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Abstract

We study vehicle routing problems with constraints on the distance traveled by
each vehicle or on the number of vehicles. The objective is either to minimize the
total distance traveled by vehicles or to minimize the number of vehicles used. We
design constant differential approximation algorithms for kVRP. Note that, using the
differential bound for Metric 3VRP, we obtain the randomized standard ratio 197

99
+

ε, ∀ε > 0. This is an improvement of the best-known bound of 2 given by Haimovich et
al. [12]. For natural generalizations of this problem, called Edge Cost VRP, Vertex
Cost VRP, Min Vehicle and kTSP we obtain constant differential approximation
algorithm and we show that these problems have no differential approximation scheme,
unless P=NP.

Keywords: differential ratio, approximation algorithm, VRP, TSP

1 Introduction

Vehicle routing problems that involve the periodic collection and delivery of goods and ser-
vices as mail delivery or trash collection are of great practical importance. Simple variants
of these real problems can be modeled naturally with graphs. Unfortunately even simple
variants of vehicle routing problems are NP -hard. In this paper we consider approximation
algorithms, and measure their efficiencies in two ways. One is the standard measure giving
the ratio apx

opt
, where opt and apx are the values of an optimal and approximate solution, re-

spectively. The other measure is the differential measure, that compares the worst ratio of,
on the one hand, the difference between the cost of the solution generated by the algorithm
and the worst cost, and on the other hand, the difference between the optimal cost and the
worst cost. Formally, the differential measure gives the ratio α = wor−apx

wor−opt
, where wor is the

value of the optimal solution for the complementary problem. In [15], the measure 1 − α

is considered and it is called there z-approximation. Justification for this measure can be
found for example in [1, 6, 27, 15, 20].

The main subject of this paper is differential approximation of routing problems. In
these problems n customers have to be served by vehicles of limited capacity from a common
depot. A solution consists of a set of routes, where each starts at the depot and returns
there after visiting a subset of customers, such that each customer is visited exactly once.
We refer to a problem as a vehicle routing problem (VRP) if there is a constraint on
the (possibly weighted) number of customers visited by a vehicle. This constraint reflects
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the assumption that the vehicle has a finite capacity and that it collects from the customers
(or distributes among them) a commodity. The goal is to find a solution such that the total
length of the routes is as small as possible. In other cases, the vehicle is just supposed
to visit the customers, for example, in order to serve them. In such cases we refer to the
problem as a TSP problem. We will assume in such cases that the limitation is on the total
distance traveled by a vehicle and not on the number of customers it visits, and in this case
we search solution with a minimum number of vehicles used.

The problems that are considered here generalize the (undirected) Traveling Sales-
man Problem (TSP). Differential approximation algorithms for the TSP are given by
Hassin and Khuller [15] and Monnot [20]. We will sometimes use these algorithms to
generate approximations for the problems of this paper. However, we note an important
difference. In the TSP, adding a constant k to all of the edge length does not affect the set
of optimal solutions or the value of the differential ratio. The reason is that every solution
contains exactly n edges and therefore every solution value increases by exactly the same
value, namely nk. In particular, this means that for the purpose of designing algorithms
with bounded differential ratio, it doesn’t matter whether d is a metric or not (it can be
made a metric by adding a suitable constant to the edge lengths). In contrast, in some of
problems dealt with here, the number of edges used by a solution is not the same for every
solution and therefore it may turn out, as we will see, that in some cases the metric version
is easier to approximate.

It is easy to see that 2VRP is polynomial time solvable. For k ≥ 3, Metric kVRP
was proved NP -hard by Haimovich and Rinnooy Kan [11]. In [12], Haimovich, Rinnooy
Kan and Stougie gave a 5

2 −
3
2k

standard approximation for Metric kVRP. We study for the
first time the differential approximability of kVRP. More exactly we give a 1

2 differential
approximation for the non-metric case for any k ≥ 3. We improve this bound to 3

5 for
Metric 4VRP and 2

3 for Metric kVRP with 5 ≤ k ≤ 8. We also improve the cases

k = 3 and k ≥ 9 to 50
99 − ε, ∀ε > 0 and 25(k−1)

33k
− ε, ∀ε > 0 respectively by using a random

algorithm. An approximation lower bound of 2219
2220 is given here for Metric nVRP with

length 1 and 2 using a lower bound of TSP(1,2) [8].

We study a generalization of VRP, called Edge Cost VRP, where the maximum
length traversed by each vehicle is bounded. We establish a 1

3 differential approximation
for this problem.

Min-Max kTSP is a generalization of TSP where we search to cover the customers by
at most k vehicles such that the maximum length traversed by the vehicles is minimum.
The metric case of the problem was studied by Fredrickson, Hecht and Kim [9] where
they give a 5

2 − 1
k

standard approximation algorithm by constructing a reduction from
this problem to Metric TSP and using Christofides’ algorithm [4] . We establish a 1

2
differential approximation for Metric Min-Max kTSP and prove that it has no differential
approximation scheme. We also give a standard lower bound of p+1

p
for Min-Max ⌊n

p
⌋TSP,

for p ≥ 6.

Min-Sum EkTSP is another generalization of TSP where we search to cover the cus-
tomers by exactly k vehicles such that the total length is minimum. We show that Metric
Min-Sum EkTSP is 2

3 differential approximable and it has no differential approximation
scheme unless P=NP.

In Min vehicle the goal is to minimize the number of vehicles subject to a constraint on
the maximum length traversed by any single vehicle. In [19], Li, Simchi-Levi and Desrochers
proved that Min Vehicle is not standard 2 approximable, unless P=NP and it is 1 + α

α−2
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standard approximable where α = λ
dm

and dm = max{d0,1, . . . , d0,n}. We first present a
2
3 differential approximation algorithm and show how to improve the bound to 289

360 . We
also show that even when λ is constant and the lengths are 1 and 2, Min Vehicle has no
standard and differential approximation scheme, unless P=NP. We can improve the bound
of 2

3 to 289
360 .

The paper is organized as follows: In section 2 we give the necessary definitions. In
section 3 we give a constant differential approximation algorithm for General kVRP, and
a better constant differential approximation for the metric case. In section 4 the main result
is a constant differential approximation for Edge Cost VRP. In the last three sections we
show that Min-Max kTSP, Min-Sum EkTSP and Metric Min Vehicle are constant
differential approximable and have no differential approximation scheme, if P 6= NP.

2 Terminology

Given an instance x of an optimization problem and a feasible solution y of x, we denote
by val(x, y) the value of the solution y, by opt(x) the value of an optimal solution of x, and
by wor(x) the value of a worst solution of x. The differential approximation ratio of y is

defined as δ(x, y) = |val(x,y)−wor(x)|
|opt(x)−wor(x)| . This ratio measures how the value of an approximate

solution val(x, y) is located in the interval between opt(x) and wor(x). In particular, it is
equivalent for a minimization problem to prove δ(x, y) ≥ ε and val(x, y) ≤ εopt(x) + (1 −
ε)wor(x).

