
E�ient determination of the k most vital edges forthe minimum spanning tree problemCristina Bazgan1,2 Sonia Toubaline1 Daniel Vanderpooten11. Université Paris-Dauphine, LAMSADEPlae du Maréhal de Lattre de Tassigny, 75775 Paris Cedex 16, Frane2. Institut Universitaire de Frane{bazgan,toubaline,vdp}�lamsade.dauphine.frAbstratWe study in this paper the problem of �nding in a graph a subset of k edges whosedeletion auses the largest inrease in the weight of a minimum spanning tree. We proposefor this problem an expliit enumeration algorithm whose omplexity, when ompared tothe urrent best algorithm, is better for general k but very slightly worse for �xed k. Moreinterestingly, unlike in the previous algorithms, we an easily adapt our algorithm so asto transform it into an impliit enumeration algorithm based on a branh and boundsheme. We also propose a mixed integer programming formulation for this problem.Computational results show a lear superiority of the impliit enumeration algorithmboth over the expliit enumeration algorithm and the mixed integer program.Key words: most vital edges, minimum spanning tree, exat algorithms, mixed integerprogram.1 IntrodutionIn many appliations involving the use of ommuniation or transportation networks, weoften need to identify ritial infrastrutures. By ritial infrastruture we mean a set of linkswhose damage auses the largest perturbation within the network. Modeling this network as aweighted graph, identifying ritial infrastrutures amounts to �nding a subset of edges whoseremoval from the graph auses the largest inrease in the total weight. In the literature thisproblem is referred to as the k most vital edges problem. In this paper, we are interested indetermining a subset of edges of the graph whose deletion auses the largest inrease in theweight of a minimum spanning tree (MST). This problem is referred to as k Most VitalEdges MST.The problem of �nding the k most vital edges of a graph has been investigated for variousproblems inluding shortest path [1, 9, 13℄, maximum �ow [20, 16, 21℄, 1-median and 1-enter[2℄. For the minimum spanning tree problem de�ned on a graph G with n verties andm edges,Frederikson and Solis-Oba [6℄ showed that, for general k, k Most Vital Edges MST isNP -hard and proposed an O(log k)-approximation algorithm. The problem remains NP-hardeven for omplete graphs with weights 0 or 1 and 3-approximable for graphs with weights 0 or 1[3℄. For a �xed k the problem is obviously polynomial. The ase k = 1 has been largely studiedin the literature [7, 8, 18℄. Hsu et al. [7℄ gave two algorithms that run in O(m logm) and1

O(n2). Iwano and Katoh [8℄ proposed an algorithm in O(mα(m,n)) using Tarjan's result [19℄,where α is the inverse Akermann funtion. Pettie [14℄ improved the results of Tarjan [19℄ andDixon et al. [5℄, giving rise to the urrent best deterministi algorithm in O(m log α(m,n)).For general k, several exat algorithms based on an expliit enumeration of possible solutionshave been proposed [10, 11, 17℄. The best one [10℄ runs in time O(nkα((k+1)(n− 1), n)) andwas ahieved by reduing G to a sparse graph. Using Pettie's result [14℄, the running time ofthe later algorithm beomes O(nk logα((k + 1)(n − 1), n)).In this paper we propose a new e�ient algorithm also based on an expliit enumeration ofall possible solutions for k Most Vital Edges MST. Its omplexity O(nk logα(2(n−1), n))for �xed k is theoretially very slightly worse than the omplexity of the algorithm proposedby Liang [10℄ using Pettie's result [14℄. However, given the fat that α(m,n) is always less than4 in pratie, the omplexity of these two algorithms an be deemed as equivalent. Moreover,the omplexity of our algorithm is better than that of Liang's algorithm for general k. Moreinterestingly, unlike any other algorithm, our algorithm has two spei� useful features. First,it an also determine an optimal solution for i Most Vital Edges MST, for eah 1 ≤
i ≤ k, with the same time omplexity. Seond, it an be easily adapted to establish animpliit enumeration algorithm based on a branh and bound proedure. We also present inthis paper a mixed integer programming formulation to solve k Most Vital Edges MST.We implement and test all these proposed algorithms using, for the impliit enumerationalgorithm, di�erent branhing and evaluation strategies. The results show that the impliitenumeration algorithm is muh faster than the expliit enumeration algorithm as well as theresolution of the mixed integer program. Moreover, the impliit enumeration algorithm anhandle signi�antly larger instanes due to a better use of memory spae. Finally, we alsopropose an ε-approximate algorithm.The rest of the paper is organized as follows. In setion 2 we introdue notations and someresults related to our problem. In setion 3 we present a new expliit enumeration algorithmthat solves k Most Vital Edges MST. In setion 4 we propose another exat algorithmbased on an impliit enumeration sheme. In setion 5, we present a mixed integer program-ming formulation for k Most Vital Edges MST. Computational results are presented insetion 6. We also inlude in these experiments an ǫ-approximate version of our impliitenumeration shema. Conlusions are provided in setion 7.2 Basi onepts and preliminary resultsLet G = (V,E) be a weighted undireted onneted graph with |V | = n, |E| = m where
w(e) ≥ 0 is the integer weight of eah edge e ∈ E. We denote by G − E′ the graph obtainedfrom G by removing the subset of edges E′ ⊆ E. k Most Vital Edges MST onsists of�nding a subset of edges S∗ ⊆ E with |S∗| = k that maximizes the weight of a MST in thegraph G − S∗. We assume that G is at least (k + 1) edge-onneted, sine otherwise anyseletion of k edges inluding the edges of a minimum unweighted ut is a trivial solution.Therefore, we assume k ≤ λ(G)− 1, where λ(G) is the edge-onnetivity of G. Also, withoutloss of generality, we suppose in the following that all weights are di�erent (by introduing, ifneessary, an arbitrary total order on edges with the same weight). This assumption impliesthe uniqueness of minimum spanning trees or forests. For a non neessarily onneted graph,a minimum spanning forest (MSF) is the union of minimum spanning trees for eah of itsonneted omponents. In this paper a tree or a forest is onsidered as a graph but also, for2

onveniene, as a subset of edges. For a set of edges F , w(F) represents the sum of the weightsof the edges in F .We denote by T0 the MST of G. Remark that an optimal solution of k Most VitalEdges MST must ontain at least one edge of T0. For i ≥ 1, let Ti be the MSF of the graph
Gi = G−∪i−1

j=0Tj . We use in the following the graph UG
k = (V,∪k

j=0Tj) whih has the followinginteresting property.Lemma 1 (Liang and Shen [11℄) For any S ⊆ E, |S| ≤ k, any edge of the MST of graph
G− S belongs to UG

k .By Lemma 1, solving k Most Vital Edges MST on G redues to solving the sameproblem on the sparser graph UG
k whose number of edges is at most (k + 1)(n − 1).Considering T a MST of a graph, the replaement edge r(e) for an edge e ∈ T is de�ned asthe edge e′ 6= e of minimum weight whih onnets the two disonneted omponents of T \{e}.The sensitivity of a minimum spanning tree T , i.e. the allowable variation for eah edge weightso that T remains a minimum spanning tree, an be omputed in O(m log α(m,n)) [14℄. Inpartiular, for edges in T , this algorithm provides replaement edges. As a onsequene, weget the following result.Lemma 2 1 Most Vital Edges MST de�ned on a graph with n verties and m edges issolvable in O(m logα(m,n)).Proof : Let T ∗ be the minimum spanning tree in a given graph. We alulate the replaementedges r(e) for all edges e ∈ T ∗. The most vital edge is the edge e∗ suh that w(r(e∗))−w(e∗) =

max
e∈T ∗

w(r(e)) − w(e). 2Atually, replaement edges belong to a spei� subset of edges as shown by the followingresult.Lemma 3 For eah edge e ∈ Ti, we have r(e) ∈ Ti+1 for i = 0, . . . , k − 1.Proof : Given a graph G, Liang [10℄ shows that for eah edge e ∈ T0, r(e) ∈ T1. Applyingthis to graph Gi, for whih Ti is the MSF, we get the result. 23 An expliit enumeration algorithm for �nding the k most vitaledgesWe propose an algorithm that onstruts a searh tree of depth k − 1 in a breadth-�rstmode. At the ith level of this searh tree, i = 0, . . . , k − 1, a node s is haraterized by:
• mv(s): a subset of i edges, orresponding to a tentative partial seletion of the k mostvital edges.
• Ũ(s) = U

G′(s)
k−|mv(s)| where G′(s) = (V,E\mv(s)). Hene, we have

Ũ(s) = (V,∪
k−|mv(s)|
i=0 Ti(s)) where Ti(s) is the MSF in G′(s)− ∪i−1

j=0Tj(s).
• mst(s): a subset of edges forbidden to deletion. These edges belonging to T0(s), willneessary belong to any MST assoiated with any desendant of s. Depending on theposition of s in the searh tree, the ardinality of mst(s) varies from 0 to n− 2.3

