Efficient determination of the k most vital edges for the minimum spanning tree problem

Cristina Bazgan^{1,2} Sonia Toubaline¹ Daniel Vanderpooten¹

Université Paris-Dauphine, LAMSADE
 Place du Maréchal de Lattre de Tassigny, 75775 Paris Cedex 16, France
 2. Institut Universitaire de France
 {bazgan,toubaline,vdp}@lamsade.dauphine.fr

Abstract

We study in this paper the problem of finding in a graph a subset of k edges whose deletion causes the largest increase in the weight of a minimum spanning tree. We propose for this problem an explicit enumeration algorithm whose complexity, when compared to the current best algorithm, is better for general k but very slightly worse for fixed k. More interestingly, unlike in the previous algorithms, we can easily adapt our algorithm so as to transform it into an implicit enumeration algorithm based on a branch and bound scheme. We also propose a mixed integer programming formulation for this problem. Computational results show a clear superiority of the implicit enumeration algorithm both over the explicit enumeration algorithm and the mixed integer program.

Key words: most vital edges, minimum spanning tree, exact algorithms, mixed integer program.

1 Introduction

In many applications involving the use of communication or transportation networks, we often need to identify critical infrastructures. By critical infrastructure we mean a set of links whose damage causes the largest perturbation within the network. Modeling this network as a weighted graph, identifying critical infrastructures amounts to finding a subset of edges whose removal from the graph causes the largest increase in the total weight. In the literature this problem is referred to as the k most vital edges problem. In this paper, we are interested in determining a subset of edges of the graph whose deletion causes the largest increase in the weight of a minimum spanning tree (MST). This problem is referred to as k MOST VITAL EDGES MST.

The problem of finding the k most vital edges of a graph has been investigated for various problems including shortest path [1, 9, 13], maximum flow [20, 16, 21], 1-median and 1-center [2]. For the minimum spanning tree problem defined on a graph G with n vertices and m edges, Frederickson and Solis-Oba [6] showed that, for general k, k MOST VITAL EDGES MST is NP-hard and proposed an $O(\log k)$ -approximation algorithm. The problem remains NP-hard even for complete graphs with weights 0 or 1 and 3-approximable for graphs with weights 0 or 1 [3]. For a fixed k the problem is obviously polynomial. The case k = 1 has been largely studied in the literature [7, 8, 18]. Hsu *et al.* [7] gave two algorithms that run in $O(m \log m)$ and

 $O(n^2)$. Iwano and Katoh [8] proposed an algorithm in $O(m\alpha(m, n))$ using Tarjan's result [19], where α is the inverse Ackermann function. Pettie [14] improved the results of Tarjan [19] and Dixon *et al.* [5], giving rise to the current best deterministic algorithm in $O(m \log \alpha(m, n))$. For general k, several exact algorithms based on an explicit enumeration of possible solutions have been proposed [10, 11, 17]. The best one [10] runs in time $O(n^k\alpha((k+1)(n-1), n))$ and was achieved by reducing G to a sparse graph. Using Pettie's result [14], the running time of the later algorithm becomes $O(n^k \log \alpha((k+1)(n-1), n))$.

In this paper we propose a new efficient algorithm also based on an explicit enumeration of all possible solutions for k MOST VITAL EDGES MST. Its complexity $O(n^k \log \alpha(2(n-1), n))$ for fixed k is theoretically very slightly worse than the complexity of the algorithm proposed by Liang [10] using Pettie's result [14]. However, given the fact that $\alpha(m, n)$ is always less than 4 in practice, the complexity of these two algorithms can be deemed as equivalent. Moreover, the complexity of our algorithm is better than that of Liang's algorithm for general k. More interestingly, unlike any other algorithm, our algorithm has two specific useful features. First, it can also determine an optimal solution for i MOST VITAL EDGES MST, for each 1 < 1 $i \leq k$, with the same time complexity. Second, it can be easily adapted to establish an implicit enumeration algorithm based on a branch and bound procedure. We also present in this paper a mixed integer programming formulation to solve k MOST VITAL EDGES MST. We implement and test all these proposed algorithms using, for the implicit enumeration algorithm, different branching and evaluation strategies. The results show that the implicit enumeration algorithm is much faster than the explicit enumeration algorithm as well as the resolution of the mixed integer program. Moreover, the implicit enumeration algorithm can handle significantly larger instances due to a better use of memory space. Finally, we also propose an ε -approximate algorithm.

The rest of the paper is organized as follows. In section 2 we introduce notations and some results related to our problem. In section 3 we present a new explicit enumeration algorithm that solves k MOST VITAL EDGES MST. In section 4 we propose another exact algorithm based on an implicit enumeration scheme. In section 5, we present a mixed integer programming formulation for k MOST VITAL EDGES MST. Computational results are presented in section 6. We also include in these experiments an ϵ -approximate version of our implicit enumeration schema. Conclusions are provided in section 7.

2 Basic concepts and preliminary results

Let G = (V, E) be a weighted undirected connected graph with |V| = n, |E| = m where $w(e) \ge 0$ is the integer weight of each edge $e \in E$. We denote by G - E' the graph obtained from G by removing the subset of edges $E' \subseteq E$. k MOST VITAL EDGES MST consists of finding a subset of edges $S^* \subseteq E$ with $|S^*| = k$ that maximizes the weight of a MST in the graph $G - S^*$. We assume that G is at least (k + 1) edge-connected, since otherwise any selection of k edges including the edges of a minimum unweighted cut is a trivial solution. Therefore, we assume $k \le \lambda(G) - 1$, where $\lambda(G)$ is the edge-connectivity of G. Also, without loss of generality, we suppose in the following that all weights are different (by introducing, if necessary, an arbitrary total order on edges with the same weight). This assumption implies the uniqueness of minimum spanning trees or forests. For a non necessarily connected graph, a minimum spanning forest (MSF) is the union of minimum spanning trees for each of its connected components. In this paper a tree or a forest is considered as a graph but also, for

convenience, as a subset of edges. For a set of edges F, w(F) represents the sum of the weights of the edges in F.

We denote by T_0 the MST of G. Remark that an optimal solution of k MOST VITAL EDGES MST must contain at least one edge of T_0 . For $i \ge 1$, let T_i be the MSF of the graph $G_i = G - \bigcup_{j=0}^{i-1} T_j$. We use in the following the graph $U_k^G = (V, \bigcup_{j=0}^k T_j)$ which has the following interesting property.

Lemma 1 (Liang and Shen [11]) For any $S \subseteq E$, $|S| \leq k$, any edge of the MST of graph G-S belongs to U_k^G .

By Lemma 1, solving k MOST VITAL EDGES MST on G reduces to solving the same problem on the sparser graph U_k^G whose number of edges is at most (k+1)(n-1).

Considering T a MST of a graph, the replacement edge r(e) for an edge $e \in T$ is defined as the edge $e' \neq e$ of minimum weight which connects the two disconnected components of $T \setminus \{e\}$. The sensitivity of a minimum spanning tree T, i.e. the allowable variation for each edge weight so that T remains a minimum spanning tree, can be computed in $O(m \log \alpha(m, n))$ [14]. In particular, for edges in T, this algorithm provides replacement edges. As a consequence, we get the following result.

Lemma 2 1 MOST VITAL EDGES MST defined on a graph with n vertices and m edges is solvable in $O(m \log \alpha(m, n))$.

Proof: Let T^* be the minimum spanning tree in a given graph. We calculate the replacement edges r(e) for all edges $e \in T^*$. The most vital edge is the edge e^* such that $w(r(e^*)) - w(e^*) = \max_{e \in T^*} w(r(e)) - w(e)$.

Actually, replacement edges belong to a specific subset of edges as shown by the following result.

Lemma 3 For each edge $e \in T_i$, we have $r(e) \in T_{i+1}$ for $i = 0, \ldots, k-1$.

Proof: Given a graph G, Liang [10] shows that for each edge $e \in T_0$, $r(e) \in T_1$. Applying this to graph G_i , for which T_i is the MSF, we get the result. \Box

3 An explicit enumeration algorithm for finding the k most vital edges

We propose an algorithm that constructs a search tree of depth k-1 in a breadth-first mode. At the i^{th} level of this search tree, $i = 0, \ldots, k-1$, a node s is characterized by:

- mv(s): a subset of *i* edges, corresponding to a tentative partial selection of the *k* most vital edges.
- $\widetilde{U}(s) = U_{k-|mv(s)|}^{G'(s)}$ where $G'(s) = (V, E \setminus mv(s))$. Hence, we have $\widetilde{U}(s) = (V, \bigcup_{i=0}^{k-|mv(s)|} T_i(s))$ where $T_i(s)$ is the MSF in $G'(s) - \bigcup_{j=0}^{i-1} T_j(s)$.
- mst(s): a subset of edges forbidden to deletion. These edges belonging to $T_0(s)$, will necessary belong to any MST associated with any descendant of s. Depending on the position of s in the search tree, the cardinality of mst(s) varies from 0 to n-2.

Denote by N_i , for i = 0, ..., k - 1, the set of nodes of the search tree at the i^{th} level. We describe in the following the exact algorithm (section 3.1) and exemplify its use on an illustrative example (section 3.2).

3.1 Description of the algorithm

We first construct the graph U_k^G . Let *a* be the root of the search tree with $mv(a) = mst(a) = \emptyset$, $\widetilde{U}(a) = U_k^G$, $w(T_0(a)) = w(T_0)$, and $N_0 = \{a\}$.

