
E�
ient determination of the k most vital edges forthe minimum spanning tree problemCristina Bazgan1,2 Sonia Toubaline1 Daniel Vanderpooten11. Université Paris-Dauphine, LAMSADEPla
e du Maré
hal de Lattre de Tassigny, 75775 Paris Cedex 16, Fran
e2. Institut Universitaire de Fran
e{bazgan,toubaline,vdp}�lamsade.dauphine.frAbstra
tWe study in this paper the problem of �nding in a graph a subset of k edges whosedeletion
auses the largest in
rease in the weight of a minimum spanning tree. We proposefor this problem an expli
it enumeration algorithm whose
omplexity, when
ompared tothe
urrent best algorithm, is better for general k but very slightly worse for �xed k. Moreinterestingly, unlike in the previous algorithms, we
an easily adapt our algorithm so asto transform it into an impli
it enumeration algorithm based on a bran
h and bounds
heme. We also propose a mixed integer programming formulation for this problem.Computational results show a
lear superiority of the impli
it enumeration algorithmboth over the expli
it enumeration algorithm and the mixed integer program.Key words: most vital edges, minimum spanning tree, exa
t algorithms, mixed integerprogram.1 Introdu
tionIn many appli
ations involving the use of
ommuni
ation or transportation networks, weoften need to identify
riti
al infrastru
tures. By
riti
al infrastru
ture we mean a set of linkswhose damage
auses the largest perturbation within the network. Modeling this network as aweighted graph, identifying
riti
al infrastru
tures amounts to �nding a subset of edges whoseremoval from the graph
auses the largest in
rease in the total weight. In the literature thisproblem is referred to as the k most vital edges problem. In this paper, we are interested indetermining a subset of edges of the graph whose deletion
auses the largest in
rease in theweight of a minimum spanning tree (MST). This problem is referred to as k Most VitalEdges MST.The problem of �nding the k most vital edges of a graph has been investigated for variousproblems in
luding shortest path [1, 9, 13℄, maximum �ow [20, 16, 21℄, 1-median and 1-
enter[2℄. For the minimum spanning tree problem de�ned on a graph G with n verti
es andm edges,Frederi
kson and Solis-Oba [6℄ showed that, for general k, k Most Vital Edges MST isNP -hard and proposed an O(log k)-approximation algorithm. The problem remains NP-hardeven for
omplete graphs with weights 0 or 1 and 3-approximable for graphs with weights 0 or 1[3℄. For a �xed k the problem is obviously polynomial. The
ase k = 1 has been largely studiedin the literature [7, 8, 18℄. Hsu et al. [7℄ gave two algorithms that run in O(m logm) and1

O(n2). Iwano and Katoh [8℄ proposed an algorithm in O(mα(m,n)) using Tarjan's result [19℄,where α is the inverse A
kermann fun
tion. Pettie [14℄ improved the results of Tarjan [19℄ andDixon et al. [5℄, giving rise to the
urrent best deterministi
 algorithm in O(m log α(m,n)).For general k, several exa
t algorithms based on an expli
it enumeration of possible solutionshave been proposed [10, 11, 17℄. The best one [10℄ runs in time O(nkα((k+1)(n− 1), n)) andwas a
hieved by redu
ing G to a sparse graph. Using Pettie's result [14℄, the running time ofthe later algorithm be
omes O(nk logα((k + 1)(n − 1), n)).In this paper we propose a new e�
ient algorithm also based on an expli
it enumeration ofall possible solutions for k Most Vital Edges MST. Its
omplexity O(nk logα(2(n−1), n))for �xed k is theoreti
ally very slightly worse than the
omplexity of the algorithm proposedby Liang [10℄ using Pettie's result [14℄. However, given the fa
t that α(m,n) is always less than4 in pra
ti
e, the
omplexity of these two algorithms
an be deemed as equivalent. Moreover,the
omplexity of our algorithm is better than that of Liang's algorithm for general k. Moreinterestingly, unlike any other algorithm, our algorithm has two spe
i�
 useful features. First,it
an also determine an optimal solution for i Most Vital Edges MST, for ea
h 1 ≤
i ≤ k, with the same time
omplexity. Se
ond, it
an be easily adapted to establish animpli
it enumeration algorithm based on a bran
h and bound pro
edure. We also present inthis paper a mixed integer programming formulation to solve k Most Vital Edges MST.We implement and test all these proposed algorithms using, for the impli
it enumerationalgorithm, di�erent bran
hing and evaluation strategies. The results show that the impli
itenumeration algorithm is mu
h faster than the expli
it enumeration algorithm as well as theresolution of the mixed integer program. Moreover, the impli
it enumeration algorithm
anhandle signi�
antly larger instan
es due to a better use of memory spa
e. Finally, we alsopropose an ε-approximate algorithm.The rest of the paper is organized as follows. In se
tion 2 we introdu
e notations and someresults related to our problem. In se
tion 3 we present a new expli
it enumeration algorithmthat solves k Most Vital Edges MST. In se
tion 4 we propose another exa
t algorithmbased on an impli
it enumeration s
heme. In se
tion 5, we present a mixed integer program-ming formulation for k Most Vital Edges MST. Computational results are presented inse
tion 6. We also in
lude in these experiments an ǫ-approximate version of our impli
itenumeration s
hema. Con
lusions are provided in se
tion 7.2 Basi

on
epts and preliminary resultsLet G = (V,E) be a weighted undire
ted
onne
ted graph with |V | = n, |E| = m where
w(e) ≥ 0 is the integer weight of ea
h edge e ∈ E. We denote by G − E′ the graph obtainedfrom G by removing the subset of edges E′ ⊆ E. k Most Vital Edges MST
onsists of�nding a subset of edges S∗ ⊆ E with |S∗| = k that maximizes the weight of a MST in thegraph G − S∗. We assume that G is at least (k + 1) edge-
onne
ted, sin
e otherwise anysele
tion of k edges in
luding the edges of a minimum unweighted
ut is a trivial solution.Therefore, we assume k ≤ λ(G)− 1, where λ(G) is the edge-
onne
tivity of G. Also, withoutloss of generality, we suppose in the following that all weights are di�erent (by introdu
ing, ifne
essary, an arbitrary total order on edges with the same weight). This assumption impliesthe uniqueness of minimum spanning trees or forests. For a non ne
essarily
onne
ted graph,a minimum spanning forest (MSF) is the union of minimum spanning trees for ea
h of its
onne
ted
omponents. In this paper a tree or a forest is
onsidered as a graph but also, for2

onvenien
e, as a subset of edges. For a set of edges F , w(F) represents the sum of the weightsof the edges in F .We denote by T0 the MST of G. Remark that an optimal solution of k Most VitalEdges MST must
ontain at least one edge of T0. For i ≥ 1, let Ti be the MSF of the graph
Gi = G−∪i−1

j=0Tj . We use in the following the graph UG
k = (V,∪k

j=0Tj) whi
h has the followinginteresting property.Lemma 1 (Liang and Shen [11℄) For any S ⊆ E, |S| ≤ k, any edge of the MST of graph
G− S belongs to UG

k .By Lemma 1, solving k Most Vital Edges MST on G redu
es to solving the sameproblem on the sparser graph UG
k whose number of edges is at most (k + 1)(n − 1).Considering T a MST of a graph, the repla
ement edge r(e) for an edge e ∈ T is de�ned asthe edge e′ 6= e of minimum weight whi
h
onne
ts the two dis
onne
ted
omponents of T \{e}.The sensitivity of a minimum spanning tree T , i.e. the allowable variation for ea
h edge weightso that T remains a minimum spanning tree,
an be
omputed in O(m log α(m,n)) [14℄. Inparti
ular, for edges in T , this algorithm provides repla
ement edges. As a
onsequen
e, weget the following result.Lemma 2 1 Most Vital Edges MST de�ned on a graph with n verti
es and m edges issolvable in O(m logα(m,n)).Proof : Let T ∗ be the minimum spanning tree in a given graph. We
al
ulate the repla
ementedges r(e) for all edges e ∈ T ∗. The most vital edge is the edge e∗ su
h that w(r(e∗))−w(e∗) =

max
e∈T ∗

w(r(e)) − w(e). 2A
tually, repla
ement edges belong to a spe
i�
 subset of edges as shown by the followingresult.Lemma 3 For ea
h edge e ∈ Ti, we have r(e) ∈ Ti+1 for i = 0, . . . , k − 1.Proof : Given a graph G, Liang [10℄ shows that for ea
h edge e ∈ T0, r(e) ∈ T1. Applyingthis to graph Gi, for whi
h Ti is the MSF, we get the result. 23 An expli
it enumeration algorithm for �nding the k most vitaledgesWe propose an algorithm that
onstru
ts a sear
h tree of depth k − 1 in a breadth-�rstmode. At the ith level of this sear
h tree, i = 0, . . . , k − 1, a node s is
hara
terized by:
• mv(s): a subset of i edges,
orresponding to a tentative partial sele
tion of the k mostvital edges.
• Ũ(s) = U