Denote by Ni, for i = 0, . . . , k − 1, the set of nodes of the searh tree at the ith level.We desribe in the following the exat algorithm (setion 3.1) and exemplify its use on anillustrative example (setion 3.2).3.1 Desription of the algorithmWe �rst onstrut the graph UG
k . Let a be the root of the searh tree with mv(a) =

mst(a) = ∅, Ũ(a) = UG
k , w(T0(a)) = w(T0), and N0 = {a}.For a level i, 0 ≤ i ≤ k − 2, we ompute for eah node s ∈ Ni and eah edge e ∈ T0(s),the replaement edges r(e) in T1(s). Node s gives rise to |T0(s)\mst(s)| hildren in Ni+1.Eah suh hild d, orresponding to an edge ej in T0(s)\mst(s) = {e1, . . . , en−1−|mst(s)|}, isharaterized by:

• mv(d) = mv(s) ∪ {ej}.
• mst(d) = mst(s) ∪ (∪j−1

ℓ=1{eℓ}).
• Ũ(d) is updated from Ũ(s) as follows (using Lemma 3):

• T0(d) = T0(s) ∪ {r(ej)} \ {ej} and hene w(T0(d)) = w(T0(s))− w(ej) + w(r(ej)).
• For j = 1, . . . , k−|mv(d)|, Tj(d) is obtained from Tj(s) by deleting the replaementedge erep of the edge deleted from Tj−1(s) and replaing it by its replaement edge

r(erep) ∈ Tj+1(s).If for a level i and an edge erep, the replaement edge r(erep) does not exist,
Tj(d) = Tj(s) \ {erep} and Tℓ(d) = Tℓ(s) for ℓ = j + 1, . . . , k − |mv(d)|.If for a level i, Ti(s) = ∅ then Tℓ(d) = ∅ for ℓ = i, . . . , k − |mv(d)|.At level k− 1, for eah node s ∈ Nk−1 and for all edges e ∈ T0(s) \mst(s), we �nd r(e) in

T1(s) and we determine a node s∗ that veri�es
max

s∈Nk−1

max
e∈T0(s)\mst(s)

(w(T0(s))−w(e)+w(r(e))). An optimal solution is the subsetmv(s∗)∪{e∗}where e∗ = arg max
e∈T0(s∗)\mst(s∗)

w(T0(s
∗))−w(e) +w(r(e)). The largest weight of a MST in thepartial graph obtained by deleting this subset is w(T0(s

∗))− w(e∗) + w(r(e∗)).Algorithm 1 desribes this proedure. Its orretness and omplexity are given in Theo-rem 1.Theorem 1 Algorithm 1 omputes an optimal solution for an instane of k Most VitalEdges MST with n verties and m edges in O(kmα(m,n) + nk log α(2(n − 1), n)) time.Proof : We �rst show that Algorithm 1 gives an optimal solution for k Most Vital EdgesMST. Let S∗ be the solution returned by Algorithm 1, and w∗ the weight of the MST in
UG
k − S∗. Consider any solution S′, with |S′| = k, and w′ the weight of the MST in UG

k − S′.Let r be a node of the searh tree suh that mv(r) ⊆ S′ and for any hild d of r, mv(d) * S′.Clearly, r exists and orresponds at worst to root a when S′ ∩ T0 = ∅. Sine, by de�nition,
r is suh that no edge of T0(r) belongs to S′, we have w′ = w(T0(r)). Moreover, sine
w(T0(r)) ≤ w∗, we have w′ ≤ w∗. 4

Algorithm 1: Expliit resolution of k MVE MST/* Let a be the root of the searh tree */1 Construt UG
k
;2 mv(a) ← ∅;mst(a) ← ∅;w(T0(a))← w(T0); Ũ(a)← UG

k
;3 N0 ← {a};Ni ← ∅, i = 1, . . . , k − 1;4 for i← 0 to k − 2 do5 forall s ∈ Ni do6 forall e ∈ T0(s) do7 �nd r(e) in T1(s);/* T0(s)\mst(s) = {e1, . . . , en−1−|mst(s)|} */8 forall ej ∈ T0(s)\mst(s) do/* reate a new node d, a hild of s */9 mv(d) ← mv(s) ∪ {ej};10 w(T0(d)) ← w(T0(s)) − w(ej) +w(r(ej));11 mst(d)← mst(s) ∪ (∪j−1

ℓ=1{eℓ});12 determine Ũ(d) by using Algorithm 2;13 Ni+1 ← Ni+1 ∪ {d};14 max ← 0;15 forall s ∈ Nk−1 do16 forall e ∈ T0(s) do17 �nd r(e) in T1(s);18 forall e ∈ T0(s)\mst(s) do19 if w(T0(s)) − w(e) + w(r(e)) > max then20 max ← w(T0(s))− w(e) +w(r(e));21 e∗ ← e;22 s∗ ← s;/* The largest weight of a MST in the partial obtained graph is w(T0(s∗)) − w(e∗) + w(r(e∗)) */23 return S∗ = mv(s∗) ∪ {e∗};Algorithm 2: Constrution of Ũ(d) from Ũ(s) where d is the hild of s in the searhtree obtained from s by deleting ej1 T0(d)← T0(s) ∪ {r(ej)}\{ej};2 replace← r(ej);3 ℓ← 0;4 while Tℓ+1(s) 6= ∅ do5 if replace exists then6 Determine if there exists a replaement edge, alled replace1, of replace in Tℓ+1(s)7 if replace1 exists then8 Tℓ(d)← Tℓ(s) ∪ {replace1}\{replace};9 replace← replace1;10 else11 Tℓ(d)← Tℓ(s)\{replace} ;12 else13 Tℓ(d)← Tℓ(s);14 ℓ← ℓ+ 1;15 return Ũ(d);We determine now the omplexity of Algorithm 1. Denote by tu the time for onstruting
UG
k , by tedge−rep the time for �nding the replaement edges for all edges of a minimum spanningtree, and by tgen the time for generating any node s of the searh tree (that is determining

mv(s),mst(s) and Ũ(s)). Level 0 requires |N0|tedge−rep time. Level i takes |Ni|tedge−rep +
|Ni|tgen time, for 1 ≤ i ≤ k − 1. At level k, we ompute the k most vital edges. Thus, the5

total time of Algorithm 1 is given by
tu +

k−1∑

i=0

|Ni|tedge−rep +
k−1∑

i=1

|Ni|tgen + |Nk|For eah node s ∈ Ni, subset mv(s) onsists of ℓ tree edges of T0(a) and (i − ℓ) edgesbelonging to the union set of the (i − ℓ) replaement edges of these ℓ edges, 1 ≤ ℓ ≤ i (the
p replaement edges of an edge e ∈ T0(a) are the p edges of minimum weight whih onnetthe two disonneted omponents of T0(a)\{e}). This implies that |Ni| =

∑i
ℓ=1

(
n−1
ℓ

)
Ki−ℓ

ℓ =∑i
ℓ=1

(
n−1
ℓ

)(
i−1
i−ℓ

)
=

(
n+i−2

i

)
= O(ni), where Kp

n =
(
n+p−1

p

) is the number of ombinations withrepetition of p elements hosen from a set of n elements.For a node s ∈ Ni, 1 ≤ i ≤ k − 1, Ũ(s) ontains at most k − i+ 1 forests. Then, tgen is in
O((k− i+1)n) time. Sine the replaement edges of a MST in a graph with n verties and medges an be omputed in O(m log α(m,n)) [14℄, tedge−rep is in O(n logα(2(n − 1), n)) time.The onstrution of UG

k , orresponding to tu, an be performed in O(kmα(m,n)) time, using
k times the best urrent algorithms for MST [4, 15℄. Therefore, the omplexity of Algorithm 1is in O(kmα(m,n)+nk log α(2(n−1), n)) time. Note that the time needed to generate all thenodes of the searh tree is dominated by the total time to �nd, for all nodes s of the searhtree, the replaement edges r(e) in T1(s) for all edges e ∈ T0(s). 2Remark For eah node s of the searh tree, we ould use, instead of the graph Ũ(s), thegraph U(s) = U