For a level $i, 0 \leq i \leq k-2$, we compute for each node $s \in N_i$ and each edge $e \in T_0(s)$, the replacement edges r(e) in $T_1(s)$. Node s gives rise to $|T_0(s) \setminus mst(s)|$ children in N_{i+1} . Each such child d, corresponding to an edge e_j in $T_0(s) \setminus mst(s) = \{e_1, \ldots, e_{n-1-|mst(s)|}\}$, is characterized by:

- $mv(d) = mv(s) \cup \{e_j\}.$
- $mst(d) = mst(s) \cup (\cup_{\ell=1}^{j-1} \{e_{\ell}\}).$
- $\widetilde{U}(d)$ is updated from $\widetilde{U}(s)$ as follows (using Lemma 3):
 - $T_0(d) = T_0(s) \cup \{r(e_j)\} \setminus \{e_j\}$ and hence $w(T_0(d)) = w(T_0(s)) w(e_j) + w(r(e_j))$.
 - For $j = 1, ..., k |mv(d)|, T_j(d)$ is obtained from $T_j(s)$ by deleting the replacement edge e_{rep} of the edge deleted from $T_{j-1}(s)$ and replacing it by its replacement edge $r(e_{rep}) \in T_{j+1}(s)$.

If for a level *i* and an edge e_{rep} , the replacement edge $r(e_{rep})$ does not exist, $T_j(d) = T_j(s) \setminus \{e_{rep}\}$ and $T_\ell(d) = T_\ell(s)$ for $\ell = j + 1, \ldots, k - |mv(d)|$.

If for a level $i, T_i(s) = \emptyset$ then $T_\ell(d) = \emptyset$ for $\ell = i, \dots, k - |mv(d)|$.

At level k-1, for each node $s \in N_{k-1}$ and for all edges $e \in T_0(s) \setminus mst(s)$, we find r(e) in $T_1(s)$ and we determine a node s^* that verifies

 $\max_{s \in N_{k-1}} \max_{e \in T_0(s) \setminus mst(s)} (w(T_0(s)) - w(e) + w(r(e))).$ An optimal solution is the subset $mv(s^*) \cup \{e^*\}$ where $e^* = \arg \max_{e \in T_0(s^*) \setminus mst(s^*)} w(T_0(s^*)) - w(e) + w(r(e))$. The largest weight of a MST in the partial graph obtained by deleting this subset is $w(T_0(s^*)) - w(e^*) + w(r(e^*))$.

Algorithm 1 describes this procedure. Its correctness and complexity are given in Theorem 1.

Theorem 1 Algorithm 1 computes an optimal solution for an instance of k MOST VITAL EDGES MST with n vertices and m edges in $O(km\alpha(m,n) + n^k \log \alpha(2(n-1),n))$ time.

Proof: We first show that Algorithm 1 gives an optimal solution for k MOST VITAL EDGES MST. Let S^* be the solution returned by Algorithm 1, and w^* the weight of the MST in $U_k^G - S^*$. Consider any solution S', with |S'| = k, and w' the weight of the MST in $U_k^G - S'$. Let r be a node of the search tree such that $mv(r) \subseteq S'$ and for any child d of r, $mv(d) \notin S'$. Clearly, r exists and corresponds at worst to root a when $S' \cap T_0 = \emptyset$. Since, by definition, r is such that no edge of $T_0(r)$ belongs to S', we have $w' = w(T_0(r))$. Moreover, since $w(T_0(r)) \leq w^*$, we have $w' \leq w^*$.

Algorithm 1: Explicit resolution of k MVE MST

/* Let a be the root of the search tree */ 1 Construct U_k^G ; 2 $mv(a) \leftarrow \emptyset; mst(a) \leftarrow \emptyset; w(T_0(a)) \leftarrow w(T_0); \widetilde{U}(a) \leftarrow U_k^G;$ $N_0 \leftarrow \{a\}; N_i \leftarrow \emptyset, i = 1, \dots, k-1;$ 3 4 for $i \leftarrow 0$ to k - 2 do for all $s \in N_i$ do $\mathbf{5}$ for all $e \in T_0(s)$ do 6 find r(e) in $T_1(s)$; /* $T_0(s) \setminus mst(s) = \{e_1, \dots, e_{n-1-|mst(s)|}\}$ */ forall $e_i \in T_0(s) \setminus mst(s)$ do 8 /* create a new node d, a child of s*/ $mv(d) \leftarrow mv(s) \cup \{e_j\};$ 9 $w(T_0(d)) \leftarrow w(T_0(s)) - w(e_j) + w(r(e_j));$ 10 $mst(d) \leftarrow mst(s) \cup (\cup_{\ell=1}^{j-1} \{e_{\ell}\});$ 11 determine $\widetilde{U}(d)$ by using Algorithm 2; 12 $N_{i+1} \leftarrow N_{i+1} \cup \{d\};$ 13 14 $max \leftarrow 0;$ 15 forall $s \in N_{k-1}$ do forall $e \in T_0(s)$ do 16find r(e) in $T_1(s)$; 17 18 forall $e \in T_0(s) \setminus mst(s)$ do if $w(T_0(s)) - w(e) + w(r(e)) > max$ then 19 $\mathbf{20}$ $max \leftarrow w(T_0(s)) - w(e) + w(r(e));$ $e^* \leftarrow e;$ 21 22 $s^* \leftarrow s;$ /* The largest weight of a MST in the partial obtained graph is $w(T_0(s^*)) - w(e^*) + w(r(e^*))$ */ 23 return $S^* = mv(s^*) \cup \{e^*\};$

Algorithm 2: Construction of $\widetilde{U}(d)$ from $\widetilde{U}(s)$ where d is the child of s in the search tree obtained from s by deleting e_i

1 $T_0(d) \leftarrow T_0(s) \cup \{r(e_i)\} \setminus \{e_i\};$ 2 replace $\leftarrow r(e_j)$; **3** $\ell \leftarrow 0$; 4 while $T_{\ell+1}(s) \neq \emptyset$ do $\mathbf{5}$ if replace exists then Determine if there exists a replacement edge, called *replace*1, of *replace* in $T_{\ell+1}(s)$ 6 if replace1 exists then 7 $T_{\ell}(d) \leftarrow T_{\ell}(s) \cup \{replace1\} \setminus \{replace\};$ 8 9 $replace \leftarrow replace1;$ else 10 $T_{\ell}(d) \leftarrow T_{\ell}(s) \setminus \{replace\};$ 11 12else $T_{\ell}(d) \leftarrow T_{\ell}(s);$ 13 $\ell \leftarrow \ell + 1;$ 14 15 return $\widetilde{U}(d)$;

We determine now the complexity of Algorithm 1. Denote by t_u the time for constructing U_k^G , by $t_{edge-rep}$ the time for finding the replacement edges for all edges of a minimum spanning tree, and by t_{gen} the time for generating any node s of the search tree (that is determining mv(s), mst(s) and $\tilde{U}(s)$). Level 0 requires $|N_0|t_{edge-rep}$ time. Level i takes $|N_i|t_{edge-rep} + |N_i|t_{gen}$ time, for $1 \leq i \leq k-1$. At level k, we compute the k most vital edges. Thus, the

total time of Algorithm 1 is given by

$$t_u + \sum_{i=0}^{k-1} |N_i| t_{edge-rep} + \sum_{i=1}^{k-1} |N_i| t_{gen} + |N_k|$$

For each node $s \in N_i$, subset mv(s) consists of ℓ tree edges of $T_0(a)$ and $(i - \ell)$ edges belonging to the union set of the $(i - \ell)$ replacement edges of these ℓ edges, $1 \leq \ell \leq i$ (the p replacement edges of an edge $e \in T_0(a)$ are the p edges of minimum weight which connect the two disconnected components of $T_0(a) \setminus \{e\}$). This implies that $|N_i| = \sum_{\ell=1}^{i} {n-1 \choose \ell} K_{\ell}^{i-\ell} =$ $\sum_{\ell=1}^{i} {n-1 \choose \ell} {i-\ell \choose i-\ell} = {n+i-2 \choose i} = O(n^i)$, where $K_n^p = {n+p-1 \choose p}$ is the number of combinations with repetition of p elements chosen from a set of n elements.

For a node $s \in N_i$, $1 \le i \le k-1$, U(s) contains at most k-i+1 forests. Then, t_{gen} is in O((k-i+1)n) time. Since the replacement edges of a MST in a graph with n vertices and m edges can be computed in $O(m \log \alpha(m, n))$ [14], $t_{edge-rep}$ is in $O(n \log \alpha(2(n-1), n))$ time. The construction of U_k^G , corresponding to t_u , can be performed in $O(km\alpha(m, n))$ time, using k times the best current algorithms for MST [4, 15]. Therefore, the complexity of Algorithm 1 is in $O(km\alpha(m, n) + n^k \log \alpha(2(n-1), n))$ time. Note that the time needed to generate all the nodes of the search tree is dominated by the total time to find, for all nodes s of the search tree, the replacement edges r(e) in $T_1(s)$ for all edges $e \in T_0(s)$.

Remark For each node s of the search tree, we could use, instead of the graph $\tilde{U}(s)$, the graph $U(s) = U_{k-|mv(s)|}^{G''(s)}$ where G''(s) is the graph obtained from G by contracting the edges of mst(s) and removing the edges of mv(s). Thus, $U(s) = (V, \bigcup_{i=0}^{k-|mv(s)|}T_i(s))$ where $T_i(s)$ is the MSF of $G''(s) - \bigcup_{j=0}^{i-1}T_j(s)$. Unfortunately, given a child d of a node s of the search tree, updating efficiently U(d) from U(s) is not as straightforward as for \tilde{U} . However, even if updating U could be performed more efficiently than \tilde{U} , we would get the same complexity since the time for generating all nodes of the search tree.

We close this subsection by comparing our algorithm with the previously best known algorithm for k MOST VITAL EDGES MST. For fixed k, by using the result of Dixon et al. [5], Liang [10] proposes an algorithm to solve k MOST VITAL EDGES MST in $O(n^k \alpha((k + 1)(n-1), n))$ time. Using Pettie's result [14] Liang's algorithm can be implemented in $O(t_u + n^k \log \alpha((k+1)(n-1), n))$ time, where t_u is the time for constructing U_k^G . Our algorithm has a complexity that is theoretically slightly worse than that of Liang. Nevertheless, since $\alpha(m, n)$ is always less than or equal to 4 in practice, the complexity of these two algorithms can be considered as equivalent. Moreover, a specific advantage of our algorithm is that it can also determine, with the same time complexity, an optimal solution for i MOST VITAL EDGES MST, for $1 \le i \le k$. Indeed, at each level i, we can find among nodes of N_i , the node with the largest weight of a MST.

