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tGiven an undire
ted graph with weights on its verti
es, the k most vital nodes in-dependent set (k most vital nodes vertex 
over) problem 
onsists of determining a setof k verti
es whose removal results in the greatest de
rease in the maximum weight ofindependent sets (minimum weight of vertex 
overs, respe
tively). We also 
onsider the
omplementary problems, minimum node blo
ker independent set (minimum node blo
kervertex 
over) that 
onsists of removing a subset of verti
es of minimum size su
h that themaximum weight of independent sets (minimum weight of vertex 
overs, respe
tively) inthe remaining graph is at most a spe
i�ed value. We show that these problems are NP-hard on bipartite graphs but polynomial-time solvable on unweighted bipartite graphs.Furthermore, these problems are polynomial also on 
ographs and graphs of boundedtreewidth. Results on the non-existen
e of ptas are presented, too.Keywords: most vital verti
es, independent set, vertex 
over, time 
omplexity, NP-hard,bipartite graph, bounded treewidth, 
ographMathemati
s Subje
t Classi�
ation: 05C85, 05C691 Introdu
tionIn many appli
ations involving the use of 
ommuni
ation or transportation networks, we oftenneed to identify vulnerable or 
riti
al infrastru
tures. By 
riti
al infrastru
ture we mean aset of nodes/links whose damage 
auses the largest in
rease in the 
ost within the network.Modeling the network by a weighted graph, identifying a vulnerable infrastru
ture amountsto �nding a subset of verti
es/edges of a given size whose removal from the graph 
auses thelargest in
onvenien
e to a parti
ular property of the graph in question. In the literature thisproblem is referred to as the k most vital nodes/edges problem. A 
omplementary problem
onsists of determining a set of verti
es/edges of minimum size whose removal involves thatthe 
ost within the network is at most a given value. In the literature this problem is referredto as the min node/edge blo
ker problem.
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The problems of k most vital nodes/edges and min node/edge blo
ker have been studiedfor various problems, in
luding shortest path, spanning tree, maximum �ow, assignment, 1-median, 1-
enter and maximum mat
hing. The k most vital edges problem with respe
t toshortest path was proved NP-hard [1℄. Later, k most vital edges/nodes shortest path (andmin node/edge blo
ker shortest path, respe
tively) were proved not 2-approximable (not 1.36-approximable, respe
tively) if P6= NP [15℄. For spanning tree, k most vital edges is NP-hard[11℄ and O(log k)-approximable [11℄. In [22℄ it is proved that k most vital edges maximum �owis NP-hard. Also k most vital edges and min edge blo
ker assignment are proved NP-hardand not 2-approximable (not 1.36-approximable, respe
tively) if P6= NP [2℄. In [4℄ it is provedthat k most vital edges (nodes) 1-median (1-
enter) and min edge (node) blo
ker 1-median (1-
enter) are NP-hard to approximate within a fa
tor c, for some c > 1. For maximum mat
hing,min edge blo
ker is NP-hard even for unweighted bipartite graphs [24℄, but polynomial forgrids and trees [20℄; and the most vital nodes problem is NP-hard for weighted bipartite graphsbut polynomial for unweighted ones, both results proved in [23℄.In this paper, we are interested in determining a subset of k verti
es of the graph whosedeletion 
auses the largest de
rease in the maximum weight of an independent set or theminimum weight of a vertex 
over. These problems are referred to as k Most Vital NodesIndependent Set and k Most Vital Nodes Vertex Cover . We also 
onsider the
omplementary versions of these problems, where given a threshold, we have to determine asubset of verti
es of minimum size that has to be removed su
h that in the resulting graph themaximum-weight independent set or minimum-weight vertex 
over is at most this threshold.These problems are referred to as Min Node Blo
ker Independent Set and Min NodeBlo
ker Vertex Cover.In Se
tion 3 we 
onsider bipartite graphs. It turns out that a substantial jump in 
omplex-ity o

urs between unweighted and weighted graphs for all these four problems. More pre
iselywe show that the unweighted versions are polynomial while the weighted versions are NP-hardand the most vital nodes problems have no ptas. In Se
tion 4 we deal with graphs with weightson their verti
es, whi
h have either a tree-like stru
ture or a representation asso
iated withtrees. These in
lude trees themselves, 
y
les, more generally graphs of bounded treewidth,and 
ographs (graphs 
ontaining no indu
ed P4). For these 
lasses we design polynomial-timealgorithms for all the four problems mentioned above.In fa
t, trees and 
y
les have treewidth 1 and 2, respe
tively, therefore our general algo-rithm for bounded treewidth works for the former 
lasses, too. Nevertheless, the algorithmson trees and 
y
les are simpler and this is why we in
lude them here. It should be notedfurther that for k �xed, k Most Vital Nodes Independent Set and k Most VitalNodes Vertex Cover are polynomial-time equivalent to the 
ase k = 0 and sin
e thereare only polynomially many subsets of k removable verti
es, therefore k Most Vital NodesIndependent Set and k Most Vital Nodes Vertex Cover are solvable e�
iently onevery graph 
lass where the largest independent set and smallest vertex 
over are tra
table.On the other hand if k → ∞ then a formula expressing the present problems in se
ond-order monadi
 logi
 would have unbounded length. Consequently, the general approa
h tolinear-time algorithms via se
ond-order monadi
 logi
 (MSOL) is not appli
able here.In every graph, independent sets and vertex 
overs are 
omplementary, and an independentset is of maximum weight if and only if its 
omplement is a vertex 
over of minimum weight.Contrary to this, however, it follows from our results that for k ≥ 1 the optimal solutions of kMost Vital Nodes Independent Set and k Most Vital Nodes Vertex Cover 
anbe substantially di�erent. 2



The present paper is a substantially extended version of the limited-length 
onferen
e
ontribution [3℄ where only independent sets are 
onsidered and only a part of proofs is in
ludedand only the independen
e number is studied. In parti
ular, the non-approximability of mostvital nodes for vertex 
over has never been investigated before.2 PreliminariesLet G = (V,E) be an undire
ted graph, V = {v1, . . . , vn}, where ea
h vertex vi has a weight
wi. Given an edge e = vivj ∈ E, by 
onvenient abuse of notation, we shall write vi, vj ∈ e andif vi, vj ∈ V ′, V ′ ⊆ V then we shall write that e ⊂ V ′. When removing a set V ′ of verti
es from
G, let us denote the remaining graph by G− V ′. If H is a subgraph of G then V (H) denotesthe vertex set of H. Moreover, for a subset V ′ of verti
es from G, the subgraph indu
ed by
V ′ is denoted by G[V ′].A maximum-weight independent set of G is a subset of verti
es of maximum weight whereany two verti
es are nonadja
ent. A minimum-weight vertex 
over of G is a subset of verti
esof minimum weight where every edge of G 
ontains at least one vertex of the subset. Wedenote by α(G) the maximum weight of an independent set and by τ(G) the minimum weightof a vertex 
over. Moreover, α(k) represents the minimum of α(G−V ′) after removing any setof verti
es V ′ of size k; τ(k) is de�ned similarly. A mat
hing is a set of mutually vertex-disjointedges. The largest number of edges in a mat
hing is denoted by ν(G).In this paper we are interested in studying the 
omplexity of the following problems.
k Most Vital Nodes Independent SetInput: An undire
ted graph G = (V,E) where ea
h vertex vi has a weight wi, and an inte-ger k.Output: A subset V ′ ⊆ V of size k su
h that the maximum weight α(G−V ′) of an indepen-dent set in G − V ′ is minimum.
k Most Vital Nodes Vertex CoverInput: An undire
ted graph G = (V,E) where ea
h vertex vi has a weight wi, and aninteger k.Output: A subset V ′ ⊆ V of size k su
h that the minimum weight τ(G − V ′) of a vertex
over in G − V ′ is minimum.Min Node Blo
ker Independent SetInput: An undire
ted graph G = (V,E) where ea
h vertex vi has a weight wi, and aninteger U .Output: A subset V ′ ⊆ V of minimum size su
h that the maximum weight α(G − V ′) of anindependent set in G − V ′ is at most U .Min Node Blo
ker Vertex CoverInput: An undire
ted graph G = (V,E) where ea
h vertex vi has a weight wi, and aninteger U .Output: A subset V ′ ⊆ V of minimum size su
h that the minimum weight τ(G − V ′) of avertex 
over in G − V ′ is at most U . 3



