
Efficient algorithms for decomposing graphs
under degree constraints

Cristina Bazgan ∗ Zsolt Tuza † Daniel Vanderpooten ∗

Abstract

Stiebitz (1996) proved that if every vertex v in a graph G has degree d(v) ≥ a(v)+
b(v) + 1 (where a and b are arbitrarily given nonnegative integer-valued functions)
then G has a nontrivial vertex partition (A, B) such that dA(v) ≥ a(v) for every v ∈ A

and dB(v) ≥ b(v) for every v ∈ B. Kaneko (1998) and Diwan (2000) strengthened this
result, proving that it suffices to assume d(v) ≥ a+b (a, b ≥ 1) or just d(v) ≥ a+b−1
(a, b ≥ 2) if G contains no cycles shorter than 4 or 5, respectively.

The original proofs contain nonconstructive steps. In this paper we give polynomial-
time algorithms that find such partitions. Constructive generalizations for k-partitions
are also presented.

Keywords: graph decomposition, vertex partition, polynomial algorithm, vertex
degree.

1 Introduction

In this paper we give constructive proofs of the results published in [9, 7, 4, 6] concerning
the vertex decomposability of graphs where some degree constraints are satisfied.

For a graph G, we denote by V (G) and E(G) the vertex set and the edge set, respec-
tively; or simply by V and E if G is understood. Given a set S ⊆ V (G), the subgraph
of G induced by S is denoted by G[S]; and we write dS(v) for the degree of a vertex v in
G[S ∪{v}] (i.e., v ∈ S may or may not hold). Then the degree of v (in G) is d(v) = dV (v).
Moreover, a k-cycle is a cycle on k vertices.

Our paper is motivated by the following three existence theorems.

∗ LAMSADE, Université Paris-Dauphine, Place du Marechal de Lattre de Tassigny, 75775 Paris Cedex
16, France. Email: {bazgan,vdp}@lamsade.dauphine.fr

† Computer and Automation Institute, Hungarian Academy of Sciences, Budapest; and Department of
Computer Science, University of Veszprém, Hungary. Email: tuza@sztaki.hu

1

Theorem 1 ([9]) Let G be a graph, and a, b : V (G)→ IN two functions such that d(v) ≥
a(v) + b(v) + 1 for every v ∈ V (G). Then, there is a nontrivial vertex partition (A,B) of
G such that

dA(v) ≥ a(v) ∀ v ∈ A and dB(v) ≥ b(v) ∀ v ∈ B (⋆)

Theorem 2 ([7]) Let G be a graph, and a, b : V (G) → IN \ {0} two functions such that
d(v) ≥ a(v)+b(v) for every v ∈ V (G). If G contains no 3-cycles, then there is a nontrivial
vertex partition (A,B) of G satisfying (⋆).

Theorem 3 ([4]) Let G be a graph without 3-cycles and 4-cycles, and a, b : V (G) →
IN \ {0, 1} two functions such that d(v) ≥ a(v) + b(v)− 1 for every v ∈ V (G). Then, there
is a nontrivial vertex partition (A,B) of G satisfying (⋆).

Theorems 2 and 3 were originally stated just for constants a, b instead of functions
a(v), b(v); but in fact the proofs work for the general case without any changes. This has
been observed for Theorem 3 by Gerber and Kobler in [6].

The original proofs of Theorems 1, 2 and 3 contain nonconstructive steps. The goal of
the present paper is to show that in all the three cases a vertex partition can be found in
polynomial time. More explicitly, the following results will be proved. For short, a nontriv-
ial vertex partition (A,B) of V (G) with the property (⋆) is called an (a, b)-decomposition.

Theorem 4 Under the conditions of Theorem 1, an (a, b)-decomposition can be found in
polynomial time.

Theorem 5 Under the conditions of Theorem 2, an (a, b)-decomposition can be found in
polynomial time.

Theorem 6 Under the conditions of Theorem 3, an (a, b)-decomposition can be found in
polynomial time.

These results will be proved in Section 3. The next section introduces basic concepts
and elementary algorithmic procedures that will be useful in subsequent algorithms. In
Section 4, a constructive generalization for k-partitions is also given.

In order to avoid trivialities, it will be assumed throughout that the functions a, b :
V → IN satisfy a(v) ≤ d(v) and b(v) ≤ d(v) for all vertices v ∈ V . Partitions (A,B) of
V will be assumed nontrivial (i.e., A 6= ∅ and B 6= ∅) without explicitly mentioning this
condition at each occurrence.

2

2 Preliminaries

In order to find an (a, b)-decomposition in a given graph efficiently, we shall need some
more notions.