For a function f , f(n) < 1, an algorithm is a f(n) differential approximation algorithm
for a problem Q if, for any instance x of Q, it returns a solution y such that δ(x, y) ≥ f(|x|).
We say that an optimization problem is constant differential approximable if, for some
constant δ < 1, there exists a polynomial time δ differential approximation algorithm for
it. An optimization problem has a differential polynomial time approximation scheme if
it has a polynomial time (1 − ε) differential approximation, for every constant ε > 0. We
say that two optimization problems are standard (differential) equivalent if a δ differential
approximation algorithm for one of them implies a δ standard (differential) approximation
algorithm for the other one.

We consider in this paper several routing problems. The problems are defined on a
complete undirected graph denoted G = (V, E). The vertex set V consists of a depot vertex
0, and customer vertices {1, . . . n}, and each edge (i, j) ∈ E is endowed with a weight
di,j ≥ 0. We call a such graph a complete valued graph. We refer to the version of the
problem in which d is assumed to satisfy the triangle inequality as the metric case. The
output to the problems consists of a p-tour, that is, a set of simple cycles, C1, . . . , Cp, such
that V (Ci)∩ V (Cj) = {0}, ∀i 6= j, and ∪p

i=1V (Ci) = V . The sequence (0, i, 0) with i 6= 0 is
accepted as a cycle. We now describe the problems. For each one we specify the input, the
problem’s constraints, and the output.

kVRP
Input: A complete valued graph.
Constraint: |Cj | ≤ k + 1, j = 1, . . . , p.
Output: A p-tour minimizing the total weight of the cycles.

Edge Cost VRP
Input: A complete valued graph and a metric {ℓi,j (i, j ∈ E}, and λ > 0.
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Constraint:
∑

e∈E(Cj) ℓe ≤ λ, j = 1, . . . , p.
Output: A p-tour minimizing the total weight of the cycles.

Vertex Cost kVRP
Input: A complete valued graph and a function {ci ≥ 0 i ∈ V }, where ci denotes the cost
of the vertex i.
Constraint:

∑

i∈V (Cj) ci ≤ k, j = 1, . . . , p.
Output: A p-tour minimizing the total weight of the cycles.

Min-Max kTSP
Input: A complete valued graph.
Constraint: p ≤ k.
Output: A p-tour minimizing the maximum weight of the cycles.

Min-Sum EkTSP
Input: A complete valued graph.
Constraint: p = k.
Output: A p-tour minimizing the total weight of the cycles.

Min Vehicle
Input: A complete valued graph and λ > 0.
Constraint:

∑

e∈E(Cq) de ≤ λ, j = 1, . . . , p.
Output: A p-tour minimizing p.

Min Distance
Input: A complete valued graph and λ > 0.
Constraint:

∑

e∈E(Cq) de ≤ λ, j = 1, . . . , p.
Output: A p-tour minimizing the total weight of the cycles.

For an optimization problem Q with edge lengths, we denote by Q(a, b) the version of
Q where weights are between a and b and more specifically Q[t], for t > 1, the variant
where b ≤ ta for any a > 0. We will use the following problem:

Min TSP Path(1,2) is the variant of Min TSP(1,2) problem where instead of a tour
we ask for a Hamiltonian path of minimum weight. Min TSP Path(1,2) has no differential
approximation scheme [22] even if opt = n − 1 and wor = 2(n − 1) where n is the number
of vertices since it is proved in [2] that Min TSP(1,2), when the subgraph restricted to
edges of length 1 is Hamiltonian and cubic, has no standard approximation scheme.

We will also use the following problems:

partitioning into paths of length k (kPP): Given a graph G = (V, E) with |V | =
(k + 1)q, is there a partition of V into q paths P1, . . . , Pq, each path with k + 1 vertices?
2PP have been proved NP-complete in [10] whereas, more generally, the NP-completeness
of kPP is proved in [18] as a special of G-partition problem. Thus (n − 1)PP is the
decision version of Hamiltonian Path.

Maximum weighted partitioning into paths with at most k vertices (Max
weighted atmostkPP): Given a weighted complete graph G where each edge (i, j) ∈ E is
endowed with a weight di,j ≥ 0, we want to find a partition of vertices into paths P1, . . . , Pq,
each path with at most k vertices (or indifferently k−1 edges) such that

∑q
i=1 d(Pi) is max-

4



imum. There is an easy reduction proving the NP -hardness of this problem between kPP
and Max weighted atmost(k + 1)PP that consist to complete the graph G instance of
kPP by edges of weight 0.

A binary 2-matching (also called 2-factor or cycle cover) is a subgraph in which each
vertex in V has a degree of exactly 2. Since the graph is simple, each cycle has at least
three vertices. A minimum binary 2-matching is one with minimum total edge weight.
Hartvigsen [14] has shown how to compute a minimum binary 2-matching in O(n3) time
(see [25] for another O(n2|E|) algorithm). More generally, a binary f-matching, where f is
a vector of size n + 1, is a subgraph in which each vertex i of V has a degree of exactly fi.
A minimum binary f-matching is one with minimum total edge weight and is computable
in polynomial time [5].

3 kVRP

nVRP is standard equivalent to TSP. So, using the result of Sahni and Gonzalez [26] we
deduce that nVRP is not 2p(n) standard approximable for any polynomial p, unless P=NP.
In fact for any k ≥ 5 the problem is as hard to approximate as nVRP.

Theorem 3.1 For all k ≥ 5 (even if k is a function of n), kVRP, is not 2p(n) standard
approximable for any polynomial p, unless P=NP.

Proof: We use a reduction from partitioning into paths of length k (kPP). Given the
graph G = (V, E) on n = (k+1)q vertices we construct a graph G′ instance of (k+3)VRP.
We add a vertex 0 (the depot) to G and a set A of 2q vertices. We define the function d

as follows: di,j = 1, if i ∈ V ∪ {0} and j ∈ A or if (i, j) ∈ E and i, j ∈ V . Finally, the
remaining edges have weight n2p(n).

If G contains a decomposition into disjoint paths of k+1 vertices then opt(G′) = q(k+4),
otherwise opt(G′) > n2p(n). So, a 2p(n) standard approximation for (k+3)VRP could decide
kPP in polynomial time. The conclusion follows.

3.1 General kVRP

When d is a metric, the reduction of TSP to nVRP is straightforward, and it easily follows
that computing opt is NP-hard. On the other hand, this reduction between the correspond-
ing maximization problems Max TSP and Max nVRP leading to the conclusion that
computing wor is also NP-hard, does not work. We can easily prove this result by applying
a reduction from kPP with weight 1 and 3.

In the following we give a 1
2 differential approximation for non-metric kVRP.

We first compute a lower bound LB. Then we generate a feasible solution for G with
value good = LB + δ1. Next, we generate another feasible solution of value bad = LB + δ2

where δ2 ≥ δ1. This proves that the approximate solution with value good is an α-differential
approximation where

α =
wor − good

wor − opt
≥

bad − good

bad − opt
≥

δ2 − δ1

bad − LB
=

δ2 − δ1

δ2
= 1 −

δ1

δ2
, (1)

since for a minimization problem wor ≥ bad ≥ good ≥ opt ≥ LB. To generate LB we
replace 0 by a complete graph with a set V0 of 2n vertices and zero length edges. The
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distance between a vertex of V0 and a vertex i of V \V0 is the same as the distance between
0 and i. Denote the resulting graph by G′. Compute in G′ a minimum weight binary
2-matching M ′.

Lemma 3.2 Let LB denote the weight of M ′, and denote by opt the value of an optimal
VRP solution. Then opt ≥ LB.