G′(s)
k−|mv(s)| where G′(s) = (V,E\mv(s)). Hen
e, we have

Ũ(s) = (V,∪
k−|mv(s)|
i=0 Ti(s)) where Ti(s) is the MSF in G′(s)− ∪i−1

j=0Tj(s).
• mst(s): a subset of edges forbidden to deletion. These edges belonging to T0(s), willne
essary belong to any MST asso
iated with any des
endant of s. Depending on theposition of s in the sear
h tree, the
ardinality of mst(s) varies from 0 to n− 2.3

Denote by Ni, for i = 0, . . . , k − 1, the set of nodes of the sear
h tree at the ith level.We des
ribe in the following the exa
t algorithm (se
tion 3.1) and exemplify its use on anillustrative example (se
tion 3.2).3.1 Des
ription of the algorithmWe �rst
onstru
t the graph UG
k . Let a be the root of the sear
h tree with mv(a) =

mst(a) = ∅, Ũ(a) = UG
k , w(T0(a)) = w(T0), and N0 = {a}.For a level i, 0 ≤ i ≤ k − 2, we
ompute for ea
h node s ∈ Ni and ea
h edge e ∈ T0(s),the repla
ement edges r(e) in T1(s). Node s gives rise to |T0(s)\mst(s)|
hildren in Ni+1.Ea
h su
h
hild d,
orresponding to an edge ej in T0(s)\mst(s) = {e1, . . . , en−1−|mst(s)|}, is
hara
terized by:

• mv(d) = mv(s) ∪ {ej}.
• mst(d) = mst(s) ∪ (∪j−1

ℓ=1{eℓ}).
• Ũ(d) is updated from Ũ(s) as follows (using Lemma 3):

• T0(d) = T0(s) ∪ {r(ej)} \ {ej} and hen
e w(T0(d)) = w(T0(s))− w(ej) + w(r(ej)).
• For j = 1, . . . , k−|mv(d)|, Tj(d) is obtained from Tj(s) by deleting the repla
ementedge erep of the edge deleted from Tj−1(s) and repla
ing it by its repla
ement edge

r(erep) ∈ Tj+1(s).If for a level i and an edge erep, the repla
ement edge r(erep) does not exist,
Tj(d) = Tj(s) \ {erep} and Tℓ(d) = Tℓ(s) for ℓ = j + 1, . . . , k − |mv(d)|.If for a level i, Ti(s) = ∅ then Tℓ(d) = ∅ for ℓ = i, . . . , k − |mv(d)|.At level k− 1, for ea
h node s ∈ Nk−1 and for all edges e ∈ T0(s) \mst(s), we �nd r(e) in

T1(s) and we determine a node s∗ that veri�es
max

s∈Nk−1

max
e∈T0(s)\mst(s)

(w(T0(s))−w(e)+w(r(e))). An optimal solution is the subsetmv(s∗)∪{e∗}where e∗ = arg max
e∈T0(s∗)\mst(s∗)

w(T0(s
∗))−w(e) +w(r(e)). The largest weight of a MST in thepartial graph obtained by deleting this subset is w(T0(s

∗))− w(e∗) + w(r(e∗)).Algorithm 1 des
ribes this pro
edure. Its
orre
tness and
omplexity are given in Theo-rem 1.Theorem 1 Algorithm 1
omputes an optimal solution for an instan
e of k Most VitalEdges MST with n verti
es and m edges in O(kmα(m,n) + nk log α(2(n − 1), n)) time.Proof : We �rst show that Algorithm 1 gives an optimal solution for k Most Vital EdgesMST. Let S∗ be the solution returned by Algorithm 1, and w∗ the weight of the MST in
UG
k − S∗. Consider any solution S′, with |S′| = k, and w′ the weight of the MST in UG

k − S′.Let r be a node of the sear
h tree su
h that mv(r) ⊆ S′ and for any
hild d of r, mv(d) * S′.Clearly, r exists and
orresponds at worst to root a when S′ ∩ T0 = ∅. Sin
e, by de�nition,
r is su
h that no edge of T0(r) belongs to S′, we have w′ = w(T0(r)). Moreover, sin
e
w(T0(r)) ≤ w∗, we have w′ ≤ w∗. 4

Algorithm 1: Expli
it resolution of k MVE MST/* Let a be the root of the sear
h tree */1 Constru
t UG
k
;2 mv(a) ← ∅;mst(a) ← ∅;w(T0(a))← w(T0); Ũ(a)← UG

k
;3 N0 ← {a};Ni ← ∅, i = 1, . . . , k − 1;4 for i← 0 to k − 2 do5 forall s ∈ Ni do6 forall e ∈ T0(s) do7 �nd r(e) in T1(s);/* T0(s)\mst(s) = {e1, . . . , en−1−|mst(s)|} */8 forall ej ∈ T0(s)\mst(s) do/*
reate a new node d, a
hild of s */9 mv(d) ← mv(s) ∪ {ej};10 w(T0(d)) ← w(T0(s)) − w(ej) +w(r(ej));11 mst(d)← mst(s) ∪ (∪j−1

ℓ=1{eℓ});12 determine Ũ(d) by using Algorithm 2;13 Ni+1 ← Ni+1 ∪ {d};14 max ← 0;15 forall s ∈ Nk−1 do16 forall e ∈ T0(s) do17 �nd r(e) in T1(s);18 forall e ∈ T0(s)\mst(s) do19 if w(T0(s)) − w(e) + w(r(e)) > max then20 max ← w(T0(s))− w(e) +w(r(e));21 e∗ ← e;22 s∗ ← s;/* The largest weight of a MST in the partial obtained graph is w(T0(s∗)) − w(e∗) + w(r(e∗)) */23 return S∗ = mv(s∗) ∪ {e∗};Algorithm 2: Constru
tion of Ũ(d) from Ũ(s) where d is the
hild of s in the sear
htree obtained from s by deleting ej1 T0(d)← T0(s) ∪ {r(ej)}\{ej};2 replace← r(ej);3 ℓ← 0;4 while Tℓ+1(s) 6= ∅ do5 if replace exists then6 Determine if there exists a repla
ement edge,
alled replace1, of replace in Tℓ+1(s)7 if replace1 exists then8 Tℓ(d)← Tℓ(s) ∪ {replace1}\{replace};9 replace← replace1;10 else11 Tℓ(d)← Tℓ(s)\{replace} ;12 else13 Tℓ(d)← Tℓ(s);14 ℓ← ℓ+ 1;15 return Ũ(d);We determine now the
omplexity of Algorithm 1. Denote by tu the time for
onstru
ting
UG
k , by tedge−rep the time for �nding the repla
ement edges for all edges of a minimum spanningtree, and by tgen the time for generating any node s of the sear
h tree (that is determining

mv(s),mst(s) and Ũ(s)). Level 0 requires |N0|tedge−rep time. Level i takes |Ni|tedge−rep +
|Ni|tgen time, for 1 ≤ i ≤ k − 1. At level k, we
ompute the k most vital edges. Thus, the5

total time of Algorithm 1 is given by
tu +

k−1∑

i=0

|Ni|tedge−rep +
k−1∑

i=1

|Ni|tgen + |Nk|For ea
h node s ∈ Ni, subset mv(s)
onsists of ℓ tree edges of T0(a) and (i − ℓ) edgesbelonging to the union set of the (i − ℓ) repla
ement edges of these ℓ edges, 1 ≤ ℓ ≤ i (the
p repla
ement edges of an edge e ∈ T0(a) are the p edges of minimum weight whi
h
onne
tthe two dis
onne
ted
omponents of T0(a)\{e}). This implies that |Ni| =

∑i
ℓ=1

(
n−1
ℓ

)
Ki−ℓ

ℓ =∑i
ℓ=1

(
n−1
ℓ

)(
i−1
i−ℓ

)
=

(
n+i−2

i

)
= O(ni), where Kp

n =
(
n+p−1

p

) is the number of
ombinations withrepetition of p elements
hosen from a set of n elements.For a node s ∈ Ni, 1 ≤ i ≤ k − 1, Ũ(s)
ontains at most k − i+ 1 forests. Then, tgen is in
O((k− i+1)n) time. Sin
e the repla
ement edges of a MST in a graph with n verti
es and medges
an be
omputed in O(m log α(m,n)) [14℄, tedge−rep is in O(n logα(2(n − 1), n)) time.The
onstru
tion of UG

k ,
orresponding to tu,
an be performed in O(kmα(m,n)) time, using
k times the best
urrent algorithms for MST [4, 15℄. Therefore, the
omplexity of Algorithm 1is in O(kmα(m,n)+nk log α(2(n−1), n)) time. Note that the time needed to generate all thenodes of the sear
h tree is dominated by the total time to �nd, for all nodes s of the sear
htree, the repla
ement edges r(e) in T1(s) for all edges e ∈ T0(s). 2Remark For ea
h node s of the sear
h tree, we
ould use, instead of the graph Ũ(s), thegraph U(s) = U