Let G be a graph and f : V (G)→ IN be a function. Graph G is said to be f -degenerate
if every nonempty (induced) subgraph H of G contains a vertex v ∈ V (H) such that
dH(v) ≤ f(v). Thus, if G is not (f − 1)-degenerate, there exists a subset A such that
dA(v) ≥ f(v) for each vertex v ∈ A. Such a set A will be called an f -satisfactory subset .

Given G and the functions a and b, we shall say that a partition (A,B) of V is an
(a−, b−)-partition if G[A] is (a − 1)-degenerate and G[B] is (b − 1)-degenerate; and a
partition (A,B) of V is an (a+, b+)-partition if G[A] is not (a− 1)-degenerate and G[B] is
not (b− 1)-degenerate.

The next observation is a slight generalization of the known fact that the “coloring
number” of a graph can be determined in polynomial time (see [5, 8], that corresponds to
f = constant).

Proposition 7 It is decidable in polynomial time if the subgraph induced by a given set
A ⊆ V is f -degenerate, for any given function f . Moreover, if G[A] is not f -degenerate,
then a satisfactory (f + 1)-subset A′ ⊆ A can be found in polynomial time.

Proof : The algorithm consists of iteratively removing vertices v from G[A] of degree less
than or equal to f(v) while it is possible. If at the end we obtain a nonempty subgraph
G[A′], then G[A] is not f -degenerate since dA′(v) ≥ f(v) + 1, for all v ∈ A′. Thus A′ is a
(f + 1)-satisfactory subset.

Conversely, suppose that the algorithm removes all vertices from A. If G[A] were not
f -degenerate, then it would contain a (f + 1)-satisfactory subset A′. The first vertex v of
A′ considered by the algorithm cannot be removed, since its current degree is greater than
or equal to dA′(v) ≥ f(v) + 1. In this way no vertex of A′ could be removed. Thus, if the
entire set A gets deleted, then G is f -degenerate.

Since the selection of removable vertices can be performed in polynomial time, the
algorithm clearly is polynomial. 2

A minimal f -satisfactory subset A is an f -satisfactory subset such that, for every proper
subset A′ ⊂ A, there exists a vertex v ∈ A′ with dA′(v) ≤ f(v)− 1.

Proposition 8 If a graph G contains an f -satisfactory subset, then a minimal f -satisfactory
subset can be found in polynomial time.

Proof : Let A1 be an f -satisfactory subset of G. We construct a sequence G[A1], ..., G[At]
of subgraphs of G, such that Ai+1 ⊂ Ai and each G[Ai] has the property that dAi

(v) ≥ f(v),
for all v ∈ Ai.

In step i (i ≥ 1), we select a vertex v ∈ Ai, tentatively remove it from Ai, and iteratively
remove from Ai \ {v} the vertices v′ whose degree in the current induced subgraph is less
than f(v′), until we obtain a set X which is either empty or an f -satisfactory subset. If

3

X = ∅, then we iterate the previous procedure for vertices v ∈ Ai until a set X 6= ∅ is
obtained, and in this case we continue the construction with Ai+1 = X. In the other case,
i.e. when all the sets X obtained are empty, we stop the algorithm with t = i.

We claim that At is a minimal f -satisfactory subset. Since At is clearly an f -satisfactory
subset, it remains to prove that it is minimal. Suppose on the contrary, that there exists
a proper subset A′ ⊂ At such that dA′(v) ≥ f(v) for all v ∈ A′. Choose any v′ ∈ At \ A′.
Continuing the procedure from At by removing v′, a nonempty set At+1 ⊇ A′ would be
generated, which contradicts the previous assumption that At+1 = ∅ holds for all v′ ∈ At.

2

Now, we establish a constructive proof of sufficiency of a necessary and sufficient condi-
tion given by Stiebitz in order to obtain an (a, b)-decomposition. (In [9] the next proposition
was formulated with the stronger condition d(v) ≥ a(v) + b(v) + 1 but its proof works for
the weaker condition as well). It refers to the concept of feasible pair which is a pair (A,B)
of disjoint, nonempty vertex subsets A,B ⊆ V (G) such that dA(v) ≥ a(v) for all v ∈ A
and dB(v) ≥ b(v) for all v ∈ B.

Proposition 9 Let G = (V,E) be a graph and a, b : V → IN integer-valued functions such
that d(v) ≥ a(v) + b(v)− 1 for every v ∈ V (G). If a feasible pair (A,B) is given, then an
(a, b)-decomposition of G exists and can be found in polynomial time.