G′′(s)
k−|mv(s)| where G′′(s) is the graph obtained from G by ontrating the edgesof mst(s) and removing the edges of mv(s). Thus, U(s) = (V,∪

k−|mv(s)|
i=0 Ti(s)) where Ti(s)is the MSF of G′′(s) − ∪i−1

j=0Tj(s). Unfortunately, given a hild d of a node s of the searhtree, updating e�iently U(d) from U(s) is not as straightforward as for Ũ . However, even ifupdating U ould be performed more e�iently than Ũ , we would get the same omplexitysine the time for generating all nodes of the searh tree is dominated by the total time for�nding the replaement edges for all nodes in the searh tree.We lose this subsetion by omparing our algorithm with the previously best knownalgorithm for k Most Vital Edges MST. For �xed k, by using the result of Dixon et al.[5℄, Liang [10℄ proposes an algorithm to solve k Most Vital Edges MST in O(nkα((k +
1)(n− 1), n)) time. Using Pettie's result [14℄ Liang's algorithm an be implemented in O(tu+
nk log α((k + 1)(n − 1), n)) time, where tu is the time for onstruting UG

k . Our algorithmhas a omplexity that is theoretially slightly worse than that of Liang. Nevertheless, sine
α(m,n) is always less than or equal to 4 in pratie, the omplexity of these two algorithmsan be onsidered as equivalent. Moreover, a spei� advantage of our algorithm is that itan also determine, with the same time omplexity, an optimal solution for i Most VitalEdges MST, for 1 ≤ i ≤ k. Indeed, at eah level i, we an �nd among nodes of Ni, the nodewith the largest weight of a MST.For general k, our bound is learly better than that of Liang. Indeed, in Liang's algorithm,after the determination of UG

k , Liang divides the problem into two ases: (i) |T0∩S∗| = i, 1 ≤
i < k and (ii) |T0 ∩ S∗| = k where S∗ represents a subset of k most vital edges. In (i), forevery possible ombination of i edges among the n − 1 edges of T0, 1 ≤ i < k, the authoronstruts a spei� graph G with a number of nodes and edges depending only on k, anddetermines the k − i remaining edges in G. In (ii), from every possible hoie of (k − 1)6

edges among the n− 1 edges of T0, the author onstruts a MST T ′ in the graph obtained bydeleting these (k − 1) edges and �nds the kth edge to be removed by using the replaementedges of T ′. Therefore, (i) and (ii) are performed respetively in ∑k−1
i=1

(
n−1
i

)
(tG + tk−i) and(

n−1
k−1

)
tlast time, where tG , tk−i and tlast are respetively the time to onstrut G, the time todetermine the k− i remaining edges to be removed from G and the time to �nd the kth edge tobe removed from T ′ ∩ T0. Note that Liang, who onsiders only the ase where k is �xed, doesnot need to expliit the term involving tk−i. However, for general k, even if expressing theomplexity of his algorithm by O(tu + k3nk +

∑k−1
i=1

(
n−1
i

)
tk−i + knk log α((k + 1)(n− 1), n)),one an observe that it is relatively larger than the omplexity of our proposed algorithm thatremains in O(tu + nk log α(2(n − 1), n)) time.The other exat algorithms proposed in the literature [11, 17℄ have a worse omplexitythan our algorithm both for �xed and general k.3.2 An illustrative example for the expliit enumeration algorithmIn this setion, we apply Algorithm 1 to solve 3 Most Vital Edges MST on the graph

G, illustrated in Figure 1. The bold edges represent the MST of G.We start the onstrution of the searh tree with the root a whose elements are mv(a) =
mst(a) = ∅, Ũ(a) is the union of the following forests
T0(a) : (1, 2), (1, 3), (3, 5), (4, 5)

T1(a) : (2, 3), (3, 4), (1, 4), (2, 5)

T2(a) : (2, 4), (1, 5)and w(T0(a)) = 12. We omitted T3(a) sine it is an empty set.
1 2 3

45
1

11

7

3

10

5

9
12

4

2

Figure 1: Graph GThe replaement edges of eah edge in T0(a) are given in Table 1.Level 1 ontains four hildren of a and thus N1 = {1, 2, 3, 4}. The elements of eah node
s ∈ N1 are given in Table 2 where for example, Ũ(3) is onstruted as follows: T0(3) isobtained by removing (3, 5) from T0(a) and adding its replaement edge (3, 4). For T1(3), wedelete (3, 4) from T1(a) and �nd its replaement edge among the edges in T2(a) whih is (2, 4).Finally, T2(3) is obtained by removing (2, 4) from T2(a).7

e (1, 2) (1, 3) (3, 5) (4, 5)

r(e) (2, 3) (2, 3) (3, 4) (3, 4)Table 1: Replaement edges of e ∈ T0(a)

s 1 2 3 4
mv(s) {(1, 2)} {(1, 3)} {(3, 5)} {(4, 5)}
mst(s) ∅ {(1, 2)} {(1, 2), (1, 3)} {(1, 2), (1, 3), (3, 5)}
w(T0(s)) 14 13 15 14

Ũ(s)

T0 (1, 3), (2, 3), (3, 5), (4, 5) (1, 2), (2, 3), (3, 5), (4, 5) (1, 2), (1, 3), (4, 5), (3, 4) (1, 2), (1, 3), (3, 5), (3, 4)
T1 (3, 4), (1, 4), (2, 5), (2, 4) (3, 4), (1, 4), (2, 5), (2, 4) (2, 3), (1, 4), (2, 5), (2, 4) (2, 3), (1, 4), (2, 5), (2, 4)
T2 (1, 5) (1, 5) (1, 5) (1, 5)Table 2: Elements of s ∈ N1We onstrut level 2 in the same way. The searh tree is represented in Figure 2. Theelements of eah node s ∈ N2 = {5, 6, . . . , 14} are given in Table 3.The onstrution of the searh tree is ompleted. After determining the replaement edgesof edges in T0 for all leaves of the searh tree, we �nd that s∗ is node 5, a solution for 3 MostVital Edges MST is {(1, 2), (1, 3), (2, 3)}=mv(5) ∪ {e∗} and the weight of the MST in

G \ {(1, 2), (1, 3), (2, 3)} is 28.
a

1

5 6 7 8

2

9 10 11

3

12 13

4

14Figure 2: Searh treeObserve that the most vital edge is not neessarily the edge of smallest weight. Moreover,the most vital edge is not neessarily inluded in any optimal solution of k Most VitalEdges MST for k ≥ 2.4 An impliit enumeration algorithm for �nding the k mostvital edgesAn interesting feature of our expliit enumeration algorithm is that, unlike the algorithmspreviously proposed, it an easily be adapted to design an impliit algorithm based on abranh and bound sheme. To do this, we use for eah node s an upper bound UB(s) basedon suessive replaements of edges. We also use lower bounds LB(s) onstruted by extendingthe forest, orresponding to s, to a partiular minimum spanning tree.8

s 5 6 7 8
mv(s) {(1, 2), (1, 3)} {(1, 2), (2, 3)} {(1, 2), (3, 5)} {(1, 2), (4, 5)}
mst(s) ∅ {(1, 3)} {(1, 3), (2, 3)} {(1, 3), (2, 3), (3, 5)}
w(T0(s)) 21 21 17 16

Ũ(s)
T0 (2, 3), (3, 5), (4, 5), (1, 4) (1, 3), (3, 5), (4, 5), (2, 5) (1, 3), (2, 3), (4, 5), (3, 4) (1, 3), (2, 3), (3, 5), (3, 4)
T1 (3, 4), (2, 5), (2, 4), (1, 5) (3, 4), (1, 4), (2, 4), (1, 5) (1, 4), (2, 5), (2, 4) (1, 4), (2, 5), (2, 4)

s 9 10 11 12
mv(s) {(1, 3), (2, 3)} {(1, 3), (3, 5)} {(1, 3), (4, 5)} {(3, 5), (4, 5)}
mst(s) {(1, 2)} {(1, 2), (2, 3)} {(1, 2), (2, 3), (3, 5)} {(1, 2), (1, 3)}
w(T0(s)) 19 16 15 17

Ũ(s)
T0 (1, 2), (3, 5), (4, 5), (1, 4) (1, 2), (2, 3), (4, 5), (3, 4) (1, 2), (2, 3), (3, 5), (3, 4) (1, 2), (1, 3), (3, 4), (2, 5)
T1 (3, 4), (2, 5), (2, 4), (1, 5) (1, 4), (2, 5), (2, 4) (1, 4), (2, 5), (2, 4) (2, 3), (1, 4), (2, 4), (1, 5)

s 13 14
mv(s) {(3, 5), (3, 4)} {(4, 5), (3, 4)}
mst(s) {(1, 2), (2, 3), (4, 5)} {(1, 2), (2, 3), (3, 5)}
w(T0(s)) 20 16

