Efficient determination of the £ most vital edges for
the minimum spanning tree problem

Cristina Bazgan'? Sonia Toubaline! Daniel Vanderpooten®

1. Université Paris-Dauphine, LAMSADE
Place du Maréchal de Lattre de Tassigny, 75775 Paris Cedex 16, France
2. Institut Universitaire de France
{bazgan,toubaline,vdp }@lamsade.dauphine.fr

Abstract

We study in this paper the problem of finding in a graph a subset of k edges whose
deletion causes the largest increase in the weight of a minimum spanning tree. We propose
for this problem an explicit enumeration algorithm whose complexity, when compared to
the current best algorithm, is better for general k but very slightly worse for fixed k. More
interestingly, unlike in the previous algorithms, we can easily adapt our algorithm so as
to transform it into an implicit enumeration algorithm based on a branch and bound
scheme. We also propose a mixed integer programming formulation for this problem.
Computational results show a clear superiority of the implicit enumeration algorithm
both over the explicit enumeration algorithm and the mixed integer program.

Key words: most vital edges, minimum spanning tree, exact algorithms, mixed integer
program.

1 Introduction

In many applications involving the use of communication or transportation networks, we
often need to identify critical infrastructures. By critical infrastructure we mean a set of links
whose damage causes the largest perturbation within the network. Modeling this network as a
weighted graph, identifying critical infrastructures amounts to finding a subset of edges whose
removal from the graph causes the largest increase in the total weight. In the literature this
problem is referred to as the k most vital edges problem. In this paper, we are interested in
determining a subset of edges of the graph whose deletion causes the largest increase in the
weight of a minimum spanning tree (MST). This problem is referred to as k& MOST VITAL
EpGES MST.

The problem of finding the k most vital edges of a graph has been investigated for various
problems including shortest path [1, 9, 13], maximum flow [20, 16, 21|, 1-median and 1-center
[2]. For the minimum spanning tree problem defined on a graph G with n vertices and m edges,
Frederickson and Solis-Oba [6] showed that, for general k, & MosT ViTAL EpGES MST is
NP-hard and proposed an O(log k)-approximation algorithm. The problem remains NP-hard
even for complete graphs with weights 0 or 1 and 3-approximable for graphs with weights 0 or 1
[3]. For a fixed k the problem is obviously polynomial. The case k = 1 has been largely studied
in the literature [7, 8, 18]. Hsu et al. [7] gave two algorithms that run in O(mlogm) and

O(n?). Iwano and Katoh [8] proposed an algorithm in O(ma(m,n)) using Tarjan’s result [19],
where « is the inverse Ackermann function. Pettie [14] improved the results of Tarjan [19] and
Dixon et al. 5], giving rise to the current best deterministic algorithm in O(mloga(m,n)).
For general k, several exact algorithms based on an explicit enumeration of possible solutions
have been proposed [10, 11, 17]. The best one [10] runs in time O(n*a((k+1)(n —1),n)) and
was achieved by reducing G to a sparse graph. Using Pettie’s result [14], the running time of
the later algorithm becomes O(n* log a((k + 1)(n — 1),n)).

In this paper we propose a new efficient algorithm also based on an explicit enumeration of
all possible solutions for k¥ MosT VITAL EDGES MST. Its complexity O(n* log a(2(n—1),n))
for fixed k is theoretically very slightly worse than the complexity of the algorithm proposed
by Liang [10] using Pettie’s result [14]. However, given the fact that a(m, n) is always less than
4 in practice, the complexity of these two algorithms can be deemed as equivalent. Moreover,
the complexity of our algorithm is better than that of Liang’s algorithm for general k. More
interestingly, unlike any other algorithm, our algorithm has two specific useful features. First,
it can also determine an optimal solution for ¢ MosT VitAL EDGES MST, for each 1 <
1t < k, with the same time complexity. Second, it can be easily adapted to establish an
implicit enumeration algorithm based on a branch and bound procedure. We also present in
this paper a mixed integer programming formulation to solve ¥ MosT VITAL EDGES MST.
We implement and test all these proposed algorithms using, for the implicit enumeration
algorithm, different branching and evaluation strategies. The results show that the implicit
enumeration algorithm is much faster than the explicit enumeration algorithm as well as the
resolution of the mixed integer program. Moreover, the implicit enumeration algorithm can
handle significantly larger instances due to a better use of memory space. Finally, we also
propose an e-approximate algorithm.

The rest of the paper is organized as follows. In section 2 we introduce notations and some
results related to our problem. In section 3 we present a new explicit enumeration algorithm
that solves & MosT VITAL EDGES MST. In section 4 we propose another exact algorithm
based on an implicit enumeration scheme. In section 5, we present a mixed integer program-
ming formulation for & MosT ViTAL EDGES MST. Computational results are presented in
section 6. We also include in these experiments an e-approximate version of our implicit
enumeration schema. Conclusions are provided in section 7.

2 Basic concepts and preliminary results

Let G = (V, E) be a weighted undirected connected graph with |V| = n, |E| = m where
w(e) > 0 is the integer weight of each edge e € E. We denote by G — E’ the graph obtained
from G by removing the subset of edges E' C E. k MosT ViTAaL EpDGES MST consists of
finding a subset of edges S* C E with |S*| = k that maximizes the weight of a MST in the
graph G — S*. We assume that G is at least (k + 1) edge-connected, since otherwise any
selection of k edges including the edges of a minimum unweighted cut is a trivial solution.
Therefore, we assume k < A\(G) — 1, where A\(G) is the edge-connectivity of G. Also, without
loss of generality, we suppose in the following that all weights are different (by introducing, if
necessary, an arbitrary total order on edges with the same weight). This assumption implies
the uniqueness of minimum spanning trees or forests. For a non necessarily connected graph,
a minimum spanning forest (MSF) is the union of minimum spanning trees for each of its
connected components. In this paper a tree or a forest is considered as a graph but also, for

convenience, as a subset of edges. For a set of edges F', w(F') represents the sum of the weights
of the edges in F'.

We denote by Ty the MST of G. Remark that an optimal solution of & MOST VITAL
EDGES MST must contain at least one edge of Ty. For ¢ > 1, let T; be the MSF of the graph
Gi=G— U;;}ﬂ}. We use in the following the graph US = (V, U?ZOT]-) which has the following
interesting property.

Lemma 1 (Liang and Shen [11]) For any S C E, |S| < k, any edge of the MST of graph
G — S belongs to U]?.

By Lemma 1, solving & MosT VITAL EDGES MST on G reduces to solving the same
problem on the sparser graph US whose number of edges is at most (k + 1)(n — 1).

Considering T a MST of a graph, the replacement edge r(e) for an edge e € T is defined as
the edge ¢’ # e of minimum weight which connects the two disconnected components of 7'\ {e}.
The sensitivity of a minimum spanning tree 7', i.e. the allowable variation for each edge weight
so that 7" remains a minimum spanning tree, can be computed in O(mlog a(m,n)) [14]. In
particular, for edges in T', this algorithm provides replacement edges. As a consequence, we
get the following result.

Lemma 2 1 MosT VITAL EDGES MST defined on a graph with n vertices and m edges is
solvable in O(mloga(m,n)).

Proof: Let T™ be the minimum spanning tree in a given graph. We calculate the replacement
edges r(e) for all edges e € T*. The most vital edge is the edge e* such that w(r(e*)) —w(e*) =
max w(r(e)) —w(e). O
ecT™

Actually, replacement edges belong to a specific subset of edges as shown by the following
result.

Lemma 3 For each edge e € T;, we have r(e) € Ty fori=0,...,k— 1.

Proof: Given a graph G, Liang [10] shows that for each edge e € Tp, r(e) € T1. Applying
this to graph G;, for which T; is the MSF, we get the result. O

3 An explicit enumeration algorithm for finding the £ most vital
edges

We propose an algorithm that constructs a search tree of depth £ — 1 in a breadth-first
mode. At the i*" level of this search tree, i = 0,...,k — 1, a node s is characterized by:

e mu(s): a subset of ¢ edges, corresponding to a tentative partial selection of the k most
vital edges.

o U(s) = Ulf_/(‘iiv(s” where G'(s) = (V, E\mu(s)). Hence, we have
U(s) = (V, Ui:émv(s)lﬂ(s)) where T;(s) is the MSF in G'(s) — U;;%J}(s).

e mst(s): a subset of edges forbidden to deletion. These edges belonging to Ty(s), will
necessary belong to any MST associated with any descendant of s. Depending on the
position of s in the search tree, the cardinality of mst(s) varies from 0 to n — 2.