Proof: It is sufficient to show that for any VRP solution in G there exists a binary 2-
matching in G′ with the same value. Consider an optimal VRP solution in G and let C be a
cycle in it. Generate in G′ a cycle C ′ which is as C except for that 0 is replaced by two new
adjacent vertices from V0. Repeat this process for every cycle in the VRP solution, taking
care that the subsets of vertices selected from V0 are disjoint (an optimal solution may only
contain cycles (0, i, 0) for i = 1, . . . , n and in such a case, we need to use all vertices of V0).
In the last cycle insert all the remaining vertices of V0. The result is a binary 2-matching
since every cycle has at least three vertices and the cycles are disjoint and cover V . Since
the value of cycle C ′ is the same as the value of C, the optimum of VRP is greater than or
equal to the minimum binary 2-matching.

Lemma 3.3 A binary 2-matching M ′ of G′ can be transformed in polynomial time into a
set M of cycles covering vertices of G with the same weight.

Proof: If a cycle of M ′ does not contain a vertex of V0 then this cycle is considered in
M . If a cycle of M ′ contains more than one consecutive vertices from V0 then replace these
vertices by one vertex of V0. Consider in the following a cycle C ′ of M ′ containing at least
one vertex from V0 and one from V (G′)\V0. Suppose that C ′ = (v1

0, µ1, v
2
0, µ2, . . . , v

t
0, µt, v

1
0)

where paths µ1, . . . , µt contain only vertices from V (G′) \ V0. Then M will contain t cycles
(0, µ1, 0), (0, µ2, 0), . . . , (0, µt, 0) that have the same weight as C ′.

We suggest the following algorithm. W.l.o.g. we suppose that the current cycle is
(0, 1, . . . , m, 0).

Algo Differential VRP

1 Compute LB the weight of a minimum weight binary 2-matching M ′ in G′;

2 Transform M ′ into M = {C1, . . . , Cp}, using Lemma 3.3;

3 For every cycle Ci = (1, . . . , mi, 1) of M do

3.1 If mi ≡ 0 mod 2 then

3.1.1 soli,1 := {(0, 1, 2, 0), (0, 3, 4, 0), . . . , (0, mi − 1, mi, 0)};

3.1.2 soli,2 := {(0, mi, 1, 0), (0, 2, 3, 0), . . . , (0, mi − 2, mi − 1, 0)};

3.2 If mi ≡ 1 mod 2 then

3.2.1 soli,1 := {(0, 1, 2, 0), (0, 3, 4, 0), . . . , (0, mi − 4, mi − 3, 0)}
∪{(0, mi − 2, mi − 1, mi, 0)};

3.2.2 soli,2 := {(0, mi, 1, 0), (0, 2, 3, 0), . . . , (0, mi − 3, mi − 2, 0)} ∪ {(0, mi − 1, 0)};
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Figure 1: m = 6

4 For every cycle Ci = (0, 1, . . . , mi, 0) of M with mi > k do

4.1 If mi ≡ 0 mod 2 then

4.1.1 Construct soli,1 = {(0, 2, 3, 0), . . . , (0, mi−2, mi−1, 0)}∪{(0, 1, 0), (0, mi, 0)};

4.1.2 Construct soli,2 = {(0, 1, 2, 0), . . . , (0, mi − 1, mi, 0)};

4.2 If mi ≡ 1 mod 2 then

4.2.1 Construct soli,1 = {(0, 2, 3, 0), . . . , (0, mi − 1, mi, 0)} ∪ {(0, 1, 0)};

4.2.2 Construct soli,2 = {(0, 1, 2, 0), . . . , (0, mi − 2, mi − 1, 0)} ∪ {(0, mi, 0)};

5 For every cycle Ci = (0, 1, . . . , mi, 0) of M with mi ≤ k do soli,1 = soli,2 = Ci;

6 Output APX = ∪p
i=1argmin{d(soli,1), d(soli,2)};

Theorem 3.4 Algo Differential VRP is a 1
2 differential approximation algorithm for

kVRP.

Proof: Consider an arbitrary cycle Ci of M and let addi,j denote the added weight of soli,j
for j = 1, 2 with respect to the length of Ci. Note that since M was computed to have a
minimum weight, addi,j ≥ 0 and we have d(soli,j) = d(Ci) + addi,j for j = 1, 2.

On the other hand, let badi be the weight of the feasible solution soli,3 defined by Ci

if 0 ∈ Ci and |Ci| ≤ k + 1 and by {(0, 1, 0), . . . , (0, mi, 0)} otherwise; in any case, we have
badi = d(Ci) + addi,1 + addi,2

Figure 1 and 2 give an illustration of these solutions when Ci = (1, . . . , mi, 1) and mi = 6
and respectively mi = 3. Sum these inequality over i and let δ1 =

∑p
i=1 min{addi,1, addi,2}

and δ2 =
∑p

i=1(addi,1 + addi,2). We have δ2 ≥ 2δ1, LB = d(M) =
∑p

i=1 d(Ci) and wor ≥
∑p

i=1 badi. So, the theorem is proved by (1).

When we use bounded metrics (i.e., when the maximum weight dmax is not very far
from the minimum weight dmin), we are able to give some relations between differential
and standard ratios. Bounded metric variants of TSP were studied by Papadimitriou and
Yannakakis [24] and more recently by Papadimitriou and Vempala [23], and Engebretsen
and Karpinski [8]. In the following, we denote by kVRP[t] the version of kVRP satisfy-
ing dmax

dmin
≤ t for some t > 1.
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Theorem 3.5 A δ differential approximation algorithm for kVRP[t] is also a δ+(1−δ) 2tk
k+1

standard approximation algorithm for kVRP[t].

Proof: Let G = (V, E) be a graph where V = {0, . . . , n} and dmax

dmin
≤ t for some t > 1. An

optimal solution for G contains at least n + ⌈n
k
⌉ edges since it has at least ⌈n

k
⌉ cycles, and

then we have:

opt ≥
ndmin(1 + k)

k
. (2)

On the other hand, any solution of G contains at most 2n edges and then, we deduce the
following upper bound for the worst solution:

wor ≤ 2dmaxn. (3)

Finally, regrouping inequalities (2) and (3) and since we have dmax ≤ tdmin, we obtain the
inequality: wor ≤ 2t k

k+1opt.

Let apx be a δ differential approximation for kVRP[t]. Using the previous inequality
we deduce:

apx ≤ δopt + (1 − δ)wor ≤ δopt + (1 − δ)2t
k

k + 1
opt. (4)

Using the previous theorems we deduce some new standard results for kVRP[t]. More
exactly, we obtain a 7

2 −
3

k+1 standard approximation for kVRP[3] and a 9
2 −

4
k+1 standard

approximation for kVRP[4].

3.2 Metric kVRP

The first part of this section starts with some positive differential approximation results
and ends with a negative result. In the second part, we present an improvement of the best
known approximation algorithm for 3VRP.

3.2.1 Differential approximation results

When d is a metric, computing a worst solution becomes easy as shown by the next lemma:

Lemma 3.6 wor = 2
∑n

i=1 d0,i

Proof: Let sol be a feasible solution and denote by (0, 1, . . . , mi, 0) one of these cycles.
We replace it by (0, 1, 0), . . . , (0, mi, 0) and by the triangle inequality, this change does not
decrease the value of the solution. So, we can repeat it on each cycle and finally obtain the
solution (0, 1, 0), . . . , (0, n, 0).
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In Theorem 3.4 we have shown that kVRP is 1
2 differential approximable. We now show

that in the metric case, the same bound can be achieved by a simpler algorithm.

