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The problems of k most vital nodes/edges and min node/edge bloker have been studiedfor various problems, inluding shortest path, spanning tree, maximum �ow, assignment, 1-median, 1-enter and maximum mathing. The k most vital edges problem with respet toshortest path was proved NP-hard [1℄. Later, k most vital edges/nodes shortest path (andmin node/edge bloker shortest path, respetively) were proved not 2-approximable (not 1.36-approximable, respetively) if P6= NP [15℄. For spanning tree, k most vital edges is NP-hard[11℄ and O(log k)-approximable [11℄. In [22℄ it is proved that k most vital edges maximum �owis NP-hard. Also k most vital edges and min edge bloker assignment are proved NP-hardand not 2-approximable (not 1.36-approximable, respetively) if P6= NP [2℄. In [4℄ it is provedthat k most vital edges (nodes) 1-median (1-enter) and min edge (node) bloker 1-median (1-enter) are NP-hard to approximate within a fator c, for some c > 1. For maximum mathing,min edge bloker is NP-hard even for unweighted bipartite graphs [24℄, but polynomial forgrids and trees [20℄; and the most vital nodes problem is NP-hard for weighted bipartite graphsbut polynomial for unweighted ones, both results proved in [23℄.In this paper, we are interested in determining a subset of k verties of the graph whosedeletion auses the largest derease in the maximum weight of an independent set or theminimum weight of a vertex over. These problems are referred to as k Most Vital NodesIndependent Set and k Most Vital Nodes Vertex Cover . We also onsider theomplementary versions of these problems, where given a threshold, we have to determine asubset of verties of minimum size that has to be removed suh that in the resulting graph themaximum-weight independent set or minimum-weight vertex over is at most this threshold.These problems are referred to as Min Node Bloker Independent Set and Min NodeBloker Vertex Cover.In Setion 3 we onsider bipartite graphs. It turns out that a substantial jump in omplex-ity ours between unweighted and weighted graphs for all these four problems. More preiselywe show that the unweighted versions are polynomial while the weighted versions are NP-hardand the most vital nodes problems have no ptas. In Setion 4 we deal with graphs with weightson their verties, whih have either a tree-like struture or a representation assoiated withtrees. These inlude trees themselves, yles, more generally graphs of bounded treewidth,and ographs (graphs ontaining no indued P4). For these lasses we design polynomial-timealgorithms for all the four problems mentioned above.In fat, trees and yles have treewidth 1 and 2, respetively, therefore our general algo-rithm for bounded treewidth works for the former lasses, too. Nevertheless, the algorithmson trees and yles are simpler and this is why we inlude them here. It should be notedfurther that for k �xed, k Most Vital Nodes Independent Set and k Most VitalNodes Vertex Cover are polynomial-time equivalent to the ase k = 0 and sine thereare only polynomially many subsets of k removable verties, therefore k Most Vital NodesIndependent Set and k Most Vital Nodes Vertex Cover are solvable e�iently onevery graph lass where the largest independent set and smallest vertex over are tratable.On the other hand if k → ∞ then a formula expressing the present problems in seond-order monadi logi would have unbounded length. Consequently, the general approah tolinear-time algorithms via seond-order monadi logi (MSOL) is not appliable here.In every graph, independent sets and vertex overs are omplementary, and an independentset is of maximum weight if and only if its omplement is a vertex over of minimum weight.Contrary to this, however, it follows from our results that for k ≥ 1 the optimal solutions of kMost Vital Nodes Independent Set and k Most Vital Nodes Vertex Cover anbe substantially di�erent. 2