For general k, our bound is clearly better than that of Liang. Indeed, in Liang's algorithm, after the determination of U_k^G , Liang divides the problem into two cases: (i) $|T_0 \cap S^*| = i, 1 \leq i < k$ and (ii) $|T_0 \cap S^*| = k$ where S^* represents a subset of k most vital edges. In (i), for every possible combination of i edges among the n-1 edges of $T_0, 1 \leq i < k$, the author constructs a specific graph \mathcal{G} with a number of nodes and edges depending only on k, and determines the k-i remaining edges in \mathcal{G} . In (ii), from every possible choice of (k-1)

edges among the n-1 edges of T_0 , the author constructs a MST T' in the graph obtained by deleting these (k-1) edges and finds the k^{th} edge to be removed by using the replacement edges of T'. Therefore, (i) and (ii) are performed respectively in $\sum_{i=1}^{k-1} \binom{n-1}{i} (t_{\mathcal{G}} + t_{k-i})$ and $\binom{n-1}{k-1} t_{last}$ time, where $t_{\mathcal{G}}$, t_{k-i} and t_{last} are respectively the time to construct \mathcal{G} , the time to determine the k-i remaining edges to be removed from \mathcal{G} and the time to find the k^{th} edge to be removed from $T' \cap T_0$. Note that Liang, who considers only the case where k is fixed, does not need to explicit the term involving t_{k-i} . However, for general k, even if expressing the complexity of his algorithm by $O(t_u + k^3 n^k + \sum_{i=1}^{k-1} \binom{n-1}{i} t_{k-i} + kn^k \log \alpha((k+1)(n-1), n))$, one can observe that it is relatively larger than the complexity of our proposed algorithm that remains in $O(t_u + n^k \log \alpha(2(n-1), n))$ time.

The other exact algorithms proposed in the literature [11, 17] have a worse complexity than our algorithm both for fixed and general k.

3.2 An illustrative example for the explicit enumeration algorithm

In this section, we apply Algorithm 1 to solve 3 MOST VITAL EDGES MST on the graph G, illustrated in Figure 1. The bold edges represent the MST of G.

We start the construction of the search tree with the root a whose elements are $mv(a) = mst(a) = \emptyset$, $\tilde{U}(a)$ is the union of the following forests

 $T_0(a): (1,2), (1,3), (3,5), (4,5)$

 $T_1(a): (2,3), (3,4), (1,4), (2,5)$

$$T_2(a): (2,4), (1,5)$$

and $w(T_0(a)) = 12$. We omitted $T_3(a)$ since it is an empty set.

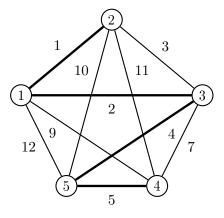


Figure 1: Graph G

The replacement edges of each edge in $T_0(a)$ are given in Table 1.

Level 1 contains four children of a and thus $N_1 = \{1, 2, 3, 4\}$. The elements of each node $s \in N_1$ are given in Table 2 where for example, $\tilde{U}(3)$ is constructed as follows: $T_0(3)$ is obtained by removing (3, 5) from $T_0(a)$ and adding its replacement edge (3, 4). For $T_1(3)$, we delete (3, 4) from $T_1(a)$ and find its replacement edge among the edges in $T_2(a)$ which is (2, 4). Finally, $T_2(3)$ is obtained by removing (2, 4) from $T_2(a)$.

e	(1,2)	(1, 3)	(3,5)	(4, 5)
r(e)	(2,3)	(2, 3)	(3, 4)	(3, 4)

Table 1: Replacement edges of $e \in T_0(a)$

s		1	2	3	4
mv(s)		$\{(1,2)\}$	$\{(1,3)\}$	$\{(3,5)\}$	$\{(4,5)\}$
mst(s))	Ø	$\{(1,2)\}$	$\{(1,2),(1,3)\}$	$\{(1,2),(1,3),(3,5)\}$
$w(T_0)$	s))	14	13	15	14
	T_0	(1,3), (2,3), (3,5), (4,5)	(1, 2), (2, 3), (3, 5), (4, 5)	(1, 2), (1, 3), (4, 5), (3, 4)	(1, 2), (1, 3), (3, 5), (3, 4)
$\widetilde{U}(s)$	T_1	(3, 4), (1, 4), (2, 5), (2, 4)	(3, 4), (1, 4), (2, 5), (2, 4)	(2,3), (1,4), (2,5), (2,4)	(2,3), (1,4), (2,5), (2,4)
	T_2	(1,5)	(1, 5)	(1,5)	(1,5)

Table 2: Elements of $s \in N_1$

We construct level 2 in the same way. The search tree is represented in Figure 2. The elements of each node $s \in N_2 = \{5, 6, \dots, 14\}$ are given in Table 3.

The construction of the search tree is completed. After determining the replacement edges of edges in T_0 for all leaves of the search tree, we find that s^* is node 5, a solution for 3 MOST VITAL EDGES MST is $\{(1,2), (1,3), (2,3)\}=mv(5) \cup \{e^*\}$ and the weight of the MST in $G \setminus \{(1,2), (1,3), (2,3)\}$ is 28.

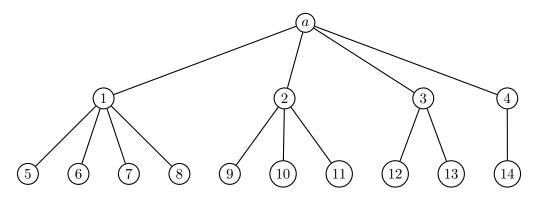


Figure 2: Search tree

Observe that the most vital edge is not necessarily the edge of smallest weight. Moreover, the most vital edge is not necessarily included in any optimal solution of k MOST VITAL EDGES MST for $k \ge 2$.

4 An implicit enumeration algorithm for finding the k most vital edges

An interesting feature of our explicit enumeration algorithm is that, unlike the algorithms previously proposed, it can easily be adapted to design an implicit algorithm based on a branch and bound scheme. To do this, we use for each node s an upper bound UB(s) based on successive replacements of edges. We also use lower bounds LB(s) constructed by extending the forest, corresponding to s, to a particular minimum spanning tree.

8	5	6	7	8		
mv(s)	$\{(1,2),(1,3)\}$	$\{(1,2),(2,3)\}$	$\{(1,2),(3,5)\}$	$\{(1,2),(4,5)\}$		
mst(s)	Ø	$\{(1,3)\}$	$\{(1,3),(2,3)\}$	$\{(1,3),(2,3),(3,5)\}$		
$w(T_0(s))$	21	21	17	16		
$\widetilde{U}(s) = egin{matrix} T_0 \ T_1 \end{bmatrix}$	$\begin{array}{c} (2,3), (3,5), (4,5), (1,4) \\ (3,4), (2,5), (2,4), (1,5) \end{array}$	(1,3), (3,5), (4,5), (2,5) (3,4), (1,4), (2,4), (1,5)	(1,3), (2,3), (4,5), (3,4) (1,4), (2,5), (2,4)	(1,3), (2,3), (3,5), (3,4) (1,4), (2,5), (2,4)		
s	9	10	11	12		
mv(s)	$\{(1,3),(2,3)\}$	$\{(1,3),(3,5)\}$	$\{(1,3),(4,5)\}$	$\{(3,5),(4,5)\}$		
mst(s)	$\{(1,2)\}$	$\{(1,2),(2,3)\}$	$\{(1,2),(2,3),(3,5)\}$	$\{(1,2),(1,3)\}$		
$w(T_0(s))$	19	16	15	17		
$\widetilde{U}(s) = egin{matrix} T_0 \\ T_1 \end{bmatrix}$	(1, 2), (3, 5), (4, 5), (1, 4) (3, 4), (2, 5), (2, 4), (1, 5)	(1, 2), (2, 3), (4, 5), (3, 4) (1, 4), (2, 5), (2, 4)	(1,2), (2,3), (3,5), (3,4) (1,4), (2,5), (2,4)	(1, 2), (1, 3), (3, 4), (2, 5) (2, 3), (1, 4), (2, 4), (1, 5)		
8	13	14				
mv(s)	$\{(3,5),(3,4)\}$	$\{(4,5),(3,4)\}$				
mst(s)	$\{(1,2),(2,3),(4,5)\}$	$\{(1,2),(2,3),(3,5)\}$				
$w(T_0(s))$	20	16				
$\widetilde{U}(s) = egin{matrix} T_0 \\ T_1 \end{bmatrix}$	(1, 2), (2, 3), (4, 5), (1, 4) (2, 3), (2, 5), (2, 4), (1, 5)	(1, 2), (2, 3), (3, 5), (1, 4) (2, 3), (2, 5), (2, 4), (1, 5)				

Table 3: Elements of $s \in N_2$

In order to obtain the best possible bounds, we construct U(s) for each node s, instead of using $\tilde{U}(s)$. For each child d of s, U(d) is determined by constructing $T_i(d)$, for $0 \le i \le k - |mv(d)|$ from the edges of U(s).

4.1 Lower bounds

For a fixed node s of the search tree, k - |mv(s)| edges remain to be deleted from U(s). We present different ways of determining these remaining edges giving rise to three possible lower bounds.

- 1. $LB_{greedy}(s)$: Given $T_0(s)$, we compute $r(e_j)$ for all $e_j \in T_0(s)$. We delete the edge e_j^* which attains $max_{e_j \in T_0(s) \setminus mst(s)}(w(r(e_j)) w(e_j))$ and replace it by $r(e_j^*)$. We update U(s) and repeat the process until k |mv(s)| edges are removed. The value of this bound is the weight of the last MST obtained.
- 2. $LB_{first}(s)$: We remove the k |mv(s)| edges of $T_0(s) \setminus mst(s)$ having the smallest weight, and we construct a MST from the remaining edges in $T_0(s)$. The value of this bound is the weight of the MST obtained.
- 3. $LB_{best}(s)$: Given $T_0(s)$, we compute $r(e_j)$ for all $e_j \in T_0(s)$. We remove the k |mv(s)| edges in $T_0(s) \setminus mst(s)$ whose difference between the weight of their replacement edge and their weight is the largest, and we construct a MST from the remaining edges in $T_0(s)$. The value of this bound is the weight of the MST obtained.