Denote by N, for i = 0,...,k — 1, the set of nodes of the search tree at the i*" level.
We describe in the following the exact algorithm (section 3.1) and exemplify its use on an
illustrative example (section 3.2).

3.1 Description of the algorithm

We first construct the graph UE. Let a be the root of the search tree with muv(a) =
mst(a) =0, U(a) = U, w(Tp(a)) = w(Tp), and Ng = {a}.

For a level i, 0 < i < k — 2, we compute for each node s € N; and each edge e € Ty(s),
the replacement edges r(e) in T1(s). Node s gives rise to |Tp(s)\mst(s)| children in Njiq.
Each such child d, corresponding to an edge e; in Ty(s)\mst(s) = {e1,...,en_1—|msi(s)|}, i
characterized by:

e mu(d) = mu(s)U {e;}.
o mst(d) = mst(s)U (Ui;i{eg}).
e U(d) is updated from U(s) as follows (using Lemma 3):

e To(d) =To(s) U{r(ej)} \ {e;} and hence w(Ty(d)) = w(To(s)) — w(e;) + w(r(e;)).
e Forj=1,..., k—|mv(d)|, Tj(d) is obtained from T}(s) by deleting the replacement
edge e,¢p of the edge deleted from Tj_1(s) and replacing it by its replacement edge
(erep) € Tya(s),
If for a level i and an edge ep, the replacement edge r(e,ep) does not exist,
Ti(d) = Tj(s) \ {erep} and Ty(d) = Ty(s) for £ =5+ 1,...,k — |mv(d)|.

If for a level 4, T;(s) = 0 then Ty(d) = 0 for £ =i,... . k — |mwv(d)|.

At level k — 1, for each node s € Ni_1 and for all edges e € Ty(s) \ mst(s), we find r(e) in
Ti(s) and we determine a node s* that verifies

max max (w(Tp(s))—w(e)+w(r(e))). An optimal solution is the subset muv(s*)U{e*}
SENE_1 e€Tp(s)\mst(s)

where e* = arg max w(To(s*)) —w(e) +w(r(e)). The largest weight of a MST in the
e€Tp(s*)\mst(s*)

partial graph obtained by deleting this subset is w(Tp(s*)) — w(e*) + w(r(e*)).

Algorithm 1 describes this procedure. Its correctness and complexity are given in Theo-
rem 1.

Theorem 1 Algorithm 1 computes an optimal solution for an instance of k MOST VITAL
EpGES MST with n vertices and m edges in O(kma(m,n) 4+ nFloga(2(n —1),n)) time.

Proof: We first show that Algorithm 1 gives an optimal solution for £ MoOsST VITAL EDGES
MST. Let S* be the solution returned by Algorithm 1, and w* the weight of the MST in
UY — S*. Consider any solution S, with |S’| = k, and w’ the weight of the MST in U — 5’
Let r be a node of the search tree such that mv(r) C S’ and for any child d of r, mv(d) € S".
Clearly, r exists and corresponds at worst to root a when S’ NTy = (. Since, by definition,
r is such that no edge of Ty(r) belongs to S’, we have w' = w(Ty(r)). Moreover, since
w(Tp(r)) < w*, we have w' < w*.

Algorithm 1: Explicit resolution of K MVE MST

/* Let a be the root of the search tree */

1 Construct UE;
2 mu(a) < B;mst(a) < O;w(To(a)) + w(To); Ula) Ug;
3 No«{ahs;N;+0,i=1,...,k—1;
4 fori< O0Otok—2do
5 forall s € N; do
6 forall e € Ty(s) do
7 | find r(e) in T1(s);
/* TO(S)\mSt(S) = {617"'7en717\mst(s)\} */
8 forall e; € Tp(s)\mst(s) do
/* create a new node d, a child of s */
9 mo(d) < mo(s) U {e;};
10 w(To(d)) < w(To(s)) — wle;) +w(r(e;));
11 mst(d) < mst(s) U (U)_1 {ee});
12 determine U(d) by using Algorithm 2;
13 Niy1 < Nit1 U {d};

14 mazx < 0;
15 forall s € Ni_; do

16 forall e € Ty(s) do
17 | find r(e) in T1(s);
18 forall e € Ty(s)\mst(s) do
19 if w(To(s)) — w(e) +w(r(e)) > maz then
20 maz w(To(s)) — w(e) + w(r(e));
21 e’ < e;
22 s* +— s;
/* The largest weight of a MST in the partial obtained graph is w(Tp(s*)) —w(e*) + w(r(e*)) */

23 return S* = mu(s*) U {e*};

Algorithm 2: Construction of U(d) from U(s) where d is the child of s in the search
tree obtained from s by deleting e;

1 To(d) < To(s) U{r(e;)\{e; }5
2 replace < r(ej);
3 £+ 0;
4 while Ty, 1(s) # 0 do
5 if replace exists then
6 Determine if there exists a replacement edge, called replacel, of replace in Tyy1(s)
7 if replacel exists then
8 Te(d) < Ty(s) U {replacel}\{replace};
9 L replace < replacel;
10 else
11 |_ Te(d) < Ty(s)\{replace} ;
12 else
15 | L Tuld) Ta(s);
14 0+ 0+ 1;

15 return U(d);

We determine now the complexity of Algorithm 1. Denote by ¢, the time for constructing
UE , by tedge—rep the time for finding the replacement edges for all edges of a minimum spanning
tree, and by t4e, the time for generating any node s of the search tree (that is determining
mu(s), mst(s) and ﬁ(s)) Level 0 requires |No|tedge—rep time. Level i takes |Nj|tedge—rep +
|Niltgen time, for 1 < i < k — 1. At level k, we compute the k£ most vital edges. Thus, the

total time of Algorithm 1 is given by

k—1 k—1
ty + Z |Ni|tedge—rep + Z |Ni|tgen + |Nk|
=0 =1

For each node s € N;, subset muv(s) consists of ¢ tree edges of Tp(a) and (i — £) edges
belonging to the union set of the (i — ¢) replacement edges of these ¢ edges, 1 < ¢ < i (the
p replacement edges of an edge e € Ty(a) are the p edges of minimum weight which connect
the two disconnected components of Ty(a)\{e}). This implies that |N;| = > ,_; ("zl)Kz_Z =
S ("D () = (MT?) = 0(nf), where KE, = ("+ﬁ_1) is the number of combinations with
repetition of p elements chosen from a set of n elements.

For anode s € N;, 1 <i <k —1, U(s) contains at most k — i + 1 forests. Then, tgep is in
O((k—1i+1)n) time. Since the replacement edges of a MST in a graph with n vertices and m
edges can be computed in O(mloga(m,n)) [14], tedge—rep is in O(nlog a(2(n —1),n)) time.
The construction of U, kG , corresponding to t,, can be performed in O(kma(m,n)) time, using
k times the best current algorithms for MST [4, 15]|. Therefore, the complexity of Algorithm 1
is in O(kma(m,n)+n*log a(2(n—1),n)) time. Note that the time needed to generate all the
nodes of the search tree is dominated by the total time to find, for all nodes s of the search
tree, the replacement edges r(e) in T1(s) for all edges e € Tp(s). O

Remark For each node s of the search tree, we could use, instead of the graph U (s), the

graph U(s) = U]f_ﬁ‘s;)v(s” where G”(s) is the graph obtained from G by contracting the edges

of mst(s) and removing the edges of muv(s). Thus, U(s) = (V, Uf:_émv(s)‘ﬂ(s)) where T;(s)
is the MSF of G"(s) — U;;%)Tj(s). Unfortunately, given a child d of a node s of the search

tree, updating efficiently U(d) from U(s) is not as straightforward as for U. However, even if
updating U could be performed more efficiently than U, we would get the same complexity
since the time for generating all nodes of the search tree is dominated by the total time for

finding the replacement edges for all nodes in the search tree.

