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Abstract

Given an undirected graph with weights on its vertices, the k most vital nodes in-
dependent set (k most vital nodes vertex cover) problem consists of determining a set
of k vertices whose removal results in the greatest decrease in the maximum weight of
independent sets (minimum weight of vertex covers, respectively). We also consider the
complementary problems, minimum node blocker independent set (minimum node blocker
vertex cover) that consists of removing a subset of vertices of minimum size such that the
maximum weight of independent sets (minimum weight of vertex covers, respectively) in
the remaining graph is at most a specified value. We show that these problems are NP-
hard on bipartite graphs but polynomial-time solvable on unweighted bipartite graphs.
Furthermore, these problems are polynomial also on cographs and graphs of bounded
treewidth. Results on the non-existence of ptas are presented, too.
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1 Introduction

In many applications involving the use of communication or transportation networks, we often
need to identify vulnerable or critical infrastructures. By critical infrastructure we mean a
set of nodes/links whose damage causes the largest increase in the cost within the network.
Modeling the network by a weighted graph, identifying a vulnerable infrastructure amounts
to finding a subset of vertices/edges of a given size whose removal from the graph causes the
largest inconvenience to a particular property of the graph in question. In the literature this
problem is referred to as the k most vital nodes/edges problem. A complementary problem
consists of determining a set of vertices/edges of minimum size whose removal involves that
the cost within the network is at most a given value. In the literature this problem is referred
to as the min node/edge blocker problem.
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The problems of k& most vital nodes/edges and min node/edge blocker have been studied
for various problems, including shortest path, spanning tree, maximum flow, assignment, 1-
median, 1-center and maximum matching. The k most vital edges problem with respect to
shortest path was proved NP-hard [1]. Later, k¥ most vital edges/nodes shortest path (and
min node/edge blocker shortest path, respectively) were proved not 2-approximable (not 1.36-
approximable, respectively) if P# NP [15]. For spanning tree, k most vital edges is NP-hard
[11] and O(log k)-approximable [11]. In [22] it is proved that k& most vital edges maximum flow
is NP-hard. Also k most vital edges and min edge blocker assignment are proved NP-hard
and not 2-approximable (not 1.36-approximable, respectively) if P# NP |2]. In [4] it is proved
that k& most vital edges (nodes) 1-median (1-center) and min edge (node) blocker 1-median (1-
center) are NP-hard to approximate within a factor ¢, for some ¢ > 1. For maximum matching,
min edge blocker is NP-hard even for unweighted bipartite graphs [24], but polynomial for
grids and trees [20]; and the most vital nodes problem is NP-hard for weighted bipartite graphs
but polynomial for unweighted ones, both results proved in [23].

In this paper, we are interested in determining a subset of k wvertices of the graph whose
deletion causes the largest decrease in the maximum weight of an independent set or the
minimum weight of a vertex cover. These problems are referred to as k MosT VITAL NODES
INDEPENDENT SET and k MosT VITAL NODES VERTEX COVER. We also consider the
complementary versions of these problems, where given a threshold, we have to determine a
subset of vertices of minimum size that has to be removed such that in the resulting graph the
maximum-weight independent set or minimum-weight vertex cover is at most this threshold.
These problems are referred to as MIN NODE BLOCKER INDEPENDENT SET and MIN NODE
BLOCKER VERTEX COVER.

In Section 3 we consider bipartite graphs. It turns out that a substantial jump in complex-
ity occurs between unweighted and weighted graphs for all these four problems. More precisely
we show that the unweighted versions are polynomial while the weighted versions are NP-hard
and the most vital nodes problems have no ptas. In Section 4 we deal with graphs with weights
on their vertices, which have either a tree-like structure or a representation associated with
trees. These include trees themselves, cycles, more generally graphs of bounded treewidth,
and cographs (graphs containing no induced Py). For these classes we design polynomial-time
algorithms for all the four problems mentioned above.

In fact, trees and cycles have treewidth 1 and 2, respectively, therefore our general algo-
rithm for bounded treewidth works for the former classes, too. Nevertheless, the algorithms
on trees and cycles are simpler and this is why we include them here. It should be noted
further that for k£ fixed, & MosT VITAL NODES INDEPENDENT SET and k& MoOST VITAL
NobDEs VERTEX COVER are polynomial-time equivalent to the case £k = 0 and since there
are only polynomially many subsets of k removable vertices, therefore K MOST VITAL NODES
INDEPENDENT SET and k& MoOST VITAL NODES VERTEX COVER are solvable efficiently on
every graph class where the largest independent set and smallest vertex cover are tractable.
On the other hand if & — oo then a formula expressing the present problems in second-
order monadic logic would have unbounded length. Consequently, the general approach to
linear-time algorithms via second-order monadic logic (MSOL) is not applicable here.

In every graph, independent sets and vertex covers are complementary, and an independent
set is of maximum weight if and ounly if its complement is a vertex cover of minimum weight.
Contrary to this, however, it follows from our results that for £ > 1 the optimal solutions of k
MosT VITAL NODES INDEPENDENT SET and & MoOST VITAL NODES VERTEX COVER can
be substantially different.



The present paper is a substantially extended version of the limited-length conference
contribution [3] where only independent sets are considered and only a part of proofs is included
and only the independence number is studied. In particular, the non-approximability of most
vital nodes for vertex cover has never been investigated before.

2 Preliminaries

Let G = (V, E) be an undirected graph, V' = {vy,...,v,}, where each vertex v; has a weight
w;. Given an edge e = v;u; € E, by convenient abuse of notation, we shall write v;,v; € e and
if v;,v; € V', V' CV then we shall write that e C V'. When removing a set V' of vertices from
G, let us denote the remaining graph by G — V'. If H is a subgraph of G then V(H) denotes
the vertex set of H. Moreover, for a subset V' of vertices from G, the subgraph induced by
V' is denoted by G[V].

A maximum-weight independent set of G is a subset of vertices of maximum weight where
any two vertices are nonadjacent. A minimum-weight vertex cover of G is a subset of vertices
of minimum weight where every edge of G contains at least one vertex of the subset. We
denote by a(G) the maximum weight of an independent set and by 7(G) the minimum weight
of a vertex cover. Moreover, a(k) represents the minimum of (G — V") after removing any set
of vertices V' of size k; 7(k) is defined similarly. A matching is a set of mutually vertex-disjoint
edges. The largest number of edges in a matching is denoted by v(G).

In this paper we are interested in studying the complexity of the following problems.

k MosT VITAL NODES INDEPENDENT SET

Input: An undirected graph G = (V, E) where each vertex v; has a weight w;, and an inte-
ger k.

Output: A subset V' C V of size k such that the maximum weight «(G — V’) of an indepen-
dent set in G — V' is minimum.

k MosT VITAL NODES VERTEX COVER

Input: An undirected graph G = (V, E) where each vertex v; has a weight w;, and an
integer k.

Output: A subset V! C V of size k such that the minimum weight 7(G — V') of a vertex
cover in G — V' is minimum.

MIN NODE BLOCKER INDEPENDENT SET

Input: An undirected graph G = (V| E) where each vertex v; has a weight w;, and an
integer U.

Output: A subset V' C V of minimum size such that the maximum weight a(G — V') of an
independent set in G — V' is at most U.

MIN NODE BLOCKER VERTEX COVER

Input: An undirected graph G = (V, E) where each vertex v; has a weight w;, and an
integer U.

Output: A subset V/ C V of minimum size such that the minimum weight 7(G — V’) of a
vertex cover in G — V' is at most U.