Ũ(s)
T0 (1, 2), (2, 3), (4, 5), (1, 4) (1, 2), (2, 3), (3, 5), (1, 4)
T1 (2, 3), (2, 5), (2, 4), (1, 5) (2, 3), (2, 5), (2, 4), (1, 5)Table 3: Elements of s ∈ N2In order to obtain the best possible bounds, we onstrut U(s) for eah node s, insteadof using Ũ(s). For eah hild d of s, U(d) is determined by onstruting Ti(d), for 0 ≤ i ≤

k − |mv(d)| from the edges of U(s).4.1 Lower boundsFor a �xed node s of the searh tree, k − |mv(s)| edges remain to be deleted from U(s).We present di�erent ways of determining these remaining edges giving rise to three possiblelower bounds.1. LBgreedy(s): Given T0(s), we ompute r(ej) for all ej ∈ T0(s). We delete the edge e∗jwhih attains maxej∈T0(s)\mst(s)(w(r(ej)) − w(ej)) and replae it by r(e∗j). We update
U(s) and repeat the proess until k − |mv(s)| edges are removed. The value of thisbound is the weight of the last MST obtained.2. LBfirst(s): We remove the k−|mv(s)| edges of T0(s)\mst(s) having the smallest weight,and we onstrut a MST from the remaining edges in T0(s). The value of this bound isthe weight of the MST obtained.3. LBbest(s): Given T0(s), we ompute r(ej) for all ej ∈ T0(s). We remove the k− |mv(s)|edges in T0(s) \mst(s) whose di�erene between the weight of their replaement edgeand their weight is the largest, and we onstrut a MST from the remaining edges in
T0(s). The value of this bound is the weight of the MST obtained.In order to test these bounds, we omputed, for instanes with di�erent values of n and

k, these three lower bounds at the root a of the searh tree. The instanes are generated asexplained in setion 6. The results are given in Tables 4 and 5 where we report, for eah lowerbound, its value, as well as the perent deviation from the optimal value opt−LB
opt

, and the timeto ompute it. We note that there is no dominane between these three bounds. We also notethat LBfirst is the fastest in terms of running time but gives bad values. LBgreedy, whihgives the best values in most ases, takes muh more time than the other bounds. LBbest,9

whih gives similar values as LBgreedy, takes only about twie as muh time as LBfirst andabout 40 to 100 times less time than LBgreedy.

10

n k LBgreedy (a) LBk first(a) LBk best(a) w(T0) UB(a)value % time value % time value % time in G \ S∗ value %20 9 265 6.0 0.873 255 9.6 0.016 250 11.3 0.047 282 719 155.0221 3.5 0.889 219 4.4 0.015 222 3.1 0.032 229 711 210.5178 15.6 0.982 179 15.2 0.032 180 14.7 0.031 211 669 217.1166 10.8 0.842 157 15.6 0.000 157 15.6 0.016 186 681 266.1276 0.7 0.624 268 3.6 0.015 267 4.0 0.016 278 726 161.2246 11.8 0.904 243 12.9 0.016 240 14.0 0.000 279 764 173.8236 1.3 0.764 232 2.9 0.031 235 1.7 0.047 239 682 185.4272 0.0 0.967 254 6.6 0.031 255 6.3 0.031 272 712 161.8205 1.0 1.060 193 6.8 0.016 203 1.9 0.000 207 668 222.7245 1.6 0.748 216 13.3 0.000 225 9.6 0.016 249 716 187.6average 5.2 0.865 9.1 0.017 8.2 0.024 194.125 8 174 1.7 1.045 146 17.5 0.031 172 2.8 0.047 177 491 177.4191 1.5 0.936 173 10.8 0.000 191 1.5 0.016 194 474 144.3215 0.5 0.998 164 24.1 0.000 210 2.8 0.016 216 533 146.8240 4.4 0.951 219 12.7 0.031 232 7.6 0.047 251 523 108.4180 2.7 1.232 169 8.6 0.016 174 5.9 0.015 185 528 185.4202 2.4 0.967 200 3.4 0.031 202 2.4 0.047 207 491 137.2218 3.1 1.185 209 7.1 0.016 218 3.1 0.000 225 582 158.7183 5.7 0.904 179 7.7 0.032 180 7.2 0.046 194 498 156.7216 5.3 0.982 211 7.5 0.032 215 5.7 0.046 228 564 147.4235 4.9 0.982 243 1.6 0.000 232 6.1 0.016 247 562 127.5average 3.2 1.018 10.1 0.019 4.5 0.030 149.030 7 153 0.6 0.920 126 18.2 0.016 147 4.5 0.015 154 339 120.1160 14.4 0.982 150 19.8 0.032 158 15.5 0.046 178 426 127.8187 1.6 1.232 164 13.7 0.031 181 4.7 0.063 190 385 102.6164 3.5 1.170 157 7.6 0.015 164 3.5 0.016 170 392 130.6198 4.8 0.982 187 10.1 0.016 197 5.3 0.016 208 399 91.8181 2.7 1.014 155 16.7 0.015 175 5.9 0.016 186 398 114.0194 1.5 0.889 180 8.6 0.015 193 2.0 0.016 197 402 104.1186 5.1 1.155 156 20.4 0.015 168 14.3 0.016 196 403 105.6243 0.8 1.170 214 12.7 0.016 228 6.9 0.015 245 455 85.7197 0.5 0.753 184 7.1 0.012 195 1.5 0.016 198 406 105.1average 3.6 1.027 13.5 0.018 6.4 0.024 108.750 5 190 17.4 1.373 160 30.4 0.078 189 17.8 0.031 230 281 22.2230 0.0 1.263 215 6.5 0.016 230 0.0 0.031 230 288 25.2174 1.1 1.435 161 8.5 0.031 174 1.1 0.031 176 264 50.0161 1.8 1.357 155 5.5 0.015 161 1.8 0.032 164 231 40.9202 0.0 1.232 185 8.4 0.016 199 1.5 0.015 202 266 31.7177 0.6 1.311 165 7.3 0.031 177 0.6 0.015 178 254 42.7176 2.2 1.311 157 12.8 0.015 176 2.2 0.031 180 262 45.6191 2.1 1.372 191 2.1 0.016 191 2.1 0.016 195 262 34.4173 1.7 1.201 153 13.1 0.016 173 1.7 0.016 176 245 39.2167 1.2 1.248 151 10.7 0.000 166 1.8 0.031 169 232 37.3average 2.8 1.310 10.5 0.023 3.1 0.025 36.950 7 164 1.2 2.012 148 10.8 0.016 166 0.0 0.031 169 291 72.2185 1.6 2.012 168 10.6 0.016 184 2.1 0.031 188 311 65.4156 8.2 2.231 146 14.1 0.016 156 8.2 0.031 170 304 78.8182 1.6 1.997 173 6.5 0.016 182 1.6 0.031 185 319 72.4222 0.0 1.903 207 6.8 0.015 219 1.4 0.016 222 355 59.9191 4.0 2.090 178 10.6 0.016 191 4.0 0.031 199 331 66.3180 0.6 2.044 163 9.9 0.015 177 2.2 0.063 181 299 65.2209 0.0 2.246 189 9.6 0.016 207 1.0 0.031 209 326 56.0205 1.4 2.184 193 7.2 0.046 205 1.4 0.032 208 343 64.9196 0.0 2.013 185 5.6 0.015 196 0.0 0.016 196 315 60.7average 2.0 2.073 9.3 0.019 2.4 0.031 66.275 5 172 0.6 2.309 159 8.1 0.016 172 0.6 0.031 173 215 24.3159 0.6 2.496 149 6.9 0.016 159 0.6 0.031 160 225 40.6181 0.0 2.371 172 5.0 0.078 181 0.0 0.032 181 229 26.5181 0.0 2.637 168 7.2 0.031 181 0.0 0.031 181 228 26.0168 1.2 2.855 159 6.5 0.016 168 1.2 0.031 170 219 28.8197 0.5 2.481 189 4.5 0.015 197 0.5 0.031 198 248 25.3168 1.2 2.247 158 7.1 0.015 170 0.0 0.047 170 218 28.2200 0.0 2.450 183 8.5 0.015 200 0.0 0.031 200 258 29.0184 1.6 2.153 165 11.8 0.031 184 1.6 0.031 187 248 32.6186 0.5 2.418 176 5.9 0.032 186 0.5 0.031 187 236 26.2average 0.6 2.442 7.1 0.027 0.5 0.33 28.875 7 227 0.0 3.572 214 5.7 0.016 226 0.4 0.046 227 329 44.9239 1.6 3.510 225 7.4 0.031 239 1.6 0.032 243 332 36.6189 0.0 3.666 162 14.3 0.031 189 0.0 0.032 189 272 43.9206 0.5 3.417 188 9.2 0.031 206 0.5 0.047 207 299 44.4187 1.6 3.573 170 10.5 0.015 187 1.6 0.047 190 275 44.7188 0.5 4.009 180 4.8 0.032 188 0.5 0.046 189 273 44.4206 2.4 3.260 189 10.4 0.016 206 2.4 0.047 211 300 42.2183 1.6 3.588 172 7.5 0.031 183 1.6 0.047 186 273 46.8183 2.1 3.759 168 10.2 0.032 183 2.1 0.046 187 270 44.4188 0.0 2.868 168 10.6 0.034 188 0.0 0.058 188 279 48.4average 1.0 3.522 9.1 0.027 1.1 0.045 44.1Table 4: Values of the three lower bounds and upper bound at the root of the searh tree (instanesof small size with n < 100) 11