Proof : Let V1 = A and V2 = B. While there is a vertex v in V \ (V1 ∪ V2) such that
dV1

(v) ≥ a(v), add v in V1. While there is a vertex v in V \(V1∪V2) such that dV2
(v) ≥ b(v),

add v in V2. At the end, if C = V \ (V1 ∪ V2) 6= ∅, then dV1
(v) < a(v) and dV2

(v) < b(v)
for any v ∈ C. Recalling the condition d(v) ≥ a(v) + b(v) − 1, for each v ∈ C before the
last step we have dV1∪C(v) ≥ a(v) and dV2∪C(v) ≥ b(v). Thus, it is indeed feasible to add
all vertices of C either to V1 or to V2, and hence an (a, b)-decomposition is obtained. 2

The importance of (a+, b+)-partitions is demonstrated by the following observation that
is a direct consequence of Propositions 7 and 9.

Corollary 10 If an (a+, b+)-partition is given, then an (a, b)-decomposition of G exists
and can be found in polynomial time.

This gives rise to the procedure DECOMPOSE described in Algorithm 1.

3 Finding a decomposition efficiently

By Corollary 10, the problem of efficiently finding an (a, b)-decomposition is reduced to
that of finding an (a+, b+)-partition. This fact applies to all the three theorems to be
proved. Despite several similarities, however, there are remarkable differences among the
three algorithms. For this reason, they will be presented in separate subsections. Before
that, we describe some general principles applied throughout.

4

Algorithm 1 DECOMPOSE(A,B)

Require: an (a+, b+)-partition (A,B) of V
Ensure: an (a, b)-decomposition (V1, V2)

while there is a vertex v ∈ A such that dA(v) ≤ a(v)− 1 do
A← A \ {v}

while there is a vertex v ∈ B with dB(v) ≤ b(v)− 1 do
B ← B \ {v}

// (A,B) is a feasible pair //
V1 ← A; V2 ← B
while there is a vertex v in V \ (V1 ∪ V2) such that dV1

(v) ≥ a(v) do
V1 ← V1 ∪ {v}

while there is a vertex v in V \ (V1 ∪ V2) such that dV2
(v) ≥ b(v) do

V2 ← V2 ∪ {v}
V1 ← V \ V2 (or V2 ← V \ V1)

After some preprocessing, each of the algorithms iteratively maintains a vertex partition
(A,B), whose value will be measured by the function

w(A,B) = |E(G[A])|+ |E(G[B])|+
∑

v∈A

b(v) +
∑

v∈B

a(v) .

After an iteration, either an (a, b)-decomposition is found, or the value of w is increased.
Since |E(G[A])| + |E(G[B])| ≤ |E(G)|, and max(a(v), b(v)) ≤ d(v) for all v ∈ V (G) by
assumption, we always have w(A,B) ≤ 3 |E(G)|, so that the algorithms terminate after a
linear number of iterations (in terms of the input size). Thus, it will suffice to prove that
the algorithms are sound and that each of their steps is implementable in polynomial time.

3.1 Unrestricted graphs with d(v) ≥ a(v) + b(v) + 1

In this subsection, we consider the algorithmic version of the theorem of Stiebitz.

Proof of Theorem 4 : We are going to prove that Algorithm 2 determines an (a, b)-
decomposition in polynomial time, whenever the functions a, b satisfy d(v) ≥ a(v)+b(v)+1
for all vertices v.

Using V as an initial a-satisfactory subset and applying Proposition 8, the first step
is computable in polynomial time. Also, using Proposition 7, the while conditions are
polynomial-time decidable. We justify that in the while loop the selection of a vertex v
is always possible. For this, we show that at the beginning of each iteration in the while
loop, G[A] and G[B] are a- and b-degenerate, respectively. Before entering the while loop,
G[A] is not (a − 1)-degenerate, but it is a-degenerate since A is a minimal a-satisfactory
subset. We enter the while loop only if G[B] is (b− 1)-degenerate, which means that each
of its subgraphs contains a vertex v′ of degree at most b(v′)− 1. At the end of an iteration
of the while loop, after moving v from A to B for example, the degree of vertices of B

5

Algorithm 2 Determination of a decomposition; d(v) ≥ a(v) + b(v) + 1

Require: a graph G such that d(v) ≥ a(v) + b(v) + 1 for every v ∈ V (G)
Ensure: an (a, b)-decomposition (V1, V2)
1: Find A ⊆ V , a minimal a-satisfactory subset
2: B ← V \ A
3: while G[A] is (a− 1)-degenerate or G[B] is (b− 1)-degenerate do
4: if G[B] is (b− 1)-degenerate then
5: Let v ∈ A such that dA(v) ≤ a(v)
6: A← A \ {v}; B ← B ∪ {v}
7: else
8: if G[A] is (a− 1)-degenerate then
9: Let v ∈ B such that dB(v) ≤ b(v)

10: A← A ∪ {v}; B ← B \ {v}
11: DECOMPOSE(A,B)

in G[B ∪ {v}] increases with at most one, so in each subgraph of G[B ∪ {v}] still there is
a vertex v′ of degree at most b(v′). Therefore G[A \ {v}] and G[B ∪ {v}] remain a- and
b-degenerate, respectively. Hence, the operations inside the loop can always be performed.