G′′(s)
k−|mv(s)| where G′′(s) is the graph obtained from G by
ontra
ting the edgesof mst(s) and removing the edges of mv(s). Thus, U(s) = (V,∪

k−|mv(s)|
i=0 Ti(s)) where Ti(s)is the MSF of G′′(s) − ∪i−1

j=0Tj(s). Unfortunately, given a
hild d of a node s of the sear
htree, updating e�
iently U(d) from U(s) is not as straightforward as for Ũ . However, even ifupdating U
ould be performed more e�
iently than Ũ , we would get the same
omplexitysin
e the time for generating all nodes of the sear
h tree is dominated by the total time for�nding the repla
ement edges for all nodes in the sear
h tree.We
lose this subse
tion by
omparing our algorithm with the previously best knownalgorithm for k Most Vital Edges MST. For �xed k, by using the result of Dixon et al.[5℄, Liang [10℄ proposes an algorithm to solve k Most Vital Edges MST in O(nkα((k +
1)(n− 1), n)) time. Using Pettie's result [14℄ Liang's algorithm
an be implemented in O(tu+
nk log α((k + 1)(n − 1), n)) time, where tu is the time for
onstru
ting UG

k . Our algorithmhas a
omplexity that is theoreti
ally slightly worse than that of Liang. Nevertheless, sin
e
α(m,n) is always less than or equal to 4 in pra
ti
e, the
omplexity of these two algorithms
an be
onsidered as equivalent. Moreover, a spe
i�
 advantage of our algorithm is that it
an also determine, with the same time
omplexity, an optimal solution for i Most VitalEdges MST, for 1 ≤ i ≤ k. Indeed, at ea
h level i, we
an �nd among nodes of Ni, the nodewith the largest weight of a MST.For general k, our bound is
learly better than that of Liang. Indeed, in Liang's algorithm,after the determination of UG

k , Liang divides the problem into two
ases: (i) |T0∩S∗| = i, 1 ≤
i < k and (ii) |T0 ∩ S∗| = k where S∗ represents a subset of k most vital edges. In (i), forevery possible
ombination of i edges among the n − 1 edges of T0, 1 ≤ i < k, the author
onstru
ts a spe
i�
 graph G with a number of nodes and edges depending only on k, anddetermines the k − i remaining edges in G. In (ii), from every possible
hoi
e of (k − 1)6

edges among the n− 1 edges of T0, the author
onstru
ts a MST T ′ in the graph obtained bydeleting these (k − 1) edges and �nds the kth edge to be removed by using the repla
ementedges of T ′. Therefore, (i) and (ii) are performed respe
tively in ∑k−1
i=1

(
n−1
i

)
(tG + tk−i) and(

n−1
k−1

)
tlast time, where tG , tk−i and tlast are respe
tively the time to
onstru
t G, the time todetermine the k− i remaining edges to be removed from G and the time to �nd the kth edge tobe removed from T ′ ∩ T0. Note that Liang, who
onsiders only the
ase where k is �xed, doesnot need to expli
it the term involving tk−i. However, for general k, even if expressing the
omplexity of his algorithm by O(tu + k3nk +

∑k−1
i=1

(
n−1
i

)
tk−i + knk log α((k + 1)(n− 1), n)),one
an observe that it is relatively larger than the
omplexity of our proposed algorithm thatremains in O(tu + nk log α(2(n − 1), n)) time.The other exa
t algorithms proposed in the literature [11, 17℄ have a worse
omplexitythan our algorithm both for �xed and general k.3.2 An illustrative example for the expli
it enumeration algorithmIn this se
tion, we apply Algorithm 1 to solve 3 Most Vital Edges MST on the graph

G, illustrated in Figure 1. The bold edges represent the MST of G.We start the
onstru
tion of the sear
h tree with the root a whose elements are mv(a) =
mst(a) = ∅, Ũ(a) is the union of the following forests
T0(a) : (1, 2), (1, 3), (3, 5), (4, 5)

T1(a) : (2, 3), (3, 4), (1, 4), (2, 5)

T2(a) : (2, 4), (1, 5)and w(T0(a)) = 12. We omitted T3(a) sin
e it is an empty set.
1 2 3

45
1

11

7

3

10

5

9
12

4

2

Figure 1: Graph GThe repla
ement edges of ea
h edge in T0(a) are given in Table 1.Level 1
ontains four
hildren of a and thus N1 = {1, 2, 3, 4}. The elements of ea
h node
s ∈ N1 are given in Table 2 where for example, Ũ(3) is
onstru
ted as follows: T0(3) isobtained by removing (3, 5) from T0(a) and adding its repla
ement edge (3, 4). For T1(3), wedelete (3, 4) from T1(a) and �nd its repla
ement edge among the edges in T2(a) whi
h is (2, 4).Finally, T2(3) is obtained by removing (2, 4) from T2(a).7

e (1, 2) (1, 3) (3, 5) (4, 5)

r(e) (2, 3) (2, 3) (3, 4) (3, 4)Table 1: Repla
ement edges of e ∈ T0(a)

s 1 2 3 4
mv(s) {(1, 2)} {(1, 3)} {(3, 5)} {(4, 5)}
mst(s) ∅ {(1, 2)} {(1, 2), (1, 3)} {(1, 2), (1, 3), (3, 5)}
w(T0(s)) 14 13 15 14

Ũ(s)

T0 (1, 3), (2, 3), (3, 5), (4, 5) (1, 2), (2, 3), (3, 5), (4, 5) (1, 2), (1, 3), (4, 5), (3, 4) (1, 2), (1, 3), (3, 5), (3, 4)
T1 (3, 4), (1, 4), (2, 5), (2, 4) (3, 4), (1, 4), (2, 5), (2, 4) (2, 3), (1, 4), (2, 5), (2, 4) (2, 3), (1, 4), (2, 5), (2, 4)
T2 (1, 5) (1, 5) (1, 5) (1, 5)Table 2: Elements of s ∈ N1We
onstru
t level 2 in the same way. The sear
h tree is represented in Figure 2. Theelements of ea
h node s ∈ N2 = {5, 6, . . . , 14} are given in Table 3.The
onstru
tion of the sear
h tree is
ompleted. After determining the repla
ement edgesof edges in T0 for all leaves of the sear
h tree, we �nd that s∗ is node 5, a solution for 3 MostVital Edges MST is {(1, 2), (1, 3), (2, 3)}=mv(5) ∪ {e∗} and the weight of the MST in

G \ {(1, 2), (1, 3), (2, 3)} is 28.
a

1

5 6 7 8

2

9 10 11

3

12 13

4

14Figure 2: Sear
h treeObserve that the most vital edge is not ne
essarily the edge of smallest weight. Moreover,the most vital edge is not ne
essarily in
luded in any optimal solution of k Most VitalEdges MST for k ≥ 2.4 An impli
it enumeration algorithm for �nding the k mostvital edgesAn interesting feature of our expli
it enumeration algorithm is that, unlike the algorithmspreviously proposed, it
an easily be adapted to design an impli
it algorithm based on abran
h and bound s
heme. To do this, we use for ea
h node s an upper bound UB(s) basedon su

essive repla
ements of edges. We also use lower bounds LB(s)
onstru
ted by extendingthe forest,
orresponding to s, to a parti
ular minimum spanning tree.8

s 5 6 7 8
mv(s) {(1, 2), (1, 3)} {(1, 2), (2, 3)} {(1, 2), (3, 5)} {(1, 2), (4, 5)}
mst(s) ∅ {(1, 3)} {(1, 3), (2, 3)} {(1, 3), (2, 3), (3, 5)}
w(T0(s)) 21 21 17 16

Ũ(s)
T0 (2, 3), (3, 5), (4, 5), (1, 4) (1, 3), (3, 5), (4, 5), (2, 5) (1, 3), (2, 3), (4, 5), (3, 4) (1, 3), (2, 3), (3, 5), (3, 4)
T1 (3, 4), (2, 5), (2, 4), (1, 5) (3, 4), (1, 4), (2, 4), (1, 5) (1, 4), (2, 5), (2, 4) (1, 4), (2, 5), (2, 4)

s 9 10 11 12
mv(s) {(1, 3), (2, 3)} {(1, 3), (3, 5)} {(1, 3), (4, 5)} {(3, 5), (4, 5)}
mst(s) {(1, 2)} {(1, 2), (2, 3)} {(1, 2), (2, 3), (3, 5)} {(1, 2), (1, 3)}
w(T0(s)) 19 16 15 17

Ũ(s)
T0 (1, 2), (3, 5), (4, 5), (1, 4) (1, 2), (2, 3), (4, 5), (3, 4) (1, 2), (2, 3), (3, 5), (3, 4) (1, 2), (1, 3), (3, 4), (2, 5)
T1 (3, 4), (2, 5), (2, 4), (1, 5) (1, 4), (2, 5), (2, 4) (1, 4), (2, 5), (2, 4) (2, 3), (1, 4), (2, 4), (1, 5)

s 13 14
mv(s) {(3, 5), (3, 4)} {(4, 5), (3, 4)}
mst(s) {(1, 2), (2, 3), (4, 5)} {(1, 2), (2, 3), (3, 5)}
w(T0(s)) 20 16

