-objetive optimization problem with p riteria or objetives where X denotesthe �nite set of feasible solutions. Eah solution x ∈ X is represented in the riterion spaeby its orresponding riterion vetor f(x) = (f1(x), . . . , fp(x)). We assume in the followingthat eah riterion has to be maximized.From these p riteria, the dominane relation de�ned on X, denoted by ∆, states that afeasible solution x dominates a feasible solution x′, x∆x′, if and only if fi(x) ≥ fi(x
′) for i =

1, . . . , p. We denote by ∆ the asymmetri part of ∆. A solution x is e�ient if and only ifthere is no other feasible solution x′ ∈ X suh that x′∆ x, and its orresponding riterionvetor is said to be non-dominated. Thus, the e�ient set is de�ned as E(X) = {x ∈ X :

∀x′ ∈ X, not(x′∆x)}. The set of non-dominated riterion vetors, whih orresponds to theimage of the e�ient set in the riterion spae, is denoted by ND . Sine the e�ient set anontain di�erent solutions orresponding to the same riterion vetor, any subset of E(X) thatontains one and only one solution for every non-dominated riterion vetor is alled a reduede�ient set. Observe that X ′ ⊆ X is a redued e�ient set if and only if it is a overing andindependent set of X with respet to ∆. We reall that, given % a binary relation de�ned ona �nite set A,
• B ⊆ A is a overing (or dominating) set of A with respet to % if and only if for all

a ∈ A\B there exists b ∈ B suh that b%a,
• B ⊆ A is an independent (or stable) set with respet to % if and only if for all b, b′ ∈

B, b 6= b′, not(b%b′).2.2 The 0− 1 multi-objetive knapsak problemAn instane of the 0 − 1 multi-objetive knapsak problem onsists of an integer apaity
W > 0 and n items. Eah item k has a positive integer weight wk and p non negative integerpro�ts vk

1 , . . . , vk
p (k = 1, . . . , n). A feasible solution is represented by a vetor x = (x1, . . . , xn)of binary deision variables xk, suh that xk = 1 if item k is inluded in the solution and 0otherwise, whih satis�es the weight onstraint ∑n

k=1 wkxk ≤ W . The value of a feasiblesolution x ∈ X on the ith objetive is fi(x) =
∑n

k=1 vk
i xk (i = 1, . . . , p). For any instane ofthis problem, we aim at determining the set of non-dominated riterion vetors.3 Dynami Programming and dominane relationsWe �rst desribe the sequential proess used in Dynami Programming (DP) and introduesome basi onepts of DP (setion 3.1). Then, we present the onept of multiple dominane3

relations in DP (setion 3.2). Setion 3.3 indiates a manner to use e�iently a dominanerelation.3.1 Sequential proess and basi onepts of DPThe sequential proess used in DP onsists of n phases. At any phase k we generate the setof states Sk whih represents all the feasible solutions made up of items belonging exlusivelyto the k �rst items (k = 1, . . . , n). A state sk = (sk
1 , . . . , s

k
p, s

k
p+1) ∈ Sk represents a feasiblesolution of value sk

i on the ith objetive (i = 1, . . . , p) and of weight sk
p+1. Thus, we have Sk =

Sk−1 ∪ {(sk−1
1 + vk

1 , . . . , sk−1
p + vk

p , sk−1
p+1 + wk) : sk−1

p+1 + wk ≤W, sk−1 ∈ Sk−1} for k = 1, . . . , nwhere the initial set of states S0 ontains only the state s0 = (0, . . . , 0) orresponding to theempty knapsak. In the following, we identify a state and its orresponding feasible solution.As a onsequene, relation ∆ de�ned on X is also valid on Sk, and we have sk∆s̃k if and onlyif sk
i ≥ s̃k

i , i = 1, . . . , p.De�nition 1 (Completion, extension, restrition) For any state sk ∈ Sk (k < n), aompletion of sk is any, possibly empty, subset J ⊆ {k+1, . . . , n} suh that sk
p+1 +

∑
j∈J wj ≤

W . We assume that any state sn ∈ Sn admits the empty set as unique ompletion. A state
sn ∈ Sn is an extension of sk ∈ Sk (k ≤ n) if and only if there exists a ompletion J of sksuh that sn

i = sk
i +

∑
j∈J vj

i for i = 1, . . . , p and sn
p+1 = sk

p+1+
∑

j∈J wj . The set of extensionsof sk is denoted by Ext(sk) (k ≤ n). Finally, sk ∈ Sk (k ≤ n) is a restrition at phase k ofstate sn ∈ Sn if and only if sn is an extension of sk.3.2 Dominane relations in Dynami ProgrammingThe e�ieny of DP depends ruially on the possibility of reduing the set of states at eahphase. For this purpose, dominane relations between states are used to disard states at anyphase. A dominane relation is de�ned as follows.De�nition 2 (Dominane relation between states) A relation Dk on Sk, k = 1, . . . , n,is a dominane relation, if for all sk, s̃k ∈ Sk,
skDks̃k ⇒ ∀s̃n ∈ Ext(s̃k),∃sn ∈ Ext(sk), sn∆s̃n (1)Although dominane relations are not transitive by de�nition, they are usually transitive byonstrution. This is the ase, indeed, with the three relations used in our implementation(see Setion 4.2). Observe also that if Dk is a dominane relation then its transitive losure

D̂
k is a dominane relation. Finally, if Dk

i , i = 1, . . . ,m, are dominane relations then Dk =
⋃m

i=1 Dk
i is also a dominane relation, whih is generally non-transitive even if relations Dk

iare transitive.In an e�ient implementation of DP, it is desirable to make use of multiple dominanerelations Dk
1, . . . ,D

k
m (m ≥ 1) at phase k (k = 1, . . . , n) sine eah dominane relation Dk

i4

(i = 1, . . . ,m) fouses on spei� onsiderations. We introdue now a way of using multipledominane relations in Algorithm 1. At eah phase k, Algorithm 1 generates a subset ofstates Ck ⊆ Sk. This is ahieved by �rst reating from Ck−1 a temporary subset Ck
0 ⊆ Sk.Then, we apply dominane relations Dk

1, . . . ,D
k
m sequentially. This is done by retaining for

i = 1, . . . ,m, Ck
i whih an be any overing set of Ck

i−1 with respet to Dk
i .Algorithm 1: Dynami Programming with multiple dominane relations

C0 ← {(0, . . . , 0)};1 for k ← 1 to n do2
Ck

0 ← Ck−1 ∪ {(sk−1
1 + vk

1 , . . . , sk−1
p + vk

p , sk−1
p+1 + wk)|sk−1

p+1 + wk ≤W : sk−1 ∈ Ck−1};3 for i← 1 to m do determine Ck
i any overing set of Ck

i−1 with respet to Dk
i ;4

Ck ← Ck
m;5 return Cn;6 The following result haraterizes the set Ck

m obtained at the end of eah phase k.Proposition 1 For any dominane relations Dk
1 , . . . ,D

k
m (m ≥ 1) on Sk, the set Ck

m obtainedby Algorithm 1 at eah phase is a overing set of Ck
0 with respet to Dk =

⋃̂m
i=1 Dk

i (k =

1, . . . , n).Proof : Considering sk ∈ Ck
0 \C

k
m, it has been removed when seleting a overing set at aniteration of step 4. Let i1 ∈ {1, . . . ,m} be the iteration of step 4 suh that sk ∈ Ck

i1−1\C
k
i1
.Sine Ck

i1
is a overing set of Ck

i1−1 with respet to Dk
i1
, there exists s̃k

(1) ∈ Ck
i1

suh that
s̃k
(1)D

k
i1

sk. If s̃k
(1) ∈ Ck

m then the overing property holds, sine Dk
i1
⊆ Dk. Otherwise, thereexists an iteration i2 > i1, orresponding to the iteration of step 4 suh that s̃k