Suppose that A 6= ∅, B 6= ∅ at the beginning of an iteration of the while loop. This is
certainly valid when we first enter the loop, right after Step 2. Say B is (b−1)-degenerate.
Then some v′ ∈ B has dA(v′) ≥ a(v′) + 2, hence |A| ≥ 2 and after the move of v from A to
B, both A and B remain nonempty. It follows that the partition generated by Algorithm 2
is nontrivial.

What remains to show is that the value of w(A,B) increases after each execution of
the while loop. Consider any iteration. Assume, without loss of generality, that G[B] is
(b−1)-degenerate. By the choice of v, since dA(v) ≤ a(v), we have dB(v) ≥ b(v)+1. Thus,

w(A \ {v}, B ∪ {v})− w(A,B) = dB(v)− dA(v) + a(v)− b(v) ≥ 1

and we obtain a partition (A \ {v}, B ∪ {v}) with a larger value of w. 2

3.2 Triangle-free graphs with d(v) ≥ a(v) + b(v)

From now on, we assume that the input graph contains no 3-cycles.

Proof of Theorem 5 : We present Algorithm 3 that finds the required decomposition.
The algorithm maintains a vertex partition (A,B) of the input graph G = (V,E) with the
following properties:

(1) A is an a-satisfactory subset,

(2) A contains a vertex v1 such that dA(v1) = a(v1),

(3) G[A \ {v1}] is (a− 1)-degenerate.

6

Algorithm 3 Determination of a decomposition; triangle-free, d(v) ≥ a(v) + b(v)

Require: a triangle-free graph G such that d(v) ≥ a(v) + b(v) for every v ∈ V (G)
Ensure: an (a, b)-decomposition (V1, V2)
1: Find A ⊆ V , a minimal a-satisfactory subset
2: B ← V \ A
3: while G[B] is (b− 1)-degenerate do
4: Let x ∈ B such that dB(x) < b(x)
5: A← A ∪ {x}; B ← B \ {x}
6: while there is y ∈ A such that dA(y) ≤ a(y) and G[A\{y}] is not (a−1)-degenerate

do
7: A← A \ {y}; B ← B ∪ {y}
8: DECOMPOSE(A,B)

First observe that (1)–(3) imply the existence of a vertex v2 ∈ A such that v1v2 ∈ E,
dA(v2) = a(v2) and G[A \ {v2}] is (a − 1)-degenerate. Indeed, (3) implies the existence
of a vertex v2 ∈ A \ {v1} of degree at most a(v2) − 1 in A \ {v1}. Moreover, because of
(1) we know that dA(v2) ≥ a(v2). Thus, v1v2 must be an edge and dA(v2) = a(v2). In
order to prove that G[A \ {v2}] is (a− 1)-degenerate, consider any subset A′ ⊆ A \ {v2}. If
v1 ∈ A′, then dA′(v1) ≤ a(v1)− 1 since dA(v1) = a(v1) from (2) and v1v2 ∈ E. Otherwise,
since A′ ⊂ A \ {v1} and G[A \ {v1}] is (a − 1)-degenerate, there exists v ∈ A′ such that
dA′(v) ≤ a(v)− 1.

We establish now that maintaining properties (1)–(3) ensures that (A,B) is a nontrivial
partition. We know that A contains at least two vertices v1 and v2. Moreover, |B| ≥ 2
because v1 and v2 together have at least b(v1) + b(v2) ≥ 2 neighbors in B and they do not
have a common neighbor since G is triangle-free.

Clearly, all steps of the algorithm are feasible and can be performed in polynomial time.
We show now that conditions (1)–(3) are satisfied after the preprocessing stage (Steps 1,2)
and are maintained after each iteration of the main while loop.

In the preprocessing stage, the selection of a minimal a-satisfactory subset ensures
that there exists at least one vertex v1 with dA(v1) = a(v1), for otherwise removing any
one vertex, the subset would still be a-satisfactory. Minimality of A also ensures that
G[A \ {v1}] is (a− 1)-degenerate. Thus, conditions (1)–(3) are satisfied.