Ũ(s)
T0 (1, 2), (2, 3), (4, 5), (1, 4) (1, 2), (2, 3), (3, 5), (1, 4)
T1 (2, 3), (2, 5), (2, 4), (1, 5) (2, 3), (2, 5), (2, 4), (1, 5)Table 3: Elements of s ∈ N2In order to obtain the best possible bounds, we
onstru
t U(s) for ea
h node s, insteadof using Ũ(s). For ea
h
hild d of s, U(d) is determined by
onstru
ting Ti(d), for 0 ≤ i ≤

k − |mv(d)| from the edges of U(s).4.1 Lower boundsFor a �xed node s of the sear
h tree, k − |mv(s)| edges remain to be deleted from U(s).We present di�erent ways of determining these remaining edges giving rise to three possiblelower bounds.1. LBgreedy(s): Given T0(s), we
ompute r(ej) for all ej ∈ T0(s). We delete the edge e∗jwhi
h attains maxej∈T0(s)\mst(s)(w(r(ej)) − w(ej)) and repla
e it by r(e∗j). We update
U(s) and repeat the pro
ess until k − |mv(s)| edges are removed. The value of thisbound is the weight of the last MST obtained.2. LBfirst(s): We remove the k−|mv(s)| edges of T0(s)\mst(s) having the smallest weight,and we
onstru
t a MST from the remaining edges in T0(s). The value of this bound isthe weight of the MST obtained.3. LBbest(s): Given T0(s), we
ompute r(ej) for all ej ∈ T0(s). We remove the k− |mv(s)|edges in T0(s) \mst(s) whose di�eren
e between the weight of their repla
ement edgeand their weight is the largest, and we
onstru
t a MST from the remaining edges in
T0(s). The value of this bound is the weight of the MST obtained.In order to test these bounds, we
omputed, for instan
es with di�erent values of n and

k, these three lower bounds at the root a of the sear
h tree. The instan
es are generated asexplained in se
tion 6. The results are given in Tables 4 and 5 where we report, for ea
h lowerbound, its value, as well as the per
ent deviation from the optimal value opt−LB
opt

, and the timeto
ompute it. We note that there is no dominan
e between these three bounds. We also notethat LBfirst is the fastest in terms of running time but gives bad values. LBgreedy, whi
hgives the best values in most
ases, takes mu
h more time than the other bounds. LBbest,9

whi
h gives similar values as LBgreedy, takes only about twi
e as mu
h time as LBfirst andabout 40 to 100 times less time than LBgreedy.

10

n k LBgreedy (a) LBk first(a) LBk best(a) w(T0) UB(a)value % time value % time value % time in G \ S∗ value %20 9 265 6.0 0.873 255 9.6 0.016 250 11.3 0.047 282 719 155.0221 3.5 0.889 219 4.4 0.015 222 3.1 0.032 229 711 210.5178 15.6 0.982 179 15.2 0.032 180 14.7 0.031 211 669 217.1166 10.8 0.842 157 15.6 0.000 157 15.6 0.016 186 681 266.1276 0.7 0.624 268 3.6 0.015 267 4.0 0.016 278 726 161.2246 11.8 0.904 243 12.9 0.016 240 14.0 0.000 279 764 173.8236 1.3 0.764 232 2.9 0.031 235 1.7 0.047 239 682 185.4272 0.0 0.967 254 6.6 0.031 255 6.3 0.031 272 712 161.8205 1.0 1.060 193 6.8 0.016 203 1.9 0.000 207 668 222.7245 1.6 0.748 216 13.3 0.000 225 9.6 0.016 249 716 187.6average 5.2 0.865 9.1 0.017 8.2 0.024 194.125 8 174 1.7 1.045 146 17.5 0.031 172 2.8 0.047 177 491 177.4191 1.5 0.936 173 10.8 0.000 191 1.5 0.016 194 474 144.3215 0.5 0.998 164 24.1 0.000 210 2.8 0.016 216 533 146.8240 4.4 0.951 219 12.7 0.031 232 7.6 0.047 251 523 108.4180 2.7 1.232 169 8.6 0.016 174 5.9 0.015 185 528 185.4202 2.4 0.967 200 3.4 0.031 202 2.4 0.047 207 491 137.2218 3.1 1.185 209 7.1 0.016 218 3.1 0.000 225 582 158.7183 5.7 0.904 179 7.7 0.032 180 7.2 0.046 194 498 156.7216 5.3 0.982 211 7.5 0.032 215 5.7 0.046 228 564 147.4235 4.9 0.982 243 1.6 0.000 232 6.1 0.016 247 562 127.5average 3.2 1.018 10.1 0.019 4.5 0.030 149.030 7 153 0.6 0.920 126 18.2 0.016 147 4.5 0.015 154 339 120.1160 14.4 0.982 150 19.8 0.032 158 15.5 0.046 178 426 127.8187 1.6 1.232 164 13.7 0.031 181 4.7 0.063 190 385 102.6164 3.5 1.170 157 7.6 0.015 164 3.5 0.016 170 392 130.6198 4.8 0.982 187 10.1 0.016 197 5.3 0.016 208 399 91.8181 2.7 1.014 155 16.7 0.015 175 5.9 0.016 186 398 114.0194 1.5 0.889 180 8.6 0.015 193 2.0 0.016 197 402 104.1186 5.1 1.155 156 20.4 0.015 168 14.3 0.016 196 403 105.6243 0.8 1.170 214 12.7 0.016 228 6.9 0.015 245 455 85.7197 0.5 0.753 184 7.1 0.012 195 1.5 0.016 198 406 105.1average 3.6 1.027 13.5 0.018 6.4 0.024 108.750 5 190 17.4 1.373 160 30.4 0.078 189 17.8 0.031 230 281 22.2230 0.0 1.263 215 6.5 0.016 230 0.0 0.031 230 288 25.2174 1.1 1.435 161 8.5 0.031 174 1.1 0.031 176 264 50.0161 1.8 1.357 155 5.5 0.015 161 1.8 0.032 164 231 40.9202 0.0 1.232 185 8.4 0.016 199 1.5 0.015 202 266 31.7177 0.6 1.311 165 7.3 0.031 177 0.6 0.015 178 254 42.7176 2.2 1.311 157 12.8 0.015 176 2.2 0.031 180 262 45.6191 2.1 1.372 191 2.1 0.016 191 2.1 0.016 195 262 34.4173 1.7 1.201 153 13.1 0.016 173 1.7 0.016 176 245 39.2167 1.2 1.248 151 10.7 0.000 166 1.8 0.031 169 232 37.3average 2.8 1.310 10.5 0.023 3.1 0.025 36.950 7 164 1.2 2.012 148 10.8 0.016 166 0.0 0.031 169 291 72.2185 1.6 2.012 168 10.6 0.016 184 2.1 0.031 188 311 65.4156 8.2 2.231 146 14.1 0.016 156 8.2 0.031 170 304 78.8182 1.6 1.997 173 6.5 0.016 182 1.6 0.031 185 319 72.4222 0.0 1.903 207 6.8 0.015 219 1.4 0.016 222 355 59.9191 4.0 2.090 178 10.6 0.016 191 4.0 0.031 199 331 66.3180 0.6 2.044 163 9.9 0.015 177 2.2 0.063 181 299 65.2209 0.0 2.246 189 9.6 0.016 207 1.0 0.031 209 326 56.0205 1.4 2.184 193 7.2 0.046 205 1.4 0.032 208 343 64.9196 0.0 2.013 185 5.6 0.015 196 0.0 0.016 196 315 60.7average 2.0 2.073 9.3 0.019 2.4 0.031 66.275 5 172 0.6 2.309 159 8.1 0.016 172 0.6 0.031 173 215 24.3159 0.6 2.496 149 6.9 0.016 159 0.6 0.031 160 225 40.6181 0.0 2.371 172 5.0 0.078 181 0.0 0.032 181 229 26.5181 0.0 2.637 168 7.2 0.031 181 0.0 0.031 181 228 26.0168 1.2 2.855 159 6.5 0.016 168 1.2 0.031 170 219 28.8197 0.5 2.481 189 4.5 0.015 197 0.5 0.031 198 248 25.3168 1.2 2.247 158 7.1 0.015 170 0.0 0.047 170 218 28.2200 0.0 2.450 183 8.5 0.015 200 0.0 0.031 200 258 29.0184 1.6 2.153 165 11.8 0.031 184 1.6 0.031 187 248 32.6186 0.5 2.418 176 5.9 0.032 186 0.5 0.031 187 236 26.2average 0.6 2.442 7.1 0.027 0.5 0.33 28.875 7 227 0.0 3.572 214 5.7 0.016 226 0.4 0.046 227 329 44.9239 1.6 3.510 225 7.4 0.031 239 1.6 0.032 243 332 36.6189 0.0 3.666 162 14.3 0.031 189 0.0 0.032 189 272 43.9206 0.5 3.417 188 9.2 0.031 206 0.5 0.047 207 299 44.4187 1.6 3.573 170 10.5 0.015 187 1.6 0.047 190 275 44.7188 0.5 4.009 180 4.8 0.032 188 0.5 0.046 189 273 44.4206 2.4 3.260 189 10.4 0.016 206 2.4 0.047 211 300 42.2183 1.6 3.588 172 7.5 0.031 183 1.6 0.047 186 273 46.8183 2.1 3.759 168 10.2 0.032 183 2.1 0.046 187 270 44.4188 0.0 2.868 168 10.6 0.034 188 0.0 0.058 188 279 48.4average 1.0 3.522 9.1 0.027 1.1 0.045 44.1Table 4: Values of the three lower bounds and upper bound at the root of the sear
h tree (instan
esof small size with n < 100) 11