We close this subsection by comparing our algorithm with the previously best known
algorithm for £k MosT VitAL EpGES MST. For fixed k, by using the result of Dixon et al.
[5], Liang [10] proposes an algorithm to solve k MosT VITAL EpGEs MST in O(nfa((k +
1)(n—1),n)) time. Using Pettie’s result [14] Liang’s algorithm can be implemented in O(¢,, +
nkloga((k + 1)(n — 1),n)) time, where t, is the time for constructing US. Our algorithm
has a complexity that is theoretically slightly worse than that of Liang. Nevertheless, since
a(m,n) is always less than or equal to 4 in practice, the complexity of these two algorithms
can be considered as equivalent. Moreover, a specific advantage of our algorithm is that it
can also determine, with the same time complexity, an optimal solution for ¢ MOST VITAL
EDpGES MST, for 1 <7 < k. Indeed, at each level ¢, we can find among nodes of V;, the node
with the largest weight of a MST.

For general k, our bound is clearly better than that of Liang. Indeed, in Liang’s algorithm,
after the determination of U, Liang divides the problem into two cases: (i) |[ToNS*| =4,1 <
i < k and (i7) |To N S*| = k where S* represents a subset of k most vital edges. In (i), for
every possible combination of ¢ edges among the n — 1 edges of Ty, 1 < ¢ < k, the author
constructs a specific graph G with a number of nodes and edges depending only on k, and
determines the k& — i remaining edges in G. In (i7), from every possible choice of (k — 1)

edges among the n — 1 edges of Ty, the author constructs a MST 7" in the graph obtained by
deleting these (k — 1) edges and finds the k** edge to be removed by using the replacement
edges of T". Therefore, (i) and (i) are performed respectively in Zk_l ("7) (tg + trx—;) and
(k 1) tiast time, where tg, tx_; and t;45 are respectively the time to construct G, the time to
determine the k — i remaining edges to be removed from G and the time to find the k** edge to
be removed from 7" NTy. Note that Liang, who considers only the case where k is fixed, does
not need to explicit the term involving t;_;. However, for general k, even if expressing the
complexity of his algorithm by O(t, + k3n* + Zi-:ll (";1)tk_i + kn*log a((k +1)(n —1),n)),
one can observe that it is relatively larger than the complexity of our proposed algorithm that
remains in O(t, +n¥loga(2(n — 1),n)) time.

The other exact algorithms proposed in the literature [11, 17] have a worse complexity
than our algorithm both for fixed and general k.

3.2 An illustrative example for the explicit enumeration algorithm

In this section, we apply Algorithm 1 to solve 3 MoOsT VITAL EDGES MST on the graph
G, illustrated in Figure 1. The bold edges represent the MST of G.

We start the construction of the search tree with the root a whose elements are mv(a) =
mst(a) =0, U(a) is the union of the following forests

To(a) = (1,2),(1,3),(3,5), (4,5)
Ti(a): (2,3),(3,4), (1,4),(2,5)
Ty(a) = (2,4),(1,5)

and w(Tp(a)) = 12. We omitted T3(a) since it is an empty set.

Figure 1: Graph G

The replacement edges of each edge in Tp(a) are given in Table 1.

Level 1 contains four children of a and thus N; = {1,2,3,4}. The elements of each node
s € N; are given in Table 2 where for example, U(3) is constructed as follows: Tp(3) is
obtained by removing (3,5) from Ty(a) and adding its replacement edge (3,4). For T1(3), we
delete (3,4) from T (a) and find its replacement edge among the edges in T5(a) which is (2,4).
Finally, T5(3) is obtained by removing (2,4) from Ts(a).

1
re) | (2,3)] (2,3) | (3,4) | (3,4)

s 1 2 3 4

mu(s) {(1,2)} 11, 3)) 1(3,5)) 1(4,5)}

mst(s) 0 1(1,2)} 1(1,2), (1,3)} 1(1,2), (1,3), (3,5)}

w(To(s)) | 14 13 15 14

~ To | (1,3),(2,3),(3,5), (4,5) | (1,2),(23),(3,5),(4,5) | (1,2),(1,3),(45),(3,4) | (1,2),(1,3),(3,5), (3,4)

U(s) | Tu | (3,4),(1,4),(2,5),(2,4) | (3,4),(1,4),(2,5),(2,4) | (2,3),(1,4),(2,5),(2,4) | (2,3),(1,4),(2,5),(2,4)
T | (1,5) (1,5) (1,5) (1,5)

Table 2: Elements of s € Ny

We construct level 2 in the same way. The search tree is represented in Figure 2. The
elements of each node s € Ny = {5,6,...,14} are given in Table 3.

The construction of the search tree is completed. After determining the replacement edges
of edges in Tj for all leaves of the search tree, we find that s* is node 5, a solution for 3 MosT
VitaL Epces MST is {(1,2),(1,3),(2,3)}=muv(5) U {e*} and the weight of the MST in
G\{(1,2),(1,3),(2,3)} is 28.

Figure 2: Search tree

Observe that the most vital edge is not necessarily the edge of smallest weight. Moreover,
the most vital edge is not necessarily included in any optimal solution of k& MosST VITAL
EDGEs MST for k£ > 2.

4 An implicit enumeration algorithm for finding the k£ most
vital edges

An interesting feature of our explicit enumeration algorithm is that, unlike the algorithms
previously proposed, it can easily be adapted to design an implicit algorithm based on a
branch and bound scheme. To do this, we use for each node s an upper bound U B(s) based
on successive replacements of edges. We also use lower bounds LB(s) constructed by extending
the forest, corresponding to s, to a particular minimum spanning tree.

s 5 G 7 8

mu(s) {(1,2),(1,3)} {(1,2),(2,3)} (1,2),(3,5)} {(1,2),(4,5)}

mst(s) [{(1,3)} (1,3),(2,3)} {(1,3),(2,3),(3,5)}

w(To(s)) | 21 21 17 16

Gl | 10 | @38 (15), (10) [(13).(5.5) (1,9).(2.8) | (L3).(2.3).(15),(5,1) | (1.9).(2,3).(3.5).(5.1)
) | 7y | (3.4),(2.5), (2.4), (1,5) | (3,4), (1,4).(2.4), (1,5) | (1,4),(2.5), (2. 4) (1,4), (2.5), (2, 4

s 9 10 11 12

mu(s) {(1,3),(2,3)} {(1,3),(3,5)} {(1,3),(4,5)} {(3,5), (4,5)}

mst(s) {(1,2)} {(1,2),(2,3)} {(1,2),(2,3),(3,5)} {(1,2),(1,3)}

w(To(s)) | 19 16 15 17

~ o (LD, G5, 45,01 | (LD, 23, @560 [(L2, 23,658,610 | (L2),13),6.4,25)

UGs) | 7y | (3,4),(2.5),(2,4), (1.5) | (1.4).(2,5), (2, 4) (1,4), (2,5, (2, 4) (2.3), (1,4), (2, 4), (1,5)

S 13 14

mu(s) {(3,5),3,4)} {(4,5), (3,4)}

mst(s) {(1,2),(2,3),(4,5)} {(1,2),(2,3),(3,5)}

w(To(s)) 20 16

— To | (L2),23). G5, LD | (1L2),23),3.5), LD

UG | 7y | (2,38),(2.5).(2,4), (1.5) | (2,3),(2.5). (2,4, (1.5)

Table 3: Elements of s € N,

In order to obtain the best possible bounds, we construct U (s) for each node s, instead
of using U(s). For each child d of s, U(d) is determined by constructing T;(d), for 0 < i <
k — |muv(d)| from the edges of U(s).

4.1 Lower bounds

For a fixed node s of the search tree, k — |mw(s)| edges remain to be deleted from U(s).
We present different ways of determining these remaining edges giving rise to three possible
lower bounds.

L. LBgreeay(s): Given To(s), we compute 7(e;) for all e; € Ty(s). We delete the edge €]
which attains maxe, e, (s)\mst(s) (W(r(e;)) — w(e;)) and replace it by r(ej). We update
U(s) and repeat the process until k& — |muv(s)| edges are removed. The value of this
bound is the weight of the last MST obtained.

2. LByirst(s): We remove the k—|muv(s)| edges of Ty(s)\mst(s) having the smallest weight,
and we construct a MST from the remaining edges in Tp(s). The value of this bound is
the weight of the MST obtained.