n k LBgreedy(a) LBk first(a) LBk best(a) w(T0) UB(a)value % time value % time value % time in G \ S∗ value %100 5 186 0.0 3.635 177 4.8 0.031 186 0.0 0.031 186 230 23.7209 0.9 3.947 201 4.7 0.031 209 0.9 0.047 211 244 15.6193 0.5 3.760 184 5.2 0.031 193 0.5 0.047 194 230 18.6187 0.5 3.572 175 6.9 0.032 187 0.5 0.031 188 216 14.9205 0.0 3.697 195 4.9 0.031 205 0.0 0.031 205 263 28.3187 1.1 3.916 176 6.9 0.031 187 1.1 0.047 189 233 23.3211 0.5 3.572 201 5.2 0.032 209 1.4 0.046 212 249 17.5179 0.0 4.009 167 6.7 0.031 179 0.0 0.047 179 211 17.9201 1.0 4.040 187 7.9 0.031 199 2.0 0.031 203 239 17.7182 4.2 3.463 169 11.1 0.031 182 4.2 0.032 190 233 22.6average100 7 185 0.0 5.912 173 6.5 0.032 184 0.5 0.062 185 253 36.8192 3.5 5.554 186 6.5 0.031 192 3.5 0.062 199 264 32.7215 0.0 5.850 192 10.7 0.031 212 1.4 0.047 215 274 27.4211 0.5 5.585 193 9.0 0.031 211 0.5 0.062 212 278 31.1201 0.0 5.651 186 7.5 0.035 201 0.0 0.056 201 265 31.8215 0.0 5.446 194 9.8 0.035 215 0.0 0.052 215 279 29.8220 1.3 5.028 202 9.4 0.034 220 1.3 0.052 223 279 25.1218 0.9 5.048 201 8.6 0.031 218 0.9 0.051 220 284 29.1202 1.0 5.772 192 5.9 0.031 202 1.0 0.047 204 276 35.3207 1.4 5.616 191 9.0 0.031 205 2.4 0.047 210 274 30.5average200 5 266 0.0 11.965 254 6.5 0.062 266 0.5 0.156 266 277 36.8243 3.5 12.480 237 6.5 0.062 243 3.5 0.094 243 262 32.7241 0.0 12.699 238 10.7 0.171 241 1.4 0.078 245 262 27.4251 0.5 12.963 243 9.0 0.063 251 0.5 0.078 251 267 31.1243 0.0 13.306 233 7.5 0.063 243 0.0 0.234 244 260 31.8236 0.0 12.886 227 9.8 0.047 236 0.0 0.078 236 250 29.8245 1.3 12.075 237 9.4 0.046 245 1.3 0.094 245 260 25.1247 0.9 12.355 237 8.6 0.156 246 0.9 0.094 247 277 29.1241 1.0 11.559 233 5.9 0.063 241 1.0 0.093 241 268 35.3257 1.4 11.283 248 9.0 0.058 257 2.4 0.109 257 259 30.5average300 5 316 0.6 27.565 311 2.2 0.078 316 0.6 0.125 318 328 3.1333 0.0 27.051 323 3.0 0.078 333 0.0 0.234 333 346 3.9325 0.3 29.796 318 2.5 0.156 325 0.3 0.125 326 338 3.7324 0.3 28.002 318 2.2 0.140 324 0.3 0.140 325 335 3.1334 0.0 30.077 326 2.4 0.078 334 0.0 0.187 334 346 3.6328 0.6 30.046 322 2.4 0.078 328 0.6 0.187 330 344 4.2324 0.3 28.252 320 1.5 0.234 324 0.3 0.125 325 337 3.7334 0.3 28.283 327 2.4 0.078 334 0.3 0.203 335 346 3.3330 0.0 25.303 322 2.4 0.094 330 0.0 0.328 330 341 3.3316 0.0 27.779 311 1.6 0.141 316 0.0 0.125 316 327 3.5average400 5 418 0.0 45.256 413 1.2 0.218 418 0.0 0.172 418 426 1.9410 0.0 44.398 405 1.2 0.109 410 0.0 0.250 410 421 2.7412 0.0 45.022 406 1.5 0.187 412 0.0 0.250 412 419 1.7409 0.0 43.617 406 0.7 0.203 409 0.0 0.141 409 419 2.4411 0.0 47.861 406 1.2 0.125 411 0.0 0.156 411 422 2.7418 0.0 45.552 410 1.9 0.109 418 0.0 0.187 418 426 1.9409 0.0 44.429 406 0.7 0.140 409 0.0 0.219 409 424 3.7411 0.0 45.692 406 1.2 0.187 411 0.0 0.172 411 422 2.7415 0.0 44.647 412 0.7 0.141 415 0.0 0.249 415 424 2.2414 0.0 38.207 410 1.0 0.109 414 0.0 0.172 414 423 2.2averageTable 5: Values of the three lower bounds and upper bound at the root of the searh tree (instanesof large size with n ≥ 100)4.2 Upper boundLet s be a given node of the searh tree. To ompute UB(s), we selet the edge in T1(s)of largest weight and we replae the edge deleted from Tj(s) by the edge with largest weightbelonging to Tj+1(s), for j = 1, . . . , k − |mv(s)| − 1. We repeat this proess k − |mv(s)| − 1times.Let F be the set of the k − |mv(s)| edges seleted from T1(s) in this proess. Then, wemust determine the k−|mv(s)| edges to be removed. To obtain an upper bound for all feasiblesolutions obtained from s, we delete the k−|mv(s)| edges of smallest weight among the edgesof F ∪ T0(s)\mst(s). Denote by Emin the subset of these seleted edges removed. Therefore,
UB(s) = w(T0(s)) + w(F) − w(Emin).We omputed, for instanes with di�erent values of n and k, this upper bound at the root12

a of the searh tree (see Tables 4 and 5). Besides the bound value, we report the perentdeviation from the optimal value de�ned as UB−opt
opt

. The main observation is that UB(a) israther lose to the optimal value for small values of k and deteriorates as k inreases.4.3 Branhing strategyLet a be the root of the searh tree. The branhing strategy is the same as for theexpliit enumeration algorithm. We start with a feasible solution value orresponding to
max{LBgreedy(a), LBfirst(a), LBbest(a)}. We tested two di�erent best �rst searh strategies.The �rst one is the standard strategy (Branhing: best upper bound) where the node with thelargest upper bound is seleted �rst. No lower bound is omputed and the fathoming test isperformed only when we update the urrent best feasible solution value, whih an our onlyat level k − 1 of the searh tree. In the seond strategy (Branhing: best lower bound), thenode with the largest lower bound is seleted �rst. Lower and upper bounds are omputed atevery node. Sine LBbest gives values lose to the best ones and takes less time, we use thisbound for omputing a lower bound. Here, the fathoming test is performed at eah node byomparing eah lower bound value with the urrent best feasible solution value.4.4 Illustrative exampleReonsider the graph G, illustrated in Figure 1, as input for 3 Most Vital Edges MST.We show how the strategy "Branhing: best upper bound" proeeds.We start, as in the expliit algorithm, by onstruting the root a of the searh tree, whoseelements are:

• mv(a) = mst(a) = ∅

• U(a) is the union of the following trees
T0(a) : (1, 2), (1, 3), (3, 5), (4, 5)

T1(a) : (2, 3), (3, 4), (1, 4), (2, 5)

T2(a) : (2, 4), (1, 5)

• and w(T0(a)) = 12Let S = {a}, bestvalue = max{LBGreedy(a), LBk first(a), LBk best(a)} = max{22, 24, 22} =
24 and bestset = {(1, 2), (1, 3), (3, 5)}.Iteration 1: We selet node a.Sine |mv(a)| < k − 1, we test the four hildren of node a whose elements are given inTable 6.Sine UB(4) ≤ bestvalue, we generate only nodes 1, 2 and 3. Then, S = {1, 2, 3}.Iteration 2: We selet node 1, whih has the urrent best upper bound.Sine |mv(1)| < k− 1, we test the four hildren of node a whose elements are summarizedin Table 7.Sine UB(7) and UB(8) are less than bestvalue, S = {5, 6, 2, 3}.Iteration 3: We selet node 5. 13

s 1 2 3 4
mv(s) {(1, 2)} {(1, 3)} {(3, 5)} {(4, 5)}
mst(s) ∅ {(1, 2)} {(1, 2), (1, 3)} {(1, 2), (1, 3), (3, 5)}
w(T0(s)) 14 13 15 14
U(s) T0 (1, 3), (2, 3), (3, 5), (4, 5) (1, 2), (2, 3), (3, 5), (4, 5) (1, 2), (1, 3), (4, 5), (3, 4) (1, 2), (1, 3), (3, 5), (3, 4)