Remark 1 k Most Vital Nodes Independent Set and Min Node Blo
ker Inde-pendent Set are polynomial-time equivalent. Indeed, if an algorithm Ak solves k MostVital Nodes Independent Set for all 1 ≤ k ≤ n, then we 
an run Ak for k = 1, . . . , nand 
hoose the smallest k yielding optimum at most U . Conversely, if an algorithm BU solvesMin Node Blo
ker Independent Set with any bound U , we 
an apply binary sear
h tolo
ate the smallest U that requires the removal of at most k verti
es.Applying binary sear
h and its a

elerated logarithmi
 version, we obtain the followingrelation between the `most vital nodes' and `min node blo
ker' problems.Lemma 1 If there exists an algorithm that solves the k most vital nodes version of an opti-mization problem P on graphs with n verti
es in O(t) time, then the min node blo
ker versionof P 
an be solved in O(t log n) time. Moreover, for any ǫ > 0, the optimum for min blo
ker
an be approximated within (1 + ǫ) in O(t(log log n + log 1/ǫ)) time.Proof : If the value of an optimum solution is at most U , then the optimal blo
ker isthe empty set, whi
h 
an be tested in O(t) time by assumption. Otherwise, to obtain a
(1 + ǫ)-approximation we �rst apply the approa
h of [13℄ to design a 16-approximation. Were
ursively 
ompute triples (ℓ, u, i) su
h that ℓ is a lower bound, u is an upper bound, and
(u/ℓ)1/4 ≤ 22i

< (u/ℓ)1/2. The values are initialized to ℓ0 = 1, u0 = n, i0 = ⌈log log n⌉ − 2;they 
learly satisfy (u0/ℓ0)
1/4 = 4

√
n ≤ 22i0 <

√
n = (u0/ℓ0)

1/2 for all n > 1.To determine the next triple (ℓ′, u′, i′) if (ℓ, u, i) is already at hand, we test in O(t) timewhether the optimum is above or under k := ℓ · 22i . Depending on the answer, ℓ · 22i be
omeseither ℓ′ or u′, and we keep u′ = u or ℓ′ = ℓ a

ordingly. The update from i to i′ is very easy,for the following reason. We 
learly have i′ ≤ i be
ause we never in
rease u or de
rease ℓ. For
u′ = u we apply the 
ondition 22i

< (u/ℓ)1/2 and obtain
(

u′

ℓ′

)1/4

>

(

u

(uℓ)1/2

)1/4

=
(u

ℓ

)1/8
> 22i−2

.Similarly, for ℓ′ = ℓ we apply 22i ≥ (u/ℓ)1/4 and obtain
(

u′

ℓ′

)1/4

>

(

u1/4 ℓ3/4

ℓ

)1/4

=
(u

ℓ

)1/16
> 22i−3

.Sin
e 22i′ should not be smaller than the left-hand side, i′ ≥ i − 2 must hold in either 
ase.Thus, sele
ting the proper value of i′ ∈ {i − 2, i − 1, i} requires at most two 
omparisons,
he
king whether i′ = i or i′ = i − 1 works for (u′, ℓ′).On the other hand, for u′ = u the 
ondition 22i ≥ (u/ℓ)1/4 implies
u′

ℓ′
≤ u

u1/4 ℓ3/4
=
(u

ℓ

)3/4
,and for ℓ′ = ℓ we 
an use 22i

< (u/ℓ)1/2 to obtain
u′

ℓ′
≤ (uℓ)1/2

ℓ
=
(u

ℓ

)1/2
.4



The former upper bound is less restri
tive, but in any 
ase after three iterations we surelyhave
(

u′′′

ℓ′′′

)1/2

<
(u

ℓ

)27/128
<
(u

ℓ

)1/4
< 22i

,and 
onsequently i′′′ < i holds. This implies that after at most O(log log n) iterations we rea
h
i = 0, whi
h means (u/ℓ)1/4 ≤ 2 and u ≤ 16ℓ. Then we need at most ⌈3 + log 1/ǫ⌉ steps ofbinary sear
h to obtain a pair (u∗, ℓ∗) with u∗ ≤ (1 + ǫ)ℓ∗. 2Remark 2 On some restri
ted 
lasses of problem instan
es, the algorithm above 
an be usedto determine not only approximate but also exa
t solutions of min node blo
ker problems moree�
iently than O(t log n). Namely, if a 
lass satis�es opt = no(1) for all feasible instan
es, thenwe 
an pro
eed as follows. First, applying logarithmi
 binary sear
h, �nd a 16-approximation
(u, ℓ) in O(t log log n) time. Then u − ℓ = no(1) holds, and hen
e binary sear
h to �nd exa
toptimum takes as short as o(t log n) time. This 
orresponds to the 
hoi
e ǫ = 1/u.For proofs 
on
erning the non-existen
e of a ptas (polynomial-time approximation s
heme),we shall use the notion of gap-preserving redu
tion introdu
ed in [19℄.Let A be a maximization problem and A′ a minimization problem. Then A is said to begap-preserving redu
ible to A′ with parameters (c, ρ), (c′, ρ′) (where ρ, ρ′ ≥ 1), if there is apolynomial-time algorithm that transforms any instan
e x of A to an instan
e x′ of A′ su
hthat the following properties hold:1. optA(x) ≥ c ⇒ optA′(x′) ≤ c′2. optA(x) < c

ρ ⇒ optA′(x′) > ρ′ · c′Gap-preserving redu
tions have the following property. If it is NP-hard to de
ide whetherthe optimum of an instan
e of A is at least c or less than c
ρ , then it is NP-hard to de
idewhether the optimum of an instan
e of A′ is at most c′ or greater than ρ′ ·c′. This NP-hardnessimplies that A′ is hard to ρ′-approximate.3 Complexity on bipartite graphsIn a graph, a maximum independent set is a 
omplementary set of a minimum vertex 
over,even for weighted graphs. Nevertheless, 
on
erning the k most vital nodes (min node blo
ker)versions an optimum solution for k Most Vital Nodes Independent Set (Min NodeBlo
ker Independent Set) is not ne
essarily an optimum solution for k Most VitalNodes Vertex Cover (Min Node Blo
ker Vertex Cover), even for unweighted bi-partite graphs. A 
lass of 
ounterexamples is that of 
omplete bipartite graphs with vertex
lasses of unequal size, i.e. the graphs Kn,m with n > m ≥ 1. Assume 1 ≤ k ≤ min (m,n − m).Then the optimum solution for k Most Vital Nodes Independent Set is to remove kverti
es from the larger vertex 
lass, this de
reases the independen
e number from n to n− k;whereas for k Most Vital Nodes Vertex Cover we have to remove k verti
es from thesmaller vertex 
lass, this de
reases the minimum size of a vertex 
over from m to m − k.Hen
e, there is a substantial di�eren
e already for k = 1, as illustrated by the instan
e Gfrom Figure 1. The vertex labeled 1 is 
riti
al with respe
t to the vertex 
overing number (its5
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2Figure 1: Instan
e Gremoval yields a subgraph whose minimum vertex 
over is the empty set), and ea
h vertexlabeled 2 is 
riti
al with respe
t to the independen
e number, but not 
onversely.Maximum-weight independent set and minimum-weight vertex 
over are polynomial-timesolvable on bipartite graphs using the K®nig-Egerváry theorem [10℄. We show in this se
tionthat the k most vital nodes and min node blo
ker versions be
ome NP-hard on bipartitegraphs and k most vital nodes do not admit a ptas. Nevertheless, all these problems remainpolynomial-time solvable in the unweighted 
ase. We �rst prove this latter fa
t. Its `min nodeblo
ker' part was proved independently by Costa et al. [8℄.Theorem 1 k Most Vital Nodes Independent Set and k Most Vital Nodes Ver-tex Cover and also Min Node Blo
ker Independent Set and Min Node Blo
kerVertex Cover are polynomial for unweighted bipartite graphs. Moreover, if a largest mat
h-ing and a smallest vertex 
over are given with the input, all these problems are solvable inlinear time.Proof : Let G = (V,E) be a bipartite input graph on n verti
es. From K®nig's theorem[18℄ we know that τ(G) = ν(G) holds; let us denote here their 
ommon value by t. The
lassi
al proof of the equality τ = ν is algorithmi
 and also yields a maximum mat
hing
M = {e1, . . . , et} and a minimum vertex 
over X = {v1, . . . , vt} in polynomial time. Moreover,we have α(G) = n − t (known as a Gallai-type identity) and V \ X is a largest independentset in G. Let us introdu
e the further notation R = V \ V (M) and r = |R| = n − 2t; i.e., thenumber and the set of verti
es not 
ontained in any of the mat
hing edges in M .We 
an show now that all the four problems are solvable in linear time, as follows.
k Most Vital Nodes Independent SetIf k ≤ |R|, we remove any k verti
es from R. Sin
e the remaining graph (of order n−k) still
ontains the mat
hing M of size t, the independen
e number 
annot be larger than n− k − t.It is also 
lear that α 
annot be de
reased by more than k if we remove just k verti
es, hen
ethe solution obtained is optimal.If k > |R|, we remove the entire R and the verti
es of ⌊(k − r)/2⌋ edges from M , andone further vertex if k − r is odd. This de
reases the size of M by ⌈(k − r)/2⌉ and theindependen
e number by ⌊(k + r)/2⌋, and hen
e the new value is ⌈(n − k)/2⌉ (originally wehad α(G) = (n + r)/2). This de
rease is optimal, be
ause after the removal of k verti
es atleast half of the remaining n − k belong to the same vertex 
lass.
k Most Vital Nodes Vertex Cover 6