3. LBpest(s): Given Ty(s), we compute r(e;) for all e; € Ty(s). We remove the k — [muv(s)|
edges in Ty(s) \ mst(s) whose difference between the weight of their replacement edge
and their weight is the largest, and we construct a MST from the remaining edges in
To(s). The value of this bound is the weight of the MST obtained.

In order to test these bounds, we computed, for instances with different values of n and
k, these three lower bounds at the root a of the search tree. The instances are generated as
explained in section 6. The results are given in Tables 4 and 5 where we report, for each lower
bound, its value, as well as the percent deviation from the optimal value Opto_tLB , and the time
to compute it. We note that there is no dominance between these three bounds. We also note
that LBy is the fastest in terms of running time but gives bad values. LB ceqy, Which

gives the best values in most cases, takes much more time than the other bounds. L Bpest,

which gives similar values as LBy cedy, takes only about twice as much time as LBy and
about 40 to 100 times less time than LBy, ceqdy-

10

n k LBgreedy(a) LBy first(a) LBy pest(a) w(Tp) UB(a)
value % time value % time value % time in G\ S* value %
20 9 265 6.0 0.873 255 9.6 0.016 250 11.3 0.047 282 719 155.0
221 3.5 0.889 219 4.4 0.015 222 3.1 0.032 229 711 210.5
178 15.6 0.982 179 15.2 0.032 180 14.7 0.031 211 669 217.1
166 10.8 0.842 157 15.6 0.000 157 15.6 0.016 186 681 266.1
276 0.7 0.624 268 3.6 0.015 267 4.0 0.016 278 726 161.2
246 11.8 0.904 243 12.9 0.016 240 14.0 0.000 279 764 173.8
236 1.3 0.764 232 2.9 0.031 235 1.7 0.047 239 682 185.4
272 0.0 0.967 254 6.6 0.031 255 6.3 0.031 272 712 161.8
205 1.0 1.060 193 6.8 0.016 203 1.9 0.000 207 668 222.7
245 1.6 0.748 216 13.3 0.000 225 9.6 0.016 249 716 187.6
average 5.2 0.865 9.1 0.017 8.2 0.024 194.1
25 8 174 1.7 1.045 146 17.5 0.031 172 2.8 0.047 177 491 177.4
191 1.5 0.936 173 10.8 0.000 191 1.5 0.016 194 474 144.3
215 0.5 0.998 164 24.1 0.000 210 2.8 0.016 216 533 146.8
240 4.4 0.951 219 12.7 0.031 232 7.6 0.047 251 523 108.4
180 2.7 1.232 169 8.6 0.016 174 5.9 0.015 185 528 185.4
202 2.4 0.967 200 3.4 0.031 202 2.4 0.047 207 491 137.2
218 3.1 1.185 209 7.1 0.016 218 3.1 0.000 225 582 158.7
183 5.7 0.904 179 7.7 0.032 180 7.2 0.046 194 498 156.7
216 5.3 0.982 211 7.5 0.032 215 5.7 0.046 228 564 147.4
235 4.9 0.982 243 1.6 0.000 232 6.1 0.016 247 562 127.5
average 3.2 1.018 10.1 0.019 4.5 0.030 149.0
30 7 153 0.6 0.920 126 18.2 0.016 147 4.5 0.015 154 339 120.1
160 14.4 0.982 150 19.8 0.032 158 15.5 0.046 178 426 127.8
187 1.6 1.232 164 13.7 0.031 181 4.7 0.063 190 385 102.6
164 3.5 1.170 157 7.6 0.015 164 3.5 0.016 170 392 130.6
198 4.8 0.982 187 10.1 0.016 197 5.3 0.016 208 399 91.8
181 2.7 1.014 155 16.7 0.015 175 5.9 0.016 186 398 114.0
194 1.5 0.889 180 8.6 0.015 193 2.0 0.016 197 402 104.1
186 5.1 1.155 156 20.4 0.015 168 14.3 0.016 196 403 105.6
243 0.8 1.170 214 12.7 0.016 228 6.9 0.015 245 455 85.7
197 0.5 0.753 184 7.1 0.012 195 1.5 0.016 198 406 105.1
average 3.6 1.027 13.5 0.018 6.4 0.024 108.7
50 5 190 17.4 1.373 160 30.4 0.078 189 17.8 0.031 230 281 22.2
230 0.0 1.263 215 6.5 0.016 230 0.0 0.031 230 288 25.2
174 1.1 1.435 161 8.5 0.031 174 1.1 0.031 176 264 50.0
161 1.8 | 1.357 155 5.5 | 0.015 161 1.8 | 0.032 164 231 40.9
202 0.0 1.232 185 8.4 0.016 199 1.5 0.015 202 266 31.7
177 0.6 1.311 165 7.3 0.031 177 0.6 0.015 178 254 42.7
176 2.2 1.311 157 12.8 0.015 176 2.2 0.031 180 262 45.6
191 2.1 1.372 191 2.1 0.016 191 2.1 0.016 195 262 34.4
173 1.7 1.201 153 13.1 0.016 173 1.7 0.016 176 245 39.2
167 1.2 1.248 151 10.7 0.000 166 1.8 0.031 169 232 37.3
average 2.8 1.310 10.5 0.023 3.1 0.025 36.9
50 7 164 1.2 2.012 148 10.8 0.016 166 0.0 0.031 169 291 72.2
185 1.6 2.012 168 10.6 0.016 184 2.1 0.031 188 311 65.4
156 8.2 2.231 146 14.1 0.016 156 8.2 0.031 170 304 78.8
182 1.6 1.997 173 6.5 0.016 182 1.6 0.031 185 319 72.4
222 0.0 1.903 207 6.8 0.015 219 1.4 0.016 222 355 59.9
191 4.0 2.090 178 10.6 0.016 191 4.0 0.031 199 331 66.3
180 0.6 2.044 163 9.9 0.015 177 2.2 0.063 181 299 65.2
209 0.0 2.246 189 9.6 0.016 207 1.0 0.031 209 326 56.0
205 1.4 2.184 193 7.2 0.046 205 1.4 0.032 208 343 64.9
196 0.0 2.013 185 5.6 0.015 196 0.0 0.016 196 315 60.7
average 2.0 2.073 9.3 0.019 2.4 0.031 66.2
75 5 172 0.6 2.309 159 8.1 0.016 172 0.6 0.031 173 215 24.3
159 0.6 2.496 149 6.9 0.016 159 0.6 0.031 160 225 40.6
181 0.0 2.371 172 5.0 0.078 181 0.0 0.032 181 229 26.5
181 0.0 2.637 168 7.2 0.031 181 0.0 0.031 181 228 26.0
168 1.2 2.855 159 6.5 0.016 168 1.2 0.031 170 219 28.8
197 0.5 2.481 189 4.5 0.015 197 0.5 0.031 198 248 25.3
168 1.2 2.247 158 7.1 0.015 170 0.0 0.047 170 218 28.2
200 0.0 2.450 183 8.5 0.015 200 0.0 0.031 200 258 29.0
184 1.6 2.153 165 11.8 0.031 184 1.6 0.031 187 248 32.6
186 0.5 2.418 176 5.9 0.032 186 0.5 0.031 187 236 26.2
average 0.6 2.442 7.1 0.027 0.5 0.33 28.8
75 7 227 0.0 3.572 214 5.7 0.016 226 0.4 0.046 227 329 44.9
239 1.6 3.510 225 7.4 0.031 239 1.6 0.032 243 332 36.6
189 0.0 3.666 162 14.3 0.031 189 0.0 0.032 189 272 43.9
206 0.5 3.417 188 9.2 0.031 206 0.5 0.047 207 299 44.4
187 1.6 3.573 170 10.5 0.015 187 1.6 0.047 190 275 44.7
188 0.5 4.009 180 4.8 0.032 188 0.5 0.046 189 273 44.4
206 2.4 3.260 189 10.4 0.016 206 2.4 0.047 211 300 42.2
183 1.6 3.588 172 7.5 0.031 183 1.6 0.047 186 273 46.8
183 2.1 3.759 168 10.2 0.032 183 2.1 0.046 187 270 44.4
188 0.0 2.868 168 10.6 0.034 188 0.0 0.058 188 279 48.4
average 1.0 3.522 9.1 0.027 1.1 0.045 44.1