In order to test these bounds, we computed, for instances with different values of n and k, these three lower bounds at the root a of the search tree. The instances are generated as explained in section 6. The results are given in Tables 4 and 5 where we report, for each lower bound, its value, as well as the percent deviation from the optimal value $\frac{opt-LB}{opt}$, and the time to compute it. We note that there is no dominance between these three bounds. We also note that LB_{first} is the fastest in terms of running time but gives bad values. LB_{greedy} , which gives the best values in most cases, takes much more time than the other bounds. LB_{best} ,

which gives similar values as LB_{greedy} , takes only about twice as much time as LB_{first} and about 40 to 100 times less time than LB_{greedy} .

n	k	LE	3 greedy	(a)	LE	k first	(a)	LI	$B_{k \ best}($	a)	$w(T_0)$	UE	B(a)
		value	%	time	value	%	time	value	%	time	in $G \setminus S^*$	value	%
20	9	$265 \\ 221$	$6.0 \\ 3.5$	$0.873 \\ 0.889$	$255 \\ 219$	$9.6 \\ 4.4$	$0.016 \\ 0.015$	$250 \\ 222$	$\frac{11.3}{3.1}$	$0.047 \\ 0.032$	$282 \\ 229$	719 711	$\begin{array}{c} 155.0 \\ 210.5 \end{array}$
		178	15.6	0.982	179	15.2	0.013	180	14.7	0.032 0.031	211	669	210.3 217.1
		166	10.8	0.842	157	15.6	0.000	157	15.6	0.016	186	681	266.1
		276	0.7	0.624	268	3.6	0.015	267	4.0	0.016	278	726	161.2
		246	11.8	0.904	243	12.9	0.016	240	14.0	0.000	279	764	173.8
		236	1.3	0.764	232	2.9	0.031	235	1.7	0.047	239	682	185.4
		$\frac{272}{205}$	$\begin{array}{c} 0.0 \\ 1.0 \end{array}$	$0.967 \\ 1.060$	$254 \\ 193$	$6.6 \\ 6.8$	$\begin{array}{c} 0.031 \\ 0.016 \end{array}$	$255 \\ 203$	$^{6.3}_{1.9}$	$0.031 \\ 0.000$	$272 \\ 207$	712 668	161.8
		$\frac{205}{245}$	1.6	0.748	216	13.3	0.000	$203 \\ 225$	9.6	0.000	207 249	716	$222.7 \\ 187.6$
aver	age		5.2	0.865		9.1	0.017		8.2	0.024			194.1
25	- 8	174	1.7	1.045	146	17.5	0.031	172	2.8	0.047	177	491	177.4
		191	1.5	0.936	173	10.8	0.000	191	1.5	0.016	194	474	144.3
		215	0.5	0.998	164	24.1	0.000	210	2.8	0.016	216	533	146.8
		$240 \\ 180$	$\frac{4.4}{2.7}$	$0.951 \\ 1.232$	$219 \\ 169$	$^{12.7}_{8.6}$	$0.031 \\ 0.016$	$232 \\ 174$	$7.6 \\ 5.9$	$0.047 \\ 0.015$	$251 \\ 185$	$523 \\ 528$	$108.4 \\ 185.4$
		202	2.4	0.967	200	3.4	0.031	202	2.4	0.047	207	491	137.2
		218	3.1	1.185	209	7.1	0.016	218	3.1	0.000	225	582	158.7
		183	5.7	0.904	179	7.7	0.032	180	7.2	0.046	194	498	156.7
		216	5.3	0.982	211	7.5	0.032	215	5.7	0.046	228	564	147.4
aver	200	235	4.9	0.982	243	1.6	0.000	232	6.1 4.5	0.016	247	562	$127.5 \\ 149.0$
30	age 7	153	0.6	0.920	126	18.2	0.019	147	4.5	0.015	154	339	120.1
30		160	14.4	0.920	120	10.2 19.8	0.010 0.032	147	$^{4.5}_{15.5}$	0.015	178	426	120.1 127.8
1		187	1.6	1.232	164	13.7	0.031	181	4.7	0.063	190	385	102.6
1		164	3.5	1.170	157	7.6	0.015	164	3.5	0.016	170	392	130.6
1		198	4.8	0.982	187	10.1	0.016	197	5.3	0.016	208	399	91.8
1		$181 \\ 194$	$2.7 \\ 1.5$	$1.014 \\ 0.889$	$155 \\ 180$	$16.7 \\ 8.6$	$0.015 \\ 0.015$	$175 \\ 193$	$\frac{5.9}{2.0}$	$0.016 \\ 0.016$	$186 \\ 197$	$398 \\ 402$	$\begin{array}{c} 114.0 \\ 104.1 \end{array}$
		186	5.1	1.155	156	20.4	0.015	168	14.3	0.016	196	403	105.6
		243	0.8	1.170	214	12.7	0.016	228	6.9	0.015	245	455	85.7
		197	0.5	0.753	184	7.1	0.012	195	1.5	0.016	198	406	105.1
aver	-	100	3.6	1.027	1.00	13.5	0.018	100	6.4	0.024	200	2.04	108.7
50	5	$190 \\ 230$	$17.4 \\ 0.0$	$1.373 \\ 1.263$	$\frac{160}{215}$	$\frac{30.4}{6.5}$	$0.078 \\ 0.016$	$189 \\ 230$	$17.8 \\ 0.0$	$0.031 \\ 0.031$	$230 \\ 230$	281 288	$\frac{22.2}{25.2}$
		174	1.1	1.435	161	8.5	0.031	174	1.1	0.031	176	264	50.0
		161	1.8	1.357	155	5.5	0.015	161	1.8	0.032	164	231	40.9
		202	0.0	1.232	185	8.4	0.016	199	1.5	0.015	202	266	31.7
		177 176	0.6	1.311	$165 \\ 157$	7.3	$0.031 \\ 0.015$	$177 \\ 176$	0.6	$0.015 \\ 0.031$	178 180	$254 \\ 262$	$42.7 \\ 45.6$
		191	2.2 2.1	$\frac{1.311}{1.372}$	191	$\frac{12.8}{2.1}$	0.015 0.016	191	$\frac{2.2}{2.1}$	0.031	195	262	34.4
		173	1.7	1.201	153	13.1	0.016	173	1.7	0.016	176	245	39.2
		167	1.2	1.248	151	10.7	0.000	166	1.8	0.031	169	232	37.3
aver	_		2.8	1.310		10.5	0.023		3.1	0.025			36.9
50	7	164	1.2	2.012	148	10.8	$0.016 \\ 0.016$	166	$\begin{array}{c} 0.0 \\ 2.1 \end{array}$	0.031	$169 \\ 188$	291 311	72.2
		$185 \\ 156$	$1.6 \\ 8.2$	$2.012 \\ 2.231$	$168 \\ 146$	$\begin{array}{c} 10.6 \\ 14.1 \end{array}$	0.016	$184 \\ 156$	$\frac{2.1}{8.2}$	$\begin{array}{c} 0.031 \\ 0.031 \end{array}$	170	304	$65.4 \\ 78.8$
		182	1.6	1.997	173	6.5	0.016	182	1.6	0.031	185	319	72.4
		222	0.0	1.903	207	6.8	0.015	219	1.4	0.016	222	355	59.9
		191	4.0	2.090	178	10.6	0.016	191	4.0	0.031	199	331	66.3
		$180 \\ 209$	0.6 0.0	$2.044 \\ 2.246$	163 189	$9.9 \\ 9.6$	$0.015 \\ 0.016$	$177 \\ 207$	$\begin{array}{c} 2.2 \\ 1.0 \end{array}$	$0.063 \\ 0.031$	$ 181 \\ 209 $	$\frac{299}{326}$	$\begin{array}{c} 65.2 \\ 56.0 \end{array}$
		205	1.4	2.240 2.184	193	7.2	0.010	207	1.4	0.031 0.032	205	343	64.9
L		196	0.0	2.013	185	5.6	0.015	196	0.0	0.016	196	315	60.7
aver	-		2.0	2.073		9.3	0.019		2.4	0.031			66.2
75	5	172	0.6	2.309	159	8.1	0.016	172	0.6	0.031	173	215	24.3
1		159	0.6	2.496	149	6.9 5.0	0.016	159	0.6	0.031	160	225	40.6
1		181 181	0.0 0.0	$2.371 \\ 2.637$	172 168	5.0 7.2	$0.078 \\ 0.031$	181 181	0.0 0.0	$0.032 \\ 0.031$	181 181	$229 \\ 228$	$26.5 \\ 26.0$
1		168	1.2	2.855	159	6.5	0.031	168	1.2	0.031	170	219	28.8
1		197	0.5	2.481	189	4.5	0.015	197	0.5	0.031	198	248	25.3
		168	1.2	2.247	158	7.1	0.015	170	0.0	0.047	170	218	28.2
1		$200 \\ 184$	$\begin{array}{c} 0.0 \\ 1.6 \end{array}$	$2.450 \\ 2.153$	$183 \\ 165$	$\frac{8.5}{11.8}$	$0.015 \\ 0.031$	200 184	$0.0 \\ 1.6$	$0.031 \\ 0.031$	200 187	$258 \\ 248$	$29.0 \\ 32.6$
1		184	$1.6 \\ 0.5$	2.153 2.418	165	5.9	0.031 0.032	184	$1.6 \\ 0.5$	0.031	187 187	248 236	$\frac{32.6}{26.2}$
aver	age		0.6	2.442		7.1	0.027		0.5	0.33			28.8
75	7	227	0.0	3.572	214	5.7	0.016	226	0.4	0.046	227	329	44.9
1		239	1.6	3.510	225	7.4	0.031	239	1.6	0.032	243	332	36.6
1		189	0.0	3.666	162	14.3	0.031	189	0.0	0.032	189	272	43.9
1		$206 \\ 187$	$0.5 \\ 1.6$	$3.417 \\ 3.573$	188 170	9.2 10.5	$0.031 \\ 0.015$	$206 \\ 187$	$0.5 \\ 1.6$	$0.047 \\ 0.047$	$207 \\ 190$	$299 \\ 275$	$44.4 \\ 44.7$
1		188	0.5	4.009	180	4.8	0.013	188	0.5	0.047	189	273	44.4
1		206	2.4	3.260	189	10.4	0.016	206	2.4	0.047	211	300	42.2
1		183	1.6	3.588	172	7.5	0.031	183	1.6	0.047	186	273	46.8
1		183	2.1	3.759	168	10.2	0.032	183	2.1	0.046	187	270	44.4
aver	900	188	0.0	2.868 3.522	168	10.6 9.1	0.034 0.027	188	0.0	0.058 0.045	188	279	48.4 44.1
aver	age		1.0	0.044	l	0.1	0.041	l	1.1	0.040		1	.1.1.1