The present paper is a substantially extended version of the limited-length onfereneontribution [3℄ where only independent sets are onsidered and only a part of proofs is inludedand only the independene number is studied. In partiular, the non-approximability of mostvital nodes for vertex over has never been investigated before.2 PreliminariesLet G = (V,E) be an undireted graph, V = {v1, . . . , vn}, where eah vertex vi has a weight
wi. Given an edge e = vivj ∈ E, by onvenient abuse of notation, we shall write vi, vj ∈ e andif vi, vj ∈ V ′, V ′ ⊆ V then we shall write that e ⊂ V ′. When removing a set V ′ of verties from
G, let us denote the remaining graph by G− V ′. If H is a subgraph of G then V (H) denotesthe vertex set of H. Moreover, for a subset V ′ of verties from G, the subgraph indued by
V ′ is denoted by G[V ′].A maximum-weight independent set of G is a subset of verties of maximum weight whereany two verties are nonadjaent. A minimum-weight vertex over of G is a subset of vertiesof minimum weight where every edge of G ontains at least one vertex of the subset. Wedenote by α(G) the maximum weight of an independent set and by τ(G) the minimum weightof a vertex over. Moreover, α(k) represents the minimum of α(G−V ′) after removing any setof verties V ′ of size k; τ(k) is de�ned similarly. A mathing is a set of mutually vertex-disjointedges. The largest number of edges in a mathing is denoted by ν(G).In this paper we are interested in studying the omplexity of the following problems.
k Most Vital Nodes Independent SetInput: An undireted graph G = (V,E) where eah vertex vi has a weight wi, and an inte-ger k.Output: A subset V ′ ⊆ V of size k suh that the maximum weight α(G−V ′) of an indepen-dent set in G − V ′ is minimum.
k Most Vital Nodes Vertex CoverInput: An undireted graph G = (V,E) where eah vertex vi has a weight wi, and aninteger k.Output: A subset V ′ ⊆ V of size k suh that the minimum weight τ(G − V ′) of a vertexover in G − V ′ is minimum.Min Node Bloker Independent SetInput: An undireted graph G = (V,E) where eah vertex vi has a weight wi, and aninteger U .Output: A subset V ′ ⊆ V of minimum size suh that the maximum weight α(G − V ′) of anindependent set in G − V ′ is at most U .Min Node Bloker Vertex CoverInput: An undireted graph G = (V,E) where eah vertex vi has a weight wi, and aninteger U .Output: A subset V ′ ⊆ V of minimum size suh that the minimum weight τ(G − V ′) of avertex over in G − V ′ is at most U . 3



Remark 1 k Most Vital Nodes Independent Set and Min Node Bloker Inde-pendent Set are polynomial-time equivalent. Indeed, if an algorithm Ak solves k MostVital Nodes Independent Set for all 1 ≤ k ≤ n, then we an run Ak for k = 1, . . . , nand hoose the smallest k yielding optimum at most U . Conversely, if an algorithm BU solvesMin Node Bloker Independent Set with any bound U , we an apply binary searh toloate the smallest U that requires the removal of at most k verties.Applying binary searh and its aelerated logarithmi version, we obtain the followingrelation between the `most vital nodes' and `min node bloker' problems.Lemma 1 If there exists an algorithm that solves the k most vital nodes version of an opti-mization problem P on graphs with n verties in O(t) time, then the min node bloker versionof P an be solved in O(t log n) time. Moreover, for any ǫ > 0, the optimum for min blokeran be approximated within (1 + ǫ) in O(t(log log n + log 1/ǫ)) time.Proof : If the value of an optimum solution is at most U , then the optimal bloker isthe empty set, whih an be tested in O(t) time by assumption. Otherwise, to obtain a
(1 + ǫ)-approximation we �rst apply the approah of [13℄ to design a 16-approximation. Wereursively ompute triples (ℓ, u, i) suh that ℓ is a lower bound, u is an upper bound, and
(u/ℓ)1/4 ≤ 22i

< (u/ℓ)1/2. The values are initialized to ℓ0 = 1, u0 = n, i0 = ⌈log log n⌉ − 2;they learly satisfy (u0/ℓ0)
1/4 = 4

√
n ≤ 22i0 <

√
n = (u0/ℓ0)

1/2 for all n > 1.To determine the next triple (ℓ′, u′, i′) if (ℓ, u, i) is already at hand, we test in O(t) timewhether the optimum is above or under k := ℓ · 22i . Depending on the answer, ℓ · 22i beomeseither ℓ′ or u′, and we keep u′ = u or ℓ′ = ℓ aordingly. The update from i to i′ is very easy,for the following reason. We learly have i′ ≤ i beause we never inrease u or derease ℓ. For
u′ = u we apply the ondition 22i
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.Sine 22i′ should not be smaller than the left-hand side, i′ ≥ i − 2 must hold in either ase.Thus, seleting the proper value of i′ ∈ {i − 2, i − 1, i} requires at most two omparisons,heking whether i′ = i or i′ = i − 1 works for (u′, ℓ′).On the other hand, for u′ = u the ondition 22i ≥ (u/ℓ)1/4 implies
u′