Table 4: Values of the three lower bounds and upper bound at the root of the search tree (instances
of small size with n < 100)

11

n k LBgreedy(a) LBy first(a) LB pest(a) w(To) UB(a)
value % time value % time value % time in G\ S* value %
100 5 186 0.0 3.635 177 4.8 0.031 186 0.0 0.031 186 230 23.7
209 0.9 3.947 201 4.7 0.031 209 0.9 0.047 211 244 15.6
193 0.5 3.760 184 5.2 0.031 193 0.5 0.047 194 230 18.6
187 0.5 3.572 175 6.9 0.032 187 0.5 0.031 188 216 14.9
205 0.0 3.697 195 4.9 0.031 205 0.0 0.031 205 263 28.3
187 1.1 3.916 176 6.9 0.031 187 1.1 0.047 189 233 23.3
211 0.5 3.572 201 5.2 0.032 209 1.4 0.046 212 249 17.5
179 0.0 4.009 167 6.7 0.031 179 0.0 0.047 179 211 17.9
201 1.0 4.040 187 7.9 0.031 199 2.0 0.031 203 239 17.7
182 4.2 3.463 169 11.1 0.031 182 4.2 0.032 190 233 22.6
average
100 7 185 0.0 5.912 173 6.5 0.032 184 0.5 0.062 185 253 36.8
192 3.5 5.554 186 6.5 0.031 192 3.5 0.062 199 264 32.7
215 0.0 5.850 192 10.7 0.031 212 1.4 0.047 215 274 27.4
211 0.5 5.585 193 9.0 0.031 211 0.5 0.062 212 278 31.1
201 0.0 5.651 186 7.5 0.035 201 0.0 0.056 201 265 31.8
215 0.0 5.446 194 9.8 0.035 215 0.0 0.052 215 279 29.8
220 1.3 5.028 202 9.4 0.034 220 1.3 0.052 223 279 25.1
218 0.9 5.048 201 8.6 0.031 218 0.9 0.051 220 284 29.1
202 1.0 5.772 192 5.9 0.031 202 1.0 0.047 204 276 35.3
207 1.4 5.616 191 9.0 0.031 205 2.4 0.047 210 274 30.5
average
200 5 266 0.0 11.965 254 6.5 0.062 266 0.5 0.156 266 277 36.8
243 3.5 12.480 237 6.5 0.062 243 3.5 0.094 243 262 32.7
241 0.0 12.699 238 10.7 0.171 241 1.4 0.078 245 262 27.4
251 0.5 12.963 243 9.0 0.063 251 0.5 0.078 251 267 31.1
243 0.0 13.306 233 7.5 0.063 243 0.0 0.234 244 260 31.8
236 0.0 12.886 227 9.8 0.047 236 0.0 0.078 236 250 29.8
245 1.3 12.075 237 9.4 0.046 245 1.3 0.094 245 260 25.1
247 0.9 12.355 237 8.6 0.156 246 0.9 0.094 247 277 29.1
241 1.0 11.559 233 5.9 0.063 241 1.0 0.093 241 268 35.3
257 1.4 11.283 248 9.0 0.058 257 2.4 0.109 257 259 30.5
average
300 5 316 0.6 27.565 311 2.2 0.078 316 0.6 0.125 318 328 3.1
333 0.0 27.051 323 3.0 0.078 333 0.0 0.234 333 346 3.9
325 0.3 29.796 318 2.5 0.156 325 0.3 0.125 326 338 3.7
324 0.3 28.002 318 2.2 0.140 324 0.3 0.140 325 335 3.1
334 0.0 30.077 326 2.4 0.078 334 0.0 0.187 334 346 3.6
328 0.6 30.046 322 2.4 0.078 328 0.6 0.187 330 344 4.2
324 0.3 28.252 320 1.5 0.234 324 0.3 0.125 325 337 3.7
334 0.3 28.283 327 2.4 0.078 334 0.3 0.203 335 346 3.3
330 0.0 25.303 322 2.4 0.094 330 0.0 0.328 330 341 3.3
316 0.0 27.779 311 1.6 0.141 316 0.0 0.125 316 327 3.5
average
400 5 418 0.0 45.256 413 1.2 0.218 418 0.0 0.172 418 426 1.9
410 0.0 44.398 405 1.2 0.109 410 0.0 0.250 410 421 2.7
412 0.0 45.022 406 1.5 0.187 412 0.0 0.250 412 419 1.7
409 0.0 43.617 406 0.7 0.203 409 0.0 0.141 409 419 2.4
411 0.0 47.861 406 1.2 0.125 411 0.0 0.156 411 422 2.7
418 0.0 45.552 410 1.9 0.109 418 0.0 0.187 418 426 1.9
409 0.0 44.429 406 0.7 0.140 409 0.0 0.219 409 424 3.7
411 0.0 45.692 406 1.2 0.187 411 0.0 0.172 411 422 2.7
415 0.0 44.647 412 0.7 0.141 415 0.0 0.249 415 424 2.2
414 0.0 38.207 410 1.0 0.109 414 0.0 0.172 414 423 2.2
average

Table 5: Values of the three lower bounds and upper bound at the root of the search tree (instances
of large size with n > 100)

4.2 Upper bound

Let s be a given node of the search tree. To compute UB(s), we select the edge in T (s)
of largest weight and we replace the edge deleted from Tj(s) by the edge with largest weight
belonging to Tji1(s), for j = 1,...,k — |muv(s)| — 1. We repeat this process k — |muv(s)| — 1
times.

Let F' be the set of the k — |muv(s)| edges selected from Tj(s) in this process. Then, we
must determine the k— |muv(s)| edges to be removed. To obtain an upper bound for all feasible
solutions obtained from s, we delete the k —|muv(s)| edges of smallest weight among the edges
of F'UTy(s)\mst(s). Denote by E,i, the subset of these selected edges removed. Therefore,
UB(s) = w(To(s)) + w(F) — w(Emin)-

We computed, for instances with different values of n and k, this upper bound at the root

12

a of the search tree (see Tables 4 and 5). Besides the bound value, we report the percent
deviation from the optimal value defined as %. The main observation is that UB(a) is
rather close to the optimal value for small values of k£ and deteriorates as k increases.

4.3 Branching strategy

Let a be the root of the search tree. The branching strategy is the same as for the
explicit enumeration algorithm. We start with a feasible solution value corresponding to
max{LBgreedy(a), LBfirst(a), LBpest(a)}. We tested two different best first search strategies.
The first one is the standard strategy (Branching: best upper bound) where the node with the
largest upper bound is selected first. No lower bound is computed and the fathoming test is
performed only when we update the current best feasible solution value, which can occur only
at level kK — 1 of the search tree. In the second strategy (Branching: best lower bound), the
node with the largest lower bound is selected first. Lower and upper bounds are computed at
every node. Since LBpes gives values close to the best ones and takes less time, we use this
bound for computing a lower bound. Here, the fathoming test is performed at each node by
comparing each lower bound value with the current best feasible solution value.

4.4 Illustrative example

Reconsider the graph G, illustrated in Figure 1, as input for 3 MosT VitaL EDGES MST.
We show how the strategy "Branching: best upper bound" proceeds.

We start, as in the explicit algorithm, by constructing the root a of the search tree, whose
elements are:

e mu(a) = mst(a) =0
e U(a) is the union of the following trees

TO(a) (1’2)’(1’3)’(3’5)7(4’5)
Tl(a) (2’3)’(3’4)’(1’4)7(2’5)
Ty(a) : (2,4),(L,5
e and w(Tp(a)) =12

9 9

Let S = {CL}, bestvalue = maX{LBG'reedy(a)7 LBy, first(a)a LBy, best(a)} = max{22, 24, 22} =
24 and bestset = {(1,2),(1,3),(3,5)}.

Iteration 1: We select node a.

Since |mwv(a)| < k — 1, we test the four children of node a whose elements are given in
Table 6.

Since UB(4) < bestvalue, we generate only nodes 1,2 and 3. Then, S = {1,2, 3}.

Iteration 2: We select node 1, which has the current best upper bound.

Since |mu(1)| < k—1, we test the four children of node a whose elements are summarized
in Table 7.