If k ≤ t, we simply remove k verti
es of X. The remaining part of X is a vertex 
overin the smaller graph, hen
e τ is de
reased by exa
tly k, whi
h is optimal be
ause at least
t − k edges of M would remain in the graph after the removal of any k verti
es. If k > t,then removing X the graph be
omes edgeless and the k − t verti
es outside X 
an be 
hosenarbitrarily for removal.Min Node Blo
ker Independent SetIf U ≥ n − t, no verti
es need to be removed. If t ≤ U < n − t, we remove n − t − Uverti
es of R. If U = t − ℓ where 1 ≤ ℓ ≤ t, we remove the entire R and the 2ℓ verti
es of
ℓ arbitrarily 
hosen edges from M . All these 
hoi
es are optimal, as follows from the proof
on
erning most vital nodes.Min Node Blo
ker Vertex CoverAll we need is to remove t − U verti
es of X. 2Remark 3 If we are interested in determining just the number of verti
es to be removed forMin Node Blo
ker Independent Set and Min Node Blo
ker Vertex Cover, given
n and τ of the bipartite input graph, the problem is solvable in 
onstant time be
ause theanswer 
an be written as an expli
it fun
tion of n and τ .We show next that the four problems be
ome NP-hard in the weighted 
ase. The followingnotion will be of essen
e.De�nition 1 Let G = (V,E) be an undire
ted graph. The bipartite in
iden
e graph of G isthe bipartite graph H whose vertex set is V ∪E and there is an edge in H between v ∈ V and
e ∈ E if and only if e is in
ident to v in G.In order to prove NP-hardness, beside (unweighted) Independent Set we shall also
onsider the de
ision problem asso
iated to its 
omplementary version, Clique, de�ned asfollows:CliqueInput: A graph G = (V,E) and an integer ℓ.Question: Does G 
ontain a 
lique of size at least ℓ, that is a subset V ′ ⊆ V with |V ′| ≥ ℓsu
h that every two verti
es in V ′ are joined by an edge in E ?Clique is one of the well known NP-hard problems [14℄. We 
an 
onsider that ℓ > 3 sin
eotherwise Clique is solvable in polynomial time.Theorem 2 k Most Vital Nodes Independent Set and k Most Vital Nodes Ver-tex Cover and also Min Node Blo
ker Independent Set and Min Node Blo
kerVertex Cover are strongly NP-hard even for bipartite graphs.Proof : We �rst prove hardness for k Most Vital Nodes Independent Set and k MostVital Nodes Vertex Cover. For both problems let the instan
e be a graph G = (V,E)with n verti
es and m edges, and an integer ℓ; and let H denote the bipartite in
iden
e graphof G. The 
onstru
tion of H from G requires linear time only.For k Most Vital Nodes Independent Set we make redu
tion from the de
isionproblem asso
iated to Independent Set. Ea
h vertex of E in H has weight 1 and ea
h vertex7



of V in H has weight n2. Due to this rather unbalan
ed weighting, the unique maximum-weight independent set in H is V ; i.e., α(H) = n3.We show in the following that if there is an independent set of size at least ℓ in G then H
ontains a set S of ℓ verti
es su
h that α(H − S) = (n − ℓ)n2, and otherwise removing anysubset S of ℓ verti
es from H, we have α(H − S) ≥ (n− ℓ)n2 + 1. Sin
e verti
es from V haveweight n2 and those from E have weight 1, in order to have a maximum-weight independentset as small as possible after removing a set S of size ℓ, S has to be in
luded in V .If G 
ontains an independent set S of size ℓ, then removing S from the vertex set of H, weobtain a graph whose maximum-weight independent set is V \S. This set has weight (n−ℓ)n2.If G 
ontains no independent set of size ℓ, then any S ⊂ V of size ℓ 
ontains at least anedge e ∈ E in G, and this e in H is nonadja
ent to the entire V \ S. Thus, when we removeany set S of ℓ verti
es from H, α(H − S) ≥ (n − ℓ)n2 + 1.In order to prove the NP-hardness of k Most Vital Nodes Vertex Cover, we applythe de
ision problem asso
iated to Clique, with the same weights on H as above. Sin
ethe entire E has smaller weight than just one vertex from V , minimum vertex 
overs in anysubgraph of H are subsets of E. We show that if there is a 
lique of size at least ℓ in G then
τ(H − S) = m − ℓ(ℓ−1)

2 , and otherwise removing any subset S of ℓ verti
es from H, we have
τ(H − S) ≥ m − ℓ(ℓ−1)

2 + 1.If G 
ontains a 
lique V ′ of size ℓ, then removing V ′ from the vertex set of H, we obtain agraph whose minimum-weight vertex 
over is E \ E′, where E′ is the edge set indu
ed by V ′in G. This vertex 
over has weight m − ℓ(ℓ−1)
2 .Suppose that G 
ontains no 
lique of size ℓ. Let S ⊂ V ∪ E be a set of ℓ verti
es in H.From a vertex 
over, this S saves us the sele
ted edges S ∩E, plus those edges of G from the

E-part of H whi
h have both endpoints in S ∩ V . Consequently,
τ(H − S) ≥ m − |E(G[S ∩ V ])| − |S ∩ E| ≥ m − ℓ(ℓ − 1)

2
+ 1where the last inequality holds be
ause if S ∩ E 6= ∅ then S ∩ V indu
es at most (ℓ−|S∩E|

2

)

<
(

ℓ
2

)

− |S ∩ E| edges (for ℓ > 3), and if S ∩ E = ∅ then S 
annot be a 
lique in G and hen
eindu
es fewer than (ℓ2) edges.Due to Remark 1, Min Node Blo
ker Independent Set and Min Node Blo
kerVertex Cover are also strongly NP-hard. 2We are going to prove some approximation hardness results, too. In the redu
tions, thefollowing problems will be used.Dense k SubgraphInput: An undire
ted graph G = (V,E).Output: A subset V ′ ⊆ V of size k so as to maximize the number of edges whose bothendpoints are in V ′.Max k Vertex CoverInput: An undire
ted graph G = (V,E).Output: A subset V ′ ⊆ V of size k so as to maximize the number of edges with at least oneendpoint in V ′. 8



Max k Vertex Cover-B is the version ofMax k Vertex Cover where the maximumdegree of the graph is at most B.We extra
t the key points of the redu
tions in the following lemma on independent setsand vertex 
overs.Lemma 2 Let G = (V,E) be a graph with n verti
es and m edges, and let H be the bipartitein
iden
e graph of G. Then the following properties are valid.
(1a) Suppose that G has maximum degree at most B, and the weights in H are wv = B + 1for all v ∈ V and we = 1 for all e ∈ E. Then, for any V ′ ⊂ V and any independent set

S disjoint from V ′ in H, there exists an independent set S′ su
h that w(S′) ≥ w(S)and S′ ∩ V = V \ V ′. Thus, if S′ is maximal, then
S′ = (V \ V ′) ∪ {e ∈ E | e ⊂ V ′}and, in parti
ular, α(H − V ′) ≥ (B + 1) · (n − |V ′|) + |{e ∈ E | e ⊂ V ′}|.

(1b) Under the 
onditions of (1a), for any V ′ ⊂ V ∪E with |V ′| < |V | there exists a V ′′ ⊂ Vsu
h that |V ′′| = |V ′| and the maximum weight of an independent set in H − V ′′ is notlarger than that in H − V ′. As a 
onsequen
e,
α(H − V ′) ≥ α(H − V ′′) = (B + 1) · (n − |V ′′|) + |{e ∈ E | e ⊂ V ′′}|.

(2a) Suppose that the weights in H are wv = d(v) (vertex degree) for all v ∈ V and we = 1for all e ∈ E. Then, for any V ′ ⊂ V ∪ E, there exists a minimum-weight vertex 
over
T ⊆ E in H − V ′, namely T = {e ∈ E \ V ′ | e 6⊂ V ′}.