Remark 1 k£ MosT VITAL NODES INDEPENDENT SET and MIN NODE BLOCKER INDE-
PENDENT SET are polynomial-time equivalent. Indeed, if an algorithm Ay solves k MoST
VITAL NODES INDEPENDENT SET for all 1 < k < n, then we can run Ay for k=1,....,n
and choose the smallest k yielding optimum at most U. Conversely, if an algorithm By solves
MIN NODE BLOCKER INDEPENDENT SET with any bound U, we can apply binary search to
locate the smallest U that requires the removal of at most k vertices.

Applying binary search and its accelerated logarithmic version, we obtain the following
relation between the ‘most vital nodes’ and ‘min node blocker’ problems.

Lemma 1 If there exists an algorithm that solves the k most vital nodes version of an opti-
mization problem P on graphs with n vertices in O(t) time, then the min node blocker version
of P can be solved in O(tlogn) time. Moreover, for any € > 0, the optimum for min blocker
can be approzimated within (1 + €) in O(t(loglogn + log1/e)) time.

Proof: If the value of an optimum solution is at most U, then the optimal blocker is
the empty set, which can be tested in O(t) time by assumption. Otherwise, to obtain a
(1 + ¢)-approximation we first apply the approach of [13]| to design a 16-approximation. We
recursively compute triples (¢,u,4) such that ¢ is a lower bound, w is an upper bound, and
(u/0)V* < 2% < (u/f)'/2. The values are initialized to £y = 1, ug = n, ig = [loglog n] — 2;
they clearly satisfy (ug/lg)Y/* = ¥/n < 22° < /n = (ug/ly)/? for all n > 1.

To determine the next triple (¢,u/,4’) if (¢,u,1) is already at hand, we test in O(t) time
whether the optimum is above or under k := £-2%". Depending on the answer, £- 22" becomes
either ¢ or v/, and we keep v/ = u or ¢/ = £ accordingly. The update from i to ¢’ is very easy,
for the following reason. We clearly have ¢/ < i because we never increase u or decrease . For
u' = u we apply the condition 22" < (u/£)'/? and obtain

N 1/4 1/4 1/8 .
2) s (2 :(3)/>22 g
Iz (ul)1/2 ]

Similarly, for ¢ = ¢ we apply 22' > (u/¢)"/* and obtain

7\ 1/4 1/4 374\ V4 1/16 i
()" () -

Since 221/ should not be smaller than the left-hand side, ' > ¢ — 2 must hold in either case.
Thus, selecting the proper value of i’ € {i — 2,4 — 1,4} requires at most two comparisons,
checking whether ¢ =i or ¢ =i — 1 works for («/,¢').

On the other hand, for «' = u the condition 22° > (u/¢)'/* implies

u < U _(un\3/4
0= /A psa (Z) ’

and for ¢/ = £ we can use 22 < (u/f)*/? to obtain
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The former upper bound is less restrictive, but in any case after three iterations we surely

have
WAL un 27/128 N4
(7) <(7) <) <
and consequently i’ < ¢ holds. This implies that after at most O(loglogn) iterations we reach

i = 0, which means (u/¢)"/* < 2 and u < 16(. Then we need at most [3 4 log 1/€] steps of
binary search to obtain a pair (u*,£*) with u* < (1 + €)¢*. O

Remark 2 On some restricted classes of problem instances, the algorithm above can be used
to determine not only approximate but also exact solutions of min node blocker problems more
efficiently than O(tlogn). Namely, if a class satisfies opt = n°W for all feasible instances, then
we can proceed as follows. First, applying logarithmic binary search, find a 16-approximation
(u,£) in O(tloglogn) time. Then u — ¢ = n°Y holds, and hence binary search to find exact
optimum takes as short as o(tlogn) time. This corresponds to the choice € = 1/u.

For proofs concerning the non-existence of a ptas (polynomial-time approximation scheme),
we shall use the notion of gap-preserving reduction introduced in [19].

Let A be a maximization problem and A’ a minimization problem. Then A is said to be
gap-preserving reducible to A’ with parameters (c,p), (,p’) (where p,p’ > 1), if there is a
polynomial-time algorithm that transforms any instance z of A to an instance z’ of A’ such
that the following properties hold:

1. opta(z) > c= opta(d') <
2. opta(z) < 5 = opta(a’) >p -

Gap-preserving reductions have the following property. If it is NP-hard to decide whether

the optimum of an instance of A is at least ¢ or less than ,%’ then it is NP-hard to decide
whether the optimum of an instance of A’ is at most ¢’ or greater than p’-¢’. This NP-hardness

implies that A’ is hard to p’-approximate.

3 Complexity on bipartite graphs

In a graph, a maximum independent set is a complementary set of a minimum vertex cover,
even for weighted graphs. Nevertheless, concerning the k most vital nodes (min node blocker)
versions an optimum solution for & MOST VITAL NODES INDEPENDENT SET (MIN NODE
BLOCKER INDEPENDENT SET) is not necessarily an optimum solution for & MOST VITAL
NoDES VERTEX COVER (MIN NODE BLOCKER VERTEX COVER), even for unweighted bi-
partite graphs. A class of counterexamples is that of complete bipartite graphs with vertex
classes of unequal size, i.e. the graphs K, ,, withn >m > 1. Assume 1 < k < min (m,n —m).
Then the optimum solution for k¥ MoST VITAL NODES INDEPENDENT SET is to remove k
vertices from the larger vertex class, this decreases the independence number from n to n — k;
whereas for Kk MosT VITAL NODES VERTEX COVER we have to remove k vertices from the
smaller vertex class, this decreases the minimum size of a vertex cover from m to m — k.
Hence, there is a substantial difference already for k& = 1, as illustrated by the instance G
from Figure 1. The vertex labeled 1 is critical with respect to the vertex covering number (its



Figure 1: Instance G

removal yields a subgraph whose minimum vertex cover is the empty set), and each vertex
labeled 2 is critical with respect to the independence number, but not conversely.

Maximum-weight independent set and minimum-weight vertex cover are polynomial-time
solvable on bipartite graphs using the Kénig-Egervary theorem [10]. We show in this section
that the k£ most vital nodes and min node blocker versions become NP-hard on bipartite
graphs and k most vital nodes do not admit a ptas. Nevertheless, all these problems remain
polynomial-time solvable in the unweighted case. We first prove this latter fact. Its ‘min node
blocker’ part was proved independently by Costa et al. [8].

Theorem 1 £ MoOST VITAL NODES INDEPENDENT SET and k& MOST VITAL NODES VER-
TEX COVER and also MIN NODE BLOCKER INDEPENDENT SET and MIN NODE BLOCKER
VERTEX COVER are polynomaial for unweighted bipartite graphs. Moreover, if a largest match-
g and a smallest vertex cover are given with the input, all these problems are solvable in
linear time.

Proof: Let G = (V,FE) be a bipartite input graph on n vertices. From Ko&nig’s theorem
[18] we know that 7(G) = v(G) holds; let us denote here their common value by ¢. The
classical proof of the equality 7 = v is algorithmic and also yields a maximum matching
M = {eq,...,e;} and a minimum vertex cover X = {vy,...,v;} in polynomial time. Moreover,
we have a(G) = n —t (known as a Gallai-type identity) and V \ X is a largest independent
set in G. Let us introduce the further notation R =V \ V(M) and r = |R| = n — 2t; i.e., the
number and the set of vertices not contained in any of the matching edges in M.
We can show now that all the four problems are solvable in linear time, as follows.

k MosT VITAL NODES INDEPENDENT SET

If £ < |R|, we remove any k vertices from R. Since the remaining graph (of order n—k) still
contains the matching M of size ¢, the independence number cannot be larger than n — k — ¢.
It is also clear that a cannot be decreased by more than k if we remove just k vertices, hence
the solution obtained is optimal.