(1) ∈ Ck
i2−1\C

k
i2
.As before, we establish that there exists s̃k

(2) ∈ Ck
i2
suh that s̃k

(2)D
k
i2

s̃k
(1). Sine Dk

i2
⊆ Dk, weget that s̃k

(2)D
ks̃k

(1)D
ksk and by transitivity of Dk, we ensure that s̃k

(2)D
ksk. By repeating thisproess, we establish the existene of a state s̃k ∈ Ck

m, suh that s̃kDksk. �We give now onditions under whih Algorithm 1 generates the set ND of non-dominatedriterion vetors.Theorem 1 For any family of dominane relations Dk
i (i = 1, . . . ,m; k = 1, . . . , n), Algo-rithm 1 returns Cn whih is a overing set of Sn with respet to ∆. Moreover, if at phase

n we use at least one relation Dn
i = ∆ and impose that the seleted overing set Cn

i is alsoindependent with respet to Dn
i then Cn represents the set ND of non-dominated riterionvetors.Proof : Considering s̃n ∈ Sn\Cn, all its restritions have been removed when retaining aovering set with respet to Dk =

⋃̂m
i=1 Dk

i during phases k ≤ n. Let k1 be the highestphase where Ck1
0 still ontains restritions of s̃n, whih will be removed by applying one5

of the relations Dk1
i (i = 1, . . . ,m). Consider any of these restritions, denoted by s̃k1

(n).Sine s̃k1

(n) ∈ Ck1
0 \C

k1 , we know from Proposition 1, that there exists sk1 ∈ Ck1 suh that
sk1Dk1 s̃k1

(n). By (1), sine Dk is a dominane relation, we have that for all extensions of s̃k1

(n),and in partiular for s̃n, there exists sn1 ∈ Ext(sk1) suh that sn1∆s̃n. If sn1 ∈ Cn, then theovering property holds. Otherwise, there exists a phase k2 > k1, orresponding to the highestphase where Ck2
0 still ontains restritions of sn1 , whih will be removed by applying one of therelation Dk2

i (i = 1, . . . ,m). Consider any of these restritions, denoted by sk2

(n1). As before,we establish the existene of a state sk2 ∈ Ck2 suh that there exists sn2 ∈ Ext(sk2) suh that
sn2∆sn1 . Transitivity of ∆ ensures that sn2∆s̃n. By repeating this proess, we establish theexistene of a state sn ∈ Cn, suh that sn∆s̃n.In addition, by seleting a set Cn

i that is independent with respet to Dn
i = ∆, this prop-erty remains valid for Cn

m whih is a subset of Cn
i . Thus Cn, whih orresponds to a reduede�ient set, represents the set of non-dominated vetors. �The previous theorem only requires that one of the n.m overing sets is independent withrespet to its orresponding dominane relation. Even if all other sets Ck

i an be any overingsets, pratial e�ieny of Algorithm 1 indues to selet overing sets of minimal size.This an be easily ahieved when dominane relations Dk
i are transitive, by seleting, atstep 4 of Algorithm 1, overing sets Ck

i that are independent with respet to Dk
i . It is well-know indeed that a overing and independent set (i.e. a kernel) with respet to a transitiverelation does exist and is a overing set of minimal size (see, e.g., [17℄).3.3 Generating overing and independent setsWe present now in Algorithm 2 a way of of produing Ck

i a overing and independent set of
Ck

i−1 with respet to a transitive relation Dk
i (step 4 of Algorithm 1).Proposition 2 For any transitive dominane relation Dk

i on Sk, Algorithm 2 returns Ck
i aovering and independent set of Ck

i−1 with respet to Dk
i (k = 1, . . . , n; i = 1, . . . ,m).Proof : Clearly, Ck

i is independent with respet to Dk
i , sine we insert a state sk into Ck

i atstep 12 only if it is not dominated by any other state of Ck
i (step 5) and all states dominatedby sk have been removed from Ck

i (steps 6 and 10).We show now that Ck
i is a overing set of Ck

i−1 with respet to Dk
i . Consider s̃k ∈ Ck

i−1\C
k
i .This ours either beause it did not pass the test at step 5 or was removed at step 6 or 10.This is due respetively to a state s̄k already in Ck

i or to be inluded in Ck
i (at step 12) suhthat s̄kDk

i s̃
k. It may happen that s̄k will be removed from Ck

i at a later iteration of the forloop (at step 6 or 10) if there exists a new state ŝk ∈ Ck
i−1 to be inluded in Ck

i , suh that
ŝkDk

i s̄
k. However, transitivity of Dk

i ensures the existene, at the end of phase k, of a state
sk ∈ Ck

i suh that skDk
i s̃

k. �6

Algorithm 2: Compute Ck
i a overing and independent set of Ck

i−1 with respet to atransitive relation Dk
i/* Assume that Ck

i−1 = {sk(1), . . . , sk(r)} */
Ck

i ← {s
k(1)};1 for h← 2 to r do2 /* Assume that Ck

i = {s̃k(1), . . . , s̃k(ℓh)} */dominated ← false ; dominates ← false ; j ← 1;3 while j ≤ ℓh and not(dominated) and not(dominates) do4 if s̃k(j)Dk
i sk(h) then dominated ← true5 else if sk(h)Dk

i s̃k(j) then Ck
i ← Ck

i \{s̃
k(j)} ; dominates ← true;6

j ← j + 1;7 if not(dominated) then8 while j ≤ ℓh do9 if sk(h)Dk
i s̃k(j) then Ck

i ← Ck
i \{s̃

k(j)};10
j ← j + 1;11

Ck
i ← Ck

i ∪ {s
k(h)};12 return Ck;13 Algorithm 2 an be improved sine it is usually possible to generate states of Ck

i−1 =

{sk(1), . . . , sk(r)} aording to a dominane preserving order for Dk
i suh that for all ℓ < j(1 ≤ ℓ,j ≤ r) we have either sk(ℓ)Dk

i s
k(j) or not(sk(j)Dk

i s
k(ℓ)). The following proposition givesa neessary and su�ient ondition to establish the existene of a dominane preserving orderfor a dominane relation.Proposition 3 Let Dk be a dominane relation on Sk. There exists a dominane preservingorder for Dk if and only if Dk does not admit yles in its asymmetri part.Proof : ⇒ The existene of a yle in the asymmetri part of Dk would imply the existeneof two onseutive states sk(j) and sk(ℓ) on this yle with j > ℓ, a ontradition.