(2b) Beside the 
onditions of (2a), assume further that G is 
onne
ted and 
ontains at leastone 
y
le. Then, for any V ′ ⊂ V ∪ E with |V ′| ≤ |V | and |V ′| being at least as largeas the shortest 
y
le length in G, there exists a V ′′ ⊂ V su
h that |V ′′| = |V ′| and theminimum weight of a vertex 
over in H − V ′′ is not larger than that in H − V ′. As a
onsequen
e,
τ(H − V ′) ≥ τ(H − V ′′) = |{e ∈ E | e 6⊂ V ′′}|.Moreover, the sets V ′′ in both (1b) and (2b) 
an be found e�
iently.Proof : (1a) If S 
ontains all verti
es of V \ V ′, then we have nothing to prove. Otherwisewe modify S step by step, keeping it independent and not de
reasing its value, until it 
ontainsthe entire V \ V ′. Hen
e, assume that v ∈ V is a vertex su
h that v /∈ V ′ ∪ S. If v has noneighbor in S ∩ E, then S ∪ {v} is a proper extension. Suppose that this is not the 
ase;i.e., there is an edge e ∈ E ∩ S su
h that v ∈ e. We now modify S to (S \ NH(v)) ∪ {v},where NH(v) denotes the set of verti
es adja
ent to v in H, that is the set of edges in
identto v in G. In this way we have removed at most B neighbors of v from S, ea
h of weight 1,and inserted v of weight B + 1, hen
e the total weight of the modi�ed set is at least w(S).Moreover, the set remains independent be
ause all neighbors of v have been removed. Thus,after |(V \ V ′) \ S| steps, the required set S′ is obtained.

(1b) If V ′ ⊂ V , then V ′′ = V ′ is a proper 
hoi
e. Hen
e suppose V ′ ∩ E 6= ∅. Let usintrodu
e the notation n′ = |V ′ ∩ V |, m′ = |E(G[V ′ ∩ V ]) \ (V ′ ∩ E)|. By (1a) we see that9



α(H −V ′) = (B +1) · (n−n′)+m′ holds. Choose e ∈ V ′∩E and v ∈ V \V ′, and modify V ′ tothe set (V ′\{e})∪{v}. This keeps 
ardinality un
hanged, while the �rst term (B+1) ·(n−n′)de
reases by pre
isely B + 1. Moreover, sin
e G has maximum degree at most B, the se
ondterm 
an in
rease by at most B when we insert v into the set, and 
an further in
rease by atmost 1 when we omit e. Thus, the sum does not in
rease. Repeatedly eliminating all e ∈ Efrom V ′, the required V ′′ is obtained. Then (1a) implies that the independent set of maximumweight in H − V ′′ 
onsists of all v /∈ V ′′ and all e ⊂ V ′′.
(2a) Consider any vertex 
over T of H − V ′. Suppose v ∈ T ∩ V for some vertex v /∈ V ′.Remove v from T and insert the entire neighborhood NH(v) \ V ′ of v in H into T . Sin
e
wv = d(v) ≥ |NH(v) \ (V ′ ∪ T )|, this modi�
ation does not in
rease the weight of T . After atmost |V | − |V ′| steps all verti
es of V are eliminated from T .
(2b) Due to (2a), if V ′ ⊂ E, then τ(H − V ′) = |E| − |V ′|. In this 
ase we 
an get an at leastas good V ′′ by 
hoosing a |V ′|-element subset of V whi
h indu
es a 
onne
ted subgraph of G
ontaining a shortest 
y
le. On the other hand, if V ′ ⊂ V , then we have nothing to prove.Hen
e, assume that V ′ ∩ V 6= ∅ and V ′ ∩ E 6= ∅.If there is an edge e = vv′ ∈ V ′ su
h that v ∈ V ′ and v′ /∈ V ′, then we repla
e e with v′in V ′. This modi�
ation keeps |V ′| un
hanged, and it does not in
rease τ(H − V ′) be
ause
e is a subset of the modi�ed V ′ and therefore it does not have to be put into a vertex 
overof the new H − V ′. If no su
h e exists but V ′ 6⊂ V , we 
onsider any e′ ∈ V ′ ∩ E. Sin
e Gis 
onne
ted, there is a path from e′ to V ′ ∩ V , and its last edge say e = vv′ satis�es the
onditions e ∈ E \ V ′, v ∈ V ′, v′ /∈ V ′. Let us repla
e e′ with e in V ′. Then both |V ′| and
τ(H−V ′) remain un
hanged, and we are ba
k to the previous situation where the repla
ementof e with v′ maintains the 
onditions but de
reases the size of V ′ ∩ E. Hen
e, the repeatedappli
ation of these operations eliminates all elements of V ′ from E. 2Theorem 3 k Most Vital Nodes Independent Set has no ptas even for bipartite graphsif P6= NP. k Most Vital Nodes Vertex Cover has no ptas even for bipartite graphs ifNP * ∩δ>0 BPTIME (2nδ

), where ∩δ>0 BPTIME (2nδ
) is the 
lass of problems that admitrandomized algorithms that run in time 2nδ for some 
onstant δ > 0.Proof : For both problems, we 
onstru
t gap-preserving redu
tions. Throughout the proof,

H denotes the bipartite in
iden
e graph of the input graph G = (V,E), the latter having nverti
es and m edges.
k Most Vital Nodes Independent Set: We prove the non-existen
e of a ptas for k =
n/2, 
onstru
ting a gap-redu
tion from Max n/2 Vertex Cover-B to n/2 Most VitalNodes Independent Set, where instan
es of the former are restri
ted to graphs G of max-imum degree at most B. In Theorem 4 of [5℄, it is proved that there exists a 
onstant ρ > 1su
h that it is NP-hard to distinguish whether su
h a graph G has opt(G) = m or opt(G) < m

ρ .In this 
ase, let the verti
es of H have weight wv = B + 1 for all v ∈ V and we = 1 for all
e ∈ E.Consider �rst the 
ase opt(G) = m and let V ′ be an optimum solution in G for Max n/2Vertex Cover-B. Then removing V \ V ′ from the vertex set of H, we obtain a graph inwhi
h the maximum weight of an independent set is ((B +1)/2) ·n, as implied by part (1a) ofLemma 2. On the other hand, parts (1a) and (1b) together yield that after the removal of any
n/2 verti
es from H, there always remains an independent set of at least that large weight,thus opt(H) = B+1

2 · n. 10



Consider now the 
ase opt(G) < m
ρ and let V ′ be an optimum solution in G for Max

n/2 Vertex Cover-B. Using part (1a) of Lemma 2, when removing V \ V ′ from the vertexset of H, we obtain a graph in whi
h the maximum weight of an independent set is ((B +
1)/2) · n + m − opt(G). On the other hand, parts (1a) and (1b) together yield that after theremoval of any n/2 verti
es from H, there always remains an independent set of at least thatlarge weight, thus opt(H) = B+1

2 · n + m − opt(G) > B+1
2 · n + m − m

ρ ≥ B+1
2 · n · ρ′, where

ρ′ = 1 + 2(1−1/ρ)
B+1 sin
e m ≥ n.

k Most Vital Nodes Vertex Cover: We 
onstru
t a gap-preserving redu
tion from theDense k Subgraph problem. To a
hieve this goal, we �rst analyze whi
h instan
es are hardfor Dense k Subgraph. In Theorem 1.1 of [16℄ it is proved that the problem has no ptas inthe range k = Θ(n) if NP * ∩δ>0 BPTIME (2nδ
).In general, the 
ondition k = Θ(n) implies opt(G) = Θ(m) be
ause for c := k/n thesele
tion of a k-element set at random indu
es an expe
ted number of (k2)/(n2) = (c2 − o(1))medges, whi
h is a positive fra
tion of E. We observe further that non-approximability remainsvalid for instan
es restri
ted to 
onne
ted input graphs 
ontaining at least one 
y
le of length3. Indeed, let G′ be obtained from G taking a new vertex w and inserting the new edges vwfor all v ∈ V . We view G′ as an instan
e of Dense (k + 1) Subgraph. Denote by opt theoptimum value of G and by opt′ the optimum value of G′. Clearly opt′ = opt + k. Moreover,we may assume without loss of generality that a densest subgraph of G′ 
ontains w. Indeed,if the algorithm on G′ �nds a solution V ′ of value val′ not 
ontaining w, then we remove avertex whi
h has minimum degree in the subgraph indu
ed by V ′ and insert w into V ′. Thistransformation (exe
utable in linear time) does not de
rease the number of edges inside V ′.Then, restri
ting attention to the (k +1)-subgraphs 
ontaining w in G′ they are in one-to-one
orresponden
e with the k-subgraphs of G. This bije
tion yields val = val′ − k.Let ε > 0 be �xed, and suppose that an algorithm �nds a solution on G′ with value

val′ ≥ (1 − ε
3) opt′. Then the 
orresponding solution on G has value

val = val′ − k ≥ (1 − ε

3
) opt′ − k = (opt′ − k) − ε

3
opt′ = (1 −

ε
3 opt′

opt
) opt

= (1 −
ε
3 (opt + k)

opt
) opt = (1 − (

ε

3
+

ε/3

opt/k
)) opt ≥ (1 − ε) optbe
ause opt ≥ k/2 (ex
ept for the rather trivial 
ase where G is a mat
hing and k is odd).Thus, a ptas on the 
onne
ted instan
es of type G′ would yield a ptas on general instan
es