If £ > |R|, we remove the entire R and the vertices of |(k — r)/2| edges from M, and
one further vertex if k — r is odd. This decreases the size of M by [(k — r)/2] and the
independence number by |(k + 7)/2], and hence the new value is [(n — k)/2] (originally we
had «(G) = (n +r)/2). This decrease is optimal, because after the removal of k vertices at
least half of the remaining n — k belong to the same vertex class.

k MosT ViTAL NODES VERTEX COVER



If £ < t, we simply remove k vertices of X. The remaining part of X is a vertex cover
in the smaller graph, hence 7 is decreased by exactly k, which is optimal because at least
t — k edges of M would remain in the graph after the removal of any k vertices. If k > ¢,
then removing X the graph becomes edgeless and the k — ¢ vertices outside X can be chosen
arbitrarily for removal.

MIN NODE BLOCKER INDEPENDENT SET

If U > n —t, no vertices need to be removed. If t < U < n —t, we remove n —t—U
vertices of R. If U =t — £ where 1 < £ < t, we remove the entire R and the 2¢ vertices of
¢ arbitrarily chosen edges from M. All these choices are optimal, as follows from the proof
concerning most vital nodes.

MIN NODE BLOCKER VERTEX COVER
All we need is to remove t — U vertices of X. O

Remark 3 If we are interested in determining just the number of vertices to be removed for
MIN NODE BLOCKER INDEPENDENT SET and MIN NODE BLOCKER VERIEX COVER, given
n and 7 of the bipartite input graph, the problem is solvable in constant time because the
answer can be written as an explicit function of n and 7.

We show next that the four problems become NP-hard in the weighted case. The following
notion will be of essence.

Definition 1 Let G = (V, E) be an undirected graph. The bipartite incidence graph of G is
the bipartite graph H whose vertex set 1s VU E and there is an edge in H between v € V and
e € E if and only if e is incident to v in G.

In order to prove NP-hardness, beside (unweighted) INDEPENDENT SET we shall also
consider the decision problem associated to its complementary version, CLIQUE, defined as
follows:

CLIQUE

Input: A graph G = (V, E) and an integer /.

Question: Does G contain a clique of size at least ¢, that is a subset V/ C V with |V’/| > ¢
such that every two vertices in V' are joined by an edge in £/ 7

CLIQUE is one of the well known NP-hard problems [14]. We can consider that ¢ > 3 since
otherwise CLIQUE is solvable in polynomial time.

Theorem 2 k£ MOST VITAL NODES INDEPENDENT SET and k MOST VITAL NODES VER-
TEX COVER and also MIN NODE BLOCKER INDEPENDENT SET and MIN NODE BLOCKER
VERTEX COVER are strongly NP-hard even for bipartite graphs.

Proof: We first prove hardness for £k MOST VITAL NODES INDEPENDENT SET and & MOST
ViTaL NoDES VERTEX COVER. For both problems let the instance be a graph G = (V, E)
with n vertices and m edges, and an integer ¢; and let H denote the bipartite incidence graph
of G. The construction of H from G requires linear time only.

For £ MosT ViTAL NODES INDEPENDENT SET we make reduction from the decision
problem associated to INDEPENDENT SET. Each vertex of E in I has weight 1 and each vertex



of V in H has weight n?. Due to this rather unbalanced weighting, the unique maximum-
weight independent set in H is V; i.e., a(H) = n?.

We show in the following that if there is an independent set of size at least ¢ in G then H
contains a set S of £ vertices such that a(H — S) = (n — £)n?, and otherwise removing any
subset S of £ vertices from H, we have a(H — S) > (n — £)n? + 1. Since vertices from V have
weight n? and those from E have weight 1, in order to have a maximum-weight independent
set as small as possible after removing a set S of size £, S has to be included in V.

If G contains an independent set S of size £, then removing .S from the vertex set of H, we
obtain a graph whose maximum-weight independent set is V'\ S. This set has weight (n—¢)n?.

If G contains no independent set of size £, then any S C V of size £ contains at least an
edge e € F in G, and this e in H is nonadjacent to the entire V' \ S. Thus, when we remove
any set S of £ vertices from H, a(H — S) > (n — £)n? + 1.

In order to prove the NP-hardness of £k MosT VIiTAL NODES VERTIEX COVER, we apply
the decision problem associated to CLIQUE, with the same weights on H as above. Since
the entire £ has smaller weight than just one vertex from V, minimum vertex covers in any
subgraph of H are subsets of F. We show that if there is a clique of size at least £ in G then
T(H—-S)=m— 5(52—1)7 and otherwise removing any subset S of £ vertices from H, we have
T(H —95) Zm—@—%l.

If G contains a clique V' of size ¢, then removing V' from the vertex set of H, we obtain a
graph whose minimum-weight vertex cover is E \ E’, where E’ is the edge set induced by V'
in G. This vertex cover has weight m — @.

Suppose that G contains no clique of size £. Let S C V U E be a set of ¢ vertices in H.
From a vertex cover, this S saves us the selected edges S N E, plus those edges of G from the
FE-part of H which have both endpoints in S N V. Consequently,

r(H—S)>m—|EGSNV])| - |SNE|>m— +1

—1)
2
where the last inequality holds because if SN E # () then SNV induces at most (£_|ng |) <
(g) — SN E| edges (for £ > 3), and if SN E = () then S cannot be a clique in G and hence

induces fewer than (S) edges.

Due to Remark 1, MIN NODE BLOCKER INDEPENDENT SET and MIN NODE BLOCKER
VERTEX COVER are also strongly NP-hard. O

We are going to prove some approximation hardness results, too. In the reductions, the
following problems will be used.

DENSE k& SUBGRAPH

Input: An undirected graph G = (V, E).

Output: A subset V/ C V of size k so as to maximize the number of edges whose both
endpoints are in V.

Max k VERTEX COVER

Input: An undirected graph G = (V, E).

Output: A subset V/ C V of size k so as to maximize the number of edges with at least one
endpoint in V.



MAX k£ VERTEX COVER-B is the version of MAX & VERTEX COVER where the maximum
degree of the graph is at most B.

We extract the key points of the reductions in the following lemma on independent sets
and vertex covers.

Lemma 2 Let G = (V, E) be a graph with n vertices and m edges, and let H be the bipartite
wncidence graph of G. Then the following properties are valid.

(la) Suppose that G has mazimum degree at most B, and the weights in H are w, = B+ 1
for all veV and w. =1 for all e € E. Then, for any V' CV and any independent set
S disjoint from V' in H, there exists an independent set S’ such that w(S’) > w(S)
and S'NV =V \V'. Thus, if S is maximal, then

S'=WV\VHYu{eeE|ecCV'}
and, in particular, «(H — V') > (B+1)-(n—|V'|)+ {e€ E | e C V'}|.

(1b) Under the conditions of (la), for any V! C VUE with |V'| < |V| there exists a V"' CV
such that |V"| = |V'| and the mazimum weight of an independent set in H — V" is not
larger than that in H — V', As a consequence,

aH-V")>alH-V")=B+1)-(n—|V"))+|{e€ E|ecC V"}|.

(2a) Suppose that the weights in H are w, = d(v) (vertex degree) for all v € V and we = 1
for all e € E. Then, for any V' C V U E, there exists a minimum-weight vertex cover
TCEinH-V' namelyT={ec E\V'|e¢g V'}.

(2b) Beside the conditions of (2a), assume further that G is connected and contains at least
one cycle. Then, for any V' C VU E with |V'| < |V| and |V'| being at least as large
as the shortest cycle length in G, there exists a V" C V such that |V"| = |V'| and the
minimum weight of a vertex cover in H — V" is not larger than that in H —V'. As a
consequence,

T(H-VY>1r(H-V"Y={ecE|eg V"}|
Moreover, the sets V" in both (1b) and (2b) can be found efficiently.