⇐ Any topologial order based on the asymmetri part of Dk is a dominane preserving orderfor Dk. �We give in setion 4.3.1 an example of a dominane preserving order. If states of Ck
i−1are generated aording to a dominane preserving order for Dk

i , step 6 and loop 9-11 ofAlgorithm 2 an be omitted.4 Implementation issuesWe �rst present the order in whih we onsider items in the sequential proess (setion 4.1).Then, we present three dominane relations that we use in DP (setion 4.2) and the way of7

applying them (setion 4.3).4.1 Item orderThe order in whih items are onsidered is a ruial implementation issue in DP. In the single-objetive knapsak problem, it is well-known that, in order to obtain a good solution, itemsshould usually be onsidered in dereasing order of value to weight ratios vk/wk (assumingthat ties are solved arbitrarily) [3, 4℄. For the multi-objetive version, there is no suh anatural order.We introdue now three orders Osum, Omax, Omin that are derived by aggregating orders
Oi indued by the ratios vk

i /wk for eah riterion (i = 1, . . . , p). Let rℓ
i be the rank orposition of item ℓ in order Oi. Osum denotes an order aording to inreasing values ofthe sum of the ranks of items in the p orders Oi (i = 1, . . . , p). Omax denotes an orderaording to the inreasing values of the maximum or worst rank of items in the p orders Oi

(i = 1, . . . , p), where the worst rank of item ℓ in the p orders Oi (i = 1, . . . , p) is omputedby maxi=1,...,p{r
ℓ
i}+ 1

pn

∑p
i=1 rℓ

i in order to disriminate items with the same maximum rank.
Omin denotes an order aording to the inreasing values of the minimum or best rank ofitems in the p orders Oi (i = 1, . . . , p), where the best rank of item ℓ in the p orders Oi

(i = 1, . . . , p) is omputed by mini=1,...,p{r
ℓ
i}+ 1

pn

∑p
i=1 rℓ

i in order to disriminate items withthe same minimum rank.In the omputational experiments, in Setion 5.2.1, we show the impat of the order onthe e�ieny of our approah.4.2 Dominane relationsEah dominane relation fouses on spei� onsiderations. It is then desirable to make use ofomplementary dominane relations. Moreover, when deiding to use a dominane relation, atradeo� must be made between its potential ability of disarding many states and the time itrequires to be heked.We present now the three dominane relations used in our method. The �rst two relationsare very easy to establish and the last one, although more di�ult to establish, is onsideredowing to its omplementarity with the two others.We �rst present a dominane relation based on the following observation. When theresidual apaity assoiated to a state sk of phase k is greater than or equal to the sum ofthe weights of the remaining items (items k + 1, . . . , n), the only ompletion of sk that anpossibly lead to an e�ient solution is the full ompletion J = {k + 1, . . . , n}. Thus, in thisontext, it is unneessary to generate extensions of sk that do not ontain all the remaining
8

items. We de�ne thus the dominane relation Dk
r on Sk for k = 1, . . . , n by:for all sk, s̃k ∈ Sk, skDk

r s̃
k ⇔

s̃k ∈ Sk−1,

sk = (s̃k
1 + vk

1 , . . . , s̃k
p + vk

p , s̃k
p+1 + wk), and

s̃k
p+1 ≤W −

∑n
j=k wjThe following proposition shows that Dk

r is indeed a dominane relation and gives additionalproperties of Dk
r .Proposition 4 (Relation Dk

r)(a) Dk
r is a dominane relation(b) Dk
r is transitive() Dk
r admits dominane preserving ordersProof : (a) Consider two states sk and s̃k suh that skDk

r s̃
k. This implies, that sk∆s̃k.Moreover, sine sk

p+1 = s̃k
p+1 + wk ≤ W −

∑n
j=k+1 wj , any subset J ⊆ {k + 1, . . . , n} is aompletion for s̃k and sk. Thus, for all s̃n ∈ Ext(s̃k), there exists sn ∈ Ext(sk), based on thesame ompletion as s̃n, suh that sn∆s̃n. This establishes that Dk

r satis�es ondition (1) ofDe�nition 2.(b) Obvious.() By Proposition 3, sine Dk
r is transitive. �This dominane relation is rather poor, sine at eah phase k it an only appear betweena state that does not ontain item k and its extension that ontains item k. Nevertheless, itis very easy to hek sine, one the residual apaity W −

∑n
j=k wj is omputed, relation Dk

rrequires only one test to be established between two states.We present now dominane relation Dk
∆ that is a generalization to the multi-objetive aseof the dominane relation usually attributed to Weingartner and Ness [18℄ and used in thelassial Nemhauser and Ullmann's algorithm [19℄. This seond dominane relation is de�nedon Sk for k = 1, . . . , n by:for all sk, s̃k ∈ Sk, skDk
∆s̃k ⇔

{
sk∆s̃k and
sk
p+1 ≤ s̃k

p+1 if k < nObserve that the ondition on the weights sk
p+1 and s̃k

p+1 ensures that every ompletion for s̃kis also a ompletion for sk. The following proposition shows that Dk
∆ is indeed a dominanerelation and gives additional properties of Dk

∆.Proposition 5 (Relation Dk
∆)(a) Dk

∆ is a dominane relation 9

(b) Dk
∆ is transitive() Dk
∆ admits dominane preserving orders(d) Dn
∆ = ∆Proof : (a) Consider two states sk and s̃k suh that skDk

∆s̃k. This implies, that sk∆s̃k.Moreover, sine sk
p+1 ≤ s̃k

p+1, any subset J ⊆ {k + 1, . . . , n} that is a ompletion for s̃k isalso a ompletion for sk. Thus, for all s̃n ∈ Ext(s̃n), there exists sn ∈ Ext(sn), based on thesame ompletion as s̃n, suh that sn∆s̃n. This establishes that Dk
∆ satis�es ondition (1) ofDe�nition 2.(b) Obvious.() By Proposition 3, sine Dk

∆ is transitive.(d) By de�nition. �Relation Dk
∆ is a powerful relation sine a state an possibly dominate all other states oflarger weight. This relation requires at most p + 1 tests to be established between two states.The third dominane relation is based on the omparison between spei� extensions of astate and an upper bound of the extensions of another state. An upper bound for a state isde�ned as follows in our ontext.De�nition 3 (Upper bound) Criterion vetor u = (u1, . . . , up) is an upper bound for astate sk ∈ Sk if and only if for all sn ∈ Ext(sk) we have ui ≥ sn

i , i = 1, . . . , p.We an derive a general type of dominane relations as follows: onsidering two states sk, s̃k ∈

Sk, if there exists a ompletion J of sk and an upper bound ũ for s̃k suh that sk
i +

∑
j∈J vj

i ≥ ũi,

i = 1, . . . , p, then sk dominates s̃k.This type of dominane relations an be implemented only for spei� ompletions andupper bounds. In our experiments, we just onsider two spei� ompletions J ′ and J ′′obtained by a simple greedy algorithm as follows. After relabeling items k+1, . . . , n aordingto order Osum (respetively, Omax), ompletion J ′ (respetively, J ′′) is obtained by insertingsequentially the remaining items into the solution provided that the apaity onstraint isrespeted.To ompute u, we use the upper bound presented in [3℄ for eah riterion value. Let us�rst de�ne W (sk) = W − sk
p+1 the residual apaity assoiated to state sk ∈ Sk. We denoteby ci = min{ℓi ∈ {k + 1, . . . , n} :