Assuming now that conditions (1)–(3) are satisfied at the beginning of an iteration of
the main while loop, we show that they remain satisfied at the end of this iteration.

Regarding (1), A clearly remains a-satisfactory after Step 5. At the end of a possible
execution of the internal while loop (Steps 6-7), G[A] is not (a − 1)-degenerate, which
means that it contains a subset A′ which is a-satisfactory. Moreover, the existence of a
vertex y ∈ A\A′ such that dA(y) < a(y) is not possible, for otherwise it would be removed
in a new iteration of this while loop. Therefore, A is a-satisfactory.

Regarding (2), vertex x selected at Step 4 cannot be adjacent both to v1 and v2, G
being triangle-free. Assuming v1x /∈ E, (3) implies that G[(A\{v1})∪{x}] is a-degenerate,
that implies in turn that G[A ∪ {x}] is a-degenerate, since dA∪{x}(v1) = a(v1). After Step

7

5, G[A] is thus a-degenerate, and remains a-degenerate after a possible execution of the
internal while loop. Considering that A is a-satisfactory, this implies the existence of a
vertex v′

1 with dA(v′
1) = a(v′

1).
Finally, condition (3) is satisfied since otherwise v1 would have been removed from A

at an iteration of the internal while loop.
In order to complete the proof, we show that w(A,B) increases at each iteration of the

main while loop. We need to investigate those steps where (A,B) is or may be modified,
namely Steps 5 and 7. When x is deleted from B, |E(G[B])| decreases by at most b(x)− 1
and

∑
v∈B a(v) by exactly a(x). Inserting x into A increases |E(G[A])| by at least a(x) + 1

and
∑

v∈A b(v) by exactly b(x). Thus, in Step 5, w(A,B) increases by at least 2. Moreover,
moving y from A to B (Step 7) does not decrease w(A,B). Therefore, at each iteration of
the main while loop, w(A,B) increases by at least 2, which ensures that the number of
iterations within this loop is polynomial. 2

3.3 Graphs of girth at least 5 with d(v) ≥ a(v) + b(v)− 1

Here we consider graphs without 3-cycles and 4-cycles.
Before presenting the algorithm, it should be noted that if a graph admits an (a, b)-

decomposition, then so does any graph obtained from it by edge insertions. This observa-
tion leads to the notion of tight vertex , that is a vertex v such that d(v) = a(v) + b(v)− 1.

Proof of Theorem 6 : Algorithm 4 operates on (a−, b−)-partition rather than just on
general subsets or partitions. Namely, having an (a−, b−)-partition at hand, the main loop
of the algorithm will either find an (a+, b+)-partition or generate an (a−, b−)-partition with
a larger value of w.

Observe that for any (a−, b−)-partition (A,B), we have |A| ≥ 2 and |B| ≥ 2, since
assuming that A is nonempty, it contains a vertex x with dA(x) ≤ a(x) − 1 which has at
least b(x) ≥ 2 neighbors in B; B being also nonempty, it contains a vertex y with at least
a(y) ≥ 2 neighbors in A.

In the preprocessing stage, we first reduce the input graph to a spanning subgraph
minimal with respect to the degree constraints d(v) = a(v)+ b(v)−1 (Steps 2-4). If (A,B)
defined in Steps 5-6 is not an (a+, b+)-partition, an (a−, b−)-partition is created in Steps
10-11. In Step 10 the required vertex u exists since, as proved for the preprocessing stage
in Section 3.2, a minimal a-satisfactory subset contains two adjacent vertices, say u and v,
with dA(u) = a(u) and dA(v) = a(v). Because of the preliminary graph reduction, at least
one of u and v is tight. In Step 11 an (a−, b−)-partition is created because, G[B] being
(b− 1)-degenerate, G[B ∪ {u}] remains (b− 1)-degenerate, since dB(u) = b(u)− 1.

In the main part of the algorithm (Steps 12-38), sets A− and B− defined in Steps 13
and 20 are both non-empty since they are always defined from an (a−, b−)-partition (A,B).
After the execution of the while loop (Steps 14-20), for every u ∈ A−, G[B ∪ {u}] is not
(b − 1)-degenerate since G[A \ {u}] is necessarily (a − 1)-degenerate. Similarly, for every
v ∈ B−, G[A∪{v}] is not (a−1)-degenerate. Thus, as expressed by Steps 21-22, if uv /∈ E
for some u ∈ A− and v ∈ B−, then partition ((A ∪ {v}) \ {u}, (B ∪ {u}) \ {v}) is an

