
On the number of non-dominated points of amultiriteria optimization problem∗Cristina Bazgan1,2 Florian Jamain1 Daniel Vanderpooten11. PSL, Université Paris-Dauphine, LAMSADE UMR 7243Plae du Maréhal de Lattre de Tassigny, 75775 Paris Cedex 16, Frane2. Institut Universitaire de Frane{bazgan,�orian.jamain,vdp}�lamsade.dauphine.frAbstratThis work proposes an upper bound on the maximal number of non-dominated points ofa multiriteria optimization problem. Assuming that the number of values taken on eahriterion is known, the riterion spae orresponds to a omparability graph or a produtof hains. Thus, the upper bound an be interpreted as the stability number of a ompa-rability graph or, equivalently, as the width of a produt of hains. Standard approahesor formulas for omputing these numbers are impratial. We develop a pratial formulawhih only depends on the number of riteria. We also investigate the tightness of thisupper bound and the redution of this bound when feasible, possibly e�ient, solutionsare known.Keywords: multiriteria optimization, non-dominated points, omparability graph, stabilitynumber, produt of hains, Sperner property.1 IntrodutionIn multiriteria optimization, in opposition to single riterion optimization, there is typiallyno optimal solution i.e. one that is best for all the riteria. Therefore, the standard situationis that any solution an always be improved on at least one riterion. The solutions of interest,alled e�ient solutions, are those suh that any other solution whih is better on one riterionis neessarily worse on at least one other riterion. In other words, a solution is e�ient ifits orresponding vetor of riterion values is not dominated by any other vetor of riterionvalues orresponding to a feasible solution. These vetors, assoiated to e�ient solutions, arealled non-dominated points. For many multiriteria optimization problems, one of the maindi�ulties is the large ardinality of the set of non-dominated points, and the even largerardinality of the set of e�ient solutions (onsidering that several solutions an have thesame image in the riterion spae). However, similarly to single riterion optimization wherewe usually look for one among all optimal solutions, we usually look for all non-dominatedpoints and a orresponding e�ient solution for eah suh point. Thus, we an restrit our
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study to the set of non-dominated points. Even with this restrition, it is well-known, thatmost multiriteria ombinatorial optimization problems are intratable, in the sense that theyadmit families of instanes for whih the number of non-dominated points is exponential inthe size of the instane [4℄. This situation arises when the number of values taken on eahriterion is itself exponential in the size of the instane. It is thus interesting to investigatethe number of non-dominated points when we know (or have an upper bound on) the numberof values taken on eah riterion. This problem an be stated within di�erent theoretialframeworks. Using graph theory, the maximal ardinality of a set of non-dominated pointsorresponds to the stability number of a given graph. Using ordered set theory, this maximalardinality orresponds to the width of a produt of hains. These two frameworks providedi�erent insights on our problem.Up to our knowledge, this problem has not been dealt with, exept very reently byStanojevi¢ et al. in [9℄. The best bound they give is obtained by a reursion formula whih iswell-known in ordered set theory [8℄ and that we reall in our Proposition 1. Unfortunately, thisformula beomes quikly impratial when the number of values on eah riterion inreases.One of our purposes is to provide an alternative formula whih does not depend on thesenumbers.In the following setion, we de�ne the basi onepts and formalize the problem both in theontext of graphs and ordered sets. Then, in setion 3, we deal with simple ases and provide,in the general ase, a formula using a ombinatorial version of the inlusion-exlusion priniple[3℄. The time for omputing this formula is only exponential in the number of riteria. Wealso make omparisons with other bounds whih are easier to ompute. In setion 4, we showthat the proposed bound is tight for many lassial multiriteria optimization problems. Insetion 5, we try to redue the maximal number of non-dominated points using known feasiblesolutions, possibly e�ient. We onlude with some possible extensions to this work.2 Basi onepts and problem statements2.1 Basi oneptsIn this paper, we onsider multiriteria optimization problems formulated as:
min
x∈S

{f1(x), . . . , fp(x)}, (1)where f1, . . . , fp are p ≥ 2 riteria funtions to be minimized and S is the set of feasiblesolutions.We distinguish the deision spae X whih ontains the set S of feasible solutions fromthe riterion spae Y ⊆ Rp whih ontains the riterion vetors assoiated to these solutions.We denote by f(x) = (f1(x), . . . , fp(x)) the feasible point assoiated to a feasible solution
x ∈ S, and by Z = f(S) the set of images of the feasible solutions. We de�ne in the riterionspae Y , the following partial strit order, denoted by ≤, suh that for any y, y′ ∈ Y , y ≤ y′if yi ≤ y′i for all i ∈ {1, . . . , p} and y 6= y′. Relation ≤ orresponds to the standard dominanerelation used in multiriteria optimization.Then we de�ne e�ient solutions and non-dominated points, respetively, in the deisionspae X and in the riterion spae Y , as follows:2