Table 4: Values of the three lower bounds and upper bound at the root of the search tree (instances of small size with n < 100)

n	k	LI	Bareed	u(a)	LE	k first	(a)	LI	Bk best	(a)	$w(T_0)$	UB	B(a)
		value	%	time	value	%	time	value	%	time	in $G \setminus S^*$	value	%
100	5	186	0.0	3.635	177	4.8	0.031	186	0.0	0.031	186	230	23.7
		209	0.9	3.947	201	4.7	0.031	209	0.9	0.047	211	244	15.6
		193	0.5	3.760	184	5.2	0.031	193	0.5	0.047	194	230	18.6
		187	0.5	3.572	175	6.9	0.032	187	0.5	0.031	188	216	14.9
		205	0.0	3.697	195	4.9	0.031	205	0.0	0.031	205	263	28.3
		187	1.1	3.916	176	6.9	0.031	187	1.1	0.047	189	233	23.3
		211	0.5	3.572	201	5.2	0.032	209	1.4	0.046	212	249	17.5
		179	0.0	4.009	167	6.7	0.031	179	0.0	0.047	179	211	17.9
		201	1.0	4.040	187	7.9	0.031	199	2.0	0.031	203	239	17.7
		182	4.2	3.463	169	11.1	0.031	182	4.2	0.032	190	233	22.6
avera	age												
100	7	185	0.0	5.912	173	6.5	0.032	184	0.5	0.062	185	253	36.8
		192	3.5	5.554	186	6.5	0.031	192	3.5	0.062	199	264	32.7
		215	0.0	5.850	192	10.7	0.031	212	1.4	0.047	215	274	27.4
		211	0.5	5.585	193	9.0	0.031	211	0.5	0.062	212	278	31.1
		201	0.0	5.651	186	7.5	0.035	201	0.0	0.056	201	265	31.8
1		215	0.0	5.446	194	9.8	0.035	215	0.0	0.052	215	279	29.8
		220	1.3	5.028	202	9.4	0.034	220	1.3	0.052	223	279	25.1
1		218	0.9	5.048	201	8.6	0.031	218	0.9	0.051	220	284	29.1
		202	1.0	5.772	192	5.9	0.031	202	1.0	0.047	204	276	35.3
		207	1.4	5.616	191	9.0	0.031	205	2.4	0.047	210	274	30.5
avera	age										•		
200	5	266	0.0	11.965	254	6.5	0.062	266	0.5	0.156	266	277	36.8
		243	3.5	12.480	237	6.5	0.062	243	3.5	0.094	243	262	32.7
		241	0.0	12.699	238	10.7	0.171	241	1.4	0.078	245	262	27.4
		251	0.5	12.963	243	9.0	0.063	251	0.5	0.078	251	267	31.1
		243	0.0	13.306	233	7.5	0.063	243	0.0	0.234	244	260	31.8
		236	0.0	12.886	227	9.8	0.047	236	0.0	0.078	236	250	29.8
		245	1.3	12.075	237	9.4	0.046	245	1.3	0.094	245	260	25.1
		247	0.9	12.355	237	8.6	0.156	246	0.9	0.094	247	277	29.1
		241	1.0	11.559	233	5.9	0.063	241	1.0	0.093	241	268	35.3
		257	1.4	11.283	248	9.0	0.058	257	2.4	0.109	257	259	30.5
avera													
300	5	316	0.6	27.565	311	2.2	0.078	316	0.6	0.125	318	328	3.1
		333	0.0	27.051	323	3.0	0.078	333	0.0	0.234	333	346	3.9
		325	0.3	29.796	318	2.5	0.156	325	0.3	0.125	326	338	3.7
		324	0.3	28.002	318	2.2	0.140	324	0.3	0.140	325	335	3.1
		334	0.0	30.077	326	2.4	0.078	334	0.0	0.187	334	346	3.6
		328	0.6	30.046	322	2.4	0.078	328	0.6	0.187	330	344	4.2
		324	0.3	28.252	320	1.5	0.234	324	0.3	0.125	325	337	3.7
		334	0.3	28.283	327	2.4	0.078	334	0.3	0.203	335	346	3.3
		330	0.0	25.303	322	2.4	0.094	330	0.0	0.328	330	341	3.3
avera	200	316	0.0	27.779	311	1.6	0.141	316	0.0	0.125	316	327	3.5
	-	41.0	0.0	45.050	419	1.0	0.010	410	0.0	0.170	418	49.0	1.0
400	5	418 410	0.0 0.0	$45.256 \\ 44.398$	413 405	$\frac{1.2}{1.2}$	$0.218 \\ 0.109$	418 410	$0.0 \\ 0.0$	$0.172 \\ 0.250$	418 410	426 421	$\frac{1.9}{2.7}$
		410	0.0	44.398 45.022	405	$1.2 \\ 1.5$	0.109 0.187	410	0.0	$0.250 \\ 0.250$	410	421 419	1.7
		412 409	0.0	43.617	406	0.7	0.187 0.203	412	0.0	0.230	412 409	419	$\frac{1.7}{2.4}$
		409	0.0	43.617 47.861	406	$\frac{0.7}{1.2}$	0.203 0.125	409	0.0	$0.141 \\ 0.156$	409 411	419 422	$\frac{2.4}{2.7}$
		411 418	0.0	47.801 45.552	400	1.2 1.9	0.125 0.109	411 418	0.0	$0.130 \\ 0.187$	411 418	422 426	1.9
		418	0.0	45.552	410	0.7	0.109 0.140	418	0.0	0.187	418	420	3.7
		409 411	0.0	44.429 45.692	406	1.2	$0.140 \\ 0.187$	409	0.0	0.219 0.172	409 411	424 422	$\frac{3.7}{2.7}$
		411 415	0.0	45.692 44.647	406	$1.2 \\ 0.7$	0.187	411 415	0.0	0.172 0.249	411 415	422 424	$\frac{2.7}{2.2}$
		415 414	0.0	$\frac{44.647}{38.207}$	412 410	1.0	$0.141 \\ 0.109$	415	0.0	$0.249 \\ 0.172$	415 414	424 423	$\frac{2.2}{2.2}$
0.110.77		414	0.0	30.201	410	1.0	0.109	414	0.0	0.172	41.4	440	4.4
avera	age	l			1		l						

Table 5: Values of the three lower bounds and upper bound at the root of the search tree (instances of large size with $n \ge 100$)

4.2 Upper bound

Let s be a given node of the search tree. To compute UB(s), we select the edge in $T_1(s)$ of largest weight and we replace the edge deleted from $T_j(s)$ by the edge with largest weight belonging to $T_{j+1}(s)$, for j = 1, ..., k - |mv(s)| - 1. We repeat this process k - |mv(s)| - 1 times.

Let F be the set of the k - |mv(s)| edges selected from $T_1(s)$ in this process. Then, we must determine the k - |mv(s)| edges to be removed. To obtain an upper bound for all feasible solutions obtained from s, we delete the k - |mv(s)| edges of smallest weight among the edges of $F \cup T_0(s) \setminus mst(s)$. Denote by E_{min} the subset of these selected edges removed. Therefore, $UB(s) = w(T_0(s)) + w(F) - w(E_{min})$.

We computed, for instances with different values of n and k, this upper bound at the root

a of the search tree (see Tables 4 and 5). Besides the bound value, we report the percent deviation from the optimal value defined as $\frac{UB-opt}{opt}$. The main observation is that UB(a) is rather close to the optimal value for small values of k and deteriorates as k increases.

4.3 Branching strategy

Let a be the root of the search tree. The branching strategy is the same as for the explicit enumeration algorithm. We start with a feasible solution value corresponding to $\max\{LB_{greedy}(a), LB_{first}(a), LB_{best}(a)\}$. We tested two different best first search strategies. The first one is the standard strategy (Branching: best upper bound) where the node with the largest upper bound is selected first. No lower bound is computed and the fathoming test is performed only when we update the current best feasible solution value, which can occur only at level k-1 of the search tree. In the second strategy (Branching: best lower bound), the node with the largest lower bound is selected first. Lower and upper bounds are computed at every node. Since LB_{best} gives values close to the best ones and takes less time, we use this bound for computing a lower bound. Here, the fathoming test is performed at each node by comparing each lower bound value with the current best feasible solution value.

4.4 Illustrative example

Reconsider the graph G, illustrated in Figure 1, as input for 3 MOST VITAL EDGES MST. We show how the strategy "Branching: best upper bound" proceeds.

We start, as in the explicit algorithm, by constructing the root a of the search tree, whose elements are:

- $mv(a) = mst(a) = \emptyset$
- U(a) is the union of the following trees

$$T_0(a) : (1,2), (1,3), (3,5), (4,5)$$

$$T_1(a) : (2,3), (3,4), (1,4), (2,5)$$

$$T_2(a) : (2,4), (1,5)$$

• and $w(T_0(a)) = 12$

Let $S = \{a\}$, bestvalue = max $\{LB_{Greedy}(a), LB_{k \ first}(a), LB_{k \ best}(a)\} = max\{22, 24, 22\} = 24$ and bestset = $\{(1, 2), (1, 3), (3, 5)\}$.