G. As a 
onsequen
e, we may assume without loss of generality that all input graphs are
onne
ted and 
ontain at least one 
y
le of length 3, hen
e making Lemma 2 (2b) appli
able.Turning now to the gap-preserving redu
tion, let the verti
es of the bipartite in
iden
egraph H of G have weight wv = d(v) for v ∈ V and we = 1 for e ∈ E. The 
ase k = n beingtrivial, we assume k < n and hen
e opt(G) < m.Consider �rst the 
ase opt(G) = v and let V ′ be an optimum solution in G for Dense
k Subgraph, that is a set of k verti
es that indu
es v edges. Then removing V ′ from thevertex set of H, we obtain a graph whose minimum-weight vertex 
over is not larger than
|E \ E′|, where E′ is the edge set indu
ed by V ′ in G, as implied by part (2a) of Lemma 2.On the other hand, parts (2a) and (2b) together yield that after the removal of any subset of
k verti
es from H, there always remains a minimum-weight vertex 
over of at least that largeweight and thus opt(H) = m − opt(G) = m − v.11



Consider now the 
ase opt(G) < v
ρ and let V ′ be an optimum solution in G for Dense kSubgraph. Using part (2a) of Lemma 2, when removing V ′ from the vertex set of H, weobtain a graph whose minimum-weight vertex 
over is not larger than |E \E′|, where E′ is theedge set indu
ed by V ′ in G, and hen
e we have opt(H) = τ(H − V ′) = |{e ∈ E | e 6⊂ V ′}|.On the other hand, parts (2a) and (2b) together yield that after the removal of any subsetof k verti
es from H, there always remains a minimum-weight vertex 
over of at least thatlarge weight and thus denoting c′ := v/m and ρ′ := 1−c′/ρ

1−c′ we obtain opt(H) = m − opt(G) >
m− v

ρ = ρ′(m− v). Here c′ < 1 be
ause opt(G) < m; moreover, as we noted at the beginning,
c′ ≥ c2 − o(1) > 0 and hen
e ρ > 1 implies ρ′ > 1. 24 Graph 
lasses related to tree stru
turesIn this se
tion we 
onsider graph 
lasses representable over tree stru
tures (trees, graphs ofbounded treewidth, 
ographs), and prove that they admit algorithms solving the 
onsideredfour problems in polynomial time. E�
ient solvability for the graph 
lasses in the �rst twosubse
tions are implied by the results of the third subse
tion, too, but the methods for theformer are simpler. The �avor of our algorithm for graphs of bounded treewidth is similarto that of the one in [23℄, whi
h solves related problems on maximum mat
hings in pseudo-polynomial time and is, to our best knowledge, the �rst work applying dynami
 programmingfor node/edge interdi
tion. The mat
hing interdi
tion problem in the parti
ular 
lass of treeswith its dynami
 programming approa
h was also studied in [20℄.4.1 TreesTheorem 4 k Most Vital Nodes Independent Set and k Most Vital Nodes VertexCover are polynomial on trees. On trees of order n the problems 
an be solved in O(nk2)time, for any k ≥ 1.Proof : Our general approa
h is to �nd not only a set of k most vital nodes but simultaneouslyalso the value of a 
orresponding largest independent set or smallest vertex 
over. For thispurpose we view the input as a rooted tree with an arbitrarily 
hosen root, and organize
omputation a

ording to a postorder traversal.Consider any tree T with verti
es v1, . . . , vn. Ea
h vertex vi 
an have three positions in asolution, that we shall denote by marks +,−, 0 as follows:

• `+' means that vi is sele
ted into an independent set or a vertex 
over;
• `−' means that vi is sele
ted for deletion;
• `0' means that vi is none of the above two types.In a solution exa
tly k marks `−' have to o

ur.The subtree rooted in vi is denoted by Ti. For ea
h i = 1, . . . , n, ea
h ∗ ∈ {+,−, 0}, andea
h j = 0, 1, . . . , k, a value zi(j, ∗) will be 
omputed. This zi(j, ∗) represents the minimuma
hievable weight of a solution (largest independent set or smallest vertex 
over) on Ti underthe 
onditions that exa
tly j verti
es are removed from Ti and vi has mark ∗. For the re
ursive
omputation the 
hildren of vi with degree d will be denoted by vi1 , . . . , vid . We traverse T inpostorder and apply dynami
 programming. 12



Re
ursion for Independent Set. If vi is marked `+', then all its 
hildren must have `−' or `0',sin
e otherwise two verti
es sele
ted for the independent set would be adja
ent. Moreover,
zi(j, ∗) requires that the total number of verti
es marked `−' should be exa
tly j in Ti. On theother hand, we have one and only one way to make the �nal result as small as possible: de
idewhi
h of the verti
es should be marked with `−'. On
e this has been de
ided, the distributionof `+' and `0' positions aims at maximizing the total weight of `+'. This leads to the followinggeneral re
ursions:

zi(j,+) = wi + min
j1,...,jd≥0

j1+...+jd=j

d
∑

ℓ=1

min (ziℓ(jℓ,−), ziℓ(jℓ, 0)) ,

zi(j,−) = min
j1,...,jd≥0

j1+...+jd=j−1

d
∑

ℓ=1

min (ziℓ(jℓ,−), max (ziℓ(jℓ,+), ziℓ(jℓ, 0))) ,

zi(j, 0) = min
j1,...,jd≥0

j1+...+jd=j

d
∑

ℓ=1

min (ziℓ(jℓ,−), max (ziℓ(jℓ,+), ziℓ(jℓ, 0))) ,For a leaf vi we 
learly have zi(0,+) = wi and zi(1,−) = zi(0, 0) = 0. Further, to indi
atethat all other 
ombinations of j ∈ {0, 1, . . . , k} and ∗ ∈ {+,−, 0} are infeasible, we set adummy symbol zi(j, ∗) = NIL for them. In the re
ursive step, terms with value NIL on theright-hand side are negle
ted, ex
ept when all terms are the same, and in this 
ase we de�ne
zi(j, ∗) = NIL, too.Re
ursion for Vertex Cover. If vi is marked `0', then all its 
hildren must have `+' or '−',be
ause no edge must have both endpoints marked with `0'. Further, we again need for zi(j, ∗)that the total number of verti
es marked `−' should be exa
tly j in Ti. The re
ursive step issimpler than above, however, be
ause τ is de�ned to be minimum, what mat
hes the goal ofthe `most vital nodes' problem. Hen
e, we now have:

zi(j,+) = wi + min
j1,...,jd≥0

j1+...+jd=j

d
∑

ℓ=1

min (ziℓ(jℓ,+), ziℓ(jℓ,−), ziℓ(jℓ, 0)) ,

zi(j,−) = min
j1,...,jd≥0

j1+...+jd=j−1

d
∑

ℓ=1

min (ziℓ(jℓ,+), ziℓ(jℓ,−), ziℓ(jℓ, 0)) ,

zi(j, 0) = min
j1,...,jd≥0

j1+...+jd=j

d
∑

ℓ=1

min (ziℓ(jℓ,+), ziℓ(jℓ,−)) .Also here, for a leaf vi we have zi(0,+) = wi and zi(1,−) = zi(0, 0) = 0. Now, asan alternative of NIL, it is equally �ne to set zi(j, ∗) = +∞ for the other 
ombinations of
j ∈ {0, 1, . . . , k} and ∗ ∈ {+,−, 0}.Finding an optimal solution. Assuming that T has root vi0 , after the removal of k properly
hosen verti
es, the smallest possible value of τ is just min∗∈{+,−,0} zi0(k, ∗) ; whereas for αit is min (zi0(k,−), max (zi0(k,+), zi0(k, 0))). (In fa
t, inserting a new vertex v0 with weight
w0 = 0 as new root and parent for vi0 does not 
hange the optimum, and then we would have13