De�nition 1. A feasible solution x ∈ S is alled e�ient if there is no other feasible solution
x′ ∈ S suh that f(x′) ≤ f(x). We denote by SEff the set of e�ient solutions. If x ise�ient, f(x) is a non-dominated point in the riterion spae, and let ZND = f(SEff).In this ontext formulation (1) means that we aim at generating the set of all non-dominated points and a orresponding e�ient solution for eah suh point.In this paper, we assume that fi an take up to ci + 1 values, where ci is a nonnegativeinteger. Thus, we onsider, without loss of generality, that eah fi an take integer valuesbetween 0 and ci, i = 1, . . . , p.In some ases, the ci values are known preisely, e.g. for qualitative riteria whih takevalues on a sale whose grades orrespond to prede�ned judgements. In other ases, thesevalues an only be approximated. For instane, assuming that riterion funtions are integer-valued, we an �nd an upper bound on ci by omputing the oordinates of the ideal andanti-ideal points, orresponding, respetively, to the best and the worst possible values oneah riterion. Better bounds an be given if we an ompute the oordinates of the nadirpoint, whih orresponds to the worst possible values over the set of non-dominated points.Unfortunately, this is not easy in general, espeially when the number of riteria is at least 3 [5℄.The problem of determining the maximum ardinality of the non-dominated set an bestated as follows.Max SizeNDInput: an integer p and p integers ci, i = 1, . . . , p.Output: maximum ardinality of the non-dominated set ZND assoiated to a set Z of p-dimensional points suh that at most ci+1 values are taken on the ith dimension, i = 1, . . . , p.Let (ci + 1) = {0, . . . , ci}, i = 1, . . . , p and P = (c1 + 1)× . . .× (cp + 1). Any relevant set
Z, and in partiular any of those leading to a non-dominated set of maximum ardinality, isinluded in P .2.2 Statement as a graph theory problemConsider the graph G = (P,E) whose set of verties is P = (c1 + 1) × . . . × (cp + 1) and setof edges is E = {(u, v) ∈ P × P : u ≤ v}. By onstrution, G is a omparability graph (i.e. agraph that admits a transitive orientation), sine relation ≤ is transitive.In this ontext, determining the maximum number of non-dominated points amounts todetermining the maximum ardinality of a stable set in G, i.e. omputing α(G), the stabilitynumber of G. It is well-known that α(G) an be determined in polynomial time when G isa omparability graph [6℄. In our ase, this is ahieved by omputing a minimum �ow in thedigraph G′ = (P,≤) from (0, . . . , 0) to (c1, . . . , cp) where eah vertex has a lower bound of 1.Then α(G) orresponds to the value of this minimum �ow in G′.Computing a minimum �ow in G′ an be performed in a time polynomial in the numberof verties P =

∏p
i=1(ci + 1). Sine the input of Max SizeND is not G′ but only values

c1, . . . , cp, whih are enoded in binary, this approah only gives us a pseudo-polynomial timealgorithm to solve Max SizeND.2.3 Statement as an ordered set theory problemGiven a partially ordered set (S,R), we reall that a hain is a totally ordered subset andan antihain is a subset whose elements are pairwise inomparable. Moreover, the height of3



(S,R), denoted by h(S), is the maximal ardinality of a hain in S, and the width of (S,R),denoted by α(S), is the maximal ardinality of an antihain in S. (S,R) is said to be rankedif we an de�ne a funtion r suh that for any x, y ∈ S, whenever xRy and there is no element
z ∈ S suh that xRzRy, we have r(y) = r(x) + 1. Calling Lk the level of rank k in S, i.e.the subset of elements of S with rank k, we de�ne nk = |Lk| and σ(S) = maxnk. Sine thelevels are antihains, we have α(S) ≥ σ(S). Finally, a partially ordered ranked set S is saidto satisfy the Sperner property if α(S) = σ(S) [2℄.In our ase, P = (c1 + 1)× . . .× (cp + 1), whih is a produt of hains, is partially orderedby the dominane relation ≤. The resulting partially ordered set (P,≤) has height h(P ) =
∑p