∑ℓi

j=k+1 wj > W (sk)} the position of the �rst item thatannot be added to state sk ∈ Sk when items k +1, . . . , n are relabeled aording to order Oi.Thus, aording to [3, Th 2.2℄, when items k + 1, . . . , n are relabeled aording to order Oi,
10

an upper bound on the ith riterion value of sk ∈ Sk is for i = 1, . . . , p:
ui = sk

i +

ci−1∑

j=k+1

vj
i + max

{⌊
W (sk)

vci+1
i

wci+1

⌋
,

⌊
vci

i − (wci −W (sk))
vci−1
i

wci−1

⌋} (2)Finally, we de�ne Dk
b a partiular dominane relation of this general type for k = 1, . . . , nby: for all sk, s̃k ∈ Sk, skDk

b s̃
k ⇔

sk
i +

∑
j∈J ′ v

j
i ≥ ũi, i = 1, . . . , por

sk
i +

∑
j∈J ′′ v

j
i ≥ ũi, i = 1, . . . , pwhere ũ = (ũ1, . . . , ũp) is the upper bound for s̃k omputed aording to (2).The following proposition shows that Dk

b is indeed a dominane relation and gives addi-tional properties of Dk
b .Proposition 6 (Relation Dk

b)(a) Dk
b is a dominane relation(b) Dk
b is transitive() Dk
b admits dominane preserving orders(d) Dn
b = ∆Proof : (a) Consider states sk and s̃k suh that skDk

b s̃
k. This implies that there exists

J ∈ {J ′, J ′′} leading to an extension sn of sk suh that sn∆ũ. Moreover, sine ũ is an upperbound of s̃k, we have ũ∆s̃n, for all s̃n ∈ Ext(s̃k). Thus, by transitivity of ∆, we get sn∆s̃n,whih establishes that Dk
b satis�es ondition (1) of De�nition 2.(b) Consider states sk, s̃k, and s̄k suh that skDk

b s̃
k and s̃kDk

b s̄
k. This implies that, on theone hand, there exists J1 ∈ {J

′, J ′′} suh that sk
i +

∑
j∈J1

vj
i ≥ ũi (i = 1, . . . , p), and on theother hand, there exists J2 ∈ {J

′, J ′′} suh that s̃k
i +

∑
j∈J2

vj
i ≥ ūi (i = 1, . . . , p). Sine ũ isan upper bound for s̃k we have ũi ≥ s̃k

i +
∑

j∈J2
vj
i (i = 1, . . . , p). Thus we get skDk

b s̄
k.() By Proposition 3, sine Dk

b is transitive.(d) By de�nition. �

Dk
b is harder to hek than relations Dk

r and Dk
∆ sine it requires muh more tests and state-dependent information.Obviously, relation Dk

b would have been riher if we had used additional ompletions(aording to other orders) for sk and omputed instead of one upper bound u, an upperbound set using, e.g., the tehniques presented in [20℄. Nevertheless, in our ontext sinewe have to hek Dk
b for many states, enrihing Dk

b in this way would be extremely timeonsuming. 11

4.3 Implementing with multiple dominane relationsIn order to be e�ient, we will use the three dominane relations presented in setion 4.2 ateah phase. As underlined in the previous subsetion, dominane relations require more orless omputational e�ort to be heked. Moreover, even if they are partly omplementary, itoften happens that several relations are valid for a same pair of states. It is thus natural toapply �rst dominane relations whih an be heked easily (suh as Dk
r and Dk

∆) and thentest on a redued set of states dominane relations requiring a larger omputation time (suhas Dk
b).We desribe now the details of the implementation of these dominane relations. Algo-rithm 3, whih omputes, at eah phase k, the subset of andidates Ck from subset Ck−1

(k = 1, . . . , n), replaes step 3 to step 4 of Algorithm 1.The use of relation Dk
r and Dk

∆ is �rst desribed (steps 1-8) and then the use of relation
Dk

b (steps 9-24). This algorithm uses two subproedures: proedure MaintainNonDominated,whih removes states Dk
∆-dominated, and proedure KeepNonDominated, whih is used duringthe appliation of relation Dk

b .4.3.1 Generation of Ck
0 and dominating preserving orderGenerating a priori Ck

0 and, then, trimming it using dominane relations in order to produe
Ck would be ine�ient. Instead, we generate and trim Ck

0 progressively, whih requiresgenerating new states of Ck
0 aording to a dominane preserving order for Dk

∆.Let relation ∆lex denote the lexiographi relation de�ned on Sk by: for all sk, s̃k ∈ Sk,

sk∆lexs̃
k ⇔ sk

j > s̃k
j where j = min{i ∈ {1, . . . , p} : sk

i 6= s̃k
i } or sk

j = s̃k
j , j = 1, . . . , p.Its asymmetri part is denoted by ∆lex. Let relation ≥lex denote the lexiographi relationde�ned on Sk by: for all sk, s̃k ∈ Sk, sk ≥lex s̃k ⇔ sk

p+1 < s̃k
p+1 or (sk

p+1 = s̃k
p+1 and sk∆lexs̃

k).Its asymmetri part is denoted by >lex.Proposition 7 The dereasing order with respet to ≥lex is a dominane preserving order for
Dk

∆.Proof : Consider a set H = {sk(1), . . . , sk(h)} ⊆ Sk ordered aording to dereasing orderwith respet to ≥lex, i.e. suh that sk(i) ≥lex sk(j) for all i < j (1 ≤ i, j ≤ h). Supposethat H is not ordered aording to a dominane preserving order for Dk
∆. There exists thus

sk(i), sk(j) ∈ H (i < j, 1 ≤ i, j ≤ h) suh that sk(j)Dk
∆sk(i) and not(sk(i)Dk

∆sk(j)). Then, wehave either s
k(j)
p+1 < s

k(i)
p+1 or (s

k(j)
p+1 = s

k(i)
p+1 and sk(j)∆lexsk(i)). This implies that sk(j) >lex sk(i),whih ontradits that H is ordered aording to dereasing order with respet to ≥lex. �Observe also that ≥lex is trivially a dominane preserving order for Dk

r .Our implementation maintains set Ck, k = 1, . . . , n, sorted aording to dereasing orderwith respet to ≥lex. Considering indeed that, at phase k, Ck−1 is sorted aording to de-12

j
Ck−1: Generate only ex-tensions with item k(states Dk

r -dominated)
Generate both exten-sions: with item k andwithout item k Generate only exten-sions without item k(extension with item kis not feasible)Figure 1: Extensions of Ck−1 (sorted aording to ≥lex)reasing order with respet to ≥lex, we generate progressively states of Ck

0 aording to thisdominane preserving order, and thus maintain Ck sorted aording to the same order.4.3.2 Appliation of the three relationsWe present now a detailed desription of the appliation of eah dominane relation Dk
r ,

Dk
∆, and Dk

b . Generating Ck
1 from Ck

0 using Dk
r , then reduing Ck

1 to Ck
2 using Dk

∆, and�nally reduing Ck
2 to Ck

3 using Dk
b would not be omputationally e�ient. Instead, sine

Dk
r -dominated states an be identi�ed in Ck−1, we generate diretly Ck

2 using Dk
∆ and redue

Ck
2 to Ck

3 using Dk
b . In the following, we shall not distinguish sets Ck

i , i = 0, . . . , 3, but insteadrefer to a urrent set Ck whih is progressively redued.Appliation of relation Dk
r : The order of states in Ck−1 allows us to �nd easily j, theindex of the �rst state that is not Dk

r -dominated (step 2). Thus, it is unneessary to generatethe extension without item k for all states sk−1(1), . . . , sk−1(j−1) sine they are Dk
r -dominatedby their respetive extensions with item k. Figure 1 shows the extensions generated for eahstate of Ck−1, due to Dk

r on the one hand, and to infeasibility on the other hand.Appliation of relation Dk
∆: Sine states are generated progressively aording to a dom-inane preserving order for Dk

∆, we never remove states from Ck. Indeed, by de�nition of adominane preserving order, a state andidate to be added in Ck annot Dk
∆-dominate statesalready inluded in Ck.In order to test e�iently Dk

∆-dominane within Ck, we maintain Mk ⊆ Ck, the subsetof non-dominated states of Ck with respet to pro�t values only. Indeed, sine states aregenerated aording to a dominane preserving order for Dk
∆, a new state sk an be Dk