Proof: (la) If S contains all vertices of V' \ V', then we have nothing to prove. Otherwise
we modify S step by step, keeping it independent and not decreasing its value, until it contains
the entire V' \ V’. Hence, assume that v € V is a vertex such that v ¢ V' US. If v has no
neighbor in S N E, then S U {v} is a proper extension. Suppose that this is not the case;
i.e., there is an edge e € E NS such that v € e. We now modify S to (S \ Nug(v)) U {v},
where Np(v) denotes the set of vertices adjacent to v in H, that is the set of edges incident
to v in G. In this way we have removed at most B neighbors of v from S, each of weight 1,
and inserted v of weight B + 1, hence the total weight of the modified set is at least w(.S).
Moreover, the set remains independent because all neighbors of v have been removed. Thus,
after [(V \ V') \ S| steps, the required set S’ is obtained.

(1b) If V! € V, then V' = V' is a proper choice. Hence suppose V' N E # (). Let us
introduce the notation n’ = [V NV|, m’ = |[E(GIV'NV])\ (V' NE)|. By (1la) we see that



a(H—-V"Y=(B+1)-(n—n')+m’ holds. Choose e € V'NE and v € V' \ V', and modify V’ to
the set (V/\{e})U{v}. This keeps cardinality unchanged, while the first term (B+1)-(n—n’)
decreases by precisely B + 1. Moreover, since G has maximum degree at most B, the second
term can increase by at most B when we insert v into the set, and can further increase by at
most 1 when we omit e. Thus, the sum does not increase. Repeatedly eliminating all e € F
from V', the required V" is obtained. Then (1a) implies that the independent set of maximum
weight in H — V" consists of all v ¢ V" and all e C V.

(2a) Consider any vertex cover 7' of H — V'. Suppose v € T NV for some vertex v ¢ V.
Remove v from T and insert the entire neighborhood Ny (v) \ V' of v in H into T. Since
wy = d(v) > |Ng(v) \ (V' UT)], this modification does not increase the weight of T'. After at
most |[V| — |V’| steps all vertices of V are eliminated from 7.

(2b) Due to (2a), if V! C E, then 7(H — V') = |E| — |V’|. In this case we can get an at least
as good V” by choosing a |V'|-element subset of V' which induces a connected subgraph of G
containing a shortest cycle. On the other hand, if V' C V, then we have nothing to prove.
Hence, assume that V' NV # @ and V' N E # (.

If there is an edge e = vv’ € V' such that v € V' and v' ¢ V', then we replace e with v/
in V', This modification keeps |V’| unchanged, and it does not increase 7(H — V') because
e is a subset of the modified V'’ and therefore it does not have to be put into a vertex cover
of the new H — V', If no such e exists but V/ ¢ V, we consider any ¢ € V' N E. Since G
is connected, there is a path from ¢ to V' NV, and its last edge say e = vv’ satisfies the
conditions e € E\ V', v € V', v' ¢ V', Let us replace ¢ with e in V’. Then both |V’'| and
7(H — V") remain unchanged, and we are back to the previous situation where the replacement
of e with v' maintains the conditions but decreases the size of V' N E. Hence, the repeated
application of these operations eliminates all elements of V' from E. O

Theorem 3 k£ MoOST VITAL NODES INDEPENDENT SET has no ptas even for bipartite graphs
if P# NP. kK Most ViTAL NODES VERTEX COVER has no ptas even for bipartite graphs if
NP ¢ Ns~o BPTIME (2"6), where Ng~o BPTIME (2"6) is the class of problems that admit

randomized algorithms that run in time on’ for some constant 6 > 0.

Proof: For both problems, we construct gap-preserving reductions. Throughout the proof,
H denotes the bipartite incidence graph of the input graph G = (V, E), the latter having n
vertices and m edges.

k MosT VITAL NODES INDEPENDENT SET: We prove the non-existence of a ptas for k =
n/2, constructing a gap-reduction from MAX n/2 VERTEX COVER-B to n/2 MOST VITAL
NobDES INDEPENDENT SET, where instances of the former are restricted to graphs G of max-
imum degree at most B. In Theorem 4 of |5], it is proved that there exists a constant p > 1
such that it is NP-hard to distinguish whether such a graph G has opt(G) = m or opt(G) < ‘7.
In this case, let the vertices of H have weight w, = B + 1 for all v € V and w, = 1 for all
ec k.

Counsider first the case opt(G) = m and let V’ be an optimum solution in G for MAX n/2
VERTEX COVER-B. Then removing V \ V' from the vertex set of H, we obtain a graph in
which the maximum weight of an independent set is ((B+1)/2) - n, as implied by part (1a) of
Lemma 2. On the other hand, parts (1a) and (1b) together yield that after the removal of any
n/2 vertices from H, there always remains an independent set of at least that large weight,
thus opt(H) = 5% - n.
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% and let V/ be an optimum solution in G for MAX

Consider now the case opt(G) <
n/2 VERTEX COVER-B. Using part (1a) of Lemma 2, when removing V' \ V' from the vertex
set of H, we obtain a graph in which the maximum weight of an independent set is ((B +
1)/2) - n+ m — opt(G). On the other hand, parts (1a) and (1b) together yield that after the
removal of any n/2 vertices from H, there always remains an independent set of at least that
large weight, thus opt(H) = % -n+m — opt(G) > % ntm— > % -n - p', where

p’:1+2(39_7+11/p)sincem2n.

k MosT VITAL NODES VERTEX COVER: We construct a gap-preserving reduction from the
DENSE k SUBGRAPH problem. To achieve this goal, we first analyze which instances are hard
for DENSE k& SUBGRAPH. In Theorem 1.1 of [16] it is proved that the problem has no ptas in
the range k = O(n) if NP ¢ Ngso BPTIME (2"°).

In general, the condition & = ©(n) implies opt(G) = O(m) because for ¢ := k/n the
selection of a k-element set at random induces an expected number of (g)/ (5) = (2 —o(1))m
edges, which is a positive fraction of . We observe further that non-approximability remains
valid for instances restricted to connected input graphs containing at least one cycle of length
3. Indeed, let G’ be obtained from G taking a new vertex w and inserting the new edges vw
for all v € V. We view G’ as an instance of DENSE (k + 1) SUBGRAPH. Denote by opt the
optimum value of G and by opt’ the optimum value of G’. Clearly opt’ = opt + k. Moreover,
we may assume without loss of generality that a densest subgraph of G’ contains w. Indeed,
if the algorithm on G’ finds a solution V’ of value val’ not containing w, then we remove a
vertex which has minimum degree in the subgraph induced by V' and insert w into V’. This
transformation (executable in linear time) does not decrease the number of edges inside V.
Then, restricting attention to the (k + 1)-subgraphs containing w in G’ they are in one-to-one
correspondence with the k-subgraphs of G. This bijection yields val = val’ — k.

Let ¢ > 0 be fixed, and suppose that an algorithm finds a solution on G’ with value
val' > (1 — §) opt’. Then the corresponding solution on G has value

€ 5 £ opt’
l=val —k>1—2)opt' —k = (opt' —k) — —opt' = (1 — 3 t
val = va = (1=3)op (op )—g3op ( opi ) op
5 (opt + k) e ¢/3
(1= 3P T ot = (1= (E L2 Yyopt > (1 — ) opt
( pr ) opt = ( (3+0pt/k))0p > (1—¢)op

because opt > k/2 (except for the rather trivial case where G is a matching and k is odd).
Thus, a ptas on the connected instances of type G’ would yield a ptas on general instances
G. As a consequence, we may assume without loss of generality that all input graphs are
connected and contain at least one cycle of length 3, hence making Lemma 2 (2b) applicable.