k=1ck (denoted for short by h in the following). Moreover, (P,≤) an be ranked using rankfuntion r whih assoiates to eah element (y1, . . . , yp) ∈ P its rank r(y1, . . . , yp) =
∑p

k=1 yk.In this ontext, solving Max SizeND is equivalent to determining the width α(P ). Wereall the following result.Theorem 1. (De Bruijn et al. [1℄) A produt of hains satis�es the Sperner property.Therefore, sine P is a produt of hains, we have α(P ) = σ(P ). Thus, we are interestedin determining the ardinality of a level of P whih has the largest number of elements. Itis well-known that the levels of maximum ardinality are all entered around the level Lh/2if h is even, and the levels L(h−1)/2 and L(h+1)/2 if h is odd [2, 8℄. Thus, determining α(P )amounts to omputing n⌊h
2
⌋.Leler [8℄ and Caspar et al. [2℄ proposed indution formulas to ompute n⌊h

2
⌋. Neverthe-less, these indution formulas depend on p but also on the values ci, i = 1, . . . , p. Sine thevalues ci may often be large, these formulas are not really usable in pratie, as aknowledgedby the previous authors. This is, however, another pseudo-polynomial time method to solveMax SizeND. The motivation is to obtain a new more pratial formula, the omplexity ofwhih does not depend on the values ci, that is a strongly polynomial time algorithm.3 Computation of the width of a produt of hainsWe �rst provide an upper bound on the width of a produt of hains P , showing that thisbound is tight in a speial ase, whih inludes the biriteria ase. Then, we propose andompare two formulas for omputing exatly α(P ).We assume w.l.o.g. that the riteria are numbered by non-inreasing order of values ci,that is c1 ≥ ... ≥ cp.3.1 A simple upper bound on α(P )A �rst simple upper bound on α(P ) is given by the following result.Lemma 1. α(P ) ≤

∏p
i=2(ci + 1).Proof : By ontradition, if α(P ) >

∏p
i=2(ci + 1) there exist at least two non-dominatedpoints with the same values on riteria fi, i = 2, . . . , p. Then, among these two points, thepoint with a worse value on f1 is dominated by the other one. 2This upper bound is tight in a partiular ase, as shown in the following lemma:4



Lemma 2. α(P ) =
∏p

i=2(ci + 1) if and only if c1 ≥ ∑p
i=2ci.Proof :

⇐ If c1 ≥
∑p

i=2ci then all possible ∏p
i=2(ci + 1) on�gurations on the last p − 1 riteriaan be ompleted on riterion f1 so as to de�ne non-dominated points. Indeed, any point withvalue vj on riterion fj , j = 2, . . . , p is non-dominated if it is assigned the (nonnegative) value

∑p
i=2ci −

∑p
i=2vj on riterion f1.

⇒ If α(P ) =
∏p

i=2(ci + 1), all possible on�gurations on the last p − 1 riteria mustorrespond to non-dominated points. In partiular, the ∑p
i=2ci + 1 following on�gurations,whih onstitute a hain on the last p− 1 riteria, must orrespond to non-dominated points:

(∗, 0, . . . , 0), (∗, 1, 0, . . . , 0), . . . , (∗, c2, 0, . . . , 0),
(∗, c2, 1, 0, . . . , 0), . . . , (∗, c2, c3, 0, . . . , 0),
. . .
(∗, c2, c3, . . . , cp−1, 1), . . . , (∗, c2, c3, . . . , cp−1, cp)For this hain on the last p− 1 riteria to beome an antihain on the p riteria, we need

∑p
i=2ci + 1 di�erent values on riterion f1, and thus c1 ≥ ∑p

i=2ci. 2In the partiular ase where p = 2, we obtain the following orollary, sine c1 ≥ c2.Corollary 1. If p = 2, we have α(P ) = c2 + 1.3.2 Exat omputation of α(P )Sine P satis�es the Sperner property, we notied at the end of setion 2.3 that α(P ) = n⌊h
2
⌋.We �rst review a well-known reursion formula for omputing n⌊h