We compute a minimum weight perfect matching M on the subgraph induced by
{1, . . . , n}, if n is even, or by {0, 1, . . . , n} if n is odd. We link each endpoint different
of 0 of M to the depot. We claim that

opt ≥ 2d(M). (5)

Indeed, consider an optimum solution for kVRP. Walk around it and shortcut in order
to obtain a Hamiltonian cycle C on {0, 1, . . . , n} if n is odd and a Hamiltonian cycle C on
{1, . . . , n} if n is even. We have opt ≥ d(C) by the triangle inequality and this cycle is the
sum of two perfect matchings which are greater than or equal to M .

Using (5), Lemma 3.6 and the construction of the approximate solution, we obtain:

apx = d(M) +
n

∑

i=1

d0,i ≤
1

2
opt +

1

2
wor , (6)

proving that the result is a 1
2 differential approximation.

Theorem 3.7 Metric kVRP is δ·k−1
k

differential approximable, where δ is the differential
approximation ratio for Metric TSP.

Proof: Our algorithm modifies the Optimal Tour Partitioning heuristic of Haimovich,
Rinnooy Kan and Stougie [12]: first construct a tour T of value val(T ) on V using the δ

differential approximation algorithm for TSP. W.l.o.g., assume that this tour is described
by the sequence (0, 1, . . . , n, 0). We produce k solutions soli for i = 1, . . . , k and we select
the best solution. The first cycle of soli is formed by the sequence (0, 1, . . . , i, 0) and then
each other cycle (except possibly the last) of soli has exactly k consecutive vertices (for
instance, the second cycle is (0, i + 1, . . . , i + k, 0)) and finally, the last cycle is formed by
the unvisited vertices (connecting n to the depot 0). Denote by apxi for i = 1, . . . , k the
values of the solution soli and by apx the value of the best one.

In the union of solutions sol1, . . . , solk each edge of T \ {(0, 1), (0, n)} appear exactly
(k − 1) times and each edge (0, j) for j 6= 1, n appears exactly twice. Finally, edges (0, 1)
and (0, n) appear exactly (k + 1) times. Since worV RP = 2

∑n
i=1 d0,i by Lemma 3.6, we

deduce:

apx ≤
1

k

k
∑

i=1

apxi ≤
(k − 1)

k
val(T ) +

1

k
worV RP . (7)

Since T is a δ differential approximation then

val(T ) ≤ (1 − δ)worTSP + δoptTSP . (8)

Since it is possible to construct from an optimum solution of VRP a solution of TSP with
a smaller value (using the triangle inequality), it follows that

optTSP ≤ optV RP (9)

Also, by connecting the depot twice with each customer, we can construct from a solution
of TSP a solution of VRP with a greater value, and therefore

worTSP ≤ worV RP (10)
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Using (7)-(10) we obtain that

apx ≤ δ
k − 1

k
optV RP +

(

1 − δ
k − 1

k

)

worV RP .

Since the best known differential approximation algorithm for TSP is 2
3 [15, 20] then

the algorithm of Theorem 3.7 is an 2
3 · k−1

k
differential approximation algorithm for metric

kVRP. For k > 4 this is an improvement over the bound of 1
2 given by Theorem 3.4 for

the general (non-metric) kVRP.

We will proceed now to improve the bound given in Theorem 3.7 by using a generic
algorithm. When we deal with a cycle of size m we consider the vertices modulo m.

Algo Differential MetrickVRP

1 Find a partition of V \ {0} by cycles M = {C1, . . . , Cp} using a Preprocessing

algorithm;

2 For every cycle Ci = (1, . . . , mi, 1) of M with mi = kq + r, 0 ≤ r < k do

2.1 For j = 1 to mi do

2.1.1 Let (µ1, . . . , µ⌈
mi
k

⌉) = Ci\[{(j, j+1)}∪{(j+r+ℓk, j+r+1+ℓk) : 0 ≤ ℓ < q}];

2.1.2 Construct soli,j = ∪
⌈

mi
k

⌉

ℓ=1 {(0, µℓ, 0)};

2.2 Let soli = argmin{d(soli,1), . . . , d(soli,mi
)}

3 Output APX = ∪p
i=1soli;

By using the construction of solutions soli,1, . . . , soli,mi
, we easily deduce the following

lemma:

Lemma 3.8 Consider a cycle Ci = (1, . . . , mi, 1) of M with mi = kq + r, 0 ≤ r < k. We
have:

(i)
∑mi

j=1 d(soli,j) = (mi − q)d(Ci) + 2q
∑mi

j=1 d(0, j) if r = 0.

(ii)
∑mi

j=1 d(soli,j) = (mi − q − 1)d(Ci) + 2(q + 1)
∑mi

j=1 d(0, j) if r 6= 0.

Proof:(i): soli,j contains ⌈mi

k
⌉ = q cycles for every j = 1, . . . , mi. Thus, in ∪mi

j=1soli,j , each
edge of Ci appears exactly mi − q times and each edge (0, j) appears exactly 2q times.

(ii): soli,j contains ⌈mi

k
⌉ = q + 1 cycles for every j = 1, . . . , mi. So, the same argument

as previously shows that each edge of Ci appears exactly mi − (q + 1) times and each edge
(0, j) appears exactly 2(q + 1) times in ∪mi

j=1soli,j .

Theorem 3.9 Metric 4VRP is 3
5 differential approximable and Metric kVRP is 2

3
differential approximable with 5 ≤ k ≤ 8.

10



Proof: Our preprocessing algorithm works as follows: we compute a minimum weight
binary 2-matching M = (C1, . . . , Cp) on the subgraph induced by V \{0}. Consider a cycle
Ci = (1, . . . , mi, 1) of M with mi = kq + r and let wori = 2

∑mi

j=1 d0,j .

Assume q = 0. Since the best solution (i.e., soli) is better than the average one, we
obtain using Lemma 3.8:

d(soli) ≤
r − 1

r
d(Ci) +

1

r
wori =

1

r
(wori − d(Ci)) + d(Ci) . (11)

Since wori ≥ d(Ci) by the triangle inequality and r ≥ 3 (Ci contains at least 3 vertices),
we deduce:

d(soli) ≤
2

3
d(Ci) +

1

3
wori . (12)

Now, assume q ≥ 1. If r = 0, then we deduce:

d(soli) ≤
k − 1

k
d(Ci) +

1

k
wori ≤

2

3
d(Ci) +

1

3
wori . (13)

since k ≥ 3. Otherwise, we have r ≥ 1 and we obtain:

d(soli) ≤
q + 1

kq + r
(wori − d(Ci)) + d(Ci)

and we deduce since r, q ≥ 1:

d(soli) ≤
k − 1

k + 1
d(Ci) +

2

k + 1
wori (14)

On the one hand, it is possible to construct from an optimum solution of Metric VRP
a feasible solution of TSP on the subgraph induced by V \ {0} (by shortcutting) with a
smaller value and we deduce d(M) =

∑p
i=1 d(Ci) ≤ optTSP ≤ optV RP . On the other hand

wor =
∑q

i=1 wori. Finally, by summing over i the inequalities (12), (13) and (14) and by
distinguishing the case k = 4 and k > 4 we obtain the expected result.