Turning now to the gap-preserving reduction, let the vertices of the bipartite incidence
graph H of G have weight w, = d(v) for v € V and w, = 1 for e € E. The case k = n being
trivial, we assume k < n and hence opt(G) < m.

Consider first the case opt(G) = v and let V' be an optimum solution in G for DENSE
k SUBGRAPH, that is a set of k vertices that induces v edges. Then removing V' from the
vertex set of H, we obtain a graph whose minimum-weight vertex cover is not larger than
|E \ E’|, where E' is the edge set induced by V' in G, as implied by part (2a) of Lemma 2.
On the other hand, parts (2a) and (2b) together yield that after the removal of any subset of
k vertices from H, there always remains a minimum-weight vertex cover of at least that large
weight and thus opt(H) = m — opt(G) = m — v.
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v

Consider now the case opt(G) < - and let V' be an optimum solution in G for DENSE k
SUBGRAPH. Using part (2a) of Lemma 2, when removing V' from the vertex set of H, we
obtain a graph whose minimum-weight vertex cover is not larger than |E'\ E’|, where E’ is the
edge set induced by V' in G, and hence we have opt(H) =7(H — V') =|{e € E|e ¢ V'}|.
On the other hand, parts (2a) and (2b) together yield that after the removal of any subset
of k vertices from H, there always remains a minimum-weight vertex cover of at least that

large weight and thus denoting ¢ := v/m and p' := 11__0;/,p we obtain opt(H) = m — opt(G) >

m—4 = p'(m—wv). Here ¢ < 1 because opt(G) < m; moreover, as we noted at the beginning,

¢ >c?—o0(1) > 0 and hence p > 1 implies p’ > 1. O

4 Graph classes related to tree structures

In this section we consider graph classes representable over tree structures (trees, graphs of
bounded treewidth, cographs), and prove that they admit algorithms solving the considered
four problems in polynomial time. Efficient solvability for the graph classes in the first two
subsections are implied by the results of the third subsection, too, but the methods for the
former are simpler. The flavor of our algorithm for graphs of bounded treewidth is similar
to that of the one in 23], which solves related problems on maximum matchings in pseudo-
polynomial time and is, to our best knowledge, the first work applying dynamic programming
for node/edge interdiction. The matching interdiction problem in the particular class of trees
with its dynamic programming approach was also studied in [20].

4.1 Trees

Theorem 4 k£ MoST VITAL NODES INDEPENDENT SET and k MOST VITAL NODES VERTEX
COVER are polynomial on trees. On trees of order m the problems can be solved in O(nk?)
time, for any k> 1.

Proof: Our general approach is to find not only a set of k most vital nodes but simultaneously
also the value of a corresponding largest independent set or smallest vertex cover. For this
purpose we view the input as a rooted tree with an arbitrarily chosen root, and organize
computation according to a postorder traversal.

Consider any tree T with vertices v1,...,v,. Each vertex v; can have three positions in a
solution, that we shall denote by marks +, —, 0 as follows:

e ‘+’ means that v; is selected into an independent set or a vertex cover;
e ‘—’ means that v; is selected for deletion;

e ‘0’ means that v; is none of the above two types.

In a solution exactly k& marks ‘—’ have to occur.
The subtree rooted in v; is denoted by T;. For each i = 1,...,n, each * € {+,—,0}, and
each j = 0,1,...,k, a value z(j, *) will be computed. This z;(j, ) represents the minimum

achievable weight of a solution (largest independent set or smallest vertex cover) on 7; under
the conditions that ezactly j vertices are removed from 7; and v; has mark *. For the recursive
computation the children of v; with degree d will be denoted by v;,,...,v;,. We traverse T" in
postorder and apply dynamic programming.
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Recursion for Independent Set. If v; is marked ‘+’, then all its children must have ‘=’ or ‘0,
since otherwise two vertices selected for the independent set would be adjacent. Moreover,
zi(4, *) requires that the total number of vertices marked ‘—’ should be exactly j in 7;. On the
other hand, we have one and only one way to make the final result as small as possible: decide
which of the vertices should be marked with ‘—’. Once this has been decided, the distribution
of ‘+’” and ‘0’ positions aims at maximizing the total weight of ‘+’. This leads to the following
general recursions:

2i(j,+) =w; + min E min (2, (Je, —), 2i, (je, 0)) ,
.]17 7.7d>0
Jit..tja=j =1

Zi(j)_) = i mijn>0 E min (Ziz(jb_)’ max (zig(jf)_‘_))ziz(jfao))) 3
yeennJdZ
J1t.+ja=j—1 =1

2i(j,0) = i > min (2, (jo, —), max (2, (je, +), 2, (e, 0))) ,
St otia=g =1

For a leaf v; we clearly have z;(0,4) = w; and z;(1,—) = 2;(0,0) = 0. Further, to indicate
that all other combinations of j € {0,1,...,k} and x € {4, —,0} are infeasible, we set a
dummy symbol z;(7,%) = NIL for them. In the recursive step, terms with value NIL on the
right-hand side are neglected, except when all terms are the same, and in this case we define
zi(4,*) = NIL, too.

Recursion for Vertex Cover. If v; is marked ‘0’, then all its children must have ‘+’ or '—’,

because no edge must have both endpoints marked with ‘0’. Further, we again need for z;(7, )
that the total number of vertices marked ‘—’ should be exactly j in 7;. The recursive step is
simpler than above, however, because 7 is defined to be minimum, what matches the goal of
the ‘most vital nodes’ problem. Hence, we now have:

Zi(j, +) =w; + i m§n>0 Z min Zzz ]Z) ) Ziy (jﬁa _)7 Ziy (jf) 0)) P
seendd
J1+..+ja=j =1

Zi(ja _) = . min § min (zig(jfa +)7 Ziy (jf) _)) Ziy (jﬁa 0)) ;
J1se- Jd >0
g1t tja=j—1 =1

zi(4,0) = i m;2> > min (2, (e, +), 2, (jo, =) -
it ria=g =1

Also here, for a leaf v; we have z;(0,+) = w; and z;(1,—) = 2;(0,0) = 0. Now, as
an alternative of NIL, it is equally fine to set z;(j,*) = oo for the other combinations of
j€{0,1,...,k} and x € {+,—,0}.

Finding an optimal solution. Assuming that 7" has root v;,, after the removal of k£ properly
chosen vertices, the smallest possible value of 7 is just min.ey _ oy 2i (k,*); whereas for a
it is min (z;, (k, —), max (z;, (k, +), zi, (k,0))). (In fact, inserting a new vertex vy with weight
wo = 0 as new root and parent for v;, does not change the optimum, and then we would have
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20(k,+) < opt = 29(k,0) < zo(k,—) for INDEPENDENT SET.) A set of k£ most vital nodes
can also be determined in O(n) additional steps in the following way. At the recursive step
for each z;(j,*) we register for each edge v;v;, the corresponding value of j, in the optimal
distribution (j1,...,jq) for j and also the mark * € {+,—,0} of i; which gave the optimum
for v;. Once these data are available for all v; and all pairs (j, %), we can traverse T in preorder
and select the vertices having ‘—’ mark for the most vital set.

Efficient implementation. The key point is to find in polynomial time a best distribution
(J1,---,7q) for the ‘max’ and ‘min’ functions acting on the sums. This can be done, despite
that the number of possibilities can even be exponential if d is proportional to n.