T1 (3, 4), (1, 4), (2, 5), (2, 4) (3, 4), (1, 4), (2, 5) (1, 4), (2, 5) (1, 4)
T2 (1, 5) (2, 4), (1, 5) (2, 4), (1, 5) (2, 4)

UB(s) 32 28 25 18Table 6: Children of node a

s 5 6 7 8
mv(s) {(1, 2), (1, 3)} {(1, 2), (2, 3)} {(1, 2), (3, 5)} {(1, 2), (4, 5)}
mst(s) ∅ {(1, 3)} {(1, 3), (2, 3)} {(1, 3), (2, 3), (3, 5)}
w(T0(s)) 21 21 17 16

Ũ(s) T0 (2, 3), (3, 5), (4, 5), (1, 4) (1, 3), (3, 5), (4, 5), (2, 5) (1, 3), (2, 3), (4, 5), (3, 4) (1, 3), (2, 3), (3, 5), (3, 4)
T1 (3, 4), (2, 5), (2, 4), (1, 5) (3, 4), (2, 4), (1, 5) (1, 4), (2, 5) (1, 4)

UB(s) 30 29 22 18Table 7: Children of node 1As |mv(5)| = k − 1, we ompute the replaement edge for all edges in T0(5) and �nd that
w(T0(5)) + maxej∈T0(5)\mst(5)(w(r(ej)) − w(ej)) = 28 > bestvalue. Then, bestvalue = 28,
bestset = {(1, 2), (1, 3), (2, 3)} and S = {6}.Iteration 4: We selet node 6.As |mv(6)| = k − 1, we ompute the replaement edge for all edges in T0(5) and �nd that
w(T0(5)) +maxej∈T0(5)\mst(5)(w(r(ej)) − w(ej)) = 24 < bestvalue. We disard node 6 from
S. Sine S = ∅, the algorithm terminates. Figure 3 gives the searh tree generated duringthe algorithm. A solution for 3 Most Vital Edges MST is bestset = {(1, 2), (1, 3), (2, 3)}and the weight of MST in G \ {(1, 2), (1, 3), (2, 3)} is bestvalue = 28.

a

1

5 6

2 3

Figure 3: Searh tree of impliite algorithm
14

5 A mixed integer programming formulation for �nding the kmost vital edgesSeveral linear programming formulations have been proposed to model the determinationof a minimum spanning tree on a graph [12℄. In one of these formulations, the minimumspanning tree is onsidered as a speial version of a network design problem. Modeling thenetwork by a onneted graph, the problem onsists of sending �ow between all nodes of thegraph. Thus, a variable xe assoiated to an edge e indiates whether or not we install theedge e to be available to arry any �ow. One model proposed by Magnanti and Wolsey is thedireted multiommodity �ow model. Let D = (V,A) be the digraph formed by replaing eahedge (i, j) in E by two ars (i, j) and (j, i) in A. In this model, one of the nodes, say node 1,is onsidered as a root and eah node ℓ 6= 1 de�nes a ommodity. Node 1 must send to eahnode ℓ 6= 1 one unit of ommodity ℓ. Denote by f ℓ
ij the �ow of ommodity ℓ on the ar (i, j).For an edge e = (i, j), we set wij = w(e) in the following formulations. The linear programassoiated to this model is:

min
(i,j)∈E

∑
wij(yij + yji)s.t.

∑

(j,1)∈A

f ℓ
j1 −

∑

(1,j)∈A

f ℓ
1j = −1 ∀ℓ ∈ V \{1}

∑

(j,i)∈A

f ℓ
ji −

∑

(i,j)∈A

f ℓ
ij = 0 ∀i, ℓ ∈ V \{1}, i 6= ℓ

∑

(j,ℓ)∈A

f ℓ
jℓ −

∑

(ℓ,j)∈A

f ℓ
ℓj = 1 ∀ℓ ∈ V \{1}

f ℓ
ij ≤ yij ∀(i, j) ∈ A, ∀ℓ ∈ V \{1}

∑

(i,j)∈A

yij = n− 1

fij ≥ 0, yij ≥ 0 ∀(i, j) ∈ A

(1)(2)(3)(4)(5)In this model, onstraints (1) - (3) orrespond to �ow balanes at the nodes. Constraints(4) state that the �ows on (i, j) for all ommodities are zero if yij = 0. Thus, these fourgroups of onstraints impose that the graph de�ned by a solution given by edges (i, j) suhthat yij = 1 is onneted. Constraints (5) indiate that any solution must ontain n−1 edges,thus any possible solution has to be a tree. Therefore, this formulation models the problemof �nding a minimum spanning tree.Remark that in this formulation, integrity onstraints on variables yij are omitted. In-deed, Magnanti and Wolsey [12℄ show that the extreme points of the set of feasible solutionsorresponding to this model are integers. The dual orresponding to this linear program isgiven by:
15

max
∑

ℓ∈V, ℓ 6=1

(αℓ
ℓ − αℓ

1) + (n− 1)µs.t.
σℓ
ij ≥ αℓ

j − αℓ
i ∀(i, j) ∈ A, ∀ℓ ∈ V \{1}∑

ℓ 6=1

σℓ
ij + µ ≤ wij ∀(i, j) ∈ E

∑
ℓ 6=1

σℓ
ji + µ ≤ wij ∀(i, j) ∈ E

σℓ
ij ≥ 0 ∀(i, j) ∈ A, ∀ℓ ∈ V \{1}

αℓ
i ≥ 0 ∀i ∈ V, ℓ ∈ V \{1}

µ unrestritedUsing the previous MST formulation, one an model k Most Vital Edges MST de�nedon the graph UG
k = (V,Eu) with Eu = ∪k

j=0Tj as follows:

max
z∈Z

min
∑

(i,j)∈Eu

(wij +Mij zij)(yij + yji)s.t. ∑
(j,1)∈Au

f ℓ
j1 −

∑
(1,j)∈Au

f ℓ
1j = −1 ∀ℓ ∈ V \{1}

∑
(j,i)∈Au

f ℓ
ji −

∑
(i,j)∈Au

f ℓ
ij = 0 ∀i, ℓ ∈ V \{1}, i 6= ℓ

∑
(j,ℓ)∈Au

f ℓ
jℓ −

∑
(ℓ,j)∈Au

f ℓ
ℓj = 1 ∀ℓ ∈ V \{1}

f ℓ
ij ≤ yij ∀(i, j) ∈ Au, ∀ℓ ∈ V \{1}∑

(i,j)∈Au

yij = n− 1

fij ≥ 0, yij ≥ 0 ∀(i, j) ∈ Auwhere Z = {zij ∈ {0, 1}, ∀(i, j) ∈ Eu :
∑

(i,j)∈Eu

zij = k}In this formulation, variable zij is equal to 1 if edge (i, j) is deleted and 0 otherwise. Inorder to disard this edge from any MST, we assign it the weight wij +Mij where Mij is alarge enough onstant, e.g. Mij = max(i,j)∈E wij + 1− wij .Using the dual of the inner program, we obtain the following mixed integer programmingformulation for k Most Vital Edges MST.