∆-dominated in Ck if and only if there exists a state in the urrent set Mk that ∆-dominates
sk onsidering that all states already generated have smaller or equal weight than sk. Thisproperty is useful sine Mk is muh smaller than Ck (in the worst ase, ardinality of Ck is in
O(|Mk|×W)). We impose that set Mk is sorted aording to dereasing order with respet to13

Algorithm 3: Computing Ck from Ck−1 at eah phase k (k = 1, . . . , n)In : Ck−1 = {sk−1(1), . . . , sk−1(r)} suh that sk−1(i) ≥lex sk−1(j) for all i < j (1 ≤ i, j ≤ r)Out: Ck in whih states are sorted aording to dereasing preferene with respet to ≥lex/* Appliation of relations Dk
r and Dk

∆ */
Ck ← ∅ ; Mk ← ∅ ; i← 1 ; j ← 1 ;1 /* Identifiation of j, index of the first state that is not Dk

r-dominated */while j ≤ r and s
k−1(j)
p+1 +

∑n

ℓ=k wℓ ≤W do j ← j + 1 ;2 while i ≤ r and s
k−1(i)
p+1 + wk ≤W do3

sk ← (s
k−1(i)
1 + vk

1 , . . . , s
k−1(i)
p + vk

p , s
k−1(i)
p+1 + wk);4 while j ≤ r and sk−1(j) ≥lex sk do5 MaintainNonDominated(sk−1(j),Mk,Ck) ; j ← j + 1 ;6 MaintainNonDominated(sk,Mk,Ck) ; i← i + 1;7 while j ≤ r do MaintainNonDominated(sk−1(j),Mk,Ck) ; j ← j + 1;8 /* Appliation of relation Dk

b on Mk × Ck */if k = n then Cn ←Mn9 else10
F ← ∅;11 /* Generation of extensions J ′ and J ′′ for eah state of Mk */for order O in {Osum,Omax} do12 foreah sk ∈Mk do13 Relabel items k + 1, . . . , n aording to order O ; sn ← sk;14 for j ← k + 1 to n do15 if sn

p+1 + wj ≤W then sn ← (sn
1 + vj

1, . . . , s
n
p + vj

p, s
n
p+1 + wj);16

F ← KeepNonDominated(sn,F);17 /* Assuming that Ck = {sk(1), . . . , sk(c)} and that Fn = {sn(1), . . . , sn(h)} suh that
sn(i)∆lexsn(j) for all i < j (1 ≤ i, j ≤ h) */

i← 1 ; remove← true;18 while i ≤ c and remove do19 Compute an upper bound u for sk(i) aording to (2);20
j ← 1 ; remove← false;21 while j ≤ h and sn(j)∆lexu and not(remove) do22 if sn(j)∆u then remove ← true else j ← j + 1;23 if remove then Ck ← Ck\{sk(i)} ; i← i + 1 ;24 return Ck25

14

∆lex. The order of Mk is maintained easily by updating the sorted struture at eah insertion.Proedure MaintainNonDominated(sk,Mk,Ck)/* Assume that Mk = {s̃k(1), . . . , s̃k(ℓ)} suh that s̃k(i)∆lexs̃k(j) for all i < j (1 ≤ i, j ≤ ℓ) */
i← 1 ; dominated ← false;1 while i ≤ ℓ and s̃k(i)∆lexsk and not(dominated) do2 if s̃k(i)∆sk then dominated ← true else i← i + 1;3 if not(dominated) then4

Ck ← Ck ∪ {sk} ; // Insertion at the end of Ck5
Mk ←Mk ∪ {sk}; // Insertion at the ith position in Mk6 while i ≤ ℓ do7 if sk∆s̃k(i) then Mk ←Mk\{s̃k(i)};8

i← i + 1;9 In the bi-objetive ase, based on the idea of [21℄, using an AVL tree for storing states of
Mk also leads to a signi�ant improvement of the running time. The AVL tree allows us toperform eah searh, insertion or deletion in O(log |Mk|). With this struture the while loop 2-3 of proedure MaintainNonDominated redues to the searh of the largest value i⋆ ∈ {1, . . . , ℓ}suh that s̃

k(i⋆)
1 ≥ sk

1. Then variable dominated is false if and only if s̃
k(i⋆)
2 < sk

2. Moreover,the while loop 7-9 of proedure MaintainNonDominated redues to removing, from Mk, state
s̃k(i⋆) if s̃

k(i⋆)
1 = sk

1 and states with index i⋆ + 1 to j⋆− 1 where j⋆ ∈ {i⋆, . . . , ℓ} is the smallestvalue suh that s̃
k(j⋆)
2 > sk

2.Thus, in the bi-objetive ase, the running time of proedure MaintainNonDominated anbe bounded by O(z×log |Ck
0 |) where z represents the number of states that have to be removedfrom Mk. For p > 2, a linked list has to be used for storing Mk and the running time an bebounded by O(|Ck

0 |) only. Sine in the worst ase at most |Ck
0 | states have to be inserted in Mkand at most |Ck

0 |−1 states have to be deleted from Mk in the entire exeution of Algorithm 3,the exeution time of all alls of proedure MaintainNonDominated, during phase k, is in
O(|Ck

0 | log |C
k
0 |) for p = 2 and in O(|Ck

0 |
2) for p > 2.Appliation of relation Dk

b : Relation Dk
b is applied after relations Dk

r and Dk
∆ to reduethe set Ck. The purpose of using this relation is to remove states of Ck with small weightsine Dk

r and Dk
∆ are not e�ient to remove these states (for instane using Dk

∆ we will neverremove the empty knapsak). Thus, we test if states of small weight are Dk
b -dominated. Weapply relation Dk

b between states of Mk, whih ontains states with non-dominated riterionvetors, and the urrent Ck. A state sk(i) of Ck is removed if there exists a state sk 6= sk(i)in Mk suh that skDk
bs

k(i). To do that, we generate two extensions for all states of Mk withrespet to orders Osum and Omax and keep only the non-dominated extensions in F . Thisis done by proedure KeepNonDominated that is not detailed here sine it is just a simpli�edversion of proedure MaintainNonDominated where F replaes Mk and step 5 is removed.15

Then sk(i) is Dk
b -dominated by a state of Mk, if there exists sn ∈ F suh that sn∆u, where

u is the upper bound assoiated to sk(i). Sine omputing the upper bound for eah state istime onsuming, we stop heking relation Dk
b as soon as we identify a state of Ck that is not

Dk
b -dominated by a state of Mk.Speial ase of phase n First observe that, sine Dn

∆ = Dn
b = ∆, it is unneessary toapply both relations. Thus, due to the order of appliation of these relations (Dk

∆ followed by
Dk

b), we do not apply relation Dk
b at phase n.Seond, at phase n it should be notied that Mn orresponds to the non-dominated rite-rion vetors of Sn and thus we take Cn equal to Mn (step 9).5 Computational experiments and results5.1 Experimental designAll experiments presented here were performed on a bi-Xeon 3.4GHz with 3072Mb RAM.All algorithms are written in C++. In the bi-objetive ase (p = 2), the following types ofinstanes were onsidered:A) Random instanes: vk

1 ∈R [1, 1000], vk
2 ∈R [1, 1000] and wk ∈R [1, 1000]B) Unon�iting instanes, where vk