If d = 2 then we have at most j + 1 combinations of feasible pairs ji,j2. Hence, optimal
choice can be made in O(k) steps for any one particular j, and in O(k?) steps for all 0 < j < k.
If d is larger, we can split the children of v; into two sets of (nearly) equal size, {vy | 1 < £ <
|d/2]} and {v, | |d/2] +1 < ¢ < d}, make all computation separately for each of them, and
then combine the results for v;. (Splitting corresponds to inserting a ‘supernode’ above each
of the two sets, which has weight zero and becomes a virtual child of v;.) This requires d — 1
rounds for v;. Since T is a tree, those d — 1 sum up to n — 2, thus the overall running time is
O((k? + 1)n), and never exceeds O(n3). (Here ‘“+1’ is needed for & = 0.) Note that there are
no ‘hidden large constants’ in the ‘O’ notation. O

Theorem 5 MIN NODE BLOCKER INDEPENDENT SET and MIN NODE BLOCKER VERTEX
COVER are polynomial on trees. On trees of order n the problems can be solved in O(n3logn)
time.

Proof: The above algorithm in one iteration for any 1 < v < n runs in O(v?n) = O(n?)
time. Hence, using Lemma 1, finding the smallest k£ for which the solution has value at most
U takes total running time O(n3logn). O

Remark 4 The algorithms proposed in Theorem 4 solve the £ MosT ViTAL NODES INDE-
PENDENT SET and k& MOST VITAL NODES VERTEX COVER problems on paths in O(kn)
time. In fact, in the general time bound O(nk?) for trees, the factor k2 occurs due to the
presence of vertices with more than one child. This observation implies further that the al-
gorithms proposed in Theorem 5 solve MIN NODE BLOCKER INDEPENDENT SET and MIN
NODE BLOCKER VERTEX COVER on paths in O(n?logn) time.

4.2 Cycles

Theorem 6 k£ MoST VITAL NODES INDEPENDENT SET and k MOST VITAL NODES VERTEX
COVER are polynomial on cycles. On cycles of order n the problems can be solved in O(kn?)
time, for any k > 1.

Proof: Let S* = {v1,...,v,} CV be a maximum-weight independent set of a given cycle
C = (V, E). An optimal solution V' C V of kK MOST VITAL NODES INDEPENDENT SET must
contain at least one node of S*, since otherwise a(C' — V’) is not smaller than a(C). Thus,
for each v; € S*, 7 =1,...,r, we determine the k — 1 further nodes to remove in the resulting
path as follows. We delete v; from C and determine a maximum-weight independent set in
the resulting path C' — v; by applying the algorithm given in Theorem 4 in order to find an
optimal solution R C V'\ {v;} of k—1 MosT VITAL NODES INDEPENDENT SET on the path
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C — vj. Then, an optimal solution for & MosT VIiTAL NODES INDEPENDENT SET on C is

R U {ve} such that o(C — vy — R}) = mini<j<, o(C —v; — R}). If the root is chosen to be

an endpoint of the path, the complexity of the algorithm given in Theorem 4 for path C' —v;
is O(kn). Since |S*| < n, in this way & MOST VITAL NODES INDEPENDENT SET is solved in
O(kn?).

The proof for £ MosT VITAL NODES VERTEX COVER is similar. O

Theorem 7 MIN NODE BLOCKER INDEPENDENT SET and MIN NODE BLOCKER VER-
TEX COVER are polynomial on cycles. On cycles of order n the problems can be solved in
O(n3logn) time.

Proof: The theorem follows from Theorem 6 and Lemma 1. O

4.3 Graphs of bounded treewidth
A tree decomposition of a graph G = (V, E) without isolated vertices is a pair (T, X') where

e T'=(X,F) is a tree graph with a set X = {x1,..., 2} of nodes and a set F of lines;

o X ={Xj,...,X,,}is aset system over V (i.e., over the vertex set of G), where each X,
is associated with node z, of T’

e cach edge v;v; € E of G is contained in at least one X, for some 1 < ¢ < m;

e for any v; € V, if v; € Xy and v; € Xy, then v; € X for all g such that x, lies on the
Ty—Tgr path in T
The width of (T,X) is max | Xyl — 1, and the treewidth of G, denoted by tw(G), is the
qg<m

smallest integer ¢ for which G admits a tree decomposition of width ¢. For undefined details
on tree decomposition we refer to [17].

Theorem 8 k£ MoST VITAL NODES INDEPENDENT SET and k MOST VITAL NODES VERTEX
COVER are polynomial on bounded treewidth graphs. On graphs of order n the problems can
be solved in O(nk?) time for any k > 1.

Proof: Suppose that we wish to solve the problems on graphs of treewidth at most ¢ — 1.
Hence, assume that G has treewidth less than t, and let (T, X) be a tree decomposition of
G, such that |X,| <t holds for all 1 < ¢ < m. We view T as a rooted tree, by choosing an
arbitrary node as root. The choice of the root generates parent-child relation between nodes
in the usual way. Using standard terminology in a slightly stricter (but still wide-spread) way,
we say that the tree decomposition (7, X) is a nice tree decomposition if it has only four types
of nodes, as follows:

e a start node z, that has no children (a leaf in T'), with | X | = 1;
e a join node x4 that has two children xy,zr, with X, = Xy = Xy;
e an introduce node z, that has one child z,, with X, = X U {v} for some v € V;

e a forget node x4 that has one child x4, with X, = Xy \ {v} for some v € V(G).
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As is well known, a nice tree decomposition of size O(n) and of minimum width can be
found in linear time for graphs of bounded treewidth [6, 17]. Hence, we may assume without
loss of generality that T is a nice tree decomposition of width less than t for G. We are going to
show how a(k) and 7(k) can be determined using dynamic programming. The general frame
is the same for both problems, only the details of computation will be different.

Let T, denote the subtree of T" rooted in x4, for 1 < ¢ < m. Over the nodes of T}, we set
Vg = qu,eV(Tq) Xy, and denote by G, the subgraph induced by V; in G. Hence, if z, is a join
node with children z, and g, then Vyy NV = X, holds, and there are no edges between
V;]/ \Xq and ‘/q// \Xq in G.

At each z;, € X we construct a matrix M, that represents the traces inside X, for all
possible decisions with respect to the problem solution. This M, has k + 1 columns corre-
sponding to the number j = 0,1,...,k of vertices removed from G, in a solution, and 31Xl
rows representing the partitions Zy U Z_ U Zy = X, into three disjoint labeled sets.

Each row of M, can be associated with a sequence r € {4, —,0}Xal| where the ith term
indicates whether the ith vertex of X, belongs to the independent set to be selected (+),
or is to be removed from G (—), or neither of these (0). Hence, for * € {4, —,0}Xal  the
occurrences of * in r represent the characteristic vector of Z,. We shall denote by |r_| the
" components in row . For 0 < j < k the jth entry of r in M,, which we
shall denote by z,(r,j), is the optimum value of a solution in G, that meets the conditions
expressed in r. If a combination of conditions is infeasible (e.g., there are fewer than j vertices
in Gy, or two vertices associated with ‘+’ in r are adjacent in G) then we assign the dummy
symbol z,(r, j) = NIL.

The computation of z,(r,j) is problem specific, we give the details next. The way of
finding the final solutions will be described afterwards.

number of ‘—

Recursion for Independent Set.  For a start node, M, is a 3 X (k + 1) matrix. Assuming
Xy = {vi}, vertex v; counts with weight w; if it is selected into the independent set and counts
0 otherwise. Hence we have z,(4,0) = w;, z4(—,1) = 24(0,0) = 0, and z,(x, j) = NIL for any
other combination of x € {4+, —,0} and j € {0,1,...,k}.