2
⌋, whih is not pratiableas values ci grow. Then, we propose an alternative analytial formula, whih is shown to bemuh easier to implement.3.2.1 A reursion formulaAs indiated in [8℄, the following result is known from "folklore".Proposition 1. Let P ′ = P × (c+ 1) where P is a produt of hains. The values n′

k, the sizeof level of rank k in P ′, an be obtained from values nk by the following reursion:
n′
k =

c
∑

i=0

nk−iwhih an be rewritten as
n′
k = n′

k−1 + nk − nk−c−1 (2)where nk = 1, for all k ≥ 0 when P is a hain and nk = 0 for k < 0.As outlined in [8℄, this reursion is relevant in pratie only for a small number of riteriaand small values ci. More preisely, the omplexity of this indution formula is given by thefollowing result.Lemma 3. The omputation of the width of the produt of hains P = (c1 + 1) × . . . ×
(cp + 1) using formula (2) of Proposition 1 is done in Θ(p2cmax) operations, where cmax =
max{c1, . . . , cp}. 5



Proof : At eah step i of the reursion for i = 1, . . . , p, the omputation of the ardinalityof ((
∑p

j=p−(i−1) cj) + 1)/2 levels is needed. Sine eah of these ardinalities is omputedin onstant time, the omputation of α(P ) is performed in ((
∑p

i=1 ici) + p)/2 = Θ(p2cmax)operations. 2Observe additionally that these reursions require to keep in memory all the sizes of thelevels of the previous step, whih requires a spae Θ(cmax). In most multiple riteria problems,the number of riteria is rather small and an thus assumed to be onstant. On the otherhand, values ci may be rather large. This makes this reursion quikly useless. This is themotivation to obtain a formula omputing the width of P whose omplexity does not dependon the values ci.3.2.2 An analytial formulaWe need to ompute the number of points on a level of maximum ardinality, whih amountsto omputing the number of integer solutions of the equation
x1 + ...+ xp = k (3)with k = ⌊h/2⌋, under the onstraints 0 ≤ xi ≤ ci.We reall the following result, presented in standard textbooks on ombinatoris suh as[3℄, whih is a ombinatorial version of the inlusion-exlusion priniple.Lemma 4. The number of integer solutions of equation (3) with the restritions

si ≤ xi ≤ mi, i = 1, . . . , pwhere si and mi are given for i = 1, . . . , p with s ≤ k ≤ m, s = s1 + . . . + sp and
m = m1 + . . . +mp, with ui = mi − si ≥ 0, i = 1, . . . , p is given by

(

p+ k − s− 1

p− 1

)

+

p
∑

r=1

(−1)r
∑

I⊆{1,...,p}:|I|=r

(

p+ k − s−
∑

i∈I ui − r − 1

p− 1

)Applied in our ontext, the previous lemma gives the following result.Theorem 2. The width α(P ) of a produt of hains P = (c1 + 1)× · · · × (cp + 1) is given bythe following formula:
α(P ) =

∑

I⊆{1,...,p}:|I|≤⌊h
2
⌋−cI

(−1)|I|
p−1
∏

k=1

(

1 +
⌊h/2⌋ − cI − |I|

k

) (4)where cI =
∑

i∈I ci and c∅ = 0.Proof : Using the formula of Lemma 4 with si = 0 and mi = ci for i = 1, . . . , p we obtainthe following formula:
α(P ) =

(

p+ ⌊h/2⌋ − 1

p− 1

)

+

p
∑

r=1

(−1)r
∑

I⊆{1,...,p}:|I|=r

(

p+ ⌊h/2⌋ −
∑

i∈I ci − r − 1

p− 1

)6



Combining the two members of this formula we have:
α(P ) =

∑

I⊆{1,...,p}:|I|≤⌊h
2
⌋−cI

(−1)|I|
(

p+ ⌊h/2⌋ − cI − |I| − 1

p− 1

)where cI = ∑

i∈I ci and c∅ = 0, whih an be rewritten as (4) using (nt) = 1
t!(n−t+1) . . . n.

2In the partiular ase where p = 3, the formula an be simpli�ed as follows.Corollary 2. If p = 3, we have
α(P ) =











(c2 + 1)(c3 + 1) if c1 ≥ c2 + c3

1 + (h2 )
2
+ h

2 −
c21+c22+c23

2 if c1 < c2 + c3 and h = c1 + c2 + c3 is even
1
2 + (h+1

2 )
2
−

c21+c22+c23
2 if c1 < c2 + c3 and h = c1 + c2 + c3 is oddMoreover, if ci = q, i = 1, 2, 3, we have

α(P ) =

{

3
4(q + 1)2 + 1

4 if q is even
3
4(q + 1)2 if q is oddProof : The �rst ase is a onsequene of Lemma 2. The seond and third ases are obtainedfrom formula (4), observing that the only subsets I ⊆ {1, 2, 3} suh that |I| ≤ ⌊h/2⌋ − cI are