8

Algorithm 4 Determination of a decomposition; girth ≥ 5, d(v) ≥ a(v) + b(v)− 1

Require: a graph G of girth ≥ 5 such that d(v) ≥ a(v) + b(v)− 1 for every v ∈ V (G)
Ensure: an (a, b)-decomposition (V1, V2)
1: found← false //When true indicates that (A,B) is an (a+, b+)-partition.//
2: for all edges uv ∈ E do
3: if neither u nor v is tight then
4: E ← E \ {uv}
5: Find A ⊆ V , a minimal a-satisfactory subset
6: B ← V \ A
7: if G[B] is not (b− 1)-degenerate then
8: found← true
9: else

10: Select a tight vertex u ∈ A such that dA(u) = a(u)
11: A← A \ {u}; B ← B ∪ {u}
12: repeat
13: A− ← {u ∈ A : dA(u) < a(u)}; B− ← {v ∈ B : dB(v) < b(v)}
14: while there exists u ∈ A− or v ∈ B− such that (A \ {u}, B ∪{u}) or (A∪{v}, B \

{v}) is an (a−, b−)-partition do
15: Select one such u or v
16: if the selected vertex is u then
17: A← A \ {u}; B ← B ∪ {u}
18: else
19: A← A ∪ {v}; B ← B \ {v}
20: A− ← {u ∈ A : dA(u) < a(u)}; B− ← {v ∈ B : dB(v) < b(v)}
21: if uv /∈ E for some u ∈ A− and v ∈ B− then
22: A← (A \ {u}) ∪ {v}; B ← (B \ {v}) ∪ {u}; found← true
23: else
24: Select u′ ∈ A \ A− such that dA(u′) = dA\A−(u′) + 1 = a(u′)
25: Select v′ ∈ B \B− such that dB(v′) = dB\B−(v′) + 1 = b(v′)
26: Select u the unique neighbor of u′ in A−

27: Select v the unique neighbor of v′ in B−

28: A← (A \ {u}) ∪ {v}; B ← (B \ {v}) ∪ {u}
29: if G[A] is (a− 1)-degenerate then
30: if u′ is tight then
31: A← (A \ {u′}) ∪ {u}; B ← (B \ {u}) ∪ {u′}
32: else
33: if G[B] is (b− 1)-degenerate then
34: if v′ is tight then
35: A← (A \ {v}) ∪ {v′}; B ← (B \ {v′}) ∪ {v}
36: else
37: found← true
38: until found = true
39: DECOMPOSE(A,B)

9

(a+, b+)-partition. If we cannot find such a non-edge, G[A− ∪ B−] is a complete bipartite
induced subgraph of G, because A− and B− are independent sets since G is triangle-free.
Moreover, each u′ ∈ A \ A− and v′ ∈ B \ B− has at most one neighbor in A− and B−,
respectively, as G does not contain 4-cycles. (Also, min(|A−|, |B−|) = 1 holds, but this
fact will not be used.)

We justify now the feasibility of Steps 24-27. We first establish that A 6= A−. After
the execution of the while loop (Steps 14-20), we know that for every v ∈ B−, G[A∪ {v}]
is not (a − 1)-degenerate, and thus contains at least one a-satisfactory subset. Assuming
that A = A−, A would be an independent set and any a-satisfactory subset would be a
star centered on v, which is impossible because a ≥ 2. Similarly, we have B 6= B−.

Concerning the feasibility of Steps 24 and 26, G[A] being (a−1)-degenerate, every subset
of A, and in particular subset A \A−, contains a vertex u′ such that dA\A−(u′) ≤ a(u′)− 1.
But, since u′ ∈ A \ A−, we have dA(u′) ≥ a(u′), hence, recalling that u′ has at most
one neighbor in A−, we deduce that dA(u′) = a(u′) and u′ has exactly one neighbor in
A−. Similarly, we can justify the existence of vertices v′ and v in Steps 25 and 27, which
together with u′ and u form an induced P4 u′uvv′.

We consider now the situation after Step 27. The remaining steps before the end
of the repeat loop (Steps 28-37) aim at constructing either an (a+, b+)-partition or an
(a−, b−)-partition (A,B) with the additional property that there exists a non-edge uv with
u ∈ A− and v ∈ A−. The reason for imposing this property is that, in the next iteration
of the repeat loop, if the while loop (Steps 14-20) is not executed, then Steps 21-22 will
successfully terminate the algorithm.

Before examining the different cases, we point out that assignments performed at Step
28 are temporary assignments that will remain valid in all cases except two, where A and
B will be modified again taking into account the temporary assignments (in Steps 31 and
35).