ℓ′
≤ u

u1/4 ℓ3/4
=
(u

ℓ

)3/4
,and for ℓ′ = ℓ we an use 22i

< (u/ℓ)1/2 to obtain
u′

ℓ′
≤ (uℓ)1/2

ℓ
=
(u

ℓ

)1/2
.4



The former upper bound is less restritive, but in any ase after three iterations we surelyhave
(

u′′′

ℓ′′′

)1/2

<
(u

ℓ

)27/128
<
(u

ℓ

)1/4
< 22i

,and onsequently i′′′ < i holds. This implies that after at most O(log log n) iterations we reah
i = 0, whih means (u/ℓ)1/4 ≤ 2 and u ≤ 16ℓ. Then we need at most ⌈3 + log 1/ǫ⌉ steps ofbinary searh to obtain a pair (u∗, ℓ∗) with u∗ ≤ (1 + ǫ)ℓ∗. 2Remark 2 On some restrited lasses of problem instanes, the algorithm above an be usedto determine not only approximate but also exat solutions of min node bloker problems moree�iently than O(t log n). Namely, if a lass satis�es opt = no(1) for all feasible instanes, thenwe an proeed as follows. First, applying logarithmi binary searh, �nd a 16-approximation
(u, ℓ) in O(t log log n) time. Then u − ℓ = no(1) holds, and hene binary searh to �nd exatoptimum takes as short as o(t log n) time. This orresponds to the hoie ǫ = 1/u.For proofs onerning the non-existene of a ptas (polynomial-time approximation sheme),we shall use the notion of gap-preserving redution introdued in [19℄.Let A be a maximization problem and A′ a minimization problem. Then A is said to begap-preserving reduible to A′ with parameters (c, ρ), (c′, ρ′) (where ρ, ρ′ ≥ 1), if there is apolynomial-time algorithm that transforms any instane x of A to an instane x′ of A′ suhthat the following properties hold:1. optA(x) ≥ c ⇒ optA′(x′) ≤ c′2. optA(x) < c

ρ ⇒ optA′(x′) > ρ′ · c′Gap-preserving redutions have the following property. If it is NP-hard to deide whetherthe optimum of an instane of A is at least c or less than c
ρ , then it is NP-hard to deidewhether the optimum of an instane of A′ is at most c′ or greater than ρ′ ·c′. This NP-hardnessimplies that A′ is hard to ρ′-approximate.3 Complexity on bipartite graphsIn a graph, a maximum independent set is a omplementary set of a minimum vertex over,even for weighted graphs. Nevertheless, onerning the k most vital nodes (min node bloker)versions an optimum solution for k Most Vital Nodes Independent Set (Min NodeBloker Independent Set) is not neessarily an optimum solution for k Most VitalNodes Vertex Cover (Min Node Bloker Vertex Cover), even for unweighted bi-partite graphs. A lass of ounterexamples is that of omplete bipartite graphs with vertexlasses of unequal size, i.e. the graphs Kn,m with n > m ≥ 1. Assume 1 ≤ k ≤ min (m,n − m).Then the optimum solution for k Most Vital Nodes Independent Set is to remove kverties from the larger vertex lass, this dereases the independene number from n to n− k;whereas for k Most Vital Nodes Vertex Cover we have to remove k verties from thesmaller vertex lass, this dereases the minimum size of a vertex over from m to m − k.Hene, there is a substantial di�erene already for k = 1, as illustrated by the instane Gfrom Figure 1. The vertex labeled 1 is ritial with respet to the vertex overing number (its5
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2Figure 1: Instane Gremoval yields a subgraph whose minimum vertex over is the empty set), and eah vertexlabeled 2 is ritial with respet to the independene number, but not onversely.Maximum-weight independent set and minimum-weight vertex over are polynomial-timesolvable on bipartite graphs using the K®nig-Egerváry theorem [10℄. We show in this setionthat the k most vital nodes and min node bloker versions beome NP-hard on bipartitegraphs and k most vital nodes do not admit a ptas. Nevertheless, all these problems remainpolynomial-time solvable in the unweighted ase. We �rst prove this latter fat. Its `min nodebloker' part was proved independently by Costa et al. [8℄.Theorem 1 k Most Vital Nodes Independent Set and k Most Vital Nodes Ver-tex Cover and also Min Node Bloker Independent Set and Min Node BlokerVertex Cover are polynomial for unweighted bipartite graphs. Moreover, if a largest math-ing and a smallest vertex over are given with the input, all these problems are solvable inlinear time.Proof : Let G = (V,E) be a bipartite input graph on n verties. From K®nig's theorem[18℄ we know that τ(G) = ν(G) holds; let us denote here their ommon value by t. Thelassial proof of the equality τ = ν is algorithmi and also yields a maximum mathing
M = {e1, . . . , et} and a minimum vertex over X = {v1, . . . , vt} in polynomial time. Moreover,we have α(G) = n − t (known as a Gallai-type identity) and V \ X is a largest independentset in G. Let us introdue the further notation R = V \ V (M) and r = |R| = n − 2t; i.e., thenumber and the set of verties not ontained in any of the mathing edges in M .We an show now that all the four problems are solvable in linear time, as follows.
k Most Vital Nodes Independent SetIf k ≤ |R|, we remove any k verties from R. Sine the remaining graph (of order n−k) stillontains the mathing M of size t, the independene number annot be larger than n− k − t.It is also lear that α annot be dereased by more than k if we remove just k verties, henethe solution obtained is optimal.If k > |R|, we remove the entire R and the verties of ⌊(k − r)/2⌋ edges from M , andone further vertex if k − r is odd. This dereases the size of M by ⌈(k − r)/2⌉ and theindependene number by ⌊(k + r)/2⌋, and hene the new value is ⌈(n − k)/2⌉ (originally wehad α(G) = (n + r)/2). This derease is optimal, beause after the removal of k verties atleast half of the remaining n − k belong to the same vertex lass.
k Most Vital Nodes Vertex Cover 6