∅, {1}, {2}, and {3} when c1 < c2 + c3. 2The next lemma gives the omplexity for omputing α(P ), using (4).Lemma 5. The omputation of the width of a produt of hains P = (c1 + 1)× · · · × (cp + 1)using formula (4) is performed in O(p2p) operations.Proof : The produt ∏p−1
k=1(1 + ⌊h/2⌋−cI−|I|

k ) requires O(p) operations and the sum is over
O(2p) subsets, so the omputation of α(P ) needs O(p2p) operations. 2Thus, this omplexity is exponential in the number of riteria p, but does not depend onthe values ci. Atually, sine p is usually small in pratie and thus onsidered onstant intheory, the previous disussion an be summarized through the following result.Theorem 3. Max SizeND is solvable in onstant time when p is onstant.3.3 Comparison of the di�erent boundsWe propose to ompare α(P ) to simpler bounds on the number of non-dominated points. Letus �rst illustrate this omparison on a large instane of the tri-objetive Spanning Treeproblem. Let G = (V,E) be a omplete graph with n = 101 verties, where eah edge ost israndomly hosen between 0 and 10 on eah riterion. We wish to ompute, in the worst ase,the number of non-dominated points.Considering that for some instanes all feasible solutions an give rise to di�erent non-dominated points [7℄, a �rst bound is the total number of spanning trees in a omplete graph,i.e. nn−2 = 10199. This huge bound, whih an be ahieved only when edge osts are expo-nential, does not take aount of values ci.A seond bound orresponds to the produt ∏p

i=2(ci + 1), where c1 = c2 = c3 = 1000 and
p = 3 whih gives 10012 = 1.002.001. 7



Finally, our proposed bound, omputed from Corollary 2 with c1 = c2 = c3 = 1000, gives
3
4(1001)

2 + 1
4= 750.751.It is interesting to quantify the ratio between α(P ) and ∏p

i=2(ci + 1). The smallest ratiois reahed, as in the previous example, when all ci are equal. Let αp,q(P ) be the result ofthe formula whih omputes the maximal number of non-dominated points in the worst asewhen there are p riteria and for all i, ci = q − 1. Thus, we determine limq→∞ αp,q(P )/qp−1,where qp−1 orresponds to the produt ∏p
i=2(ci + 1).Proposition 2. For p riteria, we have limq→∞

αp,q(P )
qp−1 =

∑⌈ p

2
⌉−1

l=1 −(1)l p
l!(p−l)!(

p
2 − l)p−1.Proof : Using formula (4) and keeping only the oe�ients of the terms of degree p− 1.

2This way, we an ompute all these limits when p is �xed. For instane limq→∞
α3,q(P )

q2 = 3
4and limq→∞

α4,q(P )
q3

= 2
3 . When the number of riteria inreases, we note that the proposedbound is more and more interesting, as ompared with the bound qp−1.4 Tightness of the bound for multiriteria ombinatorial opti-mization problemsThe determination of the maximum number of non-dominated points is partiularly relevantfor multiriteria ombinatorial optimization problems, for whih it is well-known that thisnumber an be exponential in the size of the instane [4℄. Considering suh a problem Π, theproblem of determining the maximum ardinality of the non-dominated set assoiated to Π,knowing values ci, i = 1, . . . , p, is denoted by Max SizeND Π in the following.We show in this part that our bound α(P ) is tight for the multiriteria version of somelassial optimization problems suh as Seletion, Knapsak, Shortest Path, Span-ning Tree, TSP, s-t Cut. We propose some relatively simple families of instanes of theseproblems where the number of non-dominated points is exatly α(P ).We �rst introdue some notations used in the de�nitions of these problems. Seletionand Knapsak require to de�ne a set O of objets, a apaity b and a nonnegative integer

t. Eah objet o ∈ O has a riterion vetor v(o) = (v1(o), . . . , vp(o)) and a weight w(o). Wede�ne the riterion funtions on a set O′ ⊆ O as vi(O′) =
∑

o∈O′ vi(o) for all i ∈ {1, . . . , p}.Seletion onsists in seleting a subset O′ ⊆ O of t objets maximizing vi(O
′), i =

1, . . . , p. Knapsak onsists in seleting a subset O′ ⊆ O satisfying the onstraint∑o∈O′ w(o) ≤
b maximizing vi(O