Iteration 1: We select node a.

Since |mv(a)| < k - 1, we test the four children of node *a* whose elements are given in Table 6.

Since $UB(4) \leq bestvalue$, we generate only nodes 1, 2 and 3. Then, $S = \{1, 2, 3\}$.

Iteration 2: We select node 1, which has the current best upper bound.

Since |mv(1)| < k - 1, we test the four children of node *a* whose elements are summarized in Table 7.

Since UB(7) and UB(8) are less than bestvalue, $S = \{5, 6, 2, 3\}$.

Iteration 3: We select node 5.

s		1	2	3	4
mv(s)		$\{(1,2)\}$	$\{(1,3)\}$	$\{(3,5)\}$	$\{(4,5)\}$
mst(s)		Ø	$\{(1,2)\}$	$\{(1,2),(1,3)\}$	$\{(1,2),(1,3),(3,5)\}$
$w(T_0(s))$))	14	13	15	14
U(s)	T_0	(1, 3), (2, 3), (3, 5), (4, 5)	(1, 2), (2, 3), (3, 5), (4, 5)	(1, 2), (1, 3), (4, 5), (3, 4)	(1, 2), (1, 3), (3, 5), (3, 4)
	T_1	(3, 4), (1, 4), (2, 5), (2, 4)	(3, 4), (1, 4), (2, 5)	(1,4), (2,5)	(1, 4)
	T_2	(1,5)	(2,4),(1,5)	(2,4),(1,5)	(2,4)
UB(s)		32	28	25	18

Table 6: Children of node a

s		5	6	7	8
mv(s)		$\{(1,2),(1,3)\}$	$\{(1,2),(2,3)\}$	$\{(1,2),(3,5)\}$	$\{(1,2),(4,5)\}$
mst(s)		Ø	$\{(1,3)\}$	$\{(1,3),(2,3)\}$	$\{(1,3),(2,3),(3,5)\}$
$w(T_0(s))$))	21	21	17	16
$\widetilde{U}(s)$	T_0	(2,3), (3,5), (4,5), (1,4)	(1,3), (3,5), (4,5), (2,5)	(1,3), (2,3), (4,5), (3,4)	(1, 3), (2, 3), (3, 5), (3, 4)
	T_1	(3, 4), (2, 5), (2, 4), (1, 5)	(3, 4), (2, 4), (1, 5)	(1,4), (2,5)	(1, 4)
UB(s)		30	29	22	18

Table 7: Children of node 1

As |mv(5)| = k - 1, we compute the replacement edge for all edges in $T_0(5)$ and find that $w(T_0(5)) + max_{e_j \in T_0(5) \setminus mst(5)}(w(r(e_j)) - w(e_j)) = 28 > bestvalue$. Then, bestvalue = 28, $bestset = \{(1, 2), (1, 3), (2, 3)\}$ and $S = \{6\}$.

Iteration 4: We select node 6.

As |mv(6)| = k - 1, we compute the replacement edge for all edges in $T_0(5)$ and find that $w(T_0(5)) + max_{e_j \in T_0(5) \setminus mst(5)}(w(r(e_j)) - w(e_j)) = 24 < bestvalue$. We discard node 6 from S.

Since $S = \emptyset$, the algorithm terminates. Figure 3 gives the search tree generated during the algorithm. A solution for 3 MOST VITAL EDGES MST is $bestset = \{(1,2), (1,3), (2,3)\}$ and the weight of MST in $G \setminus \{(1,2), (1,3), (2,3)\}$ is bestvalue = 28.

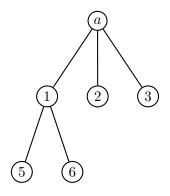


Figure 3: Search tree of implicite algorithm

A mixed integer programming formulation for finding the k5 most vital edges

Several linear programming formulations have been proposed to model the determination of a minimum spanning tree on a graph [12]. In one of these formulations, the minimum spanning tree is considered as a special version of a network design problem. Modeling the network by a connected graph, the problem consists of sending flow between all nodes of the graph. Thus, a variable x_e associated to an edge e indicates whether or not we install the edge e to be available to carry any flow. One model proposed by Magnanti and Wolsey is the directed multicommodity flow model. Let D = (V, A) be the digraph formed by replacing each edge (i, j) in E by two arcs (i, j) and (j, i) in A. In this model, one of the nodes, say node 1, is considered as a root and each node $\ell \neq 1$ defines a commodity. Node 1 must send to each node $\ell \neq 1$ one unit of commodity ℓ . Denote by f_{ij}^{ℓ} the flow of commodity ℓ on the arc (i, j). For an edge e = (i, j), we set $w_{ij} = w(e)$ in the following formulations. The linear program associated to this model is:

$$\begin{cases} \min_{\substack{(i,j)\in E}} \sum w_{ij}(y_{ij} + y_{ji}) \\ \text{s.t.} \\ \sum_{\substack{(j,1)\in A}} f_{j1}^{\ell} - \sum_{\substack{(1,j)\in A}} f_{1j}^{\ell} = -1 \qquad \forall \ell \in V \setminus \{1\} \end{cases}$$
(1)

$$\begin{cases} (j,\overline{1})\in A & (1,\overline{j})\in A \\ \sum_{(j,i)\in A} f_{ji}^{\ell} - \sum_{(i,j)\in A} f_{ij}^{\ell} &= 0 & \forall i,\ell\in V\backslash\{1\}, \ i\neq\ell & (2) \\ \sum_{(j,\ell)\in A} f_{j\ell}^{\ell} - \sum_{(\ell,j)\in A} f_{\ell j}^{\ell} &= 1 & \forall \ell\in V\backslash\{1\} & (3) \\ f_{ij}^{\ell} &\leq y_{ij} & \forall (i,j)\in A, \ \forall \ell\in V\backslash\{1\} & (4) \\ \sum_{(i,j)\in A} y_{ij} &= n-1 & (5) \end{cases}$$

$$\sum_{(j,\ell)\in A} f_{j\ell}^{\ell} - \sum_{(\ell,j)\in A} f_{\ell j}^{\ell} = 1 \qquad \forall \ell \in V \setminus \{1\}$$

$$(3)$$

$$f_{ij}^{\ell} \leq y_{ij} \qquad \forall (i,j) \in A, \ \forall \ell \in V \setminus \{1\}$$
(4)

$$\sum_{j)\in A} y_{ij} = n-1 \tag{5}$$

$$\begin{cases} f_{ij} \ge 0, \qquad y_{ij} \ge 0 \qquad \qquad \forall (i,j) \in A \end{cases}$$

In this model, constraints (1) - (3) correspond to flow balances at the nodes. Constraints (4) state that the flows on (i, j) for all commodities are zero if $y_{ij} = 0$. Thus, these four groups of constraints impose that the graph defined by a solution given by edges (i, j) such that $y_{ij} = 1$ is connected. Constraints (5) indicate that any solution must contain n-1 edges, thus any possible solution has to be a tree. Therefore, this formulation models the problem of finding a minimum spanning tree.

Remark that in this formulation, integrity constraints on variables y_{ij} are omitted. Indeed, Magnanti and Wolsey [12] show that the extreme points of the set of feasible solutions corresponding to this model are integers. The dual corresponding to this linear program is given by:

$$\begin{cases} \max \sum_{\ell \in V, \ \ell \neq 1} (\alpha_{\ell}^{\ell} - \alpha_{1}^{\ell}) \ + (n-1)\mu \\ \text{s.t.} \\ \sigma_{ij}^{\ell} \ge \alpha_{j}^{\ell} - \alpha_{i}^{\ell} & \forall (i,j) \in A, \ \forall \ell \in V \backslash \{1\} \\ \sum_{\ell \neq 1} \sigma_{ij}^{\ell} + \mu \le w_{ij} & \forall (i,j) \in E \\ \sum_{\ell \neq 1} \sigma_{ji}^{\ell} + \mu \le w_{ij} & \forall (i,j) \in E \\ \sigma_{ij}^{\ell} \ge 0 & \forall (i,j) \in A, \ \forall \ell \in V \backslash \{1\} \\ \alpha_{i}^{\ell} \ge 0 & \forall i \in V, \ell \in V \backslash \{1\} \\ \mu \text{ unrestricted} & \forall i \in V, \ell \in V \backslash \{1\} \end{cases}$$

Using the previous MST formulation, one can model k MOST VITAL EDGES MST defined on the graph $U_k^G = (V, E_u)$ with $E_u = \bigcup_{j=0}^k T_j$ as follows:

$$\begin{cases} \max_{z \in Z} & \min \sum_{(i,j) \in E_u} (w_{ij} + M_{ij} \ z_{ij})(y_{ij} + y_{ji}) \\ \text{s.t.} \\ & \sum_{\substack{(j,1) \in A_u}} f_{j1}^{\ell} - \sum_{\substack{(1,j) \in A_u}} f_{1j}^{\ell} = -1 & \forall \ell \in V \setminus \{1\} \\ & \sum_{\substack{(j,i) \in A_u}} f_{j\ell}^{\ell} - \sum_{\substack{(i,j) \in A_u}} f_{\ell j}^{\ell} = 0 & \forall i, \ell \in V \setminus \{1\}, \ i \neq \ell \\ & \sum_{\substack{(j,\ell) \in A_u}} f_{j\ell}^{\ell} - \sum_{\substack{(i,j) \in A_u}} f_{\ell j}^{\ell} = 1 & \forall \ell \in V \setminus \{1\} \\ & f_{ij}^{\ell} \leq y_{ij} & \forall (i,j) \in A_u, \ \forall \ell \in V \setminus \{1\} \\ & \sum_{\substack{(i,j) \in A_u}} y_{ij} = n - 1 \\ & f_{ij} \geq 0, y_{ij} \geq 0 & \forall (i,j) \in A_u \\ \text{where } Z = \{z_{ij} \in \{0,1\}, \ \forall (i,j) \in E_u : \sum_{\substack{(i,j) \in E_u}} z_{ij} = k\} \end{cases}$$

In this formulation, variable z_{ij} is equal to 1 if edge (i, j) is deleted and 0 otherwise. In order to discard this edge from any MST, we assign it the weight $w_{ij} + M_{ij}$ where M_{ij} is a large enough constant, e.g. $M_{ij} = \max_{(i,j) \in E} w_{ij} + 1 - w_{ij}$.