n k LBgreedy(a) LBk first(a) LBk best(a) w(T0) UB(a)value % time value % time value % time in G \ S∗ value %100 5 186 0.0 3.635 177 4.8 0.031 186 0.0 0.031 186 230 23.7209 0.9 3.947 201 4.7 0.031 209 0.9 0.047 211 244 15.6193 0.5 3.760 184 5.2 0.031 193 0.5 0.047 194 230 18.6187 0.5 3.572 175 6.9 0.032 187 0.5 0.031 188 216 14.9205 0.0 3.697 195 4.9 0.031 205 0.0 0.031 205 263 28.3187 1.1 3.916 176 6.9 0.031 187 1.1 0.047 189 233 23.3211 0.5 3.572 201 5.2 0.032 209 1.4 0.046 212 249 17.5179 0.0 4.009 167 6.7 0.031 179 0.0 0.047 179 211 17.9201 1.0 4.040 187 7.9 0.031 199 2.0 0.031 203 239 17.7182 4.2 3.463 169 11.1 0.031 182 4.2 0.032 190 233 22.6average100 7 185 0.0 5.912 173 6.5 0.032 184 0.5 0.062 185 253 36.8192 3.5 5.554 186 6.5 0.031 192 3.5 0.062 199 264 32.7215 0.0 5.850 192 10.7 0.031 212 1.4 0.047 215 274 27.4211 0.5 5.585 193 9.0 0.031 211 0.5 0.062 212 278 31.1201 0.0 5.651 186 7.5 0.035 201 0.0 0.056 201 265 31.8215 0.0 5.446 194 9.8 0.035 215 0.0 0.052 215 279 29.8220 1.3 5.028 202 9.4 0.034 220 1.3 0.052 223 279 25.1218 0.9 5.048 201 8.6 0.031 218 0.9 0.051 220 284 29.1202 1.0 5.772 192 5.9 0.031 202 1.0 0.047 204 276 35.3207 1.4 5.616 191 9.0 0.031 205 2.4 0.047 210 274 30.5average200 5 266 0.0 11.965 254 6.5 0.062 266 0.5 0.156 266 277 36.8243 3.5 12.480 237 6.5 0.062 243 3.5 0.094 243 262 32.7241 0.0 12.699 238 10.7 0.171 241 1.4 0.078 245 262 27.4251 0.5 12.963 243 9.0 0.063 251 0.5 0.078 251 267 31.1243 0.0 13.306 233 7.5 0.063 243 0.0 0.234 244 260 31.8236 0.0 12.886 227 9.8 0.047 236 0.0 0.078 236 250 29.8245 1.3 12.075 237 9.4 0.046 245 1.3 0.094 245 260 25.1247 0.9 12.355 237 8.6 0.156 246 0.9 0.094 247 277 29.1241 1.0 11.559 233 5.9 0.063 241 1.0 0.093 241 268 35.3257 1.4 11.283 248 9.0 0.058 257 2.4 0.109 257 259 30.5average300 5 316 0.6 27.565 311 2.2 0.078 316 0.6 0.125 318 328 3.1333 0.0 27.051 323 3.0 0.078 333 0.0 0.234 333 346 3.9325 0.3 29.796 318 2.5 0.156 325 0.3 0.125 326 338 3.7324 0.3 28.002 318 2.2 0.140 324 0.3 0.140 325 335 3.1334 0.0 30.077 326 2.4 0.078 334 0.0 0.187 334 346 3.6328 0.6 30.046 322 2.4 0.078 328 0.6 0.187 330 344 4.2324 0.3 28.252 320 1.5 0.234 324 0.3 0.125 325 337 3.7334 0.3 28.283 327 2.4 0.078 334 0.3 0.203 335 346 3.3330 0.0 25.303 322 2.4 0.094 330 0.0 0.328 330 341 3.3316 0.0 27.779 311 1.6 0.141 316 0.0 0.125 316 327 3.5average400 5 418 0.0 45.256 413 1.2 0.218 418 0.0 0.172 418 426 1.9410 0.0 44.398 405 1.2 0.109 410 0.0 0.250 410 421 2.7412 0.0 45.022 406 1.5 0.187 412 0.0 0.250 412 419 1.7409 0.0 43.617 406 0.7 0.203 409 0.0 0.141 409 419 2.4411 0.0 47.861 406 1.2 0.125 411 0.0 0.156 411 422 2.7418 0.0 45.552 410 1.9 0.109 418 0.0 0.187 418 426 1.9409 0.0 44.429 406 0.7 0.140 409 0.0 0.219 409 424 3.7411 0.0 45.692 406 1.2 0.187 411 0.0 0.172 411 422 2.7415 0.0 44.647 412 0.7 0.141 415 0.0 0.249 415 424 2.2414 0.0 38.207 410 1.0 0.109 414 0.0 0.172 414 423 2.2averageTable 5: Values of the three lower bounds and upper bound at the root of the sear
h tree (instan
esof large size with n ≥ 100)4.2 Upper boundLet s be a given node of the sear
h tree. To
ompute UB(s), we sele
t the edge in T1(s)of largest weight and we repla
e the edge deleted from Tj(s) by the edge with largest weightbelonging to Tj+1(s), for j = 1, . . . , k − |mv(s)| − 1. We repeat this pro
ess k − |mv(s)| − 1times.Let F be the set of the k − |mv(s)| edges sele
ted from T1(s) in this pro
ess. Then, wemust determine the k−|mv(s)| edges to be removed. To obtain an upper bound for all feasiblesolutions obtained from s, we delete the k−|mv(s)| edges of smallest weight among the edgesof F ∪ T0(s)\mst(s). Denote by Emin the subset of these sele
ted edges removed. Therefore,
UB(s) = w(T0(s)) + w(F) − w(Emin).We
omputed, for instan
es with di�erent values of n and k, this upper bound at the root12

a of the sear
h tree (see Tables 4 and 5). Besides the bound value, we report the per
entdeviation from the optimal value de�ned as UB−opt
opt

. The main observation is that UB(a) israther
lose to the optimal value for small values of k and deteriorates as k in
reases.4.3 Bran
hing strategyLet a be the root of the sear
h tree. The bran
hing strategy is the same as for theexpli
it enumeration algorithm. We start with a feasible solution value
orresponding to
max{LBgreedy(a), LBfirst(a), LBbest(a)}. We tested two di�erent best �rst sear
h strategies.The �rst one is the standard strategy (Bran
hing: best upper bound) where the node with thelargest upper bound is sele
ted �rst. No lower bound is
omputed and the fathoming test isperformed only when we update the
urrent best feasible solution value, whi
h
an o

ur onlyat level k − 1 of the sear
h tree. In the se
ond strategy (Bran
hing: best lower bound), thenode with the largest lower bound is sele
ted �rst. Lower and upper bounds are
omputed atevery node. Sin
e LBbest gives values
lose to the best ones and takes less time, we use thisbound for
omputing a lower bound. Here, the fathoming test is performed at ea
h node by
omparing ea
h lower bound value with the
urrent best feasible solution value.4.4 Illustrative exampleRe
onsider the graph G, illustrated in Figure 1, as input for 3 Most Vital Edges MST.We show how the strategy "Bran
hing: best upper bound" pro
eeds.We start, as in the expli
it algorithm, by
onstru
ting the root a of the sear
h tree, whoseelements are:

• mv(a) = mst(a) = ∅

• U(a) is the union of the following trees
T0(a) : (1, 2), (1, 3), (3, 5), (4, 5)

T1(a) : (2, 3), (3, 4), (1, 4), (2, 5)

T2(a) : (2, 4), (1, 5)

• and w(T0(a)) = 12Let S = {a}, bestvalue = max{LBGreedy(a), LBk first(a), LBk best(a)} = max{22, 24, 22} =
24 and bestset = {(1, 2), (1, 3), (3, 5)}.Iteration 1: We sele
t node a.Sin
e |mv(a)| < k − 1, we test the four
hildren of node a whose elements are given inTable 6.Sin
e UB(4) ≤ bestvalue, we generate only nodes 1, 2 and 3. Then, S = {1, 2, 3}.Iteration 2: We sele
t node 1, whi
h has the
urrent best upper bound.Sin
e |mv(1)| < k− 1, we test the four
hildren of node a whose elements are summarizedin Table 7.Sin
e UB(7) and UB(8) are less than bestvalue, S = {5, 6, 2, 3}.Iteration 3: We sele
t node 5. 13

s 1 2 3 4
mv(s) {(1, 2)} {(1, 3)} {(3, 5)} {(4, 5)}
mst(s) ∅ {(1, 2)} {(1, 2), (1, 3)} {(1, 2), (1, 3), (3, 5)}
w(T0(s)) 14 13 15 14
U(s) T0 (1, 3), (2, 3), (3, 5), (4, 5) (1, 2), (2, 3), (3, 5), (4, 5) (1, 2), (1, 3), (4, 5), (3, 4) (1, 2), (1, 3), (3, 5), (3, 4)