1 is positively orrelated with vk
2 : vk

1 ∈R [111, 1000] and
vk
2 ∈R [vk

1 − 100, vk
1 + 100], and wk ∈R [1, 1000]C) Con�iting instanes, where vk

1 and vk
2 are negatively orrelated: vk

1 ∈R [1, 1000], vk
2 ∈R

[max{900 − vk
1 ; 1},min{1100 − vk

1 ; 1000}], and wk ∈R [1, 1000]D) Con�iting instanes with orrelated weight, where vk
1 and vk

2 are negatively orrelated,and wk is positively orrelated with vk
1 and vk

2 : vk
1 ∈R [1, 1000], vk

2 ∈R [max{900 −

vk
1 ; 1},min{1100 − vk

1 ; 1000}], and wk ∈R [vk
1 + vk

2 − 200; vk
1 + vk

2 + 200].where ∈R [a, b] denotes uniformly random generated in [a, b]. For all these instanes, we set
W = ⌊1/2

∑n
k=1 wk⌋.Most of the time in the literature, experiments are only made on instanes of type A.Sometimes, other instanes suh as those of type B, whih were introdued in [11℄, are studied.However, instanes of type B should be viewed as quasi single-riterion instanes sine theyinvolve two non on�iting riteria. This aspet an be seen in Figure 2. Nevertheless, in abi-objetive ontext, onsidering on�iting riteria is a more appropriate way of modeling real-world situations. For this reason, we introdued instanes of types C and D for whih riterionvalues of items are on�iting. In this ase, items are loated around the line y = −x + 1000.In instanes of type D, wk is positively orrelated with vk

1 , vk
2 . These instanes were introdued16

in order to verify if positively orrelated instanes are harder than unorrelated instanes asin the single-riterion ontext [4℄.For three-objetive experiments, we onsidered the generalization of random instanes oftype A where vk
i ∈R [1, 1000] for i = 1, . . . , 3 and wk ∈R [1, 1000] and the generalizationof on�iting instanes of type C where vk

1 ∈R [1, 1000], vk
2 ∈R [1, 1001 − vk

1], and vk
3 ∈R

[max{900 − vk
1 − vk

2 ; 1},min{1100 − vk
1 − vk

2 ; 1001 − vk
1}], and wk ∈R [1, 1000].For eah type of instanes and eah value of n presented in this study, 10 di�erent instaneswere generated. In the following, we denote by pTn a p riteria instane of type T with nitems. For example 2A100 denotes a bi-objetive instane of type A with 100 items.

Figure 2: Repartition in the riterion spae of values of items for one instane of eah type5.2 Results in the bi-objetive aseThe goals of the experiments in the bi-objetive ase are:(a) to determine the best order to sort items in our approah (setion 5.2.1)(b) to evaluate the ardinality of the set of non-dominated riterion vetors on di�erent typesof instanes (setion 5.2.2)() to analyze the impat of using dominane relations Dk
∆, Dk

b , and Dk
r (setion 5.2.3)(d) to analyze the performane of our approah on large size instanes (setion 5.2.4)(e) to ompare our approah with other exat methods (setion 5.2.5)17

5.2.1 Item orderTable 1: Impat of di�erent orders of items in our approah (Average CPU time in seonds)Type n Omax Osum Omin RandomA 300 84.001 (−53%) 100.280 (−44%) 94.598 (−47%) 178.722B 600 1.141 (−99%) 1.084 (−99%) 1.403 (−98%) 77.699C 200 59.986 (−44%) 60.061 (−44%) 85.851 (−20%) 107.973D 90 20.795 (−34%) 23.687 (−25%) 35.426 (+12%) 31.659The inrease or the derease (expressed in perent) of CPU time ompared to the CPU time obtained whenitems are seleted randomly is given in brakets.The way of ordering items has a dramati impat on the CPU time, has shown in Table 1. Weompare, on 10 instanes of eah type, the results obtained using the three orders presentedin setion 4.1 (Omax, Osum, and Omin) and results obtained with a random order of objets.Table 1 shows learly that order Omax is signi�antly better for all types of instanes. Thus,in the following, items are sorted and labeled aording to Omax.5.2.2 Cardinality of the set of non-dominated riterion vetorsFigure 3 shows the evolution of the average ardinality of the set of non-dominated riterionvetors for 10 instanes of eah type. As expeted, instanes of type B are quasi single-objetive instanes and have very few non-dominated riterion vetors. Even if instanes oftype A have more non-dominated riterion vetors than instanes of type B, the on�itinginstanes (type C and D) have many more non-dominated riterion vetors than the othertypes of instanes.

Figure 3: Average ardinality of the set of non-dominated riterion vetors as a funtion of n18

5.2.3 Impat of eah dominane relationWe ompare, in Table 2, the average CPU time obtained using dominane relation Dk
∆ alone,relations Dk

r and Dk
∆, relations Dk

∆ and Dk
b , and �nally relations Dk

r , Dk
∆, and Dk

b all together.Table 2 shows learly that it is always better to use these three relations together, due to theiromplementarity. Thus, in the following experiments, we always apply these three relationstogether.Table 2: Complementarity of dominane relations Dk
r , Dk

∆, and Dk
b in our approah (AverageCPU time in seonds)Type n Dk

∆ Dk
r and Dk

∆ Dk
∆ and Dk

b Dk
r , Dk

∆, and Dk
bA 300 272.628 157.139 (−42.4%) 85.076 (−68.8%) 84.001 (−69.2%)B 600 230.908 174.015 (−24.6%) 1.188 (−99.5%) 1.141 (−99.5%)C 200 122.706 63.557 (−48.2%) 61.696 (−49.7%) 59.986 (−51.1%)D 90 46.137 24.314 (−47.3%) 23.820 (−48.4%) 20.795 (−54.9%)The derease (expressed in perent) of CPU time ompared to the CPU time obtained when using onlyrelation Dk

∆ in our approah is given in brakets.To illustrate further the impat and omplementarity of eah dominane relation, we indi-ate, in Table 3, the number of states respetively removed by relations Dk
r , Dk

∆, and Dk
b forone instane (with p = 2, and n = 20) of eah type. In addition, the number of non-feasiblestates obtained at eah phase and the ardinality of Ck is given. For instane 2B20, the moste�ient relation in terms of removed states is relation Dk

b . This is not surprising, sine thevalues of the non-dominated extensions of a state sk are not spread, and thus the upper boundfor sk, whih is an upper bound on the ideal point assoiated to the extensions of sk, is verylose to the values of the extensions of sk. However, even if this relation removes many statesin all others instanes, the most e�ient relation, for the others instanes, is relation Dk
∆. Itremoves up to 4609 states in instane 2D20, whereas relations Dk

r and Dk
b remove respetively504 and 1990 states, that is less states than the feasibility ondition. For all instanes, relation

Dk
r is the least e�ient. Nevertheless, this relation is extremely unexpensive in terms of CPUtime. For instanes of type C and D, even if relations Dk

∆ and Dk
b remove the majority of thestates, relation Dk

r removes a non negligible number of the states.5.2.4 Results on large size instanesWe present, in Table 4, results of our approah on large size instanes of eah type. The largestinstanes solved here are those of type B with 4000 items and the instanes with the largestnumber of non-dominated riterion vetors are those of type D with 250 items for whih theardinality of the set of non-dominated riterion vetors is in average of 8154.7.19

Table 3: Impat of Dk
r , Dk

∆, and Dk
b on one instane of type A, B, C and D for n = 20One instane 2A20 where |ND | = 21# StatesPhase Removed by non in