Using the dual of the inner program, we obtain the following mixed integer programming formulation for k MOST VITAL EDGES MST.

$$\begin{cases} \max \sum_{\ell \in V, \, \ell \neq 1} (\alpha_{\ell}^{\ell} - \alpha_{1}^{\ell}) + (n-1)\mu \\ \text{s.t.} \\ \sigma_{ij}^{\ell} \geq \alpha_{j}^{\ell} - \alpha_{i}^{\ell} & \forall (i,j) \in A_{u}, \, \forall \ell \in V \setminus \{1\} \\ \sum_{\ell \neq 1}^{} \sigma_{ij}^{\ell} + \mu \leq w_{ij} + M_{ij} \, z_{ij} & \forall (i,j) \in E_{u} \\ \sum_{\ell \neq 1}^{} \sigma_{ji}^{\ell} + \mu \leq w_{ij} + M_{ij} \, z_{ij} & \forall (i,j) \in E_{u} \\ \sum_{\ell \neq 1}^{} z_{ij} = k \\ z_{ij} \in \{0,1\} & \forall (i,j) \in E_{u} \\ \sigma_{ij}^{\ell} \geq 0 & \forall (i,j) \in A_{u}, \, \forall \ell \in V \setminus \{1\} \\ \alpha_{i}^{\ell} \geq 0 & \forall i \in V, \ell \in V \setminus \{1\} \\ \mu \text{ unrestricted} & \forall i \in V, \ell \in V \setminus \{1\} \end{cases}$$

6 Computational results

All experiments presented here were performed on a 3.4GHz computer with 3Gb RAM. All proposed algorithms are implemented in C. All instances are complete graphs defined on n vertices. Weights w(e) for all $e \in E$ are generated randomly, uniformly distributed in [1, 100]. For each value of n and k presented in this study, 10 different instances were generated and tested. The results are reported in Table 8 where each given value is the average over 10 instances. For the implicit enumeration algorithm, *computed* and *generated* nodes represent respectively nodes for which we have determined mv, mst, U and UB and nodes for which UB > bestvalue and must be stored. Column \sharp opt corresponds to the number of instances solved optimally.

We first compare the explicit and implicit enumeration algorithms. The results show that implicit enumeration algorithms are much faster than the explicit enumeration algorithm and can handle instances of considerably larger size. Observe that, for the explicit enumeration algorithm, the search tree size is identical for any instance of the same (n, k) type. As a consequence, either all or none of the instances of a same (n, k) type can be solved. Moreover, for the same reason, computation times show a low variance for all instances of a same (n, k)type. Regarding the implicit enumeration algorithm, the "Branching: best upper bound" strategy yields slightly better running times than the "Branching: best lower bound" strategy. However, the "Branching: best upper bound" strategy, for which fathoming tests are performed less frequently, generates more nodes. Thus, owing to the limited memory capacity, the "Branching: best lower bound" strategy can handle instances of larger size.

We compare now the results obtained by the mixed integer program with those of the implicit enumeration algorithm. For this, we implemented the mixed integer program using the solver CPLEX 12.1 and we run it on the same generated instances. We limited the running time to 1 hour for the instances with 20, 25, 30 and 50 vertices, and to 2 hours for the other instances. The results are also reported in Table 8 where

- *Time*, given in seconds, is the average running time on the 10 instances. For any instance which is not solved optimally within the time limit, the running time is set to this limit;
- *Generated nodes* represents the average number of nodes created in the search tree corresponding to instances returning feasible solutions;
- Gap, expressed as a percentage, represents the average over ratios $\frac{UB-BS}{UB}$ computed on all instances returning at least one feasible solution, where UB is the final best upper bound and BS is the best solution value found;
- *Opt/Feas* represents the number of instances solved optimally /for which at least one feasible solution was found within the time limit.

We note that the mixed integer program reaches the optimal value for very small instances only. Actually, for n < 100, we only obtain in most cases feasible solutions with rather large gaps which indicates that optimality is far from being reached. Finally, for instances with $n \ge 100$, no feasible solutions are returned within the time limit. Moreover, for n = 300 and 400, the execution of the program exceeds the memory capacity after a few seconds (297.437 and 0.56 seconds in average respectively). From all these remarks, we can conclude that our proposed implicit enumeration algorithm gives better results than the explicit enumeration algorithm as well as the resolution of the mixed integer program and this both in terms of running time and memory use.

We propose in the following an ε -approximate algorithm based on our implicit algorithm. The aim being to obtain an ε -approximate solution of the optimum, the condition to generate a node s in the search tree is now $(1 - \varepsilon)UB(s) > bestvalue$. Indeed, the value v returned by the approximate algorithm must verify $opt(G)(1 - \varepsilon) \leq v \leq opt(G)$. Since v is equal to bestvalue, any node for which $UB(s)(1 - \varepsilon) \leq bestvalue$ is fathomed.

The algorithm is tested on the same instances generated before and this for $\varepsilon = 0.01, 0.05$, and 0.1. Thus, we compare the ε -approximate algorithm with the implicit algorithm. The results are summarized in Table 9. The meaning of computed and generated nodes is the same as above and each given value in the table represents the average over the 10 generated instances for each value of n and k.

n	k	Ex	plicit			Implici	t enumeratio	n			1	Mixed Integer	Program	n
		enum	neration	Branch	ing: best lower	bound	Bra	nching: best u						
		Time	Nodes	Time	Noc	les	Time	Nod	es	‡opt	Time	Generated	Gap	Opt/Feas
		(s)		(s)	Computed	Generated	(s)	Computed	Generated		(s)	nodes	(%)	
20	3	0.000	210	0.000	165.1	33.5	0.001	165.1	34.3	10	35.750	1638.2	0	10 / 10
	5	0.135	8855	0.032	3280.6	422.3	0.032	$3\ 230.9$	463.2	10	692.984	21792.4	0	10 / 10
	7	2.732	177100	0.419	35714.0	4792.0	0.380	$35\ 659.2$	5918.2	10	3600.000	61386.5	23.91	0 / 10
	9	36.020	220075	3.322	258321.8	$35\ 639.1$	3.047	$257\ 776.0$	44037.4	10	3600.000	36908.1	46.49	0 / 10
25	3	0.000	325	0.000	245.0	29.8	0.003	245.0	31.4	10	141.270	2066.5	0	10 / 10
	5	0.318	20475	0.095	7146.4	705.1	0.089	7047.2	866.7	10	2984.021	29300.4	8.69	5 / 10
	7	8.783	593775	1.772	128802.5	15143.4	1.617	$128\ 742.2$	16926.0	10	3600.000	14218.1	46.05	0 / 10
	8	52.068	2629575	3.765	247900.6	$26\ 076.8$	3.566	$247\ 822.8$	31938.3	10	3600.000	10733.5	66.43	0 / 10
30	3	0.007	465	0.000	345.1	47.7	0.005	345.1	49.7	10	424.171	3831.9	0	10 / 10
	5	0.812	40920	0.260	16756.3	1373.7	0.231	$16\ 625.9$	1588.7	10	3458.330	13156.2	26.03	1 / 10
	7	40.461	1623160	3.899	231523.5	$20\ 779.0$	3.553	$231\ 210.2$	25737.4	10	3600.000	4855.9	63.65	0 / 10
50	3	0.880	1275	0.028	949.1	64.9	0.026	949.1	85.3	10	3600.000	$1 \ 285.8$	17.28	0 / 10
	5	15.390	292825	2.043	76840.3	4649.3	1.856	74550.2	5138.1	10	3600.000	503.0	43.59	0 / 10
	7	-	-	88.886	$3\ 156\ 471.8$	$168\ 127.4$	81.707	3156170.1	218830.4	10	3600.000	21.33	80.47	0 / 9
75	3	0.376	2850	0.101	2296.8	114.8	0.096	2 296.8	117.7	10	7200.000	430.2	17.83	0 / 10
	5	-	-	11.248	259738.0	8130.7	10.459	$259\ 737.6$	10519.6	10	6490.238	0.3	39.22	1 / 10
	7	-	-	650.008	13330591.9	474912.7	463.385	9608531.7	379179.2	7	7200.000	0	55.75	0 / 3
100	3	1.083	5050	0.224	3617.1	83.3	0.210	3617.1	89.9	10	7200.000	0		0 / 0
	5	-	-	54.148	904662.4	$19\ 383.8$	49.895	904662.4	23800.1	10	7200.000	0		0 / 0
	7	-	-	2016.410	26835600.6	721120.4	935.777	11 986 049.2	368180.0	4	7200.000	0		0 / 0
200	5	-	-	572.557	2933547.2	$46\ 236.3$	670.340	$2\ 933\ 296.1$	49073.6	10	7200.000	0		0 / 0
300	5	-	-	$1\ 793.460$	3996192.1	$43\ 671.2$	2163.350	$3\ 980\ 311.0$	56924.5	10	7200.000	0		0 / 0
400	5	-	-	7265.850	10956321.8	$106\;433.4$	6195.182	5927376.8	56424.5	7	_	-	-	0 / 0

italics: average over instances solved optimally

-: memory overflow

Table 8:	Comparison	of explicit	enumeration.	implicit	enumeration	and MIP	-based algorithms