The algorithm of Theorem 3.9 works for any k ≥ 3 and it gives the ratio 1
2 for Metric

3VRP and 2
3 for k ≥ 9. We now improve the previous bound for k = 3 and k ≥ 9 using

another preprocessing algorithm. But surprisingly, this algorithm compute an approximate
TSP with maximum weight.

Observation 3.10 The differential and standard approximation ratios for Max weighted
atmostkPP coincide. Indeed, we have wor = 0 since {Pi}i∈V where Pi = {i} is a feasible
solution.

This problem is very close to Metric kVRP when we deal with differential ratio:

Theorem 3.11 For any k ≥ 3, Max weighted atmostkPP and Metric kVRP are
differential equivalent.

Proof: In order to reduce Metric kVRP to Max weighted atmostkPP, consider an
instance G of Metric kVRP with n customers. We construct an instance I ′ of Max
weighted atmostkPP as follows: we delete the depot 0 and consider the graph Kn and
set d′x,y = d0,x + d0,y − dx,y for any vertices x, y ∈ V \ {0}. By the triangle inequality,

11



d′x,y ≥ 0. d′x,y denotes the saving gained with respect to the worst solution, by joining x

and y in a cycle rather then reaching each of them from the depot. We have an one to one
correspondence between a path P = (1, . . . , j) using at most k vertices in I ′ and the cycle
C = (0, 1, . . . , j, 0) with at most k customers in G. Moreover, d′(P ) = 2

∑j
i=1 d0,i − d(C).

Finally, we also have an one to one correspondence between feasible solutions of these two
problems, and since wor = 2

∑n
i=1 d0,i, for any solution of G of value val we have

val′ = worV RP − val. (15)

Conversely we reduce Max weighted atmostkPP to Metric kVRP. Let G and d

be an instance of Max weighted atmostkPP. We add a depot 0 and we set: d′0,i =
maxe∈E de,∀i ∈ V and d′i,j = 2 maxe∈E de − di,j ,∀i, j ∈ V . The rest of the proof is similar.

Let ρ be the standard approximation ratio for Max TSP. The current best value for ρ

is 25
33 obtained by a randomized algorithm in [17].

Theorem 3.12 Metric kVRP is (25
33

k−1
k

− ε) differential randomized approximable for
k ≥ 3 and any ε > 0.

Proof: Let G be an instance of Metric kVRP with n customers and let ε > 0. In order to
obtain a good solution for G, we apply algorithm Algo Differential MetrickVRP where
the preprocessing is a tour T = C1. This tour is produced by the algorithm from [17]
applied on the instance I ′ = (Kn, d′) with n = kq + r obtained from G as in Theorem 3.11,
algorithm that is a 25

33 randomized approximation. Using the definition of weight d′ and the
Lemma 3.8, we obtain:

worV RP − apx = max
1≤j≤n

d′(sol1,j) ≥

∑n
j=1 d′(sol1,j)

n
≥ (

k − 1

k
− ε)d′(C1).

when q ≥ k−1
εk2 − 1

k
. Otherwise, we exhaustively solve the problem.

On the other hand, an optimal solution of Max weighted atmostkPP on I ′ can be
used to construct a feasible solution of Max TSP on I ′ by joining the endpoints of the paths.
Hence optMaxTSP ≥ optMax weighted atmostkPP. Finally, by using the 25

33 standard approxi-
mation algorithm for Max TSP for obtaining the tour T , we have d′(C1) ≥

25
33optMaxTSP

and optMax weighted atmostkPP = worV RP − optV RP since (15).

In particular, we obtain a (50
99 − ε) differential randomized approximation for Metric

3VRP, that is better than the 1
2 differential approximation given in Theorem 3.4. It

also improves the result of Theorem 3.9 for k ≥ 9 since we obtain the differential ratio
δ = 25(k−1)

33k
− ε > 2

3 for Metric kVRP. For instance, this ratio is 200
297 ≃ 0.67 for k = 9.

We summarize in the following the differential results that we obtain for Metric kVRP:

• Metric 3VRP is (50
99 − ε) differential randomized approximable for any ε > 0.

• Metric 4VRP is 3
5 differential approximable.

• Metric kVRP is 2
3 differential approximable for 5 ≤ k ≤ 8.

• Metric kVRP is (25
33

k−1
k

− ε) differential randomized approximable for any k ≥ 9
and for any ε > 0.

12



Finally, note the similarity between the results given in Theorem 3.7 and the one given
in Theorem 3.12. They both deal with the reduction in approximation from Metric
kVRP to Max TSP (Max TSP and Min Metric TSP are equivalent with respect to
the differential ratio [20]) and the expansion is very similar δ k−1

k
for Theorem 3.7 and

ρk−1
k

− ε for Theorem 3.12. The only difference is on the measure used: The first reduction
considers the differential ratio for the two problems whereas the second one considers the
standard ratio for Max TSP. Actually, the standard ratio ρ = 25

33 is better than differential
ratio δ = 2

3 for Max TSP and more generally the best standard ratio ρbest for Max TSP
will be always better than the best differential ratio δbest (i.e., ρbest ≥ δbest) since we have a
trivial reduction from any maximization problem to itself transforming a differential result
into a standard result (see Lemma 1.3 in Monnot [20]), leading to the conclusion that the
reduction of Theorem 3.12 is better. Nevertheless, if the optimal result is ρbest = δbest then
the reduction of Theorem 3.7 will be better.

Since nVRP and TSP are standard equivalent, from the result of Papadimitriou and
Yannakakis [24] we deduce immediately that nVRP(1,2) has no standard approximation
scheme unless P = NP. Also TSP(1,2) has no differential approximation scheme [21] but
we cannot deduce immediately that nVRP(1,2) has no differential approximation scheme
since wornV RP and worTSP may be very far. However, we prove in the following a lower
bound for the differential approximation of nVRP(1,2).

Theorem 3.13 nVRP(1, 2) is not (2219
2220 − ε) differential approximable, for any constant

ε > 0, unless P=NP.

Proof: Since wornV RP ≤ 4n ≤ 4optnV RP , a δ differential approximation for nVRP(1, 2)
gives a δ+4(1−δ) standard approximation for nVRP(1, 2). Using the negative result given
in [8] that TSP(1,2) is not 741

740 − ε standard approximable, we obtain the expected result.

3.2.2 Some standard approximation results

Despite these observations, by using Theorem 3.9 for Metric kVRP and Theorem 3.5 we
establish better standard approximation ratio than Haimovich, Rinnooy Kan and Stougie
(i.e., (5

2 − 3
2k

) standard approximation) when we deal with bounded metrics, i.e., dmax ≤
tdmin. More exactly, Metric 4VRP[2] is 47

25 standard approximable and Metric kVRP[2]
is (2 − 4

3(k+1)) standard approximable for k ≥ 5.

We now describe some results concerning the standard approximability of Metric
kVRP. In [12], a (5

2 − 3
2k

) standard approximation for Metric kVRP is obtained by
reduction to Metric TSP and using Christofides’ algorithm.

The following theorem gives a reduction preserving the approximation scheme between
standard and differential ratio even if we deal with unbounded metrics (dmax

dmin
is not upper

bounded).