T1 (3, 4), (1, 4), (2, 5), (2, 4) (3, 4), (1, 4), (2, 5) (1, 4), (2, 5) (1, 4)
T2 (1, 5) (2, 4), (1, 5) (2, 4), (1, 5) (2, 4)

UB(s) 32 28 25 18Table 6: Children of node a

s 5 6 7 8
mv(s) {(1, 2), (1, 3)} {(1, 2), (2, 3)} {(1, 2), (3, 5)} {(1, 2), (4, 5)}
mst(s) ∅ {(1, 3)} {(1, 3), (2, 3)} {(1, 3), (2, 3), (3, 5)}
w(T0(s)) 21 21 17 16

Ũ(s) T0 (2, 3), (3, 5), (4, 5), (1, 4) (1, 3), (3, 5), (4, 5), (2, 5) (1, 3), (2, 3), (4, 5), (3, 4) (1, 3), (2, 3), (3, 5), (3, 4)
T1 (3, 4), (2, 5), (2, 4), (1, 5) (3, 4), (2, 4), (1, 5) (1, 4), (2, 5) (1, 4)

UB(s) 30 29 22 18Table 7: Children of node 1As |mv(5)| = k − 1, we
ompute the repla
ement edge for all edges in T0(5) and �nd that
w(T0(5)) + maxej∈T0(5)\mst(5)(w(r(ej)) − w(ej)) = 28 > bestvalue. Then, bestvalue = 28,
bestset = {(1, 2), (1, 3), (2, 3)} and S = {6}.Iteration 4: We sele
t node 6.As |mv(6)| = k − 1, we
ompute the repla
ement edge for all edges in T0(5) and �nd that
w(T0(5)) +maxej∈T0(5)\mst(5)(w(r(ej)) − w(ej)) = 24 < bestvalue. We dis
ard node 6 from
S. Sin
e S = ∅, the algorithm terminates. Figure 3 gives the sear
h tree generated duringthe algorithm. A solution for 3 Most Vital Edges MST is bestset = {(1, 2), (1, 3), (2, 3)}and the weight of MST in G \ {(1, 2), (1, 3), (2, 3)} is bestvalue = 28.

a

1

5 6

2 3

Figure 3: Sear
h tree of impli
ite algorithm
14

5 A mixed integer programming formulation for �nding the kmost vital edgesSeveral linear programming formulations have been proposed to model the determinationof a minimum spanning tree on a graph [12℄. In one of these formulations, the minimumspanning tree is
onsidered as a spe
ial version of a network design problem. Modeling thenetwork by a
onne
ted graph, the problem
onsists of sending �ow between all nodes of thegraph. Thus, a variable xe asso
iated to an edge e indi
ates whether or not we install theedge e to be available to
arry any �ow. One model proposed by Magnanti and Wolsey is thedire
ted multi
ommodity �ow model. Let D = (V,A) be the digraph formed by repla
ing ea
hedge (i, j) in E by two ar
s (i, j) and (j, i) in A. In this model, one of the nodes, say node 1,is
onsidered as a root and ea
h node ℓ 6= 1 de�nes a
ommodity. Node 1 must send to ea
hnode ℓ 6= 1 one unit of
ommodity ℓ. Denote by f ℓ
ij the �ow of
ommodity ℓ on the ar
 (i, j).For an edge e = (i, j), we set wij = w(e) in the following formulations. The linear programasso
iated to this model is:





min
(i,j)∈E

∑
wij(yij + yji)s.t.

∑

(j,1)∈A

f ℓ
j1 −

∑

(1,j)∈A

f ℓ
1j = −1 ∀ℓ ∈ V \{1}

∑

(j,i)∈A

f ℓ
ji −

∑

(i,j)∈A

f ℓ
ij = 0 ∀i, ℓ ∈ V \{1}, i 6= ℓ

∑

(j,ℓ)∈A

f ℓ
jℓ −

∑

(ℓ,j)∈A

f ℓ
ℓj = 1 ∀ℓ ∈ V \{1}

f ℓ
ij ≤ yij ∀(i, j) ∈ A, ∀ℓ ∈ V \{1}

∑

(i,j)∈A

yij = n− 1

fij ≥ 0, yij ≥ 0 ∀(i, j) ∈ A

(1)(2)(3)(4)(5)In this model,
onstraints (1) - (3)
orrespond to �ow balan
es at the nodes. Constraints(4) state that the �ows on (i, j) for all
ommodities are zero if yij = 0. Thus, these fourgroups of
onstraints impose that the graph de�ned by a solution given by edges (i, j) su
hthat yij = 1 is
onne
ted. Constraints (5) indi
ate that any solution must
ontain n−1 edges,thus any possible solution has to be a tree. Therefore, this formulation models the problemof �nding a minimum spanning tree.Remark that in this formulation, integrity
onstraints on variables yij are omitted. In-deed, Magnanti and Wolsey [12℄ show that the extreme points of the set of feasible solutions
orresponding to this model are integers. The dual
orresponding to this linear program isgiven by:
15





max
∑

ℓ∈V, ℓ 6=1

(αℓ
ℓ − αℓ

1) + (n− 1)µs.t.
σℓ
ij ≥ αℓ

j − αℓ
i ∀(i, j) ∈ A, ∀ℓ ∈ V \{1}∑

ℓ 6=1

σℓ
ij + µ ≤ wij ∀(i, j) ∈ E

∑
ℓ 6=1

σℓ
ji + µ ≤ wij ∀(i, j) ∈ E

σℓ
ij ≥ 0 ∀(i, j) ∈ A, ∀ℓ ∈ V \{1}

αℓ
i ≥ 0 ∀i ∈ V, ℓ ∈ V \{1}

µ unrestri
tedUsing the previous MST formulation, one
an model k Most Vital Edges MST de�nedon the graph UG
k = (V,Eu) with Eu = ∪k

j=0Tj as follows:




max
z∈Z

min
∑

(i,j)∈Eu

(wij +Mij zij)(yij + yji)s.t. ∑
(j,1)∈Au

f ℓ
j1 −

∑
(1,j)∈Au

f ℓ
1j = −1 ∀ℓ ∈ V \{1}

∑
(j,i)∈Au

f ℓ
ji −

∑
(i,j)∈Au

f ℓ
ij = 0 ∀i, ℓ ∈ V \{1}, i 6= ℓ

∑
(j,ℓ)∈Au

f ℓ
jℓ −

∑
(ℓ,j)∈Au

f ℓ
ℓj = 1 ∀ℓ ∈ V \{1}

f ℓ
ij ≤ yij ∀(i, j) ∈ Au, ∀ℓ ∈ V \{1}∑

(i,j)∈Au

yij = n− 1

fij ≥ 0, yij ≥ 0 ∀(i, j) ∈ Auwhere Z = {zij ∈ {0, 1}, ∀(i, j) ∈ Eu :
∑

(i,j)∈Eu

zij = k}In this formulation, variable zij is equal to 1 if edge (i, j) is deleted and 0 otherwise. Inorder to dis
ard this edge from any MST, we assign it the weight wij +Mij where Mij is alarge enough
onstant, e.g. Mij = max(i,j)∈E wij + 1− wij .Using the dual of the inner program, we obtain the following mixed integer programmingformulation for k Most Vital Edges MST.