′), i = 1, . . . , p.The other problems are de�ned on a graph. Consider G = (V,E) a graph where V =
{1, . . . , n} is the set of verties and E ⊆ V × V is the set of edges. Eah edge e ∈ E has ariterion vetor v(e) = (v1(e), . . . , vp(e)). We de�ne the value funtion v on a subset E′ of edgesas follows: v(E′) = (v1(E

′), . . . , vp(E
′)) where vi(E

′) =
∑

e∈E′ vi(e) for all i ∈ {1, . . . , p}.Proposition 3. The bound α(P ) is tight for Max SizeND Seletion and Max SizeNDKnapsak.Proof : Consider p integers c1, . . . , cp and p subsets Oj , j = 1, . . . , p, where eah subset Ojontains cj idential objets oij , i = 1, . . . , cj with vj(o
i
j) = 1 and vk(o

i
j) = 0 for k 6= j. Let

O = ∪p
j=1Oj with |O| =

∑p
j=1 cj = n and t = ⌊n2 ⌋.8



Seleting t = ⌊n2 ⌋ = ⌊h2 ⌋ objets an be seen as seleting xj objets in subset Oj , j =

1, . . . , p suh that ∑p
j=1 xj = ⌊h2 ⌋ and 0 ≤ xj ≤ cj , with a resulting non-dominated riterionvetor (x1, x2, . . . , xp). The number of suh vetors is the number of integer solutions ofequation (3) and thus orresponds to α(P ).Sine Seletion is a partiular ase of Knapsak, the result also holds forMax SizeNDKnapsak. 2Proposition 4. The bound α(P ) is tight for Max SizeND Shortest Path, Max SizeNDSpanning Tree, and Max SizeND TSP.Proof : Assume that p is even and let q be a nonnegative integer. We onsider the followinggadget onsisting of a graph with two verties, whih are onneted by edges orrespondingto all the p-tuples ontaining p/2 values 0 and p/2 values 1, with the orresponding values onthese edges (see Figure 1).

bc bc

(0, . . . , 0, 1, . . . , 1)

(1, . . . , 1, 0, . . . , 0)Figure 1: GadgetLet G be the onatenation of q times this gadget (see Figure 2).
bc bc

(0, . . . , 0, 1, . . . , 1)

(1, . . . , 1, 0, . . . , 0)

bc bc

(0, . . . , 0, 1, . . . , 1)

(1, . . . , 1, 0, . . . , 0)

s tFigure 2: Graph GAny path between s and t in G uses exatly one edge of eah gadget and orresponds toa non-dominated point (v1, . . . , vp) with 0 ≤ vi ≤ q and ∑p
i=1 vi =

pq
2 . The number of suhpoints is the number of integer solutions of equation (3), with ci = q, for i = 1, . . . , p, andthus orresponds to α(P ).Sine in the previous onstrution paths and spanning trees are equivalent, the proof holdsforMax SizeND Spanning Tree. Adding edge (s, t) to the above onstrution with riterionvalue (0, . . . , 0), the proof holds also for Max SizeND TSP. 2Proposition 5. The bound α(P ) is tight for Max SizeND s-t Cut.Proof : The proof is essentially the same as in Proposition 4 but using the following gadgetonsisting of a path whose edges orrespond to all the p-tuples ontaining p/2 values 0 and

p/2 values 1 (see Figure 3) and the following graph G (see Figure 4), where this gadget isdupliated q times, eah of these being onneted at eah end.9
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Figure 4: Graph GIn the same way, we have ci = q for i = 1, . . . , p, and the number of non-dominated pointsis exatly α(P ). 25 Redution of the maximal number of non-dominated pointsusing known feasible solutionsWe investigate now if it is possible to improve the upper bound on the number of non-dominated points when a subset of feasible solutions or a subset of e�ient solutions is known.Indeed, feasible solutions an often be easily omputed. Moreover, supported e�ient solutions,whih are obtained by optimizing a weighted sum of the riteria, are easily omputable, whenthe orresponding single riterion problem is polynomially solvable.The knowledge of feasible riterion vetors, possibly known to be non-dominated, involvesthe elimination of some points in P . More preisely, if a feasible point z is known, all the pointsdominated by z annot be part of the non-dominated set and an thus be removed from P .Moreover, if z is known to be non-dominated, we an also remove from P all the points whihdominate z. In the graph theory setting, this leads to subgraphs whih are still omparabilitygraphs. Therefore, the omputation of the maximal number of non-dominated points in thisontext is still ahievable in pseudo-polynomial time. We investigate the problem under theordered set theory setting.5.1 When feasible solutions are knownGiven P = (c1 + 1)× . . .× (cp + 1) and k points z1, . . . , zk in the riterion spae, representingfeasible solutions, let D be the subset of P dominated by at least one point from {z1, . . . , zk},that is the set of points y of P suh that there is j ∈ {1, . . . , k} with zj ≤ y. We want tostudy if the set Q = P −D still satis�es the Sperner property and we want to ompute α(Q).
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5.1.1 Case p = 2In the biriteria ase we have the following result.Proposition 6. When p = 2, Q satis�es the Sperner property and we have α(Q) = min(c2,mink
j=1r(z