CkDk
r Dk

∆ Dk
b feasible1 0 0 0 0 22 0 0 0 0 43 0 0 2 0 64 0 0 1 0 115 0 3 5 0 146 0 10 1 0 177 0 6 3 0 258 0 16 3 0 319 0 22 3 0 3710 0 22 0 0 5211 0 36 0 0 6812 0 37 0 0 9913 0 75 0 4 11914 0 29 25 12 17215 0 128 7 36 17316 5 67 63 33 17817 0 88 32 51 18518 0 80 44 82 16419 5 38 112 108 6520 14 3 - 51 21Total 24 660 301 377 -

One instane 2B20 where |ND | = 1# StatesPhase Removed by non in
CkDk

r Dk
∆ Dk

b feasible1 0 0 1 0 12 0 0 1 0 13 0 0 1 0 14 0 0 1 0 15 0 0 1 0 16 0 0 1 0 17 0 0 0 0 28 0 0 2 0 29 0 0 2 0 210 0 0 1 0 311 0 0 0 0 612 0 3 0 2 713 0 0 2 2 1014 0 0 7 6 715 0 2 2 3 716 0 0 4 7 317 0 0 0 3 318 0 0 0 3 319 0 0 2 3 120 0 0 - 1 1Total 0 5 28 30 -One instane 2C20 where |ND| = 31# StatesPhase Removed by non in
CkDk

r Dk
∆ Dk

b feasible1 0 0 0 0 22 0 0 0 0 43 0 1 0 0 74 0 3 1 0 115 0 4 1 0 166 0 8 3 0 227 0 16 0 0 278 0 19 2 0 349 0 16 3 0 5110 0 32 1 0 6611 0 36 0 0 9312 0 67 3 0 11613 0 77 0 10 14414 5 85 39 23 17015 29 83 20 18 18916 21 88 19 54 18917 30 143 30 32 16618 31 46 66 71 14519 47 64 111 35 10820 50 36 - 58 31Total 213 824 299 301 -

One instane 2D20 where |ND| = 189# StatesPhase Removed by non in
CkDk

r Dk
∆ Dk

b feasible1 0 0 0 0 22 0 0 0 0 43 0 0 0 0 84 0 0 0 0 165 0 10 0 0 226 0 3 0 0 417 0 9 0 0 738 0 51 0 0 959 0 24 0 0 16610 0 46 0 1 28511 1 66 1 7 49512 8 243 0 13 72613 29 356 67 59 94114 16 415 60 84 130715 60 575 241 180 155816 19 1157 198 269 147317 131 699 412 379 132518 59 599 425 508 105919 113 308 586 446 66520 68 48 - 597 189Total 504 4609 1990 2543 -20

We an observe that the results of Figure 3 onerning the size of the set of non-dominatedriterion vetors are on�rmed on large instanes. The average maximum ardinality of Ck,whih is a good indiator of the memory storage needed to solve the instanes, an be veryhuge. This explains why we an only solve instanes of type D up to 250 items.Table 4: Results of our approah on large size instanesType n
Time in s. |ND | AvgMin Avg Max Min Avg Max maxk{|C

k|}A 100 0.152 0.328 0.600 98 159.3 251 17134.7200 6.768 12.065 21.025 416 529.0 729 209198.9300 57.475 84.001 101.354 905 1130.7 1651 898524.7400 243.215 307.093 369.999 1308 1713.3 2101 2230069.4500 677.398 889.347 1198.190 2034 2537.5 2997 5120514.7600 1833.080 2253.421 3116.670 2792 3593.9 4746 9983975.8700 4046.450 5447.921 7250.530 3768 4814.8 5939 18959181.7B 1000 4.328 8.812 15.100 105 157.0 218 134107.22000 139.836 251.056 394.104 333 477.7 630 1595436.13000 1192.190 1624.517 2180.860 800 966.9 1140 6578947.24000 4172.530 6773.264 8328.280 1304 1542.3 1752 18642759.0C 100 1.564 2.869 4.636 406 558.2 737 103921.5200 43.834 59.986 93.541 1357 1612.8 2018 918162.6300 311.995 373.097 470.429 2510 2893.6 3297 3481238.4400 1069.290 1390.786 1670.500 3763 4631.8 5087 9400565.3500 2433.320 4547.978 6481.970 5111 7112.1 9029 21282280.5D 100 36.450 40.866 54.267 1591 1765.4 2030 1129490.3150 235.634 265.058 338.121 2985 3418.5 3892 4274973.9200 974.528 1145.922 1497.700 4862 5464.0 6639 12450615.5250 2798.040 3383.545 3871.240 7245 8154.7 8742 26999714.85.2.5 Comparison with other exat methodsThe results of a omparative study, in the bi-objetive ase, between the exat method ofCaptivo et al. [11℄, an exat method based on a ommerial Integer Programming (IP) solver,and our approah using Dk
r , Dk

∆, and Dk
b are presented in Table 5.The Labeling Approah (LA) of Captivo et al. [11℄ was seleted sine it is the most e�ientmethod urrently known. An exat method, of the ε-onstraint type [22℄, using a ommerialIP solver was also onsidered for two major reasons. First, it is relatively easy to implement.Seond, it has muh less storage problems than the two other methods, sine eah e�ientsolution is found by solving one new 0-1 linear program. This ε-onstraint method basiallyonsists of optimizing the �rst riterion while moving iteratively a onstraint on the seondriterion. More preisely, in order to eliminate weakly e�ient solutions, a slightly perturbedobjetive funtion is used relying on the fat that the riterion vetors are integer valued (seeAlgorithm 5). Cplex 9.0 is used as an IP solver in Algorithm 5 whih is written in C++.21

Algorithm 5: ε-onstraintGenerate y one optimal solution of maxx∈X f1(x) ; Generate z one optimal solution of maxx∈X f2(x);1 Generate x1 one optimal solution of max{f2(x) : x ∈ X, f1(x) ≥ f1(y)};2
X⋆ ← X⋆ ∪ {x1} ; j ← 1;3 while f2(x

j) < f2(z) do4 /* optimize the funtion assoiated to the line passing through (f1(x
j), f2(x

j)) and
(f1(x

j)− 1, f2(z)) subjet to a restrition on the seond objetive */Generate xj+1 one optimal solution of5
max{(f2(z)− f2(x

j))f1(x) + f2(x) : x ∈ X, f2(x) ≥ f2(x
j) + 1};

X⋆ ← X⋆ ∪ {xj+1} ; j ← j + 1;6 return X⋆;7 The three methods have been used on the same instanes and the same omputer. ForLA, we used the soure ode, in C, obtained from the authors. Table 5 presents results, in thebi-objetive ase, for instanes of type A, B, C, and D for inreasing size of n while LA ansolve all instanes of the series onsidered. Due to storage requirements, LA an only solveinstanes of type A up to 300 items, of type B up to 800 items, of type C up to 200 items,and of type D up to 100 items. As a omparison, we reall (see Table 4) that our approahan solve muh larger size instanes, respetively up to 700, 4000, 500, and 250 items.Table 5: Comparison between the Labeling Approah (LA) of Captivo et al. [11℄, ε-onstraintmethod and our approah.Type n
Avg time in s. AvgLA ε-onstraint Our approah |ND|A 100 2.476 5.343 (+116%) 0.328 (−87%) 159.3200 37.745 57.722 (+53%) 12.065 (−68%) 529.0300 163.787 285.406 (+74%) 84.001 (−49%) 1130.7B 600 27.694 27.543 (−1%) 1.141 (−96%) 74.3700 47.527 29.701 (−38%) 2.299 (−95%) 78.6800 75.384 68.453 (−9%) 5.280 (−93%) 118.1C 100 12.763 208.936 (+1537%) 2.869 (−78%) 558.2200 114.171 6584.012 (+5667%) 59.986 (−47%) 1612.8D 100 127.911 23126.926 (+17980%) 40.866 (−68%) 1765.4The derease or inrease (expressed in perent) of CPU time ompared to the CPU time obtained with the LabelingApproah (LA) of Captivo et al. [11℄ is given in brakets.Considering CPU time, we an onlude that our approah is always faster than LA and ε-onstraint on the onsidered instanes. Moreover, when the number of non-dominated riterionvetors inreases, CPU time beomes prohibitive for ε-onstraint (about 6.5 hours in averagefor instanes 2D100), while storage limitations beome restritive for LA.5.3 Results in the three-objetive aseThe goals of the experiments in the three-objetive ase are:22