The first case is the successful one when G[(A \ {u})∪ {v}] and G[(B \ {v})∪ {u}] are
respectively not (a − 1)- and not (b − 1)-degenerate, creating an (a+, b+)-partition. This
case is taken into account implicitly in Steps 28 and 37.

Consider now the case where G[(A \ {u}) ∪ {v}] is (a − 1)-degenerate and, knowing
that G[A ∪ {v}] is not (a − 1)-degenerate, we have dA∪{v}(u) ≥ a(u), and thus dA(u) ≥
a(u) − 1, which implies dA(u) = a(u) − 1, since u ∈ A−. Assuming now that u is tight,
we get dB(u) = b(u) and thus d(B\{v})∪{u}(u) = b(u)− 1. Since G[B ∪ {u}] is not (b − 1)-
degenerate, whereas G[B] is (b − 1)-degenerate, u belongs to all satisfactory subsets of
B ∪ {u}. Considering that d(B\{v})∪{u}(u) = b(u)− 1, we deduce that G[(B \ {v})∪ {u}] is
(b−1)-degenerate. Symmetrically, if we assume that G[(B\{v})∪{u}] is (b−1)-degenerate
and v is tight, we can prove that G[(A \ {u}) ∪ {v}] is (a− 1)-degenerate.

In the two above cases, ((A \ {u}) ∪ {v}, (B \ {v}) ∪ {u}) is an (a−, b−)-partition, and
we can proceed to the next iteration of the repeat loop, observing that after swapping u
and v we create a non-edge u′v′ where u′ and v′ belong respectively to the updated sets
A− and B−, since after the swap both u′ and v′ lose one neighbor. These two cases are
taken into account implicitly in Step 28, since A and B are not modified afterwards if we
are in one of these two cases.

10

Finally, we consider the case where G[(A\{u})∪{v}] is (a−1)-degenerate but u is not
tight. In this case, corresponding to Steps 29-31, u′ is tight. Observe that if we modify set
(A \ {u}) ∪ {v} by adding vertex u and removing vertex u′, the resulting induced graph
G[(A \ {u′}) ∪ {v}] is also (a − 1)-degenerate since d(A\{u′})∪{v}(u) ≤ a(u) − 1. Moreover,
u′ being tight, dB\{v}(u

′) = b(u′)− 1, hence G[(B \ {v}) ∪ {u′}] is also (b− 1)-degenerate.
Therefore ((A\{u′})∪{v}, (B\{v})∪{u′}), which corresponds to the assignments performed
in Step 31, is an (a−, b−)-partition with the non-edge uv′.

The symmetrical case where G[(B \ {v}) ∪ {u}] is (b− 1)-degenerate and v′ is tight is
handled in Steps 33-35. Here, we can prove as before that partition ((A \ {u})∪ {v′}, (B \
{v′}) ∪ {u}) is an (a−, b−)-partition with the non-edge u′v.

In order to complete the proof, we need to establish that w(A,B) increases at each
iteration of the repeat loop in order to guarantee a polynomial number of iterations.
Actually, if A and B are modified in the while loop (Steps 14-20) it is easy to show that
w(A,B) increases by at least one. However, when A and B are modified in Steps 28, 31
and 35, we can only ensure that w(A,B) does not decrease. This shows that if the while
loop (Steps 14-20) is not executed then w(A,B) may not increase. But, except for the
first iteration of the repeat loop, if the previous while loop is not executed, we proved
previously that Steps 21-22 will apply, terminating the algorithm. Therefore, the algorithm
is polynomial since each of its steps can be obviously performed in polynomial time. 2

4 Partitions into more than two classes

Stiebitz has observed that Theorem 1 implies the following result by induction:

Corollary 11 ([9]) Let G be a graph, and f1, . . . , fk : V (G) → IN be k ≥ 2 functions.
Assume that dG(v) ≥ f1(v) + . . . + fk(v) + k− 1 for every vertex v ∈ V (G). Then there is
a partition (A1, . . . , Ak) of V (G) into k nonempty subsets such that

dAi
(v) ≥ fi(v) ∀ 1 ≤ i ≤ k, ∀ v ∈ Ai

A partition (A1, . . . , Ak) of V (G) into k nonempty subsets such that dAi
(v) ≥ fi(v) for

all 1 ≤ i ≤ k and all v ∈ Ai is called an (f1, . . . , fk)-decomposition.
We can also make a constructive proof for this result.

Theorem 12 Given an input graph G, an integer k = k(n) ≥ 2 (i.e., possibly depending
on the number n of vertices), and k functions f1, . . . , fk : V (G) → IN such that dG(v) ≥
f1(v) + . . . + fk(v) + k− 1 for all v ∈ V (G), an (f1, . . . , fk)-decomposition can be found in
polynomial time.