If 4 is a join node with children x4, x4/, then row r of M, has to be composed from the
rows belonging to the same rin M, and M. Since the sets Z,,Z_ C X, appear in both
Gy and Gy, we see that j, resp. jor vertices deleted from G resp. Gy mean jg + jgr — ||
deleted ones for G;. An optimal solution for G, is obtained from the best possible combination
of Gy and G; that is,

zg(m, J) = min (2g (1 Jq) + 27 (7, Jg)) — E Wi
Jqt>dqr=Ir—|
B v,-EZ+
JgrHign=i+Ir-|

If 24 is an introduce node with X, = X, U{v}, there are three possible decisions concerning
v; and if v is selected for the independent set, then none of its neighbors can be selected. Hence,
if 7 denotes the sequence obtained by deleting the v-component from 7, then the three cases
yield the following recursions:

e The v-component is + = z,(r,j) = zy (7, j) + w; if v is not adjacent to any vertex of
Z, and z4(r,j) = NIL otherwise.

e The v-component is — = z4(r,j) = z¢(,j — 1) for j > 1; z4(r,0) = NIL.

e The v-component is 0 = z4(r,7) = zy(7, j).
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Finally, if 24 is a forget node and its child is associated with the set X, = X \ {v}, then
7 is obtained from some 7/ of M, by deleting its v-component, where the deleted component
can be any x € {+,—,0}. Let us denote the corresponding row by 7. While searching for
most vital nodes, we may decide whether or not the v-component should be ‘—’ but we cannot
make any decision between ‘4’ and ‘0’. Thus, the smallest possible weight of a maximum
independent set is obtained by

24(r, j) = min (zq(ﬂ_,j),max (zq(rj+,j),zq(7‘6,j))) .

Recursion for Vertex Cover. Since the approach is similar to the one given above, we describe
the method here in less detail. In the present case ‘+’ means that the corresponding vertex is
selected into a vertex cover. The union of the sets Z; has to meet all edges after the removal
of all Z_ from G. Since each edge is a subset of at least one X, a necessary and sufficient
condition for this property is that the sets Zp must be independent for each X,. It will be
enough to check this property at the introduce nodes.

For a start node with X, = {v;}, we have z,(+,0) = w;, z4(—,1) = 2,(0,0) = 0, and
zq(*,7) = NIL for any other combination of * € {+,—,0} and j € {0,1,...,k}.

If 4 is a join node with children x4, x4/, then no vertex of Vi \ X, is contained in any
edge meeting Vv \ X, and vice versa. Thus, vertex covers in G, are the unions of those in
Gy and Gy, therefore we have

2q(1,J) = min (2g (7 Jq) + 27 (7, Jg)) — § Wi
JgtsFqrn2lr—|
B A vi€Z+
JgrHign=i+|r-|

If 4 is an introduce node with X, = X U {v}, vertex v may belong to Z,, Z_, or Zy;,
and in the third case if v has a neighbor in Zj, then the selection is not feasible for vertex
cover. Let 7/ denote the sequence obtained by deleting the v-component from r. Depending
on the position of v, we have the following rules for the recursion:

e The v-component is + = z4(r,j) = z¢ (7, ) + w;.
e The v-component is — = z4(r,j) = z¢(r,j — 1) for j > 1; z4(r,0) = NIL.

e The v-component is 0 = z4(r,j) = zy (7, ) if v is not adjacent to any vertex of Zp,
and z4(r, j) = NIL otherwise.

Finally, if z, is a forget node and its child is associated with the set X, = X \ {v}, then
7 is obtained from some 7/ of My by deleting its v-component, where the deleted component
can be any * € {+, —,0}. Denoting the corresponding row of M, by 7/, the best local choice
is:

Zq(’f',j) = *6?—;?1—170} Zq(l’{k’j)'
Finding an optimal solution. For any of the two problems, assume that the matrices M, have
been determined for all nodes x4, and let the root of T be z4,. Then the optimal value for
k MosT VIiTAL NODES VERTEX COVER is simply zg, (19, k), where row ry attains minimum
in the last column of M,,. But the situation for & MosT VITAL NODES INDEPENDENT SET
is more complicated. With respect to the most vital set, the rows of My, can be classified
[Xqol

1

¢ Y

according to the positions of their ‘=’ components. In this way we have Zf:o ( ) classes
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(where ¢ represents the number of ‘—’). We have no influence on the 0/+ distribution; the only
detail we can decide is the position of the ‘—’ marks; that is, from which class we choose the
solution. Once the class is fixed, under this constraint the solution would be the maximum
taken over all 0/+ distributions, let us call this the value of the class. Then the overall
optimum of the problem is the minimum value taken over all classes.

An optimal set of k vertices can also be constructed if we do a little more bookkeeping
during the recursive steps. For each triple (g, r,j) we store the relevant pointer(s) showing
which entry (entries) of the child(ren) have given the value of z,(r, j) in the recursion. Then,
starting from (qo, 70, k) we can trace all relevant triples (g, 7v, j¢) which have contributed to
the composition of zy (rp,k). A most vital k-set is obtained by the union of the sets Z_
belonging to those sequences ry. This top-down (partial preorder) traversal needs only O(n)
additional steps. Indeed, the union of the Z_ can be gathered while moving from the forget
nodes to their children, adding the corresponding vertex v to the most vital set if v € Z_ in
the actual X,.

Time analysis. To compute one entry of M, we need constant time for start, introduce and
forget nodes. This also includes the side conditions on introduce nodes, because nonadjacency
of the new vertex has to be checked! with respect to fewer than ¢ other vertices of Z, or
Z_. Hence, the most time-consuming case of the recursion occurs at the join nodes. For a
particular r, we have 0 < |r_| < j/ < j; i.e., minimum or maximum has to be selected from
at most j + 1 possibilities, which takes at most j comparisons. Here j ranges from 0 to k,
therefore the computation of an entire row requires at most (k+1)? steps. There are at most 3
rows in any M,, which is constant whenever treewidth is bounded; and the number of matrices
to be computed is O(n). Consequently, the total number of steps needed is O(nk?) = O(n?)
because k < n holds in both problems. Traversing 7" needs as few as O(n) additional steps. O

Theorem 9 MIN NODE BLOCKER INDEPENDENT SET and MIN NODE BLOCKER VERTEX
COVER are polynomial on bounded treewidth graphs. On graphs of order n the problems can
be solved in O(n3logn) time.

Proof: The theorem follows from Theorem 8 and Lemma 1. O

4.4 Cographs

To each cograph G with n vertices, we can associate a rooted tree T, called the cotree of G.
Leaves of T' correspond to vertices of the graph G and internal nodes of T are labeled with
either ‘U’ (union-node) or ‘x’ (join-node). A subtree rooted at node ‘U’ corresponds to the
union of the subgraphs defined by the children of that node, and a subtree rooted at node ‘x’
corresponds to the join of the subgraphs defined by the children of that node; that is, we add
an edge between every two vertices corresponding to leaves in different subtrees. Cographs can
be recognized in linear time and the cotree representation can be obtained efficiently |7, 12].
Moreover, this cotree can easily be transformed in linear time to a binary cotree with O(n)
nodes.

Theorem 10 £ MoOST VITAL NODES INDEPENDENT SET and k MOST VITAL NODES VER-
TEX COVER are polynomial on cographs. On cographs of order n, k MOST VITAL NODES

'Each check can be done in constant time if adjacency matrix is used with direct addressing. This requires
O(n?) space.
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INDEPENDENT SET can be solved in O(nk?) time and k MosT VITAL NODES VERTEX COVER
can be solved in O(n? + nk?) time, for any k > 1.