z0(k,+) ≤ opt = z0(k, 0) ≤ z0(k,−) for Independent Set.) A set of k most vital nodes
an also be determined in O(n) additional steps in the following way. At the re
ursive stepfor ea
h zi(j, ∗) we register for ea
h edge viviℓ the 
orresponding value of jℓ in the optimaldistribution (j1, . . . , jd) for j and also the mark ∗ ∈ {+,−, 0} of iℓ whi
h gave the optimumfor vi. On
e these data are available for all vi and all pairs (j, ∗), we 
an traverse T in preorderand sele
t the verti
es having `−' mark for the most vital set.E�
ient implementation. The key point is to �nd in polynomial time a best distribution
(j1, . . . , jd) for the `max' and `min' fun
tions a
ting on the sums. This 
an be done, despitethat the number of possibilities 
an even be exponential if d is proportional to n.If d = 2 then we have at most j + 1 
ombinations of feasible pairs j1, j2. Hen
e, optimal
hoi
e 
an be made in O(k) steps for any one parti
ular j, and in O(k2) steps for all 0 ≤ j ≤ k.If d is larger, we 
an split the 
hildren of vi into two sets of (nearly) equal size, {vℓ | 1 ≤ ℓ ≤
⌊d/2⌋} and {vℓ | ⌊d/2⌋ + 1 ≤ ℓ ≤ d}, make all 
omputation separately for ea
h of them, andthen 
ombine the results for vi. (Splitting 
orresponds to inserting a `supernode' above ea
hof the two sets, whi
h has weight zero and be
omes a virtual 
hild of vi.) This requires d − 1rounds for vi. Sin
e T is a tree, those d− 1 sum up to n− 2, thus the overall running time is
O((k2 + 1)n), and never ex
eeds O(n3). (Here `+1' is needed for k = 0.) Note that there areno `hidden large 
onstants' in the `O' notation. 2Theorem 5 Min Node Blo
ker Independent Set and Min Node Blo
ker VertexCover are polynomial on trees. On trees of order n the problems 
an be solved in O(n3 log n)time.Proof : The above algorithm in one iteration for any 1 ≤ v ≤ n runs in O(v2n) = O(n3)time. Hen
e, using Lemma 1, �nding the smallest k for whi
h the solution has value at most
U takes total running time O(n3 log n). 2Remark 4 The algorithms proposed in Theorem 4 solve the k Most Vital Nodes Inde-pendent Set and k Most Vital Nodes Vertex Cover problems on paths in O(kn)time. In fa
t, in the general time bound O(nk2) for trees, the fa
tor k2 o

urs due to thepresen
e of verti
es with more than one 
hild. This observation implies further that the al-gorithms proposed in Theorem 5 solve Min Node Blo
ker Independent Set and MinNode Blo
ker Vertex Cover on paths in O(n2 log n) time.4.2 Cy
lesTheorem 6 k Most Vital Nodes Independent Set and k Most Vital Nodes VertexCover are polynomial on 
y
les. On 
y
les of order n the problems 
an be solved in O(kn2)time, for any k ≥ 1.Proof : Let S∗ = {v1, . . . , vr} ⊂ V be a maximum-weight independent set of a given 
y
le
C = (V,E). An optimal solution V ′ ⊂ V of k Most Vital Nodes Independent Set must
ontain at least one node of S∗, sin
e otherwise α(C − V ′) is not smaller than α(C). Thus,for ea
h vj ∈ S∗, j = 1, . . . , r, we determine the k− 1 further nodes to remove in the resultingpath as follows. We delete vj from C and determine a maximum-weight independent set inthe resulting path C − vj by applying the algorithm given in Theorem 4 in order to �nd anoptimal solution R∗

j ⊂ V \{vj} of k−1 Most Vital Nodes Independent Set on the path14



C − vj. Then, an optimal solution for k Most Vital Nodes Independent Set on C is
R∗

ℓ ∪ {vℓ} su
h that α(C − vℓ − R∗
ℓ ) = min1≤j≤r α(C − vj − R∗

j ). If the root is 
hosen to bean endpoint of the path, the 
omplexity of the algorithm given in Theorem 4 for path C − vjis O(kn). Sin
e |S∗| ≤ n, in this way k Most Vital Nodes Independent Set is solved in
O(kn2).The proof for k Most Vital Nodes Vertex Cover is similar. 2Theorem 7 Min Node Blo
ker Independent Set and Min Node Blo
ker Ver-tex Cover are polynomial on 
y
les. On 
y
les of order n the problems 
an be solved in
O(n3 log n) time.Proof : The theorem follows from Theorem 6 and Lemma 1. 24.3 Graphs of bounded treewidthA tree de
omposition of a graph G = (V,E) without isolated verti
es is a pair (T,X ) where

• T = (X,F ) is a tree graph with a set X = {x1, . . . , xm} of nodes and a set F of lines;
• X = {X1, . . . ,Xm} is a set system over V (i.e., over the vertex set of G), where ea
h Xqis asso
iated with node xq of T ;
• ea
h edge vivj ∈ E of G is 
ontained in at least one Xq for some 1 ≤ q ≤ m;
• for any vi ∈ V , if vi ∈ Xq′ and vi ∈ Xq′′ , then vi ∈ Xq for all q su
h that xq lies on the

xq′�xq′′ path in T .The width of (T,X ) is max
1≤q≤m

|Xq| − 1, and the treewidth of G, denoted by tw(G), is thesmallest integer t for whi
h G admits a tree de
omposition of width t. For unde�ned detailson tree de
omposition we refer to [17℄.Theorem 8 k Most Vital Nodes Independent Set and k Most Vital Nodes VertexCover are polynomial on bounded treewidth graphs. On graphs of order n the problems 
anbe solved in O(nk2) time for any k ≥ 1.Proof : Suppose that we wish to solve the problems on graphs of treewidth at most t − 1.Hen
e, assume that G has treewidth less than t, and let (T,X ) be a tree de
omposition of
G, su
h that |Xq| ≤ t holds for all 1 ≤ q ≤ m. We view T as a rooted tree, by 
hoosing anarbitrary node as root. The 
hoi
e of the root generates parent-
hild relation between nodesin the usual way. Using standard terminology in a slightly stri
ter (but still wide-spread) way,we say that the tree de
omposition (T,X ) is a ni
e tree de
omposition if it has only four typesof nodes, as follows:

• a start node xq that has no 
hildren (a leaf in T ), with |Xq| = 1;
• a join node xq that has two 
hildren xq′ , xq′′ , with Xq = Xq′ = Xq′′ ;
• an introdu
e node xq that has one 
hild xq′ , with Xq = Xq′ ∪ {v} for some v ∈ V ;
• a forget node xq that has one 
hild xq′ , with Xq = Xq′ \ {v} for some v ∈ V (G).15



As is well known, a ni
e tree de
omposition of size O(n) and of minimum width 
an befound in linear time for graphs of bounded treewidth [6, 17℄. Hen
e, we may assume withoutloss of generality that T is a ni
e tree de
omposition of width less than t for G. We are going toshow how α(k) and τ(k) 
an be determined using dynami
 programming. The general frameis the same for both problems, only the details of 
omputation will be di�erent.Let Tq denote the subtree of T rooted in xq, for 1 ≤ q ≤ m. Over the nodes of Tq we set
Vq =

⋃

xq′∈V (Tq) Xq′ , and denote by Gq the subgraph indu
ed by Vq in G. Hen
e, if xq is a joinnode with 
hildren xq′ and xq′′ , then Vq′ ∩ Vq′′ = Xq holds, and there are no edges between
Vq′ \ Xq and Vq′′ \ Xq in G.At ea
h xq ∈ X we 
onstru
t a matrix Mq that represents the tra
es inside Xq for allpossible de
isions with respe
t to the problem solution. This Mq has k + 1 
olumns 
orre-sponding to the number j = 0, 1, . . . , k of verti
es removed from Gq in a solution, and 3|Xq|rows representing the partitions Z+ ∪ Z− ∪ Z0 = Xq into three disjoint labeled sets.Ea
h row of Mq 
an be asso
iated with a sequen
e r ∈ {+,−, 0}|Xq |, where the ith termindi
ates whether the ith vertex of Xq belongs to the independent set to be sele
ted (+),or is to be removed from G (−), or neither of these (0). Hen
e, for ∗ ∈ {+,−, 0}|Xq |, theo

urren
es of ∗ in r represent the 
hara
teristi
 ve
tor of Z∗. We shall denote by |r−| thenumber of `−' 
omponents in row r. For 0 ≤ j ≤ k the jth entry of r in Mq, whi
h weshall denote by zq(r, j), is the optimum value of a solution in Gq that meets the 
onditionsexpressed in r. If a 
ombination of 
onditions is infeasible (e.g., there are fewer than j verti
esin Gq , or two verti
es asso
iated with `+' in r are adja
ent in G) then we assign the dummysymbol zq(r, j) = NIL.The 
omputation of zq(r, j) is problem spe
i�
, we give the details next. The way of�nding the �nal solutions will be des
ribed afterwards.Re
ursion for Independent Set. For a start node, Mq is a 3 × (k + 1) matrix. Assuming
Xq = {vi}, vertex vi 
ounts with weight wi if it is sele
ted into the independent set and 
ounts0 otherwise. Hen
e we have zq(+, 0) = wi, zq(−, 1) = zq(0, 0) = 0, and zq(∗, j) = NIL for anyother 
ombination of ∗ ∈ {+,−, 0} and j ∈ {0, 1, . . . , k}.If xq is a join node with 
hildren xq′ , xq′′ , then row r of Mq has to be 
omposed from therows belonging to the same r in Mq′ and Mq′′ . Sin
e the sets Z+, Z− ⊆ Xq appear in both
Gq′ and Gq′′ , we see that jq′ resp. jq′′ verti
es deleted from Gq′ resp. Gq′′ mean jq′ + jq′′ −|r−|deleted ones for Gq. An optimal solution for Gq is obtained from the best possible 
ombinationof Gq′ and Gq′′ ; that is,

zq(r, j) = min
jq′ , jq′′≥|r−|

jq′+jq′′=j+|r−|

(zq′(r, jq′) + zq′′(r, jq′′)) −
∑

vi∈Z+

wi.If xq is an introdu
e node with Xq = Xq′∪{v}, there are three possible de
isions 
on
erning
v; and if v is sele
ted for the independent set, then none of its neighbors 
an be sele
ted. Hen
e,if r′ denotes the sequen
e obtained by deleting the v-
omponent from r, then the three 
asesyield the following re
ursions:

• The v-
omponent is + ⇒ zq(r, j) = zq′(r′, j) + wi if v is not adja
ent to any vertex of
Z+, and zq(r, j) = NIL otherwise.

• The v-
omponent is − ⇒ zq(r, j) = zq′(r′, j − 1) for j ≥ 1; zq(r, 0) = NIL.
• The v-
omponent is 0 ⇒ zq(r, j) = zq′(r′, j).16



Finally, if xq is a forget node and its 
hild is asso
iated with the set Xq = Xq′ \ {v}, thenr is obtained from some r′ of Mq′ by deleting its v-
omponent, where the deleted 
omponent
an be any ∗ ∈ {+,−, 0}. Let us denote the 
orresponding row by r′∗. While sear
hing formost vital nodes, we may de
ide whether or not the v-
omponent should be `−' but we 
annotmake any de
ision between `+' and `0'. Thus, the smallest possible weight of a maximumindependent set is obtained by
zq(r, j) = min

(

zq(r′−, j),max
(

zq(r′+, j), zq(r′0, j))) .Re
ursion for Vertex Cover. Sin
e the approa
h is similar to the one given above, we des
ribethe method here in less detail. In the present 
ase `+' means that the 
orresponding vertex issele
ted into a vertex 
over. The union of the sets Z+ has to meet all edges after the removalof all Z− from G. Sin
e ea
h edge is a subset of at least one Xq , a ne
essary and su�
ient
ondition for this property is that the sets Z0 must be independent for ea
h Xq. It will beenough to 
he
k this property at the introdu
e nodes.For a start node with Xq = {vi}, we have zq(+, 0) = wi, zq(−, 1) = zq(0, 0) = 0, and
zq(∗, j) = NIL for any other 
ombination of ∗ ∈ {+,−, 0} and j ∈ {0, 1, . . . , k}.If xq is a join node with 
hildren xq′ , xq′′ , then no vertex of Vq′ \ Xq is 
ontained in anyedge meeting Vq′′ \ Xq, and vi
e versa. Thus, vertex 
overs in Gq are the unions of those in
Gq′ and Gq′′ , therefore we have

zq(r, j) = min
jq′ , jq′′≥|r−|

jq′+jq′′=j+|r−|

(zq′(r, jq′) + zq′′(r, jq′′)) −
∑

vi∈Z+

wi.If xq is an introdu
e node with Xq = Xq′ ∪ {v}, vertex v may belong to Z+, Z−, or Z0;and in the third 
ase if v has a neighbor in Z0, then the sele
tion is not feasible for vertex
over. Let r′ denote the sequen
e obtained by deleting the v-
omponent from r. Dependingon the position of v, we have the following rules for the re
ursion:
• The v-
omponent is + ⇒ zq(r, j) = zq′(r′, j) + wi.
• The v-
omponent is − ⇒ zq(r, j) = zq′(r′, j − 1) for j ≥ 1; zq(r, 0) = NIL.
• The v-
omponent is 0 ⇒ zq(r, j) = zq′(r′, j) if v is not adja
ent to any vertex of Z0,and zq(r, j) = NIL otherwise.Finally, if xq is a forget node and its 
hild is asso
iated with the set Xq = Xq′ \ {v}, thenr is obtained from some r′ of Mq′ by deleting its v-
omponent, where the deleted 
omponent
an be any ∗ ∈ {+,−, 0}. Denoting the 
orresponding row of Mq′ by r′∗, the best lo
al 
hoi
eis:

zq(r, j) = min
∗∈{+,−,0}

zq(r′∗, j).Finding an optimal solution. For any of the two problems, assume that the matri
es Mq havebeen determined for all nodes xq, and let the root of T be xq0
. Then the optimal value for

k Most Vital Nodes Vertex Cover is simply zq0
(r0, k), where row r0 attains minimumin the last 
olumn of Mq0

. But the situation for k Most Vital Nodes Independent Setis more 
ompli
ated. With respe
t to the most vital set, the rows of Mq0

an be 
lassi�eda

ording to the positions of their `−' 
omponents. In this way we have ∑k
i=0

(|Xq0
|

i

) 
lasses17



(where i represents the number of `−'). We have no in�uen
e on the 0/+ distribution; the onlydetail we 
an de
ide is the position of the `−' marks; that is, from whi
h 
lass we 
hoose thesolution. On
e the 
lass is �xed, under this 
onstraint the solution would be the maximumtaken over all 0/+ distributions, let us 
all this the value of the 
lass. Then the overalloptimum of the problem is the minimum value taken over all 
lasses.An optimal set of k verti
es 
an also be 
onstru
ted if we do a little more bookkeepingduring the re
ursive steps. For ea
h triple (q, r, j) we store the relevant pointer(s) showingwhi
h entry (entries) of the 
hild(ren) have given the value of zq(r, j) in the re
ursion. Then,starting from (q0, r0, k) we 
an tra
e all relevant triples (qℓ, rℓ, jℓ) whi
h have 
ontributed tothe 
omposition of zq0
(r0, k). A most vital k-set is obtained by the union of the sets Z−belonging to those sequen
es rℓ. This top-down (partial preorder) traversal needs only O(n)additional steps. Indeed, the union of the Z− 
an be gathered while moving from the forgetnodes to their 
hildren, adding the 
orresponding vertex v to the most vital set if v ∈ Z− inthe a
tual Xq′ .Time analysis. To 
ompute one entry of Mq we need 
onstant time for start, introdu
e andforget nodes. This also in
ludes the side 
onditions on introdu
e nodes, be
ause nonadja
en
yof the new vertex has to be 
he
ked1 with respe
t to fewer than t other verti
es of Z+ or

Z−. Hen
e, the most time-
onsuming 
ase of the re
ursion o

urs at the join nodes. For aparti
ular r, we have 0 ≤ |r−| ≤ j′ ≤ j; i.e., minimum or maximum has to be sele
ted fromat most j + 1 possibilities, whi
h takes at most j 
omparisons. Here j ranges from 0 to k,therefore the 
omputation of an entire row requires at most (k+1)2 steps. There are at most 3trows in any Mq, whi
h is 
onstant whenever treewidth is bounded; and the number of matri
esto be 
omputed is O(n). Consequently, the total number of steps needed is O(nk2) = O(n3)be
ause k ≤ n holds in both problems. Traversing T needs as few as O(n) additional steps. 2Theorem 9 Min Node Blo
ker Independent Set and Min Node Blo
ker VertexCover are polynomial on bounded treewidth graphs. On graphs of order n the problems 
anbe solved in O(n3 log n) time.Proof : The theorem follows from Theorem 8 and Lemma 1. 24.4 CographsTo ea
h 
ograph G with n verti
es, we 
an asso
iate a rooted tree T , 
alled the 
otree of G.Leaves of T 
orrespond to verti
es of the graph G and internal nodes of T are labeled witheither `∪' (union-node) or `×' (join-node). A subtree rooted at node `∪' 
orresponds to theunion of the subgraphs de�ned by the 
hildren of that node, and a subtree rooted at node `×'
orresponds to the join of the subgraphs de�ned by the 
hildren of that node; that is, we addan edge between every two verti
es 
orresponding to leaves in di�erent subtrees. Cographs 
anbe re
ognized in linear time and the 
otree representation 
an be obtained e�
iently [7, 12℄.Moreover, this 
otree 
an easily be transformed in linear time to a binary 
otree with O(n)nodes.Theorem 10 k Most Vital Nodes Independent Set and k Most Vital Nodes Ver-tex Cover are polynomial on 
ographs. On 
ographs of order n, k Most Vital Nodes1Ea
h 
he
k 
an be done in 
onstant time if adja
en
y matrix is used with dire
t addressing. This requires
O(n2) spa
e. 18