Since UB(7) and UB(8) are less than bestvalue, S = {5, 6,2, 3}.

Iteration 3: We select node 5.

13

s i 2 3 1
mu(s) {(1,2)} {(1,3)} (3,5)} {(4,5)}
mst(s) [{(1,2)} (1,2),(1,3)} {(1,2), (1,3),(3,5)}
w(To(s)) 14 13 15 14
Us) | To | (1,3),(2,3),(3,5),(4,5) | (1,2),(2,3),(3,5),(4,5) | (1,2),(1,3),(4,5),(3,4) | (1,2),(1,3),(3,5),(3,4)
T | (3,4),(1,4),(2,5),(2,4) | (3,4),(1,4),(2,5 (1,4),(2,5) (1,4)
T | (1,5) (2,4),(1,5) (2,4),(1,5) (2,4)
UB(s) 32 28 25 18
Table 6: Children of node a
s 5 6 7 3
mu(s) {(1,2), (1,3)} {(1,2), (2,3)} (1,2),(3,5)} {(1,2), (4,5)}
mst(s) [{(1,3)} (1,3),(2,3)} {(1,3),(2,3),(3,5)}
w(To(s)) | 21 21 17 16
U(s) | To | (2:3),(3,5),(4,5),(1,4) | (1,3),(3,5),(4,5),(2,5) | (1,3),(2,3),(4,5),(3,4) | (1,3),(2,3),(3,5),(3,4)
T | (3,4),(2,5),(2,4),(1,5) | (3,4),(2,4),(1,5) (1,4),(2,5) (1,4)
UB(s) 30 29 22 18

Table 7: Children of node 1

As |mw(5)| = k — 1, we compute the replacement edge for all edges in Tp(5) and find that

w(T0(5)) + MATe,;eTy(5)\mst(5) (w(r(ej))

bestset = {(1,2),(1,3),(2,3)} and S = {6}.

Iteration 4: We select node 6.

— w(ej)) = 28 > bestvalue. Then, bestvalue = 28,

As |mv(6)] = k — 1, we compute the replacement edge for all edges in Tp(5) and find that
w(To(5)) + maze,ery(s)\mst(s)(w(r(e;)) —wle;)) = 24 < bestvalue. We discard node 6 from

S.

Since S = (), the algorithm terminates. Figure 3 gives the search tree generated during
the algorithm. A solution for 3 MosT VITAL EDGEs MST is bestset = {(1,2),(1,3),(2,3)}
and the weight of MST in G\ {(1,2),(1,3),(2,3)} is bestvalue = 28.

Figure 3: Search tree of implicite algorithm

14

5 A mixed integer programming formulation for finding the &
most vital edges

Several linear programming formulations have been proposed to model the determination
of a minimum spanning tree on a graph [12]|. In one of these formulations, the minimum
spanning tree is considered as a special version of a network design problem. Modeling the
network by a connected graph, the problem cousists of sending flow between all nodes of the
graph. Thus, a variable z. associated to an edge e indicates whether or not we install the
edge e to be available to carry any flow. One model proposed by Magnanti and Wolsey is the
directed multicommodity flow model. Let D = (V, A) be the digraph formed by replacing each
edge (i,7) in E by two arcs (4,7) and (j,7) in A. In this model, one of the nodes, say node 1,
is considered as a root and each node £ # 1 defines a commodity. Node 1 must send to each
node £ # 1 one unit of commodity ¢. Denote by ffj the flow of commodity ¢ on the arc (i, 7).
For an edge e = (i,7), we set w;; = w(e) in the following formulations. The linear program
associated to this model is:

(:Ijnél) Z Wi (Yij + Yji)
Z fh= > f; =-1 Ve e V\{1} 1)
(4,1)eA (1,5)eA
>omi- > 1 =0 Vil e V\{1}, i £ ¢ @)
(4i)eA (4,5)€A
Soofh- Y rh =1 Ve e V\{1) 3)
(4.£)€eA (5)€A
fij < vy V(i j) € A, V€€ V\{1} (4)
Z Yij =n-—1 (5)
(4,5)€A
| fi; =0, i >0 V(i,j) € A

In this model, constraints (1) - (3) correspond to flow balances at the nodes. Constraints
(4) state that the flows on (7,7) for all commodities are zero if y;; = 0. Thus, these four
groups of constraints impose that the graph defined by a solution given by edges (i,j) such
that y;; = 1 is connected. Constraints (5) indicate that any solution must contain n—1 edges,
thus any possible solution has to be a tree. Therefore, this formulation models the problem
of finding a minimum spanning tree.

Remark that in this formulation, integrity constraints on variables y;; are omitted. In-
deed, Magnanti and Wolsey [12| show that the extreme points of the set of feasible solutions
corresponding to this model are integers. The dual corresponding to this linear program is
given by:

15

2.

eV, b1

max (@b —af) +(n—1pu

s.t.

? Vi Vi
T > =

Z;O’fj + p < wyj
gﬁ)lafi + 1 < wig
ot >0
a; 20

\ 1 unrestricted

v
v

) e A, VEe V\{1}

(4, 7)

(i,j) € E
V(i,j) € E
V(i,§) € A, Ve € V\{1}
Vie V0 e V\{1}

Using the previous MST formulation, one can model Kk MosST ViTAL EDGES MST defined

on the graph U,? =

\

max min
z€Z Z

(4,4)EEy
s.t.

> ffl - X flgj =-1
(4:1)€Au , (1,5)EA, ,

> = X fh=o0
(4,1) €Ay JZ (4,§)EA, ;

S o Y fh=1
GO o uhea
fij < i

Yo o yij=n—1
(1,)€Ay

Jij 20,55 >0
where Z = {z;; € {0,1}, V(i,j) € E,, :

(V,E,) with E, = U?:()Tj as follows:

(wij + Mij 2i5)(Yij + Yji)

Ve e V\{1}

Vi, e V\{1}, i #¢

Ve e V\{1}

V(i,j) € Ay, Y€ V\{1}

V(i,5) € Ay
> zj =k}

(1,)€Ew

In this formulation, variable z; is equal to 1 if edge (7,7) is deleted and 0 otherwise. In
order to discard this edge from any MST, we assign it the weight w;; + M;; where M;; is a
large enough constant, e.g. M;; = max(; j)ep wij + 1 — wij.

Using the dual of the inner program, we obtain the following mixed integer programming
formulation for £k MosT VitaL EDGES MST.

> (ap—af) +(n-1)u
LEV, 1#£1
s.t.

ij > oz? — ozf

Z#Zlafj + p < wij + Mz

e;afi + p < wij + M 2
> zj=k

(4,4)EEu

zij €{0,1}

0'%- >0

a; >0

W unrestricted

max

16

(i, §) € Au, V0 € V\{1}
V(i j) € Ey

V(i,j) € By

V(i,j) € Ey
V(i,j) € Ay, YL € V\{1}
Vie VL e V\{1}

6 Computational results

All experiments presented here were performed on a 3.4GHz computer with 3Gb RAM.
All proposed algorithms are implemented in C. All instances are complete graphs defined on n
vertices. Weights w(e) for all e € E are generated randomly, uniformly distributed in [1, 100].
For each value of n and k presented in this study, 10 different instances were generated and
tested. The results are reported in Table 8 where each given value is the average over 10
instances. For the implicit enumeration algorithm, computed and generated nodes represent
respectively nodes for which we have determined mv, mst, U and UB and nodes for which
UB > bestvalue and must be stored. Column fopt corresponds to the number of instances
solved optimally.

We first compare the explicit and implicit enumeration algorithms. The results show that
implicit enumeration algorithms are much faster than the explicit enumeration algorithm and
can handle instances of considerably larger size. Observe that, for the explicit enumeration
algorithm, the search tree size is identical for any instance of the same (n,k) type. As a
consequence, either all or none of the instances of a same (n, k) type can be solved. Moreover,
for the same reason, computation times show a low variance for all instances of a same (n, k)
type. Regarding the implicit enumeration algorithm, the "Branching: best upper bound"
strategy yields slightly better running times than the "Branching: best lower bound" strat-
egy. However, the "Branching: best upper bound" strategy, for which fathoming tests are
performed less frequently, generates more nodes. Thus, owing to the limited memory capac-
ity, the "Branching: best lower bound" strategy can handle instances of larger size.