Theorem 3.14 A δ differential approximation algorithm for Metric kVRP is also a
k − δ(k − 1) standard approximation algorithm.

13



Proof: Consider an optimal solution for an instance G of Metric kVRP and w.l.o.g.
denote by (0, 1, . . . , mi, 0) one of its cycles. Using the triangle inequality, the length of this
cycle is at least 2max{d0,i : i = 1, . . . , mi} ≥ 2

k

∑mi

i=1 d0,i. Summing over each cycle, we
obtain using Lemma 3.6:

opt ≥
2

k

n
∑

i=1

d0,i =
wor

k
. (16)

Let apx be a δ differential approximation for G. Using the inequality (16) we deduce:

apx ≤ δopt + (1 − δ)wor ≤ δopt + k(1 − δ)opt. (17)

Using Theorem 3.14, Observation 3.10 and Theorem 3.12 we obtain:

Corollary 3.15 Metric 3VRP is (3− 4
3ρ+ ε) standard approximable for all ε > 0 where

δ is the standard approximation ratio for Max TSP.

More exactly, since ρ = 25
33 [17] we obtain the bound 197

99 ≃ 1.99 that is an improvement
of the 2 standard approximation of Haimovich et al. [12].

4 Edge Cost VRP

We assume now that each edge is associated with a cost ℓ satisfying the triangle inequality,
and the solution must satisfy that the total cost on each cycle does not exceed λ.

Note that if we do not assume that ℓ is a metric then even deciding whether the problem
has any feasible solution is NP-complete. For a proof see Theorem 7.1 below. Therefore,
we assume that ℓ satisfies the triangle inequality, and to ensure feasibility we also assume
that 2ℓ0,i ≤ λ for i = 1, . . . , n.

Theorem 4.1 Edge Cost VRP is 1
3 differential approximable.

Proof: We start with a binary 2-matching as described in Lemma 3.2 except that the
initial graph is not a complete undirected graph G but a partial graph G′ of it built by
deleting the edges (i, j) for i 6= 0 and j 6= 0 such that ℓ0,i + ℓi,j + ℓj,0 > λ. Observe that
M is still a lower bound of an optimal solution of Edge Cost VRP. Then, we apply
the algorithm Algo Differential VRP except that we change steps 3.2, 5 and 6. The
step 3.2 becomes the following: we produce mi solutions soli,1, . . . , soli,mi

where soli,j =
{(0, j + 1, j + 2, 0), . . . , (0, j − 2, j − 1, 0)} ∪ {(0, j, 0)} for j = 1, . . . , mi.

The step 5 becomes: for every cycle Ci = (0, 1, . . . , mi, 0) of M with
∑

e∈E(Ci) ℓe ≤ λ do
soli,1 = soli,2 = Ci whereas the step 6 becomes: the solution APX is the solution obtained
by concatenating the shortest of soli,j for each cycle Ci.

Observe that in step 3.2, each edge of Ci appears exactly ⌊mi

2 ⌋ times in (∪j≤mi
soli,j)

and each edge (0, j) appears exactly mi +1 times. Thus, since mi ≥ 2, the same arguments
as in Theorem 3.4 proved that APX is a 1

3 differential approximation.

In [12], the authors consider two versions of kVRP with additional constraint on the
length of each cycles. In the first problem that we will call here Vertex Cost kVRP, each
customer has a cost and we want to find a solution such that the total customer cost on
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each cycle does not exceed k. In the second, called in [19] Min metric Distance, we want
to find a solution such that the total cost on each cycle does not exceed a given bound λ.
For each of these two problems, we give a differential reduction preserving approximation
scheme from Edge Cost VRP.

Lemma 4.2 A δ differential approximation solution for Edge Cost VRP (respectively,
metric case) is also a δ differential approximation for Vertex Cost kVRP (respectively,
metric case).

Proof: Let G = (V, E) with d and c be an instance of Vertex Cost kVRP. We construct
an instance of Edge Cost VRP as follows. First we set λ = k. The graph and the function
d are the same whereas the function ℓ is defined by: ℓi,j =

ci+cj

2 where we assume that
c0 = 0. This function satisfies the triangle inequality. Moreover, let C be a cycle linking
the depot to a subset of customers. We have

∑

i∈V (C) ci ≤ λ iff
∑

e∈E(C) ℓe ≤ λ.

Corollary 4.3 Vertex Cost kVRP is 1
3 differential approximable.

Min Metric Distance is a particular case of Edge Cost VRP where the function ℓ

is exactly the function d. Thus, from Theorem 4.1 we deduce the corollary:

Corollary 4.4 Min Metric Distance is 1
3 differential approximable.

For Edge Cost VRP and Vertex Cost kVRP there have neither standard nor
differential approximation scheme unless P = NP since these two problems contain nVRP.

5 Min-Max kTSP

The metric case of the problem was studied by Fredrickson, Hecht and Kim [9] where
they give a 5

2 − 1
k

standard approximation algorithm by constructing a reduction from this
problem to Metric TSP and using Christofides’ algorithm [4].

Theorem 5.1 Min-Max rTSP is not 2p(n) standard approximable for any polynomial p

and r ≥ 1, unless P=NP.

Proof: We reduce Hamiltonian Path problem to Min-Max rTSP. We start with the
reduction described in Theorem 3.1 with k = n − 1 and q = 1 and the weight n2p(n) is
replaced by (n + 3)2p(n) (recall that the (n − 1)PP problem is the Hamiltonian Path
problem) and we apply r times this reduction (so, the final graph consists of depot and r

copies of G and set A of 2r vertices). Thus, a 2p(n) standard approximation for Min-Max
rTSP could decide Hamiltonian Path, that is proved NP-hard in [10].

We now turn to the metric case. We give a 1
2 differential approximation algorithm for

Metric Min-Max kTSP, k ≥ 2 and we show that the problem has neither standard nor
differential approximation scheme unless P=NP.

Theorem 5.2 Metric Min-Max 2TSP is 1
2 differential approximable.
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Proof: Consider a tour T = (0, . . . , n, 0) of G. Let i be the smallest index such that
∑i

j=0 dj,j+1 ≥ d(T )
2 . We consider the solution C1 = (0, 1, . . . , i, 0) and C2 = (0, i + 1, . . . , n, 0).

Note that

d(C1) − d0,i =
i−1
∑

j=0

dj,j+1 ≤
d(T )

2

and

d(C2) − d0,i+1 = d(T ) −
i

∑

j=0

dj,j+1 ≤ d(T ) −
d(T )

2
=

d(T )

2
.

So, max{d(C1), d(C2)} ≤ d(T )
2 + max{d0,i, d0,i+1} ≤ worTSP

2 + opt2TSP

2 . Since a worst
tour on V with the value worTSP is a feasible solution for 2TSP then wor2TSP ≥ worTSP .
Thus, max{d(C1), d(C2)} ≤ wor2TSP

2 + opt2TSP

2 .

Corollary 5.3 Metric Min-Max kTSP is 1
2 differential approximable.

Proof: The previous algorithm is a 1
2 differential approximationfor general k ≥ 3 since we

have also workTSP ≥ worTSP and max{d0,i, d0,i+1} ≤ optkTSP

2 .