n	k					ε·	-approximate	$\operatorname{algorithm}$					
			$\varepsilon = 0$.01			$\varepsilon = 0$				-	= 0.1	
		Time	Nod	es	ε'	Time	Nodes		ε'	Time	Time Nodes		ε'
		(s)	Computed	Generated		(s)	Computed	Generated		(s)	Computed	Generated	
20	3	0.000	162.9	30.6	0.00000	0.000	136.9	14.0	0.00000	0.000	100.6	7.4	0.00198
	5	0.035	3108.2	384.6	0.00000	0.024	2068.8	211.1	0.00043	0.012	1258.4	113.1	0.00267
	7	0.393	33258.5	4356.0	0.00000	0.273	21820.0	2575.7	0.00323	0.174	13209.9	1451.0	0.00922
	9	3.044	237267.0	32085.4	0.00000	2.180	160036.0	20093.2	0.00421	1.376	93275.6	10888.2	0.00735
25	3	0.000	230.8	26.7	0.00000	0.000	189.8	13.1	0.00263	0.000	98.2	5.7	0.00263
	5	0.093	6691.6	637.2	0.00060	0.061	4235.5	345.2	0.00213	0.031	2002.0	146.1	0.00779
	7	1.648	119033.8	13603.0	0.00000	1.066	72193.8	7178.9	0.00148	0.606	37683.2	3379.8	0.00416
	8	3.513	226536.1	23389.9	0.00000	2.255	135623.2	$12\ 792.9$	0.00142	1.242	68426.4	5900.1	0.00319
30	3	0.000	338.1	38.8	0.00000	0.000	280.1	17.3	0.00453	0.000	161.6	7.2	0.00452
	5	0.233	15137.4	1171.7	0.00000	0.123	7302.6	470.5	0.00307	0.059	3146.2	181.9	0.00363
	7	3.523	209289.3	18256.8	0.00000	2.183	119797.9	9363.5	0.00470	1.155	57665.1	4062.5	0.00721
50	3	0.025	899.4	48.8	0.00000	0.011	381.6	14.1	0.00000	0.000	76.5	2.4	0.00646
	5	1.790	67052.0	3757.3	0.00000	0.635	20586.6	866.5	0.00178	0.255	7213.3	241.8	0.00279
	7	74.688	2534780.6	130685.3	0.00000	28.324	820954.5	36722.1	0.00053	7.958	193201.5	7827.2	0.00316
75	3	0.092	2121.1	75.7	0.00000	0.0016	325.4	5.3	0.00241	0.003	75.0	1.0	0.00355
	5	8.334	187230.6	5444.6	0.00000	1.679	27753.6	616.2	0.00168	0.232	2860.8	50.4	0.00387
	7	510.768	9838080.8	336993.8	0.00000	109.664	$1\ 734\ 007.8$	51514.5	0.00195	20.661	260410.7	6584.0	0.00536
100	3	0.208	3341.4	57.4	0.00000	0.013	121.6	1.4	0.00051	0.010	100.0	1.0	0.00308
	5	34.779	561343.8	10619.5	0.00000	3.875	41860.1	611.1	0.00143	0.396	3307.4	41.6	0.00297
	7	1214.43	14901505.8	377861.2	0.00000	179.771	$1\ 703\ 5\ 72.1$	34196.8	0.00143	13.940	95045.1	$1\ 492.2$	0.00371
200	5	165.904	682703.2	10147.9	0.00000	0.731	1693.0	11.5	0.00163	0.131	200.0	1.0	0.00163
300	5	87.600	164368.6	1129.4	0.00030	0.380	300.0	1.0	0.00245	0.379	300.0	1.0	0.00241
400	5	89.564	80786.1	257.3	0.00000	0.846	400.0	1.0	0.00000	0.842	400.0	1.0	0.00000

Table 9: Results of the $\varepsilon\text{-approximate algorithm}$

We note that the running times of the ε -approximate algorithm are significantly lower than those of the implicit enumeration algorithm. Running times do not exceed 21 seconds for $\varepsilon = 0.1$, 180 seconds for $\varepsilon = 0.05$ and 1215 seconds for $\varepsilon = 0.01$. We also note that for large instances with n = 300 and 400 nodes, the ε -approximate algorithm solves the problem for $\varepsilon = 0.05$ and 0.1 at the root in a time less than 1 second, and for $\varepsilon = 0.1$ in a time less than 90 seconds while the implicit enumeration algorithm requires 1793.460 and 7265.850 seconds respectively.

Moreover, the approximate solutions a posteriori are within ε' to the optimum, with $\varepsilon' \leq 0.0006$ for $\varepsilon = 0.01$, $\varepsilon' \leq 0.0047$ for $\varepsilon = 0.05$ and $\varepsilon' \leq 0.00922$ for $\varepsilon = 0.1$.

For $\varepsilon = 0.01$, we note that the problem is nearly solved to optimality ($\varepsilon' = 0$).

All these remarks show that the proposed lower bounds and upper bound are of very good quality and that the running time of the implicit enumeration algorithm is the time needed to verify the optimality of the solution. Indeed, this optimal solution is either found in a few seconds or determined at the root of the search tree corresponding then to the maximum value of the three lower bounds associated to the root.

7 Conclusions

In this paper we presented and compared different algorithms for solving k MOST VI-TAL EDGES MST. We first proposed an explicit enumeration algorithm that gives the best time complexity for general k. Using upper and lower bounds, we adapted the previous algorithm into an efficient implicit enumeration algorithm. We also proposed a mixed integer programming formulation of k MOST VITAL EDGES MST which was solved using CPLEX. Our experiments showed a large superiority of the implicit enumeration algorithm. An ε approximate version of this algorithm substantially improves running times while providing very good quality results (with an a posteriori approximation ratio usually much less than one tenth of the guaranteed ratio ε).

All the previous algorithms can be easily adapted to solve some variants of the k MOST VITAL EDGES MST problem. In a first variant, a removing cost is associated to each edge. The problem consists of finding a subset of edges with total cost bounded by a budget limit whose deletion causes the largest increase in the weight of a minimum spanning tree. In a second variant, we have to determine a minimum number of edges to be removed such that the weight of a minimum spanning tree in the resulting graph is at least a fixed value.

References

- A. Bar-Noy, S. Khuller, and B. Schieber. The complexity of finding most vital arcs and nodes. Technical Report CS-TR-3539, University of Maryland, 1995.
- [2] C. Bazgan, S. Toubaline, and D. Vanderpooten. Complexity of determining the most vital elements for the 1-median and 1-center location problems. In Proceeding of the 4th Annual International Conference on Combinatorial Optimization and Applications (COCOA 2010), LNCS 6508, Part I, pages 237-251, 2010.

- [3] C. Bazgan, S. Toubaline, and D. Vanderpooten. Critical edges/nodes for the minimum spanning tree problem: complexity and approximation. to appear in *Journal of Combinatorial Optimization*.
- [4] B. Chazelle. A minimum spanning tree algorithm with inverse-Ackermann type complexity. *Journal of the ACM*, 47(6):1028–1047, 2000.
- [5] B. Dixon, M. Rauch, and R.E. Tarjan. Verification and sensitivity analysis of minimum spanning trees in linear time. SIAM Journal on Computing, 21(6):1184–1192, 1992.
- [6] G. N. Frederickson and R. Solis-Oba. Increasing the weight of minimum spanning trees. Proceedings of the 7th ACM-SIAM Symposium on Discrete Algorithms (SODA 1996), pages 539-546, 1996. Also appeared in Journal of Algorithms, 33(2): 244-266, 1999.
- [7] L. Hsu, R. Jan, Y. Lee, C. Hung, and M. Chern. Finding the most vital edge with respect to minimum spanning tree in a weighted graph. *Information Processing Letters*, 39(5):277-281, 1991.
- [8] K. Iwano and N. Katoh. Efficient algorithms for finding the most vital edge of a minimum spanning tree. Information Processing Letters, 48(5):211-213, 1993.
- [9] L. Khachiyan, E. Boros, K. Borys, K. Elbassioni, V. Gurvich, G. Rudolf, and J. Zhao. On short paths interdiction problems : total and node-wise limited interdiction. *Theory* of Computing Systems, 43(2):204-233, 2008.
- [10] W. Liang. Finding the k most vital edges with respect to minimum spanning trees for fixed k. Discrete Applied Mathematics, 113(2-3):319-327, 2001.
- [11] W. Liang and X. Shen. Finding the k most vital edges in the minimum spanning tree problem. Parallel Computing, 23(13):1889–1907, 1997.
- [12] T. L. Magnanti and L. Wolsey. Optimal trees. In M. O. Ball, et al. (Eds.), Network Models, Handbook in Operations Research and Management Science, Vol 7, North-Holland, Amsterdam, pages 503-615, 1995.
- [13] E. Nardelli, G. Proietti, and P. Widmayer. A faster computation of the most vital edge of a shortest path. *Information Processing Letters*, 79(2):81-85, 2001.
- [14] S. Pettie. Sensitivity analysis of minimum spanning tree in sub-inverse-ackermann time. In Proceedings of 16th International Symposium on Algorithms and Computation (ISAAC 2005), LNCS 3827, pages 964–973, 2005.
- [15] S. Pettie and V. Ramachandran. An optimal minimum spanning tree algorithm. Journal of the ACM, 49(1):16-34, 2002.
- [16] H. D. Ratliff, G. T. Sicilia, and S. H. Lubore. Finding the n most vital links in flow networks. *Management Science*, 21(5):531-539, 1975.
- [17] H. Shen. Finding the k most vital edges with respect to minimum spanning tree. Acta Informatica, 36(5):405-424, 1999.

- [18] F. Suraweera, P. Maheshwari, and P. Bhattacharya. Optimal algorithms to find the most vital edge of a minimum spanning tree. Technical Report CIT-95-21, School of Computing and Information Technology, Griffith University, 1995.
- [19] R. E. Tarjan. Applications of path compression on balanced trees. Journal of the ACM, 26(4):690-715, 1979.
- [20] R. Wollmer. Removing arcs from a network. Operations Research, 12(6):934–940, 1964.
- [21] R. K. Wood. Deterministic network interdiction. Mathematical and Computer Modeling, 17(2):1–18, 1993.