max
∑

ℓ∈V, ℓ 6=1

(αℓ
ℓ − αℓ

1) + (n − 1)µs.t.
σℓ
ij ≥ αℓ

j − αℓ
i ∀(i, j) ∈ Au, ∀ℓ ∈ V \{1}∑

ℓ 6=1

σℓ
ij + µ ≤ wij +Mij zij ∀(i, j) ∈ Eu

∑
ℓ 6=1

σℓ
ji + µ ≤ wij +Mij zij ∀(i, j) ∈ Eu

∑
(i,j)∈Eu

zij = k

zij ∈ {0, 1} ∀(i, j) ∈ Eu

σℓ
ij ≥ 0 ∀(i, j) ∈ Au, ∀ℓ ∈ V \{1}

αℓ
i ≥ 0 ∀i ∈ V, ℓ ∈ V \{1}

µ unrestrited 16

6 Computational resultsAll experiments presented here were performed on a 3.4GHz omputer with 3Gb RAM.All proposed algorithms are implemented in C. All instanes are omplete graphs de�ned on nverties. Weights w(e) for all e ∈ E are generated randomly, uniformly distributed in [1, 100].For eah value of n and k presented in this study, 10 di�erent instanes were generated andtested. The results are reported in Table 8 where eah given value is the average over 10instanes. For the impliit enumeration algorithm, omputed and generated nodes representrespetively nodes for whih we have determined mv, mst, U and UB and nodes for whih
UB > bestvalue and must be stored. Column ♯opt orresponds to the number of instanessolved optimally.We �rst ompare the expliit and impliit enumeration algorithms. The results show thatimpliit enumeration algorithms are muh faster than the expliit enumeration algorithm andan handle instanes of onsiderably larger size. Observe that, for the expliit enumerationalgorithm, the searh tree size is idential for any instane of the same (n, k) type. As aonsequene, either all or none of the instanes of a same (n, k) type an be solved. Moreover,for the same reason, omputation times show a low variane for all instanes of a same (n, k)type. Regarding the impliit enumeration algorithm, the "Branhing: best upper bound"strategy yields slightly better running times than the "Branhing: best lower bound" strat-egy. However, the "Branhing: best upper bound" strategy, for whih fathoming tests areperformed less frequently, generates more nodes. Thus, owing to the limited memory apa-ity, the "Branhing: best lower bound" strategy an handle instanes of larger size.We ompare now the results obtained by the mixed integer program with those of theimpliit enumeration algorithm. For this, we implemented the mixed integer program usingthe solver CPLEX 12.1 and we run it on the same generated instanes. We limited the runningtime to 1 hour for the instanes with 20, 25, 30 and 50 verties, and to 2 hours for the otherinstanes. The results are also reported in Table 8 where

• Time, given in seonds, is the average running time on the 10 instanes. For any instanewhih is not solved optimally within the time limit, the running time is set to this limit;
• Generated nodes represents the average number of nodes reated in the searh treeorresponding to instanes returning feasible solutions;
• Gap, expressed as a perentage, represents the average over ratios UB − BS

UB
omputedon all instanes returning at least one feasible solution, where UB is the �nal best upperbound and BS is the best solution value found;

• Opt/Feas represents the number of instanes solved optimally /for whih at least onefeasible solution was found within the time limit.We note that the mixed integer program reahes the optimal value for very small instanesonly. Atually, for n < 100, we only obtain in most ases feasible solutions with rather largegaps whih indiates that optimality is far from being reahed. Finally, for instanes with
n ≥ 100, no feasible solutions are returned within the time limit. Moreover, for n = 300 and
400, the exeution of the program exeeds the memory apaity after a few seonds (297.437and 0.56 seonds in average respetively). 17

From all these remarks, we an onlude that our proposed impliit enumeration algorithmgives better results than the expliit enumeration algorithm as well as the resolution of themixed integer program and this both in terms of running time and memory use.We propose in the following an ε-approximate algorithm based on our impliit algorithm.The aim being to obtain an ε-approximate solution of the optimum, the ondition to generatea node s in the searh tree is now (1 − ε)UB(s) > bestvalue. Indeed, the value v returnedby the approximate algorithm must verify opt(G)(1 − ε) ≤ v ≤ opt(G). Sine v is equal to
bestvalue, any node for whih UB(s)(1− ε) ≤ bestvalue is fathomed.The algorithm is tested on the same instanes generated before and this for ε = 0.01, 0.05,and 0.1. Thus, we ompare the ε-approximate algorithm with the impliit algorithm. Theresults are summarized in Table 9. The meaning of omputed and generated nodes is thesame as above and eah given value in the table represents the average over the 10 generatedinstanes for eah value of n and k.

18

n k Expliit Impliit enumeration Mixed Integer Programenumeration Branhing: best lower bound Branhing: best upper boundTime Nodes Time Nodes Time Nodes ♯opt Time Generated Gap Opt/Feas(s) (s) Computed Generated (s) Computed Generated (s) nodes (%)20 3 0.000 210 0.000 165.1 33.5 0.001 165.1 34.3 10 35.750 1 638.2 0 10 / 105 0.135 8 855 0.032 3 280.6 422.3 0.032 3 230.9 463.2 10 692.984 21 792.4 0 10 / 107 2.732 177 100 0.419 35 714.0 4 792.0 0.380 35 659.2 5 918.2 10 3 600.000 61 386.5 23.91 0 / 109 36.020 220 075 3.322 258 321.8 35 639.1 3.047 257 776.0 44 037.4 10 3 600.000 36 908.1 46.49 0 / 1025 3 0.000 325 0.000 245.0 29.8 0.003 245.0 31.4 10 141.270 2 066.5 0 10 / 105 0.318 20 475 0.095 7 146.4 705.1 0.089 7 047.2 866.7 10 2 984.021 29 300.4 8.69 5 / 107 8.783 593 775 1.772 128 802.5 15 143.4 1.617 128 742.2 16 926.0 10 3 600.000 14 218.1 46.05 0 / 108 52.068 2 629 575 3.765 247 900.6 26 076.8 3.566 247 822.8 31 938.3 10 3 600.000 10 733.5 66.43 0 / 1030 3 0.007 465 0.000 345.1 47.7 0.005 345.1 49.7 10 424.171 3 831.9 0 10 / 105 0.812 40 920 0.260 16 756.3 1 373.7 0.231 16 625.9 1 588.7 10 3 458.330 13 156.2 26.03 1 / 107 40.461 1 623 160 3.899 231 523.5 20 779.0 3.553 231 210.2 25 737.4 10 3 600.000 4 855.9 63.65 0 / 1050 3 0.880 1 275 0.028 949.1 64.9 0.026 949.1 85.3 10 3 600.000 1 285.8 17.28 0 / 105 15.390 292 825 2.043 76 840.3 4 649.3 1.856 74 550.2 5 138.1 10 3 600.000 503.0 43.59 0 / 107 - - 88.886 3 156 471.8 168 127.4 81.707 3 156 170.1 218 830.4 10 3 600.000 21.33 80.47 0 / 975 3 0.376 2 850 0.101 2 296.8 114.8 0.096 2 296.8 117.7 10 7 200.000 430.2 17.83 0 / 105 - - 11.248 259 738.0 8 130.7 10.459 259 737.6 10 519.6 10 6 490.238 0.3 39.22 1 / 107 - - 650.008 13 330 591.9 474 912.7 463.385 9 608 531.7 379 179.2 7 7 200.000 0 55.75 0 / 3100 3 1.083 5 050 0.224 3 617.1 83.3 0.210 3 617.1 89.9 10 7 200.000 0 0 / 05 - - 54.148 904 662.4 19 383.8 49.895 904 662.4 23 800.1 10 7 200.000 0 0 / 07 - - 2 016.410 26 835 600.6 721 120.4 935.777 11 986 049.2 368 180.0 4 7 200.000 0 0 / 0200 5 - - 572.557 2 933 547.2 46 236.3 670.340 2 933 296.1 49 073.6 10 7 200.000 0 0 / 0300 5 - - 1 793.460 3 996 192.1 43 671.2 2 163.350 3 980 311.0 56 924.5 10 7 200.000 0 0 / 0400 5 - - 7 265.850 10 956 321.8 106 433.4 6 195.182 5 927 376.8 56 424.5 7 - - - 0 / 0italis: average over instanes solved optimally-: memory over�owTable 8: Comparison of expliit enumeration, impliit enumeration and MIP-based algorithms