max
∑

ℓ∈V, ℓ 6=1

(αℓ
ℓ − αℓ

1) + (n − 1)µs.t.
σℓ
ij ≥ αℓ

j − αℓ
i ∀(i, j) ∈ Au, ∀ℓ ∈ V \{1}∑

ℓ 6=1

σℓ
ij + µ ≤ wij +Mij zij ∀(i, j) ∈ Eu

∑
ℓ 6=1

σℓ
ji + µ ≤ wij +Mij zij ∀(i, j) ∈ Eu

∑
(i,j)∈Eu

zij = k

zij ∈ {0, 1} ∀(i, j) ∈ Eu

σℓ
ij ≥ 0 ∀(i, j) ∈ Au, ∀ℓ ∈ V \{1}

αℓ
i ≥ 0 ∀i ∈ V, ℓ ∈ V \{1}

µ unrestri
ted 16

6 Computational resultsAll experiments presented here were performed on a 3.4GHz
omputer with 3Gb RAM.All proposed algorithms are implemented in C. All instan
es are
omplete graphs de�ned on nverti
es. Weights w(e) for all e ∈ E are generated randomly, uniformly distributed in [1, 100].For ea
h value of n and k presented in this study, 10 di�erent instan
es were generated andtested. The results are reported in Table 8 where ea
h given value is the average over 10instan
es. For the impli
it enumeration algorithm,
omputed and generated nodes representrespe
tively nodes for whi
h we have determined mv, mst, U and UB and nodes for whi
h
UB > bestvalue and must be stored. Column ♯opt
orresponds to the number of instan
essolved optimally.We �rst
ompare the expli
it and impli
it enumeration algorithms. The results show thatimpli
it enumeration algorithms are mu
h faster than the expli
it enumeration algorithm and
an handle instan
es of
onsiderably larger size. Observe that, for the expli
it enumerationalgorithm, the sear
h tree size is identi
al for any instan
e of the same (n, k) type. As a
onsequen
e, either all or none of the instan
es of a same (n, k) type
an be solved. Moreover,for the same reason,
omputation times show a low varian
e for all instan
es of a same (n, k)type. Regarding the impli
it enumeration algorithm, the "Bran
hing: best upper bound"strategy yields slightly better running times than the "Bran
hing: best lower bound" strat-egy. However, the "Bran
hing: best upper bound" strategy, for whi
h fathoming tests areperformed less frequently, generates more nodes. Thus, owing to the limited memory
apa
-ity, the "Bran
hing: best lower bound" strategy
an handle instan
es of larger size.We
ompare now the results obtained by the mixed integer program with those of theimpli
it enumeration algorithm. For this, we implemented the mixed integer program usingthe solver CPLEX 12.1 and we run it on the same generated instan
es. We limited the runningtime to 1 hour for the instan
es with 20, 25, 30 and 50 verti
es, and to 2 hours for the otherinstan
es. The results are also reported in Table 8 where

• Time, given in se
onds, is the average running time on the 10 instan
es. For any instan
ewhi
h is not solved optimally within the time limit, the running time is set to this limit;
• Generated nodes represents the average number of nodes
reated in the sear
h tree
orresponding to instan
es returning feasible solutions;
• Gap, expressed as a per
entage, represents the average over ratios UB − BS

UB

omputedon all instan
es returning at least one feasible solution, where UB is the �nal best upperbound and BS is the best solution value found;

• Opt/Feas represents the number of instan
es solved optimally /for whi
h at least onefeasible solution was found within the time limit.We note that the mixed integer program rea
hes the optimal value for very small instan
esonly. A
tually, for n < 100, we only obtain in most
ases feasible solutions with rather largegaps whi
h indi
ates that optimality is far from being rea
hed. Finally, for instan
es with
n ≥ 100, no feasible solutions are returned within the time limit. Moreover, for n = 300 and
400, the exe
ution of the program ex
eeds the memory
apa
ity after a few se
onds (297.437and 0.56 se
onds in average respe
tively). 17

From all these remarks, we
an
on
lude that our proposed impli
it enumeration algorithmgives better results than the expli
it enumeration algorithm as well as the resolution of themixed integer program and this both in terms of running time and memory use.We propose in the following an ε-approximate algorithm based on our impli
it algorithm.The aim being to obtain an ε-approximate solution of the optimum, the
ondition to generatea node s in the sear
h tree is now (1 − ε)UB(s) > bestvalue. Indeed, the value v returnedby the approximate algorithm must verify opt(G)(1 − ε) ≤ v ≤ opt(G). Sin
e v is equal to
bestvalue, any node for whi
h UB(s)(1− ε) ≤ bestvalue is fathomed.The algorithm is tested on the same instan
es generated before and this for ε = 0.01, 0.05,and 0.1. Thus, we
ompare the ε-approximate algorithm with the impli
it algorithm. Theresults are summarized in Table 9. The meaning of
omputed and generated nodes is thesame as above and ea
h given value in the table represents the average over the 10 generatedinstan
es for ea
h value of n and k.

18

n k Expli
it Impli
it enumeration Mixed Integer Programenumeration Bran
hing: best lower bound Bran
hing: best upper boundTime Nodes Time Nodes Time Nodes ♯opt Time Generated Gap Opt/Feas(s) (s) Computed Generated (s) Computed Generated (s) nodes (%)20 3 0.000 210 0.000 165.1 33.5 0.001 165.1 34.3 10 35.750 1 638.2 0 10 / 105 0.135 8 855 0.032 3 280.6 422.3 0.032 3 230.9 463.2 10 692.984 21 792.4 0 10 / 107 2.732 177 100 0.419 35 714.0 4 792.0 0.380 35 659.2 5 918.2 10 3 600.000 61 386.5 23.91 0 / 109 36.020 220 075 3.322 258 321.8 35 639.1 3.047 257 776.0 44 037.4 10 3 600.000 36 908.1 46.49 0 / 1025 3 0.000 325 0.000 245.0 29.8 0.003 245.0 31.4 10 141.270 2 066.5 0 10 / 105 0.318 20 475 0.095 7 146.4 705.1 0.089 7 047.2 866.7 10 2 984.021 29 300.4 8.69 5 / 107 8.783 593 775 1.772 128 802.5 15 143.4 1.617 128 742.2 16 926.0 10 3 600.000 14 218.1 46.05 0 / 108 52.068 2 629 575 3.765 247 900.6 26 076.8 3.566 247 822.8 31 938.3 10 3 600.000 10 733.5 66.43 0 / 1030 3 0.007 465 0.000 345.1 47.7 0.005 345.1 49.7 10 424.171 3 831.9 0 10 / 105 0.812 40 920 0.260 16 756.3 1 373.7 0.231 16 625.9 1 588.7 10 3 458.330 13 156.2 26.03 1 / 107 40.461 1 623 160 3.899 231 523.5 20 779.0 3.553 231 210.2 25 737.4 10 3 600.000 4 855.9 63.65 0 / 1050 3 0.880 1 275 0.028 949.1 64.9 0.026 949.1 85.3 10 3 600.000 1 285.8 17.28 0 / 105 15.390 292 825 2.043 76 840.3 4 649.3 1.856 74 550.2 5 138.1 10 3 600.000 503.0 43.59 0 / 107 - - 88.886 3 156 471.8 168 127.4 81.707 3 156 170.1 218 830.4 10 3 600.000 21.33 80.47 0 / 975 3 0.376 2 850 0.101 2 296.8 114.8 0.096 2 296.8 117.7 10 7 200.000 430.2 17.83 0 / 105 - - 11.248 259 738.0 8 130.7 10.459 259 737.6 10 519.6 10 6 490.238 0.3 39.22 1 / 107 - - 650.008 13 330 591.9 474 912.7 463.385 9 608 531.7 379 179.2 7 7 200.000 0 55.75 0 / 3100 3 1.083 5 050 0.224 3 617.1 83.3 0.210 3 617.1 89.9 10 7 200.000 0 0 / 05 - - 54.148 904 662.4 19 383.8 49.895 904 662.4 23 800.1 10 7 200.000 0 0 / 07 - - 2 016.410 26 835 600.6 721 120.4 935.777 11 986 049.2 368 180.0 4 7 200.000 0 0 / 0200 5 - - 572.557 2 933 547.2 46 236.3 670.340 2 933 296.1 49 073.6 10 7 200.000 0 0 / 0300 5 - - 1 793.460 3 996 192.1 43 671.2 2 163.350 3 980 311.0 56 924.5 10 7 200.000 0 0 / 0400 5 - - 7 265.850 10 956 321.8 106 433.4 6 195.182 5 927 376.8 56 424.5 7 - - - 0 / 0itali
s: average over instan
es solved optimally-: memory over�owTable 8: Comparison of expli
it enumeration, impli
it enumeration and MIP-based algorithms