Independent Set 
an be solved in O(nk2) time and k Most Vital Nodes Vertex Cover
an be solved in O(n2 + nk2) time, for any k ≥ 1.Proof : Consider a 
ograph G with n verti
es v1, . . . , vn. Given a binary 
otree representation
T of G, we show in the following how to solve the k Most Vital Nodes Independent Setand k Most Vital Nodes Vertex Cover using dynami
 programming.Let x1, . . . , xt be the nodes of T where xr is its root and t is in O(n). For i = 1, . . . , t,denote by Ti the subtree rooted at xi, Gi the subgraph indu
ed by the verti
es 
orrespondingto the leaves of Ti, and Vi these verti
es.Re
ursion for Independent Set. We asso
iate a (k+1)-ve
tor to ea
h node xi of T , i = 1, . . . , t.In the following, a (k +1)-ve
tor is simply 
alled a ve
tor. For ea
h i and ea
h j = 0, 1, . . . , k,we 
ompute zi(j) that is the minimum weight of a maximum independent set on Gi whereexa
tly j verti
es are removed from Gi. These ve
tors are 
omputed `bottom-up' in the 
otree.So, we start by 
omputing ve
tors of leaves and after that the ve
tor of an internal node ifthe ve
tors of its two 
hildren are already 
omputed.Given a node xi of the 
otree, the 
orresponding ve
tor is obtained as follows:

• If xi is a union-node with two 
hildren xℓ and xr, we have no edges between Gℓ and Gr.Then the maximum independent set in Gi is the union of those in Gℓ and Gr. Thus,sin
e we want to �nd a maximum-weight independent set as small as possible, the best
hoi
e is given by zi(j) = minj1+j2=j (zℓ(j1) + zr(j2)).
• If xi is a join-node with two 
hildren xℓ and xr, every vertex in Vℓ is adja
ent to everyvertex in Vr. Then ea
h independent set in Gi is entirely 
ontained either in Gℓ or in

Gr. So, zi(j) = minj1+j2=j (max(zℓ(j1), zr(j2))).
• If xi is a leaf then zi(0) = wi, zi(1) = 0, and zi(j) = NIL for j = 2, . . . , k whi
h meansthat the latter 
on�gurations are infeasible. In the re
ursive step, terms with value NILon the right-hand side are negle
ted, ex
ept when all terms are the same, and in this
ase we de�ne zi(j) = NIL, too.Re
ursion for Vertex Cover. The approa
h is similar to the previous one. We asso
iate ave
tor to ea
h node xi of T , i = 1, . . . , t. For ea
h i and ea
h j = 0, 1, . . . , k, a value zi(j)and a subset Si(j) are 
omputed. Here zi(j) means the minimum weight of a vertex 
over of

Gi where exa
tly j verti
es are removed from Gi, and Si(j) is the subset of verti
es that areneither in
luded in the vertex 
over of Gi nor are removed from Gi.Given a node xi of the 
otree, the 
orresponding ve
tor is obtained as follows:
• If xi is a union-node with two 
hildren xℓ and xr , we have no edges between Gℓ and Gr.Then the minimum vertex 
over in Gi is the union of those in Gℓ and Gr. Thus, sin
ewe want to �nd a minimum-weight vertex 
over as small as possible, the best 
hoi
e isgiven by zi(j) = minj1+j2=j (zℓ(j1) + zr(j2)) and Si(j) = Sℓ(j

∗
1) ∪ Sr(j

∗
2) where j∗1 and

j∗2 are the indi
es that realize the minimum for zi(j). If we have many j∗1 and j∗2 , we
hoose the one with the smallest ∑vs∈Sℓ(j
∗

1
)∪Sr(j∗

2
) ws.

• If xi is a join-node with two 
hildren xℓ and xr then a vertex 
over in Gi has to 
ontainall non-removed verti
es in one of Vℓ or Vr, and also a vertex 
over of the non-removedsubgraph in the other part. On
e we de
ide whi
h part is 
ompletely in
luded as removaland 
over, the best way to sele
t its given number j′ of removed verti
es is to delete19



the j′ verti
es of largest weights of that part. Assuming that j1 verti
es are removedfrom Vℓ and j2 are removed from Vr, we denote by sℓ(j1) and sr(j2) the minimumsum of weights of the remaining |Vℓ| − j1 and |Vr| − j2 verti
es, respe
tively. That is,
sℓ(j1) = w(Vℓ) − max

Y ⊂Vℓ, |Y |=j1
w(Y ), and sr(j2) is de�ned analogously. If j1 > |Vℓ| or

j2 > |Vr|, the value of s is de�ned to be +∞. Then we have
zi(j) = min

j1+j2=j
min (sℓ(j1) + zr(j2), sr(j2) + zℓ(j1))and Si(j) = Sℓ(j1) or Si(j) = Sr(j2), depending on whether the minimum for zi(j) hasbeen obtained from zℓ(j1) or zr(j2).

• If xi is a leaf then zi(0) = zi(1) = 0, zi(j) = +∞ for j = 2, . . . , k, Si(0) = {vi} and
Si(j) = ∅ for j = 1, . . . , k.Finding an optimal solution. For ea
h of the two problems, an optimal solution is obtainedat the root xr of T and its weight is equal to zr(k). Moreover, an optimal set of k removedverti
es 
an be 
omputed step by step in the re
ursion. Indeed, let S−

i (j) be the subset of jremoved verti
es in Gi. For a leaf xi we have S−
i (0) = ∅, S−

i (1) = {vi} and S−
i (j) = ∅ for

j = 2, . . . , k. For a union-node or a join-node xi with two 
hildren xℓ and xr, re
ursion yields
S−

i (j) = S−
ℓ (j∗1) ∪ S−

r (j∗2 ) where j∗1 and j∗2 are the indi
es that realize the minimum for zi(j).Time analysis. For k Most Vital Nodes Independent Set, ve
tors are 
omputed in
O(k) for ea
h leaf and in O(k2) for ea
h union-node and ea
h join-node. Sin
e t = O(n), thealgorithm runs in O(nk2).For k Most Vital Nodes Vertex Cover, the 
omputation of ve
tor for a leaf takes
O(k) time. For a union-node and a join-node, we have to 
ompare and sele
t a minimumvalue from at most j + 1 possibilities and determine a subset of verti
es whi
h attains thisminimum. Note that at most k verti
es of largest weight are relevant for s. For leaves of the
otree this is just one element and 
an be viewed to be in de
reasing order of weight; and thenfor any union- or join-node the (at most) k largest elements 
an be sele
ted in O(k) time fromthe lists of the 
hildren using merge sort and keeping the de
reasing order. Sin
e∑vs∈Si(j)

wsand Si(j) are obtained in O(n) for any given i and j, the 
omputation of ve
tor 
orrespondingto an internal node takes O(k2 + n). Therefore, the algorithm runs in O(n2 + nk2). Speed-upfor the sets Si(j) 
an also be made if we do not expli
itly list them at ea
h node but onlystore their values and the pointers to the 
hildren from whi
h they have been obtained. 2Theorem 11 Min Node Blo
ker Independent Set and Min Node Blo
ker VertexCover are polynomial on 
ographs. On 
ographs of order n the problems 
an be solved in
O(n3 log n) time.Proof : The theorem follows from Theorem 10 and Lemma 1. 25 Con
lusionIn this paper we studied the 
omplexity of the k most vital nodes and min node blo
kerversions of the maximum-weight independent set and minimum-weight vertex 
over problems.While maximum-weight independent set and minimum-weight vertex 
over are polynomial on20



bipartite graphs, the k most vital nodes and min node blo
ker versions be
ome NP-hard, andwe also proved that most vital nodes have no ptas. We obtained further that for k > 0 the
omplementarity of maximum independent sets and minimum vertex 
overs does not remainvalid.An interesting perspe
tive for future resear
h is to study the 
omplexity of the k mostvital nodes and min node blo
ker versions of the maximum-weight independent set problemfor graphs of bounded 
liquewidth [9℄ and graphs of bounded NLC-width [21℄, that generalize
ographs. Moreover, it would be worth studying the 
omplexity and approximation of theseversions on further 
lasses of graphs for whi
h maximum-weight independent set and minimum-weight vertex 
over are polynomial.We 
lose the paper with some expli
itly stated problems.Conje
ture 1 The problems Min Node Blo
ker Independent Set and Min NodeBlo
ker Vertex Cover have no ptas on bipartite graphs.Problem 1 Are the problems k Most Vital Nodes Independent Set , k Most Vi-tal Nodes Vertex Cover , Min Node Blo
ker Independent Set and Min NodeBlo
ker Vertex Cover solvable in polynomial time on graphs of bounded 
liquewidth?A
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