Theorem 5.4 Min-Max kTSP(1,2), k ≥ 2 has neither standard nor differential polyno-
mial time approximation scheme, unless P=NP.

Proof: We construct a L-reduction from Min TSP(1,2), when the subgraph restricted to
the edges of length 1 is Hamiltonian, to Metric Min-Max kTSP.

Let G be a complete graph on n vertices, with edges of length 1 and 2. We construct an
instance G′ of Min-Max kTSP adding to G a depot, the vertex 0, and we set the distance
between 0 and a vertex i of G to 2. Suppose that n = q · k + r, 0 < r ≤ k. It is easy
to see that opt(G) = optTSP (G) = n and opt(G′) = optMin−Max kTSP (G′) = q + 4 since
the optimum of G′ is obtained when the Hamiltonian cycle is divided in k paths where the
difference of sizes is at most 1. So opt(G′) = opt(G)−r

k
+ 4, or opt(G) = k · opt(G′) − 4k + r.

From a solution of G′ with value val′ we construct a solution in G putting together the
paths induced by the solution in G and linking these paths by edges of length at most 2.
This solution has the value val ≤ k(val′ − 4) + 2k. So,

val−opt(G) ≤ k ·val′−2k−k ·opt(G′)−4k + r ≤ k[val′−opt(G′)]−5k ≤ k[val′−opt(G′)].

Since Min TSP(1,2), when the subgraph restricted to edges of length 1 is Hamiltonian,
has no standard polynomial time approximation scheme [2], then Min-Max kTSP also has
no standard approximation scheme.

In order to see that Min-Max kTSP has no differential approximation scheme, we show
that if it was the case then Min-Max kTSP on the particular instances that we consider
above would have a standard approximation scheme. Suppose that Min-Max kTSP has
a differential approximation scheme Aδ, ∀δ, 0 < δ < 1. So, Aδ gives a solution for G′ with
a value val ≤ δopt(G′) + (1 − δ)wor(G′). For the above instances G′ of Min-Max kTSP,
opt(G′) = n−r

k
+4 and wor(G′) = 2(n−1)+4 ≤ 2kopt(G′). Thus, val ≤ [δ+2k(1−δ)]opt(G′),

and for an (1 + ε) standard approximation solution for an instance of Min-Max kTSP,
∀ε > 0, we apply Aδ with δ = 1 − ε

2k−1 .

For certain cases we can give inapproximability gaps, for examples, when we have ⌊n
6 ⌋

vehicles we can prove that the problem is not 7
6 approximable and more generally we obtain:
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Theorem 5.5 Min-Max ⌊n
k
⌋TSP(1,2), k ≥ 6 is not k+1

k
− ε standard approximable for

any ε > 0, unless P=NP.

Proof: We use a reduction from (k − 4)PP with k ≥ 6. We use the reduction described in
Theorem 3.1 except that we replace the distances n2p(n) by distances 2. Then, if G contains
a decomposition in paths of length k − 4 then opt(G′) = k, otherwise opt(G′) ≥ k + 1. So,
a k+1

k
− ε standard approximation for Min-Max ⌊n

k
⌋TSP(1,2) could decide (k − 4)PP in

polynomial time.

6 Min-Sum EkTSP

Bellmore and Hong [3] showed that when the constraint p = k is replaced by p ≤ k, then
Min-Sum kTSP is standard equivalent to TSP on an extended graph. This is true even
for the directed version of the problem and when there is a cost associated with activating
a salesman. For our case the transformation simply involves replacing the depot vertex 0
by k vertices of zero distance. Also, the metric case of the p ≤ k version is not of interest
since the solution is just a single cycle (thus, we deal with the case p = k and Min-Sum
EkTSP denote this problem).

Min-Sum EkTSP is differential equivalent to Metric Min-Sum EkTSP. This obser-
vation follows since the number of edges in every solution is the same (like in the TSP
case). Hence, we add a constant to all the edge lengths and achieve the triangle inequality
without affecting the best and worst solutions.

Similarly, Min-Sum EkTSP is differential equivalent to Max-Sum EkTSP.

Theorem 5.1 can be adapted in order to prove that Min-Sum EkTSP is not 2p(n)

standard approximable, for any polynomial p, unless P=NP.

We now give the main results of this section.

Theorem 6.1 Metric Min-Sum EkTSP is 2
3 differential approximable, ∀k ≥ 1.

Proof: Let G and d be an instance of Metric Min-Sum EkTSP. Add to every edge
incident with the depot a parallel copy. Compute a minimum binary f -matching M =
{C1, . . . , Cp} (C1, . . . , Ck denote the cycles of M containing the depot 0) on G where f(0) =
2k and f(v) = 2 for v ∈ V \ {0}. Compute by using a 2

3 differential approximation
algorithm of [15] or [20] a solution C ′ for TSP on the subgraph G′ of G induced by V ′ =
V \ (∪k−1

i=1 V (Ci)) ∪ {0}. The approximate solution sol for Metric Min-Sum EkTSP
is composed of C ′ and the cycles C1, . . . , Ck−1. See Figure 3. Since M is a minimum
binary f -matching M on G then M ′ = M \ (∪k−1

i=1 Ci) is an optimum binary 2-matching
on G′. Let r =

∑k−1
i=1 d(Ci). It is proved in [15] or [20] that the TSP algorithm gives a

solution satisfying val ≤ 2
3d(M ′)+ 1

3worTSP (G′). Since workTSP (G) ≥ worTSP (G′)+r and
optkTSP (G) ≥ d(M ′) + r, we deduce that the value of sol satisfies:

apx = val + r ≤
2

3
[d(M ′) + r] +

1

3
[worTSP (G′) + r] ≤

2

3
optkTSP (G) +

1

3
workTSP (G)

Theorem 6.2 Unless P=NP, Min-Sum EkTSP(1,2) has no standard and differential ap-
proximation scheme for any k ≥ 2.
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Figure 3: M and sol

Proof: We reduce Min TSP Path (1,2) on Hamiltonian cubic graphs to Min-Sum
E2TSP(1,2). From a graph G = (V, E) on n vertices, we construct a graph G′ instance
of Min-Sum E2TSP(1,2). G′ consists of two copies of G and a vertex 0 (the depot).
Within a copy, the edges have the same distance as in G; d0,i = 1, for each vertex i in one
of the two copies; di,j = 2 if i and j are vertices in different copies. Using the equalities

opt(G) = n−1 = wor(G)
2 and opt(G′) = 2n+2, wor(G′) = 4n, we have opt(G′) = 2opt(G)+4

and wor(G′) = 2wor(G) + 4. Given a solution S of G′ with two cycles, we can transform
it in another one S′ that contains exactly two cycles (0, P1, 0), (0, P2, 0), each of these two
paths are contained in a copy of G and with a better value. The idea for doing this is to
remove the edges between the two copies in the solution S and in each copy, we arbitrarily
connect the resulting paths. We consider as solution for G the path with the smallest value

among the two. So, val = min{val(P1), val(P2)} ≤ val(P1)+val(P2)
2 = val(S′)−4

2 ≤ val(S)−4
2 .