n k ε-approximate algorithm

ε = 0.01 ε = 0.05 ε = 0.1Time Nodes ε′ Time Nodes ε′ Time Nodes ε′(s) Computed Generated (s) Computed Generated (s) Computed Generated20 3 0.000 162.9 30.6 0.00000 0.000 136.9 14.0 0.00000 0.000 100.6 7.4 0.001985 0.035 3 108.2 384.6 0.00000 0.024 2 068.8 211.1 0.00043 0.012 1 258.4 113.1 0.002677 0.393 33 258.5 4 356.0 0.00000 0.273 21 820.0 2 575.7 0.00323 0.174 13 209.9 1 451.0 0.009229 3.044 237 267.0 32 085.4 0.00000 2.180 160 036.0 20 093.2 0.00421 1.376 93 275.6 10 888.2 0.0073525 3 0.000 230.8 26.7 0.00000 0.000 189.8 13.1 0.00263 0.000 98.2 5.7 0.002635 0.093 6 691.6 637.2 0.00060 0.061 4 235.5 345.2 0.00213 0.031 2 002.0 146.1 0.007797 1.648 119 033.8 13 603.0 0.00000 1.066 72 193.8 7 178.9 0.00148 0.606 37 683.2 3 379.8 0.004168 3.513 226 536.1 23 389.9 0.00000 2.255 135 623.2 12 792.9 0.00142 1.242 68 426.4 5 900.1 0.0031930 3 0.000 338.1 38.8 0.00000 0.000 280.1 17.3 0.00453 0.000 161.6 7.2 0.004525 0.233 15 137.4 1 171.7 0.00000 0.123 7 302.6 470.5 0.00307 0.059 3 146.2 181.9 0.003637 3.523 209 289.3 18 256.8 0.00000 2.183 119 797.9 9 363.5 0.00470 1.155 57 665.1 4 062.5 0.0072150 3 0.025 899.4 48.8 0.00000 0.011 381.6 14.1 0.00000 0.000 76.5 2.4 0.006465 1.790 67 052.0 3 757.3 0.00000 0.635 20 586.6 866.5 0.00178 0.255 7 213.3 241.8 0.002797 74.688 2 534 780.6 130 685.3 0.00000 28.324 820 954.5 36 722.1 0.00053 7.958 193 201.5 7 827.2 0.0031675 3 0.092 2 121.1 75.7 0.00000 0.0016 325.4 5.3 0.00241 0.003 75.0 1.0 0.003555 8.334 187 230.6 5 444.6 0.00000 1.679 27 753.6 616.2 0.00168 0.232 2 860.8 50.4 0.003877 510.768 9 838 080.8 336 993.8 0.00000 109.664 1 734 007.8 51 514.5 0.00195 20.661 260 410.7 6 584.0 0.00536100 3 0.208 3 341.4 57.4 0.00000 0.013 121.6 1.4 0.00051 0.010 100.0 1.0 0.003085 34.779 561 343.8 10 619.5 0.00000 3.875 41 860.1 611.1 0.00143 0.396 3 307.4 41.6 0.002977 1 214.43 14 901 505.8 377 861.2 0.00000 179.771 1 703 572.1 34 196.8 0.00143 13.940 95 045.1 1 492.2 0.00371200 5 165.904 682 703.2 10 147.9 0.00000 0.731 1 693.0 11.5 0.00163 0.131 200.0 1.0 0.00163300 5 87.600 164 368.6 1 129.4 0.00030 0.380 300.0 1.0 0.00245 0.379 300.0 1.0 0.00241400 5 89.564 80 786.1 257.3 0.00000 0.846 400.0 1.0 0.00000 0.842 400.0 1.0 0.00000Table 9: Results of the ε-approximate algorithm

20

We note that the running times of the ε-approximate algorithm are signi�
antly lowerthan those of the impli
it enumeration algorithm. Running times do not ex
eed 21 se
ondsfor ε = 0.1, 180 se
onds for ε = 0.05 and 1 215 se
onds for ε = 0.01. We also note that forlarge instan
es with n = 300 and 400 nodes, the ε-approximate algorithm solves the problemfor ε = 0.05 and 0.1 at the root in a time less than 1 se
ond, and for ε = 0.1 in a time less than90 se
onds while the impli
it enumeration algorithm requires 1 793.460 and 7 265.850 se
ondsrespe
tively.Moreover, the approximate solutions a posteriori are within ε′ to the optimum, with ε′ ≤
0.0006 for ε = 0.01, ε′ ≤ 0.0047 for ε = 0.05 and ε′ ≤ 0.00922 for ε = 0.1.For ε = 0.01, we note that the problem is nearly solved to optimality (ε′ = 0).All these remarks show that the proposed lower bounds and upper bound are of very goodquality and that the running time of the impli
it enumeration algorithm is the time neededto verify the optimality of the solution. Indeed, this optimal solution is either found in a fewse
onds or determined at the root of the sear
h tree
orresponding then to the maximum valueof the three lower bounds asso
iated to the root.7 Con
lusionsIn this paper we presented and
ompared di�erent algorithms for solving k Most Vi-tal Edges MST. We �rst proposed an expli
it enumeration algorithm that gives the besttime
omplexity for general k. Using upper and lower bounds, we adapted the previous al-gorithm into an e�
ient impli
it enumeration algorithm. We also proposed a mixed integerprogramming formulation of k Most Vital Edges MST whi
h was solved using CPLEX.Our experiments showed a large superiority of the impli
it enumeration algorithm. An ε-approximate version of this algorithm substantially improves running times while providingvery good quality results (with an a posteriori approximation ratio usually mu
h less than onetenth of the guaranteed ratio ε).All the previous algorithms
an be easily adapted to solve some variants of the k MostVital Edges MST problem. In a �rst variant, a removing
ost is asso
iated to ea
h edge.The problem
onsists of �nding a subset of edges with total
ost bounded by a budget limitwhose deletion
auses the largest in
rease in the weight of a minimum spanning tree. In ase
ond variant, we have to determine a minimum number of edges to be removed su
h thatthe weight of a minimum spanning tree in the resulting graph is at least a �xed value.Referen
es[1℄ A. Bar-Noy, S. Khuller, and B. S
hieber. The
omplexity of �nding most vital ar
s andnodes. Te
hni
al Report CS-TR-3539, University of Maryland, 1995.[2℄ C. Bazgan, S. Toubaline, and D. Vanderpooten. Complexity of determining the mostvital elements for the 1-median and 1-
enter lo
ation problems. In Pro
eeding of the

4th Annual International Conferen
e on Combinatorial Optimization and Appli
ations(COCOA 2010), LNCS 6508, Part I, pages 237�251, 2010.
21

[3℄ C. Bazgan, S. Toubaline, and D. Vanderpooten. Criti
al edges/nodes for the minimumspanning tree problem:
omplexity and approximation. to appear in Journal of Combi-natorial Optimization.[4℄ B. Chazelle. A minimum spanning tree algorithm with inverse-A
kermann type
omplex-ity. Journal of the ACM, 47(6):1028�1047, 2000.[5℄ B. Dixon, M. Rau
h, and R.E. Tarjan. Veri�
ation and sensitivity analysis of minimumspanning trees in linear time. SIAM Journal on Computing, 21(6):1184�1192, 1992.[6℄ G. N. Frederi
kson and R. Solis-Oba. In
reasing the weight of minimum spanning trees.Pro
eedings of the 7th ACM-SIAM Symposium on Dis
rete Algorithms (SODA 1996),pages 539�546, 1996. Also appeared in Journal of Algorithms, 33(2): 244-266, 1999.[7℄ L. Hsu, R. Jan, Y. Lee, C. Hung, and M. Chern. Finding the most vital edge withrespe
t to minimum spanning tree in a weighted graph. Information Pro
essing Letters,39(5):277�281, 1991.[8℄ K. Iwano and N. Katoh. E�
ient algorithms for �nding the most vital edge of a minimumspanning tree. Information Pro
essing Letters, 48(5):211�213, 1993.[9℄ L. Kha
hiyan, E. Boros, K. Borys, K. Elbassioni, V. Gurvi
h, G. Rudolf, and J. Zhao.On short paths interdi
tion problems : total and node-wise limited interdi
tion. Theoryof Computing Systems, 43(2):204�233, 2008.[10℄ W. Liang. Finding the k most vital edges with respe
t to minimum spanning trees for�xed k. Dis
rete Applied Mathemati
s, 113(2-3):319�327, 2001.[11℄ W. Liang and X. Shen. Finding the k most vital edges in the minimum spanning treeproblem. Parallel Computing, 23(13):1889�1907, 1997.[12℄ T. L. Magnanti and L. Wolsey. Optimal trees. In M. O. Ball, et al. (Eds.), Network Mod-els, Handbook in Operations Resear
h and Management S
ien
e, Vol 7, North-Holland,Amsterdam, pages 503�615, 1995.[13℄ E. Nardelli, G. Proietti, and P. Widmayer. A faster
omputation of the most vital edgeof a shortest path. Information Pro
essing Letters, 79(2):81�85, 2001.[14℄ S. Pettie. Sensitivity analysis of minimum spanning tree in sub-inverse-a
kermann time.In Pro
eedings of 16th International Symposium on Algorithms and Computation (ISAAC2005), LNCS 3827, pages 964�973, 2005.[15℄ S. Pettie and V. Rama
handran. An optimal minimum spanning tree algorithm. Journalof the ACM, 49(1):16�34, 2002.[16℄ H. D. Ratli�, G. T. Si
ilia, and S. H. Lubore. Finding the n most vital links in �ownetworks. Management S
ien
e, 21(5):531�539, 1975.[17℄ H. Shen. Finding the k most vital edges with respe
t to minimum spanning tree. A
taInformati
a, 36(5):405�424, 1999. 22

[18℄ F. Suraweera, P. Maheshwari, and P. Bhatta
harya. Optimal algorithms to �nd the mostvital edge of a minimum spanning tree. Te
hni
al Report CIT-95-21, S
hool of Computingand Information Te
hnology, Gri�th University, 1995.[19℄ R. E. Tarjan. Appli
ations of path
ompression on balan
ed trees. Journal of the ACM,26(4):690�715, 1979.[20℄ R. Wollmer. Removing ar
s from a network. Operations Resear
h, 12(6):934�940, 1964.[21℄ R. K. Wood. Deterministi
 network interdi
tion. Mathemati
al and Computer Modeling,17(2):1�18, 1993.

23