j))+

1 where r(zj) is the rank of point zj.Proof : When there is no point in {z1, . . . , zk} loated below the �rst level of maximumardinality of P we have α(Q) = α(P ) = c2 + 1. Otherwise, let L be the lowest level of Pontaining an element of the set {z1, . . . , zk} and zm = (zm1 , zm2 ) suh a point. Sine points zj ,
j 6= m, loated above level L do not eliminate any point on L, we have α(Q) ≥ |L| = r(zm)+1.Consider now the set W ⊂ P of points belonging either to the hains ontaining all thepoints with a �rst onstant oordinate v1, for eah v1 ∈ {0, . . . , zm1 } or to the hains ontainingall the points with a seond onstant oordinate v2, for eah v2 ∈ {0, . . . , zm2 − 1}. We have
Q ⊂ W and we use |L| hains to over W . Therefore, any antihain of Q ontains at most |L|points, i.e. we have α(Q) ≤ |L| = r(zm) + 1.In any ase, α(Q) orresponds to the ardinality of a level of Q, meaning that Q satis�esthe Sperner property. 25.1.2 Case p ≥ 3When p ≥ 3, the observed struture does not satisfy the Sperner property as will be shownin the next result. We observed in the biriteria ase that α(Q) is determined either from the�rst level of maximum ardinality or from the level of one of the points zj . We ould expetthat, for p ≥ 3, only these levels are relevant when omputing α(Q). Unfortunately, we alsoshow that other levels may ontribute to α(Q). This suggests that the determination of α(Q)is di�ult.Proposition 7. For any p ≥ 3, Q does not satisfy the Sperner property. Moreover, other levelsthan the �rst level of maximum ardinality of P and levels of the points zj may ontribute to
α(Q).Proof : We �rst onstrut a simple example with three riteria. Let P = 3 × 3 × 3 be theprodut of hains and z = (0, 1, 0) a known feasible solution (see Figure 5).

ut
zFigure 5: P = 3× 3× 311



ut
zFigure 6: The set Q = P −DThe set Q = P −D, represented in Figure 6, does not satisfy the Sperner property. Indeed,we have σ(Q) = |L1| = |L2| = 3, while α(Q) = |L2| + 1 = 4 sine point z, whih belongs tolevel L1, is inomparable to the 3 points belonging to level L2. Observe that L2 is neither the�rst level of maximum ardinality of P (L3) nor the level of z (L1).This example an be extended easily to p ≥ 4 riteria. We just need to extend z withvalues 0 on the p− 3 other riteria and add p− 3 new points zi, i = 1, . . . , p− 3, where zi hasoordinate 1 on riterion i+3 and 0 on the other riteria. Doing so, we obtain the same set Qas for p = 3 (exept that points in Q have now all their p− 3 last oordinates equal to 0). 25.2 When e�ient solutions are knownWe onsider now the same problem when the feasible solutions are known to be e�ient.Given P = (c1 + 1)× . . .× (cp + 1) and k non-dominated points z1, . . . , zk in the riterionspae, representing e�ient solutions, let D be the subset of P orresponding to the set ofpoints y of P suh that there is j ∈ {1, . . . , k} with zj ≤ y or y ≤ zj . We are interested inomputing α(Q), where Q = P −D.5.2.1 Case p = 2In this ase, the set Q does not satisfy the Sperner property. We illustrate this on an instanewhere P = 8 × 6, and two known non-dominated points z1 = (5, 1) and z2 = (1, 4) (seeFigure 7). Here Q onsists of the points represented by squares and the two points z1 and z2.A largest antihain in Q is {z1, z2, y1, . . . , y4} and thus we have α(Q) = 6, whereas σ(Q) = 4.We show, however, that Q\{z1, . . . , zk} is a disjoint union of produts of two hains, whihallows the omputation of α(Q). We assume in this part that the k non-dominated points zj ,

j = 1, . . . , k are ranked by non inreasing value on the �rst riterion, i.e. z11 ≥ . . . ≥ zk1 .Proposition 8. When p = 2, we have α(Q) = k + min(c1 − z11 , z
1
2) + min(zk1 , c2 − zk2 ) +