Since opt(G) = opt(G′)
2 − 2 and wor(G) = wor(G′)

2 − 2 then a δ differential approximation
of Min-Sum E2TSP(1,2) gives a δ differential approximation for Min TSP Path (1,2)
on Hamiltonian and cubic graphs. The conclusion follows for Min-Sum E2TSP(1,2) since
Min TSP Path (1,2) on Hamiltonian and cubic graphs has no differential approximation
scheme ([2, 22]). It is easy to see that if S is a (1 + ε

2) standard approximation of Min-
Sum E2TSP(1,2) then the same solution as above with value val is a (1 + ε) standard
approximation of Min TSP Path (1,2). The proof for k ≥ 3 is similar.

7 Min Vehicle

In this problem, the goal is to visit the customers by a minimum number of vehicles, under
a constraint on the total distance traveled by a vehicle.

In [19], it is proved that Metric Min Vehicle is not standard 2 approximable, unless
P=NP. Indeed even deciding whether the problem has a feasible solution is NP-complete:

Theorem 7.1 Deciding the feasibility of Min Vehicle is NP-complete.

Proof: In order to prove the NP-hardness, we reduce Hamiltonian Path problem to
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Min Vehicle. We again apply the reduction described in Theorem 3.1 with k = n−1 and
q = 1, except that the distances n2p(n) are replaced by the distances λ. Trivially there is a
feasible solution for G′ only if λ ≥ n + 3. It is easy to see that Min Vehicle has a feasible
solution iff G contains a Hamiltonian path.

In contrast, deciding the feasibility of Metric Min Vehicle is trivial, and the condition
simply amounts to d(0, i) ≤ λ

2 for i = 1, . . . , n. The following theorem gives a positive result
for this problem:

Theorem 7.2 Metric Min Vehicle is 2
3 differential approximable.

Proof: Consider the collection C of sets of vertices of feasible cycles (cycles that include
the depot and whose length is at most λ). Since we assume that d is a metric, C is a
monotone collection, that is, if C ′ ⊂ C and C ∈ C then also C ′ ∈ C. This means that if G′

is a subgraph of G that includes the depot, then the optimal solution on G′ is at most that
of G. This allows us to apply the following “greedy” approach:

Construct feasible cycles with the depot and three vertices, as long as this is possible.
Let G′ be the graph G except the vertices of these cycles (the depot is preserved in G′).
For an edge (i, j), if d0,i + d0,j + di,j > λ then we remove this edge from G′. Denote the
resulting graph also by G′. Find a maximum size matching in G′. We will show below that
a such maximum size matching in G′ is an optimum solution on G′. We now show that the
union of these cycles is a 2

3 differential approximation.

Denote by k3 the number of cycles on three vertices and the depot, constructed in the
first step of the algorithm. Denote by k2 (and k1) the number of edges (and isolated vertices)
obtained in G′ when we search a maximum size matching. So, val(G) = k1 + k2 + k3.
The value of the solution obtained in G′ in this way is val′ = k1 + k2 = |V (G′)| − k2

since k1 + 2k2 = |V (G′)|. Since we want to minimize val′ a maximum size matching gives
an optimum solution. Since opt(G) ≥ opt(G′) and wor = n = |V (G)|, we obtain that
val(G) = k1 + k2 + k3 = k1 + k2 + n−k1−2k2

3 ≤ 2
3opt(G) + 1

3wor(G).

The algorithm of Theorem 7.2 is similar to the approach in [16] for obtaining differential
approximation for Graph Coloring. By applying approximation algorithms for 3-Set
Cover and following the ideas of Halldórsson [13] for obtaining better differential approx-
imation for Graph Coloring (see also [15]), the bound can be improved. Consider the
following algorithm: Construct feasible cycles with four vertices as long as this is possible.
Let G′ be the graph G except the vertices of these cycles. List all the feasible cycles in
G′. Note that such cycles include the depot and at most three other vertices, and therefore
their number is polynomial. Apply an approximation algorithm for Min 3-Set Exact
Cover of a Monotone Collection, such as the algorithm of Halldórsson [13] or Duh
and Fürer [7]. This former result is a 3

4 -differential approximation (see Theorem 5.2 in [13]),
and the latter gives a bound of 289

360 (see Theorem 4.2 in [7]). Note that the mentioned results
were developed to give differential approximations for Graph Coloring, but they apply
as well to any problem of exact covering by sets that correspond to a monotone collection
(see Section 4 of [15]).

In [19], it is proved that unless P=NP, Min Vehicle is not standard 2 approximable and
thus without standard approximation scheme when λ → ∞. In the following we establish
the same result for λ constant and for the differential case.
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Theorem 7.3 Min Vehicle(1,2) has no standard and differential approximation scheme
even if λ is constant, unless P=NP.

Proof: We prove firstly that Min Vehicle(1,2) has no standard approximation scheme,
if P 6= NP by reducing Min TSP(1,2) problem on Hamiltonian graphs to Min Vehi-
cle(1,2). Min TSP(1,2) problem on cubic Hamiltonian graphs has no standard approxi-
mation scheme [2], thus there is a constant ε0, 0 < ε0 < 1, such that it is not 1+ ε standard
approximable for ε ≤ ε0, if P 6= NP.

Given a graph G = (V, E) on n vertices, we construct a graph G′ instance of Min
Vehicle. G′ consists of one copy of G and a vertex 0 (the depot) and we define the
function d′ as follows: d′0,i = 1, for i ∈ {1, . . . , n} and d′i,j = di,j if i, j ∈ {1, . . . , n}. It is
easy to see that opt1 = opt(G) = n and opt2 = opt(G′) = ⌈ n

λ−1⌉ ≤ n
λ−1 + 1 ≤ n

λ−2 when
n ≥ (λ − 1)(λ − 2). Given a solution S′ of G′ with val2 vehicles, S′ = C1, . . . , Cval2 , we
consider as solution S for G the restriction of this solution to the vertices of G. The value
of S is val1 ≤

∑val2
i=1 d(Ci) ≤ λval2 by the triangle inequality.

Suppose that Min Vehicle(1,2) would have a standard approximation scheme Aδ.
We prove that this assumption imply that Min TSP(1,2) has an approximation scheme,
contradiction. In order to obtain an (1 + ε) approximation for G, we apply A ε

3

on G′ with

λ = 3 + ⌈3
ε
⌉. Thus

val1 ≤ λ(1 +
ε

3
)

n

λ − 2
≤ (1 + ε)n

since λ ≥ 3 + 3
ε
.

Using this last result we prove that this problem has no differential approximation
scheme if P=NP. Suppose that Min Vehicle(1,2) when the graph restricted to edges of
weight 1 is Hamiltonian would have a differential δ approximation scheme Aδ, ∀δ, 0 < δ < 1.
Therefore, for each instance G of the problem on n vertices, with λ = 3 + ⌈ 3

ε0
⌉, this

algorithm gives a solution for G with a value val(G) ≤ δopt(G) + (1 − δ)wor(G). Since
on these instances wor(G) = n and opt(G) = ⌈ n

λ−1⌉ ≥ n
λ−1 then wor(G) ≤ (2 + 3

ε0
)opt(G)

and so val(G) ≤ [δ + (2 + 3
ε0

)(1 − δ)]opt(G). Thus, in order to obtain a standard (1 + ε)
approximation algorithm, 0 < ε < 1, we have to take the solution given by Aδ with
δ = 1 − ε ε0

3+ε0
. The result follows since as we prove above Min Vehicle(1,2) on these

instances has no standard approximation scheme, unless P=NP.
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