Figure 4: Evolution of the average ardinality of the set of non-dominated riterion vetorsfor instanes of type A and C in the bi-objetive and three-objetive ases in funtion of n(a) to evaluate the size of the set of non-dominated riterion vetors (see Figure 4 and Table 6)(b) to analyze the performane of our approah on large instanes (see Table 6)We ompare, in Figure 4, the evolution of the ardinality of the set of non-dominated riterionvetors in the bi-objetive ase and in the three-objetive ase for instanes of type A andC. We an observe that the addition of one riterion leads to an explosion of the averageardinality of the set of non-dominated riterion vetors for both types of instanes. Forexample, for n = 50 the inrease is about a fator 8.5 for instanes of type A and about 20.5for instanes of type C.Table 6: Results of our approah on instanes of types A and C in the three-objetive ase.type n
Time in s. |ND| AvgMin Avg Max Min Avg Max maxk{|C

k|}A 10 <1ms <1ms <1ms 4 8.3 18 20.930 <1ms 0.012 0.028 31 112.9 193 1213.250 0.112 0.611 1.436 266 540.6 930 12146.570 4.204 16.837 44.858 810 1384.4 2145 64535.490 80.469 538.768 2236.230 2503 4020.3 6770 285252.1110 273.597 3326.587 11572.700 3265 6398.3 9394 601784.6C 10 <1ms <1ms 0.004 5 17.7 32 53.420 0.004 0.030 0.184 80 300.2 1270 1557.830 0.016 0.431 2.076 72 649.1 2064 6861.140 1.008 3.684 12.336 1167 1538.9 2740 2383750 4.840 83.594 316.811 1282 3650.9 6566 92155.460 73.704 2572.981 13607.100 3698 9647.9 22713 328238.8We present, in table 6, results of our approah onerning large size instanes of types
A and C in the three-objetive ase. Observe that the number of non-dominated riterion23

vetors varies a lot. This explains the variation of the CPU time whih is strongly relatedwith the number of non-dominated riterion vetors. Table 6 on�rms for the three-objetivease that instanes of type A are easier to solve than instanes of type C, as in the bi-objetivease.6 ConlusionsThe purpose of this work has been to develop and experiment a new dynami programmingalgorithm to solve the 0−1 multi-objetive knapsak problem. We showed that by using severalomplementary dominane relations, we obtain a method whih outperforms experimentallythe existing methods. In addition, our method is extremely e�ient with regard to the othermethods on the on�iting instanes that model real-world appliations. Lastly, this methodis the �rst one to our knowledge that an be applied for knapsak problems with more thantwo objetives and the results in the three-objetive ase are satisfatory.While we foused in this paper on the 0 − 1 multi-objetive knapsak problem, we ouldenvisage in future researh to apply dominane relations based on similar ideas to other multi-objetive problems, admitting a diret dynami programming formulation, suh as the multi-objetive shortest path problem or some multi-objetive sheduling problems.Referenes[1℄ M. Ehrgott and X. Gandibleux. A survey and annoted bibliography of multiobjetiveombinatorial optimization. OR Spektrum, 22(4):425�460, 2000.[2℄ M. Ehrgott. Multiriteria optimization. LNEMS 491. Springer, Berlin, 2005.[3℄ S. Martello and P. Toth. Knapsak Problems. Wiley, New York, 1990.[4℄ H. Kellerer, U. Pfershy, and D. Pisinger. Knapsak Problems. Springer, Berlin, 2004.[5℄ Meir J. Rosenblatt and Zilla Sinuany-Stern. Generating the disrete e�ient frontier tothe apital budgeting problem. Operations Researh, 37(3):384�394, 1989.[6℄ Juann-Yuan Teng and Gwo-Hshiung Tzeng. A multiobjetive programming approahfor seleting non-independent transportation investment alternatives. TransportationResearh-B, 30(4):201�307, 1996.[7℄ M. M. Kostreva, W. Ogryzak, and D. W. Tonkyn. Reloation problems arising inonservation biology. Computers and Mathematis with Appliations, 37(4-5):135�150,1999.[8℄ Larry Jenkins. A biriteria knapsak program for planning remediation of ontaminatedlightstation sites. European Journal of Operational Researh, 140(2):427�433, 2002.24

[9℄ K. Klamroth and M. Wieek. Dynami programming approahes to the multiple riteriaknapsak problem. Naval Researh Logistis, 47(1):57�76, 2000.[10℄ M. Visée, J. Teghem, M. Pirlot, and E.L. Ulungu. Two-phases method and branhand bound proedures to solve the bi-objetive knapsak problem. Journal of GlobalOptimization, 12(2):139�155, 1998.[11℄ M. E. Captivo, J. Climao, J. Figueira, E. Martins, and J. L. Santos. Solving biriteria0-1 knapsak problems using a labeling algorithm. Computers and Operations Researh,30(12):1865�1886, 2003.[12℄ C. Silva, J. Clímao, and J. Figueira. Core problems in the bi-riteria {0,1} knapsak:new developments. Researh Report 12, INESC-Coimbra, 2005.[13℄ T. Erlebah, H. Kellerer, and U. Pfershy. Approximating multiobjetive knapsak prob-lems. Management Siene, 48(12):1603�1612, 2002.[14℄ X. Gandibleux and A. Freville. Tabu searh based proedure for solving the 0− 1 multi-objetive knapsak problem: the two objetives ase. Journal of Heuristis, 6(3):361�383,2000.[15℄ C.G. Da Silva, J. Climao, and J. Figueira. A satter searh method for bi-riteria {0-1}-knapsak problems. European Journal of Operational Researh, 169(2):373�391, 2006.[16℄ C.G. Da Silva, J. Climao, and J. Figueira. Integrating partial optimization with sattersearh for solving bi-riteria {0-1}-knapsak problems. European Journal of OperationalResearh, 177(3):1656�1677, 2007.[17℄ C. Berge. Graphs. North Holland, 1985.[18℄ H.M. Weignartner and D.N. Ness. Methods for the solution of the multi-dimensional 0/1knapsak problem. Operations Researh, 15(1):83�103, 1967.[19℄ G.L. Nemhauser and Z. Ullmann. Disrete dynami programming and apital alloation.Management Siene, 15(9):494�505, 1969.[20℄ M. Ehrgott and X. Gandibleux. Bound sets for biobjetive ombinatorial optimizationproblems. Computers and Operations Researh, 34(9):2674�2694, 2007.[21℄ H.T. Kung, F. Luio, and F.P. Preparata. On �nding the maxima of set of vetors.Journal of the Assoiation for Computing Mahinery, 22(4):469�476, 1975.[22℄ V. Chankong and Y. Y. Haimes. Multiobjetive deision making. Elsevier Siene Pub-lishing, New York, 1983. 25