∑k−1
j=1 min(zj1 − zj+1

1 − 1, zj+1
2 − zj2 − 1).Proof : The �rst term k in the proposed formula orresponds to the k given non-dominatedpoints. These k points delimit exatly k + 1 disjoint produts of two hains, some of thembeing possibly empty. The �rst produt of hains is of size c1 − z11 on the �rst riterion and

z12 on the seond one, the (k + 1)th produt of hains is of size zk1 on the �rst riterion and
c2 − zk2 on the seond one, whereas the produts of hains loated between two points zj and
zj+1 are of size zj1 − zj+1

1 − 1 on the �rst riterion and zj+1
2 − zj2 − 1 on the seond one. Eahpoint of any of these k + 1 produts of hains is inomparable with any point of any other12
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Figure 7: P = 8× 6produt and inomparable with eah zj . Sine the width of a produt of two hains c1 × c2 is
min(c1, c2), the formula is proved. 2We remark that, to determine α(Q), we an onsider only non-dominated points loated onthe levels whih ontain the known non-dominated points zj . Referring again to the instanepresented in Figure 7, we illustrate this remark with the largest antihain {z1, z2, y1, . . . , y4}.5.2.2 Case p ≥ 3We observed in the biriteria ase that α(Q) is determined by onsidering points on the levelsof points zj . Unfortunately, for p ≥ 3, other levels may ontribute to α(Q), as shown in thenext result. This suggests that the determination of α(Q) is di�ult.Proposition 9. For any p ≥ 3, other levels than the �rst level of maximum ardinality of Pand levels of the points zj may ontribute to α(Q).Proof : We onsider the same ounter-example as in the proof of Proposition 7 and Figure5. The set Q = P −D is represented in Figure 8.

ut
zFigure 8: The set Q = P −DWe have α(Q) = |L2|+1. Observe that L2 is neither the �rst level of maximum ardinalityof P (L3) nor the level of z (L1). 2
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6 ConlusionsThe purpose of this work was to develop tight and easily omputable bounds on the ardi-nality of the set of non-dominated points. Graph theory and ordered set theory providedomplementary insights on this topi. Two main questions require further investigation.A basi assumption in our work is the a priori knowledge on the number of values takenon eah riterion. Obviously, obtaining a good upper bound on these values is itself a di�ultquestion whih depends on the problem at hand as well as on the spei� instanes.Knowing feasible, possibly e�ient, solutions may improve our bound on the number ofnon-dominated points. The impat is lear in the biriteria ase. For p ≥ 3, nie properties(the Sperner property, the fat that only the levels of known points are relevant) are nolonger valid. Even if we know, from graph theory, that this upper bound an be omputed inpseudo-polynomial time, further strutural insights are still required.Referenes[1℄ N.G. De Bruijn, C. Tengbergen, and D. Kruyswijk. On the set of divisors of a number.New Arhive for Mathematis, 23:191�193, 1951.[2℄ N. Caspar, B. Leler, and B. Monjardet. Finite ordered sets: onepts, results and uses.Cambridge University Press, 2012.[3℄ C. A. Charalambides. Enumerative ombinatoris. Chapman, 2002.[4℄ M. Ehrgott. Multiriteria Optimization. Springer (2nd edition), 2005.[5℄ M. Ehrgott and D. Tenfelde-Podehl. Computation of ideal and nadir values and im-pliations for their use in MCDM methods. European Journal of Operational Researh,151:119�139, 2002.[6℄ M.C. Golumbi. Algorithmi graph theory and perfet graphs. Annals of Disrete Mathe-matis Series, vol 57, North Holland, 2004.[7℄ H.W. Hamaher and G. Ruhe. On spanning tree problems with multiple objetives. Annalsof Operations Researh, 52:209�230, 1994.[8℄ B. Leler. Sur le nombre d'éléments des niveaux des produits de haînes et des treillispermutoèdres. Mathématiques et sienes humaines, 112:37�48, 1990.[9℄ M. Stanojevi¢, M. Vujo²evi¢, and B. Stanojevi¢. On the ardinality of the nondominatedset of multi-objetive ombinatorial optimization problems. Operations Researh Letters,41(2):197�200, 2013.
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