n k ε-approximate algorithm

ε = 0.01 ε = 0.05 ε = 0.1Time Nodes ε′ Time Nodes ε′ Time Nodes ε′(s) Computed Generated (s) Computed Generated (s) Computed Generated20 3 0.000 162.9 30.6 0.00000 0.000 136.9 14.0 0.00000 0.000 100.6 7.4 0.001985 0.035 3 108.2 384.6 0.00000 0.024 2 068.8 211.1 0.00043 0.012 1 258.4 113.1 0.002677 0.393 33 258.5 4 356.0 0.00000 0.273 21 820.0 2 575.7 0.00323 0.174 13 209.9 1 451.0 0.009229 3.044 237 267.0 32 085.4 0.00000 2.180 160 036.0 20 093.2 0.00421 1.376 93 275.6 10 888.2 0.0073525 3 0.000 230.8 26.7 0.00000 0.000 189.8 13.1 0.00263 0.000 98.2 5.7 0.002635 0.093 6 691.6 637.2 0.00060 0.061 4 235.5 345.2 0.00213 0.031 2 002.0 146.1 0.007797 1.648 119 033.8 13 603.0 0.00000 1.066 72 193.8 7 178.9 0.00148 0.606 37 683.2 3 379.8 0.004168 3.513 226 536.1 23 389.9 0.00000 2.255 135 623.2 12 792.9 0.00142 1.242 68 426.4 5 900.1 0.0031930 3 0.000 338.1 38.8 0.00000 0.000 280.1 17.3 0.00453 0.000 161.6 7.2 0.004525 0.233 15 137.4 1 171.7 0.00000 0.123 7 302.6 470.5 0.00307 0.059 3 146.2 181.9 0.003637 3.523 209 289.3 18 256.8 0.00000 2.183 119 797.9 9 363.5 0.00470 1.155 57 665.1 4 062.5 0.0072150 3 0.025 899.4 48.8 0.00000 0.011 381.6 14.1 0.00000 0.000 76.5 2.4 0.006465 1.790 67 052.0 3 757.3 0.00000 0.635 20 586.6 866.5 0.00178 0.255 7 213.3 241.8 0.002797 74.688 2 534 780.6 130 685.3 0.00000 28.324 820 954.5 36 722.1 0.00053 7.958 193 201.5 7 827.2 0.0031675 3 0.092 2 121.1 75.7 0.00000 0.0016 325.4 5.3 0.00241 0.003 75.0 1.0 0.003555 8.334 187 230.6 5 444.6 0.00000 1.679 27 753.6 616.2 0.00168 0.232 2 860.8 50.4 0.003877 510.768 9 838 080.8 336 993.8 0.00000 109.664 1 734 007.8 51 514.5 0.00195 20.661 260 410.7 6 584.0 0.00536100 3 0.208 3 341.4 57.4 0.00000 0.013 121.6 1.4 0.00051 0.010 100.0 1.0 0.003085 34.779 561 343.8 10 619.5 0.00000 3.875 41 860.1 611.1 0.00143 0.396 3 307.4 41.6 0.002977 1 214.43 14 901 505.8 377 861.2 0.00000 179.771 1 703 572.1 34 196.8 0.00143 13.940 95 045.1 1 492.2 0.00371200 5 165.904 682 703.2 10 147.9 0.00000 0.731 1 693.0 11.5 0.00163 0.131 200.0 1.0 0.00163300 5 87.600 164 368.6 1 129.4 0.00030 0.380 300.0 1.0 0.00245 0.379 300.0 1.0 0.00241400 5 89.564 80 786.1 257.3 0.00000 0.846 400.0 1.0 0.00000 0.842 400.0 1.0 0.00000Table 9: Results of the ε-approximate algorithm

20

We note that the running times of the ε-approximate algorithm are signi�antly lowerthan those of the impliit enumeration algorithm. Running times do not exeed 21 seondsfor ε = 0.1, 180 seonds for ε = 0.05 and 1 215 seonds for ε = 0.01. We also note that forlarge instanes with n = 300 and 400 nodes, the ε-approximate algorithm solves the problemfor ε = 0.05 and 0.1 at the root in a time less than 1 seond, and for ε = 0.1 in a time less than90 seonds while the impliit enumeration algorithm requires 1 793.460 and 7 265.850 seondsrespetively.Moreover, the approximate solutions a posteriori are within ε′ to the optimum, with ε′ ≤
0.0006 for ε = 0.01, ε′ ≤ 0.0047 for ε = 0.05 and ε′ ≤ 0.00922 for ε = 0.1.For ε = 0.01, we note that the problem is nearly solved to optimality (ε′ = 0).All these remarks show that the proposed lower bounds and upper bound are of very goodquality and that the running time of the impliit enumeration algorithm is the time neededto verify the optimality of the solution. Indeed, this optimal solution is either found in a fewseonds or determined at the root of the searh tree orresponding then to the maximum valueof the three lower bounds assoiated to the root.7 ConlusionsIn this paper we presented and ompared di�erent algorithms for solving k Most Vi-tal Edges MST. We �rst proposed an expliit enumeration algorithm that gives the besttime omplexity for general k. Using upper and lower bounds, we adapted the previous al-gorithm into an e�ient impliit enumeration algorithm. We also proposed a mixed integerprogramming formulation of k Most Vital Edges MST whih was solved using CPLEX.Our experiments showed a large superiority of the impliit enumeration algorithm. An ε-approximate version of this algorithm substantially improves running times while providingvery good quality results (with an a posteriori approximation ratio usually muh less than onetenth of the guaranteed ratio ε).All the previous algorithms an be easily adapted to solve some variants of the k MostVital Edges MST problem. In a �rst variant, a removing ost is assoiated to eah edge.The problem onsists of �nding a subset of edges with total ost bounded by a budget limitwhose deletion auses the largest inrease in the weight of a minimum spanning tree. In aseond variant, we have to determine a minimum number of edges to be removed suh thatthe weight of a minimum spanning tree in the resulting graph is at least a �xed value.Referenes[1℄ A. Bar-Noy, S. Khuller, and B. Shieber. The omplexity of �nding most vital ars andnodes. Tehnial Report CS-TR-3539, University of Maryland, 1995.[2℄ C. Bazgan, S. Toubaline, and D. Vanderpooten. Complexity of determining the mostvital elements for the 1-median and 1-enter loation problems. In Proeeding of the

4th Annual International Conferene on Combinatorial Optimization and Appliations(COCOA 2010), LNCS 6508, Part I, pages 237�251, 2010.
21

[3℄ C. Bazgan, S. Toubaline, and D. Vanderpooten. Critial edges/nodes for the minimumspanning tree problem: omplexity and approximation. to appear in Journal of Combi-natorial Optimization.[4℄ B. Chazelle. A minimum spanning tree algorithm with inverse-Akermann type omplex-ity. Journal of the ACM, 47(6):1028�1047, 2000.[5℄ B. Dixon, M. Rauh, and R.E. Tarjan. Veri�ation and sensitivity analysis of minimumspanning trees in linear time. SIAM Journal on Computing, 21(6):1184�1192, 1992.[6℄ G. N. Frederikson and R. Solis-Oba. Inreasing the weight of minimum spanning trees.Proeedings of the 7th ACM-SIAM Symposium on Disrete Algorithms (SODA 1996),pages 539�546, 1996. Also appeared in Journal of Algorithms, 33(2): 244-266, 1999.[7℄ L. Hsu, R. Jan, Y. Lee, C. Hung, and M. Chern. Finding the most vital edge withrespet to minimum spanning tree in a weighted graph. Information Proessing Letters,39(5):277�281, 1991.[8℄ K. Iwano and N. Katoh. E�ient algorithms for �nding the most vital edge of a minimumspanning tree. Information Proessing Letters, 48(5):211�213, 1993.[9℄ L. Khahiyan, E. Boros, K. Borys, K. Elbassioni, V. Gurvih, G. Rudolf, and J. Zhao.On short paths interdition problems : total and node-wise limited interdition. Theoryof Computing Systems, 43(2):204�233, 2008.[10℄ W. Liang. Finding the k most vital edges with respet to minimum spanning trees for�xed k. Disrete Applied Mathematis, 113(2-3):319�327, 2001.[11℄ W. Liang and X. Shen. Finding the k most vital edges in the minimum spanning treeproblem. Parallel Computing, 23(13):1889�1907, 1997.[12℄ T. L. Magnanti and L. Wolsey. Optimal trees. In M. O. Ball, et al. (Eds.), Network Mod-els, Handbook in Operations Researh and Management Siene, Vol 7, North-Holland,Amsterdam, pages 503�615, 1995.[13℄ E. Nardelli, G. Proietti, and P. Widmayer. A faster omputation of the most vital edgeof a shortest path. Information Proessing Letters, 79(2):81�85, 2001.[14℄ S. Pettie. Sensitivity analysis of minimum spanning tree in sub-inverse-akermann time.In Proeedings of 16th International Symposium on Algorithms and Computation (ISAAC2005), LNCS 3827, pages 964�973, 2005.[15℄ S. Pettie and V. Ramahandran. An optimal minimum spanning tree algorithm. Journalof the ACM, 49(1):16�34, 2002.[16℄ H. D. Ratli�, G. T. Siilia, and S. H. Lubore. Finding the n most vital links in �ownetworks. Management Siene, 21(5):531�539, 1975.[17℄ H. Shen. Finding the k most vital edges with respet to minimum spanning tree. AtaInformatia, 36(5):405�424, 1999. 22

[18℄ F. Suraweera, P. Maheshwari, and P. Bhattaharya. Optimal algorithms to �nd the mostvital edge of a minimum spanning tree. Tehnial Report CIT-95-21, Shool of Computingand Information Tehnology, Gri�th University, 1995.[19℄ R. E. Tarjan. Appliations of path ompression on balaned trees. Journal of the ACM,26(4):690�715, 1979.[20℄ R. Wollmer. Removing ars from a network. Operations Researh, 12(6):934�940, 1964.[21℄ R. K. Wood. Deterministi network interdition. Mathematial and Computer Modeling,17(2):1�18, 1993.

23