We compare now the results obtained by the mixed integer program with those of the
implicit enumeration algorithm. For this, we implemented the mixed integer program using
the solver CPLEX 12.1 and we run it on the same generated instances. We limited the running
time to 1 hour for the instances with 20, 25, 30 and 50 vertices, and to 2 hours for the other
instances. The results are also reported in Table 8 where

e Time, given in seconds, is the average running time on the 10 instances. For any instance
which is not solved optimally within the time limit, the running time is set to this limit;

o Generated nodes represents the average number of nodes created in the search tree
corresponding to instances returning feasible solutions;

e (Glap, expressed as a percentage, represents the average over ratios % computed

on all instances returning at least one feasible solution, where U B is the final best upper
bound and BS is the best solution value found;

e Opt/Feas represents the number of instances solved optimally /for which at least one
feasible solution was found within the time limit.

We note that the mixed integer program reaches the optimal value for very small instances
only. Actually, for n < 100, we only obtain in most cases feasible solutions with rather large
gaps which indicates that optimality is far from being reached. Finally, for instances with
n > 100, no feasible solutions are returned within the time limit. Moreover, for n = 300 and
400, the execution of the program exceeds the memory capacity after a few seconds (297.437
and 0.56 seconds in average respectively).

17

From all these remarks, we can conclude that our proposed implicit enumeration algorithm
gives better results than the explicit enumeration algorithm as well as the resolution of the
mixed integer program and this both in terms of running time and memory use.

We propose in the following an e-approximate algorithm based on our implicit algorithm.
The aim being to obtain an e-approximate solution of the optimum, the condition to generate
a node s in the search tree is now (1 — e)UB(s) > bestvalue. Indeed, the value v returned
by the approximate algorithm must verify opt(G)(1 —¢) < v < opt(G). Since v is equal to
bestvalue, any node for which UB(s)(1 — ¢) < bestvalue is fathomed.

The algorithm is tested on the same instances generated before and this for € = 0.01, 0.05,
and 0.1. Thus, we compare the c-approximate algorithm with the implicit algorithm. The
results are summarized in Table 9. The meaning of computed and generated nodes is the
same as above and each given value in the table represents the average over the 10 generated
instances for each value of n and k.

18

n k Explicit Implicit enumeration Mixed Integer Program
enumeration Branching: best lower bound Branching: best upper bound
Time Nodes Time Nodes Time Nodes fopt Time | Generated Gap | Opt/Feas
(s) (s) Computed | Generated (s) Computed | Generated (s) nodes (%)

20 | 3 | 0.000 210 0.000 165.1 33.5 0.001 165.1 34.3 10 35.750 1638.2 0 10 / 10
5 0.135 8855 0.032 3280.6 422.3 0.032 3230.9 463.2 10 692.984 217924 0 10 / 10
7 2.732 177100 0.419 35714.0 4792.0 0.380 35659.2 5918.2 10 | 3600.000 61386.5 | 23.91 0/ 10
9 | 36.020 220075 3.322 258 321.8 35639.1 3.047 257776.0 44037.4 10 | 3600.000 36908.1 | 46.49 0/10
25 | 3 | 0.000 325 0.000 245.0 29.8 0.003 245.0 31.4 10 141.270 2066.5 0 10 / 10
5 0.318 20475 0.095 7146.4 705.1 0.089 7047.2 866.7 10 | 2984.021 29300.4 8.69 5/ 10
7 8.783 593 775 1.772 128802.5 15143.4 1.617 128 742.2 16 926.0 10 | 3600.000 14218.1 | 46.05 0/10
8 | 52.068 | 2629575 3.765 247900.6 26 076.8 3.566 247822.8 31938.3 10 | 3600.000 10733.5 | 66.43 0/ 10
30 | 3 0.007 465 0.000 345.1 47.7 0.005 345.1 49.7 10 424.171 3831.9 0 10 / 10
5 0.812 40920 0.260 16 756.3 1373.7 0.231 16 625.9 1588.7 10 | 3458.330 13156.2 | 26.03 1/10
7 | 40.461 | 1623160 3.899 231523.5 20779.0 3.553 231210.2 25737.4 10 | 3600.000 4855.9 | 63.65 0/10
50 | 3 0.880 1275 0.028 949.1 64.9 0.026 949.1 85.3 10 | 3600.000 1 285.8 | 17.28 0/ 10
5 | 15.390 292825 2.043 76 840.3 4649.3 1.856 74 550.2 5138.1 10 | 3600.000 503.0 | 43.59 0/10
7 - - 88.886 | 3 156 471.8 168 127.4 81.707 3156170.1 218830.4 10 | 3600.000 21.33 | 80.47 0/9
7|3 0.376 2850 0.101 2296.8 114.8 0.096 2 296.8 117.7 10 | 7200.000 430.2 | 17.83 0/10
5 - - 11.248 259 738.0 8130.7 10.459 259737.6 10519.6 10 | 6490.238 0.3 | 39.22 1/10
7 - - 650.008 | 13330591.9 474912.7 463.385 9608531.7T | 379179.2 7 | 7200.000 0 | 55.75 0/3
100 | 3 1.083 5050 0.224 3617.1 83.3 0.210 3617.1 89.9 10 | 7200.000 0 0/0
5 - - 54.148 904 662.4 19 383.8 49.895 904 662.4 23800.1 10 | 7200.000 0 0/0
7 - - | 2016.410 | 26 835600.6 721120.4 935.777 | 11986049.2 | 868180.0 4 | 7200.000 0 0/0
200 | 5 - - 572.557 2933547.2 46 236.3 670.340 2933296.1 49073.6 10 | 7200.000 0 0/0
300 | 5 - - | 1793.460 3996 192.1 43671.2 | 2163.350 3980311.0 56924.5 10 | 7200.000 0 0/0
400 | 5 - - | 7265.850 | 10956 321.8 106433.4 | 6195.182 5927376.8 56424.5 7 - - - 0/0

italics: average over instances solved optimally

-: memory overflow

Table 8: Comparison of explicit enumeration, implicit enumeration and MIP-based algorithms

0¢

n |k e-approximate algorithm
e=0.01 e =0.05 e=0.1
Time Nodes e Time Nodes e Time Nodes e
(s) Computed | Generated (s) | Computed | Generated (s) | Computed | Generated
20 | 3 0.000 162.9 30.6 | 0.00000 0.000 136.9 14.0 | 0.00000 | 0.000 100.6 7.4 | 0.00198
5 0.035 3108.2 384.6 | 0.00000 0.024 2068.8 211.1 | 0.00043 | 0.012 12584 113.1 | 0.00267
7 0.393 33258.5 4356.0 | 0.00000 0.273 21820.0 2575.7 | 0.00323 | 0.174 13209.9 1451.0 | 0.00922
9 3.044 237267.0 32085.4 | 0.00000 2.180 160036.0 20093.2 | 0.00421 | 1.376 93275.6 10888.2 | 0.00735
25 | 3 0.000 230.8 26.7 | 0.00000 0.000 189.8 13.1 | 0.00263 | 0.000 98.2 5.7 | 0.00263
5 0.093 6691.6 637.2 | 0.00060 0.061 4235.5 345.2 | 0.00213 | 0.031 2002.0 146.1 | 0.00779
7 1.648 119033.8 13603.0 | 0.00000 1.066 72193.8 7178.9 | 0.00148 | 0.606 37683.2 3379.8 | 0.00416
8 3.513 226 536.1 23389.9 | 0.00000 2.255 135623.2 12792.9 | 0.00142 | 1.242 68 426.4 5900.1 | 0.00319
30 | 3 0.000 338.1 38.8 | 0.00000 0.000 280.1 17.3 | 0.00453 | 0.000 161.6 7.2 | 0.00452
5 0.233 151374 1171.7 | 0.00000 0.123 7302.6 470.5 | 0.00307 | 0.059 3146.2 181.9 | 0.00363
7 3.523 209 289.3 18256.8 | 0.00000 2.183 119797.9 9363.5 | 0.00470 | 1.155 57665.1 4062.5 | 0.00721
50 | 3 0.025 899.4 48.8 | 0.00000 0.011 381.6 14.1 | 0.00000 | 0.000 76.5 2.4 | 0.00646
5 1.790 67 052.0 3757.3 | 0.00000 0.635 20 586.6 866.5 | 0.00178 | 0.255 7213.3 241.8 | 0.00279
7 74.688 | 2534780.6 | 130685.3 | 0.00000 | 28.324 | 820954.5 36722.1 | 0.00053 | 7.958 | 193201.5 7827.2 | 0.00316
7|3 0.092 2121.1 75.7 | 0.00000 | 0.0016 325.4 5.3 | 0.00241 | 0.003 75.0 1.0 | 0.00355
5 8.334 187230.6 5444.6 | 0.00000 1.679 27753.6 616.2 | 0.00168 | 0.232 2860.8 50.4 | 0.00387
7| 510.768 | 9838080.8 | 336993.8 | 0.00000 | 109.664 | 1734007.8 51514.5 | 0.00195 | 20.661 | 260410.7 6584.0 | 0.00536
100 | 3 0.208 3341.4 57.4 | 0.00000 0.013 121.6 1.4 | 0.00051 | 0.010 100.0 1.0 | 0.00308
5 34.779 561 343.8 10619.5 | 0.00000 3.875 41860.1 611.1 | 0.00143 | 0.396 3307.4 41.6 | 0.00297
71 1214.43 | 14901505.8 | 377861.2 | 0.00000 | 179.771 | 1703 572.1 34196.8 | 0.00143 | 13.940 95045.1 1492.2 | 0.00371
200 | 5 | 165.904 682 703.2 10147.9 | 0.00000 0.731 1693.0 11.5 | 0.00163 | 0.131 200.0 1.0 | 0.00163
300 | 5 87.600 164 368.6 1129.4 | 0.00030 0.380 300.0 1.0 | 0.00245 | 0.379 300.0 1.0 | 0.00241
400 | 5 89.564 80786.1 257.3 | 0.00000 0.846 400.0 1.0 | 0.00000 | 0.842 400.0 1.0 | 0.00000