Proof: Consider a cograph G with n vertices vy, ..., v,. Given a binary cotree representation
T of G, we show in the following how to solve the Kk MoOST VITAL NODES INDEPENDENT SET
and £ MosT VITAL NODES VERTEX COVER using dynamic programming.

Let x1,...,x; be the nodes of T" where x, is its root and ¢ is in O(n). For i = 1,... ¢,
denote by T; the subtree rooted at z;, G; the subgraph induced by the vertices corresponding
to the leaves of T;, and V; these vertices.

Recursion for Independent Set. We associate a (k+1)-vector to each node z; of T, i = 1,. .., t.
In the following, a (k + 1)-vector is simply called a vector. For each ¢ and each j =0,1,...,k,
we compute z;(j) that is the minimum weight of a maximum independent set on G; where
exactly j vertices are removed from G;. These vectors are computed ‘bottom-up’ in the cotree.
So, we start by computing vectors of leaves and after that the vector of an internal node if
the vectors of its two children are already computed.

Given a node z; of the cotree, the corresponding vector is obtained as follows:

e If z; is a union-node with two children x, and z,, we have no edges between Gy and G...
Then the maximum independent set in G; is the union of those in Gy and G,. Thus,
since we want to find a maximum-weight independent set as small as possible, the best

choice is given by z;(j) = minj, 1 j,—; (z¢(j1) + 2r(j2))-

e If ; is a join-node with two children x, and x,, every vertex in V} is adjacent to every
vertex in V.. Then each independent set in G; is entirely contained either in Gy or in

G,. So, () = minj, 4j,—; (max(z,(j1), 2r(j2)))-

o If x; is a leaf then 2;(0) = w;, 2(1) =0, and z;(j) = NIL for j = 2,...,k which means
that the latter configurations are infeasible. In the recursive step, terms with value NIL
on the right-hand side are neglected, except when all terms are the same, and in this
case we define z;(j) = NIL, too.

Recursion for Vertex Cover. The approach is similar to the previous one. We associate a
vector to each node z; of T', ¢ = 1,...,t. For each ¢ and each 7 = 0,1,... k, a value z(j)
and a subset S;(j) are computed. Here z;(j) means the minimum weight of a vertex cover of
G; where exactly j vertices are removed from G;, and S;(j) is the subset of vertices that are
neither included in the vertex cover of GG; nor are removed from G;.

Given a node z; of the cotree, the corresponding vector is obtained as follows:

e If x; is a union-node with two children xy and z,. , we have no edges between Gy and G...
Then the minimum vertex cover in G; is the union of those in G, and G,. Thus, since
we want to find a minimum-weight vertex cover as small as possible, the best choice is
given by z;(j) = minj, +j,—; (2¢(j1) + 2r(j2)) and Si(j) = Se(ji) U Sr(j3) where ji and
Jja are the indices that realize the minimum for z;(j). If we have many ji and j3, we
choose the one with the smallest szesg(j;‘)usr(j;) Ws.

e If z; is a join-node with two children z, and x, then a vertex cover in G; has to contain
all non-removed vertices in one of V; or V,., and also a vertex cover of the non-removed
subgraph in the other part. Once we decide which part is completely included as removal
and cover, the best way to select its given number ;' of removed vertices is to delete
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the j' vertices of largest weights of that part. Assuming that j; vertices are removed
from V; and jy are removed from V,, we denote by s/(j1) and s,(j2) the minimum
sum of weights of the remaining |Vy| — j1 and |V;| — jo vertices, respectively. That is,

se(g1) = w(Vp) — Yd}nﬁm}}/{l jlw(Y), and s,(j2) is defined analogously. If j; > |V}] or
£ =

jo > |V;], the value of s is defined to be +00. Then we have

zi(j) = min min (s¢(j1) + 2 (j2), 5r(j2) + 2e(j1))
Ji+j2=y
and S;(j) = S¢(j1) or Si(j) = Sr(j2), depending on whether the minimum for z;(j) has
been obtained from z;(j1) or z.(j2).

o If x; is a leaf then z;(0) = z;(1) = 0, z;(j) = +oo for j = 2,...,k, S;(0) = {v;} and
Si(j) =0 forj=1,....k.

Finding an optimal solution. For each of the two problems, an optimal solution is obtained
at the root x, of T" and its weight is equal to z,.(k). Moreover, an optimal set of k removed
vertices can be computed step by step in the recursion. Indeed, let S; (j) be the subset of j
removed vertices in G;. For a leaf z; we have S; (0) =0, S; (1) = {v;} and S; (j) = 0 for
7 =2,...,k. For a union-node or a join-node x; with two children x, and z,., recursion yields
S;(3) =S, (J7) U S (j3) where ji and j; are the indices that realize the minimum for z;(j).

Time analysis. For k MosT VITAL NODES INDEPENDENT SET, vectors are computed in
O(k) for each leaf and in O(k?) for each union-node and each join-node. Since t = O(n), the
algorithm runs in O(nk?).

For k MosT VIiTAL NODES VERTEX COVER, the computation of vector for a leaf takes
O(k) time. For a union-node and a join-node, we have to compare and select a minimum
value from at most j + 1 possibilities and determine a subset of vertices which attains this
minimum. Note that at most k vertices of largest weight are relevant for s. For leaves of the
cotree this is just one element and can be viewed to be in decreasing order of weight; and then
for any union- or join-node the (at most) k largest elements can be selected in O(k) time from
the lists of the children using merge sort and keeping the decreasing order. Since sz €8i(j) Ws
and S;(j) are obtained in O(n) for any given i and j, the computation of vector corresponding
to an internal node takes O(k? 4+ n). Therefore, the algorithm runs in O(n? +nk?). Speed-up
for the sets S;(j) can also be made if we do not explicitly list them at each node but only
store their values and the pointers to the children from which they have been obtained. O

Theorem 11 MIN NODE BLOCKER INDEPENDENT SET and MIN NODE BLOCKER VERTEX
COVER are polynomial on cographs. On cographs of order n the problems can be solved in
O(n3logn) time.

Proof: The theorem follows from Theorem 10 and Lemma 1. O

5 Conclusion

In this paper we studied the complexity of the k most vital nodes and min node blocker
versions of the maximum-weight independent set and minimum-weight vertex cover problems.
While maximum-weight independent set and minimum-weight vertex cover are polynomial on
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bipartite graphs, the k most vital nodes and min node blocker versions become NP-hard, and
we also proved that most vital nodes have no ptas. We obtained further that for £ > 0 the
complementarity of maximum independent sets and minimum vertex covers does not remain
valid.

An interesting perspective for future research is to study the complexity of the k& most
vital nodes and min node blocker versions of the maximum-weight independent set problem
for graphs of bounded cliquewidth 9] and graphs of bounded NLC-width [21], that generalize
cographs. Moreover, it would be worth studying the complexity and approximation of these
versions on further classes of graphs for which maximum-weight independent set and minimum-
weight vertex cover are polynomial.

We close the paper with some explicitly stated problems.

Conjecture 1 The problems MIN NODE BLOCKER INDEPENDENT SET and MIN NODE
BLOCKER VERTEX COVER have no ptas on bipartite graphs.

Problem 1 Are the problems k MoOST VITAL NODES INDEPENDENT SET, k MOST VI-
TAL NODES VERTEX COVER, MIN NODE BLOCKER INDEPENDENT SET and MIN NODE
BLOCKER VERTEX COVER solvable in polynomial time on graphs of bounded cliquewidth?

Acknowledgement. We are deeply indebted to Rico Zenklusen for several important in-
sightful comments on a previous version of this paper, and also for pointing out gaps in the
proofs of some assertions announced in the conference contribution [3].
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