Proof : The required k-partition can be obtained by applying Algorithm 5. Observe that
at each of the k − 1 iterations of Algorithm 5, G[B] and the functions a and b satisfy
the conditions of Theorem 1, thus allowing the execution of Algorithm 2 that runs in
polynomial time. 2

In a similar way, the following results can also be derived:

11

Algorithm 5 Determination of a k-partition

Require: a graph G such that dG(v) ≥ f1(v)+. . .+fk(v)+k−1 for every vertex v ∈ V (G).
Ensure: an (f1, . . . , fk)-decomposition (V1, . . . , Vk)

B ← V (G)
for i← 1 to k − 1 do

Define a(v) = fi(v) and b(v) = fi+1(v) + . . . + fk(v) + k − (i + 1) for all v ∈ B
Use Algorithm 2 on G[B] to determine an (a, b)-decomposition (Vi, B

′)
B ← B′

Vk ← B′

Theorem 13 Given a triangle-free input graph G, an integer k = k(n) ≥ 2, and k
functions f1, . . . , fk : V (G) → IN \ {0} such that dG(v) ≥ f1(v) + . . . + fk(v) for all
v ∈ V (G), an (f1, . . . , fk)-decomposition can be found in polynomial time.

Theorem 14 Given an input graph G of girth at least five, an integer k = k(n) ≥ 2, and
k functions f1, . . . , fk : V (G) → IN \ {0, 1} such that dG(v) ≥ f1(v) + . . . + fk(v) − k + 1
for all v ∈ V (G), an (f1, . . . , fk)-decomposition can be found in polynomial time.

5 Conclusions

It remains an open problem to determine tight asymptotics for the running time of a
fastest algorithm that determines an (a, b)-decomposition (with or without assumptions
on the girth of the input graph). In particular, it is not known so far whether all such
algorithms run in superlinear time in the worst case.

The strength and applicability of the three Algorithms 2, 3 and 4 are different. For
example, with some modifications, the scheme of Algorithm 3 can be adjusted to obtain
an alternative solution for Theorem 4. We omit the details, however, since it is not the
goal of the present paper to describe more than one algorithm for any of these problems.

For the particular functions a(v) = ⌈d(v)−1
2
⌉ and b(v) = ⌈d(v)−2

2
⌉, Theorem 4 yields a

polynomial-time search algorithm. These functions a, b are essentially the largest possible
ones in the sense that — as proved in [2] — it is NP-complete to decide whether there

exists an (a, b)-decomposition for a(v) = b(v) = ⌈d(v)
2
⌉ in an unrestricted input graph.

On the other hand, imposing further conditions, the situation may become different. For
instance, on 4-regular graphs, for a = b = 2 a linear-time solution can be given [1], while
for a = b = 3 the problem is NP-complete [3].

Acknowledgements: This research was supported by the bilateral research cooperation
Balaton between EGIDE (France) and Ministry of Education (Hungary) under grant num-
bers 82/221580 and F-29/2003. The second author was also supported in part by the
Hungarian Scientific Research Fund, grant OTKA T-042710.

12

References

[1] C. Bazgan, Zs. Tuza and D. Vanderpooten, On the existence and determination of
satisfactory partitions in a graph, Proceedings of the 14th Annual International Sym-
posium on Algorithms and Computation (ISAAC 2003), LNCS 2906, 444–453.

[2] C. Bazgan, Zs. Tuza and D. Vanderpooten, The satisfactory partition problem, sub-
mitted.

[3] V. Chvátal, Recognizing decomposable graphs, Journal of Graph Theory 8 (1984), 51–
53.

[4] A. Diwan, Decomposing graphs with girth at least five under degree constraints, Journal
of Graph Theory 33 (2000), 237–239.

[5] H.-J. Finck and H. Sachs, Über eine von H. S. Wilf angegebene Schranke für die
chromatische Zahl endlicher Graphen, Mathematische Nachrichten 39 (1969), 373–
386.

[6] M. Gerber and D. Kobler, Classes of graphs that can be partitioned to satisfy all their
vertices, Australasian Journal of Combinatorics, 29 (2004), 201–214.

[7] A. Kaneko, On decomposition of triangle-free graphs under degree constraints, Journal
of Graph Theory 27 (1998), 7–9.

[8] D. W. Matula, A min-max theorem for graphs with application to graph coloring ,
SIAM Review 10 (1968), 481–482.

[9] M. Stiebitz, Decomposing graphs under degree constraints, Journal of Graph Theory
23 (1996), 321–324.

13