Table 9: Results of the e-approximate algorithm

We note that the running times of the e-approximate algorithm are significantly lower
than those of the implicit enumeration algorithm. Running times do not exceed 21 seconds
for ¢ = 0.1, 180 seconds for € = 0.05 and 1215 seconds for ¢ = 0.01. We also note that for
large instances with n = 300 and 400 nodes, the e-approximate algorithm solves the problem
for e = 0.05 and 0.1 at the root in a time less than 1 second, and for € = 0.1 in a time less than
90 seconds while the implicit enumeration algorithm requires 1793.460 and 7265.850 seconds
respectively.

Moreover, the approximate solutions a posteriori are within ¢ to the optimum, with ¢’ <
0.0006 for e = 0.01, & < 0.0047 for e = 0.05 and & < 0.00922 for € = 0.1.
For e = 0.01, we note that the problem is nearly solved to optimality (¢/ = 0).

All these remarks show that the proposed lower bounds and upper bound are of very good
quality and that the running time of the implicit enumeration algorithm is the time needed
to verify the optimality of the solution. Indeed, this optimal solution is either found in a few
seconds or determined at the root of the search tree corresponding then to the maximum value
of the three lower bounds associated to the root.

7 Conclusions

In this paper we presented and compared different algorithms for solving k& MosT VI-
TAL EDGES MST. We first proposed an explicit enumeration algorithm that gives the best
time complexity for general k. Using upper and lower bounds, we adapted the previous al-
gorithm into an efficient implicit enumeration algorithm. We also proposed a mixed integer
programming formulation of & MosT VITAL EDGES MST which was solved using CPLEX.
Our experiments showed a large superiority of the implicit enumeration algorithm. An e-
approximate version of this algorithm substantially improves running times while providing
very good quality results (with an a posteriori approximation ratio usually much less than one
tenth of the guaranteed ratio ¢).

All the previous algorithms can be easily adapted to solve some variants of the k& MOST
ViTtaL EDGES MST problem. In a first variant, a removing cost is associated to each edge.
The problem consists of finding a subset of edges with total cost bounded by a budget limit
whose deletion causes the largest increase in the weight of a minimum spanning tree. In a
second variant, we have to determine a minimum number of edges to be removed such that
the weight of a minimum spanning tree in the resulting graph is at least a fixed value.

References

[1] A. Bar-Noy, S. Khuller, and B. Schieber. The complexity of finding most vital arcs and
nodes. Technical Report CS-TR-3539, University of Maryland, 1995.

[2] C. Bazgan, S. Toubaline, and D. Vanderpooten. Complexity of determining the most
vital elements for the 1-median and 1-center location problems. In Proceeding of the
4% Annual International Conference on Combinatorial Optimization and Applications
(COCOA 2010), LNCS 6508, Part I, pages 237-251, 2010.

21

3]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

C. Bazgan, S. Toubaline, and D. Vanderpooten. Critical edges/nodes for the minimum
spanning tree problem: complexity and approximation. to appear in Journal of Combi-
natorial Optimization.

B. Chazelle. A minimum spanning tree algorithm with inverse- Ackermann type complex-
ity. Journal of the ACM, 47(6):1028-1047, 2000.

B. Dixon, M. Rauch, and R.E. Tarjan. Verification and sensitivity analysis of minimum
spanning trees in linear time. SIAM Journal on Computing, 21(6):1184-1192, 1992.

G. N. Frederickson and R. Solis-Oba. Increasing the weight of minimum spanning trees.
Proceedings of the ™" ACM-SIAM Symposium on Discrete Algorithms (SODA 1996),
pages 539-546, 1996. Also appeared in Journal of Algorithms, 33(2): 244-266, 1999.

L. Hsu, R. Jan, Y. Lee, C. Hung, and M. Chern. Finding the most vital edge with
respect to minimum spanning tree in a weighted graph. Information Processing Letters,
39(5):277-281, 1991.

K. Iwano and N. Katoh. Efficient algorithms for finding the most vital edge of a minimum
spanning tree. Information Processing Letters, 48(5):211-213, 1993.

L. Khachiyan, E. Boros, K. Borys, K. Elbassioni, V. Gurvich, G. Rudolf, and J. Zhao.
On short paths interdiction problems : total and node-wise limited interdiction. Theory
of Computing Systems, 43(2):204-233, 2008.

W. Liang. Finding the £ most vital edges with respect to minimum spanning trees for
fixed k. Discrete Applied Mathematics, 113(2-3):319-327, 2001.

W. Liang and X. Shen. Finding the k most vital edges in the minimum spanning tree
problem. Parallel Computing, 23(13):1889-1907, 1997.

T. L. Magnanti and L. Wolsey. Optimal trees. In M. O. Ball, et al. (Eds.), Network Mod-
els, Handbook in Operations Research and Management Science, Vol 7, North-Holland,
Amsterdam, pages 503-615, 1995.

E. Nardelli, G. Proietti, and P. Widmayer. A faster computation of the most vital edge
of a shortest path. Information Processing Letters, 79(2):81-85, 2001.

S. Pettie. Sensitivity analysis of minimum spanning tree in sub-inverse-ackermann time.
In Proceedings of 16" International Symposium on Algorithms and Computation (ISAAC
2005), LNCS 3827, pages 964-973, 2005.

S. Pettie and V. Ramachandran. An optimal minimum spanning tree algorithm. Journal
of the ACM, 49(1):16-34, 2002.

H. D. Ratliff, G. T. Sicilia, and S. H. Lubore. Finding the n most vital links in flow
networks. Management Science, 21(5):531-539, 1975.

H. Shen. Finding the k most vital edges with respect to minimum spanning tree. Acta
Informatica, 36(5):405-424, 1999.

22

[18] F. Suraweera, P. Maheshwari, and P. Bhattacharya. Optimal algorithms to find the most
vital edge of a minimum spanning tree. Technical Report CIT-95-21, School of Computing
and Information Technology, Griffith University, 1995.

[19] R. E. Tarjan. Applications of path compression on balanced trees. Journal of the ACM,
26(4):690-715, 1979.

[20] R. Wollmer. Removing arcs from a network. Operations Research, 12(6):934-940, 1964.

[21] R. K. Wood. Deterministic network interdiction. Mathematical and Computer Modeling,
17(2):1-18, 1993.

23