If k ≤ t, we simply remove k verties of X. The remaining part of X is a vertex overin the smaller graph, hene τ is dereased by exatly k, whih is optimal beause at least
t − k edges of M would remain in the graph after the removal of any k verties. If k > t,then removing X the graph beomes edgeless and the k − t verties outside X an be hosenarbitrarily for removal.Min Node Bloker Independent SetIf U ≥ n − t, no verties need to be removed. If t ≤ U < n − t, we remove n − t − Uverties of R. If U = t − ℓ where 1 ≤ ℓ ≤ t, we remove the entire R and the 2ℓ verties of
ℓ arbitrarily hosen edges from M . All these hoies are optimal, as follows from the proofonerning most vital nodes.Min Node Bloker Vertex CoverAll we need is to remove t − U verties of X. 2Remark 3 If we are interested in determining just the number of verties to be removed forMin Node Bloker Independent Set and Min Node Bloker Vertex Cover, given
n and τ of the bipartite input graph, the problem is solvable in onstant time beause theanswer an be written as an expliit funtion of n and τ .We show next that the four problems beome NP-hard in the weighted ase. The followingnotion will be of essene.De�nition 1 Let G = (V,E) be an undireted graph. The bipartite inidene graph of G isthe bipartite graph H whose vertex set is V ∪E and there is an edge in H between v ∈ V and
e ∈ E if and only if e is inident to v in G.In order to prove NP-hardness, beside (unweighted) Independent Set we shall alsoonsider the deision problem assoiated to its omplementary version, Clique, de�ned asfollows:CliqueInput: A graph G = (V,E) and an integer ℓ.Question: Does G ontain a lique of size at least ℓ, that is a subset V ′ ⊆ V with |V ′| ≥ ℓsuh that every two verties in V ′ are joined by an edge in E ?Clique is one of the well known NP-hard problems [14℄. We an onsider that ℓ > 3 sineotherwise Clique is solvable in polynomial time.Theorem 2 k Most Vital Nodes Independent Set and k Most Vital Nodes Ver-tex Cover and also Min Node Bloker Independent Set and Min Node BlokerVertex Cover are strongly NP-hard even for bipartite graphs.Proof : We �rst prove hardness for k Most Vital Nodes Independent Set and k MostVital Nodes Vertex Cover. For both problems let the instane be a graph G = (V,E)with n verties and m edges, and an integer ℓ; and let H denote the bipartite inidene graphof G. The onstrution of H from G requires linear time only.For k Most Vital Nodes Independent Set we make redution from the deisionproblem assoiated to Independent Set. Eah vertex of E in H has weight 1 and eah vertex7



of V in H has weight n2. Due to this rather unbalaned weighting, the unique maximum-weight independent set in H is V ; i.e., α(H) = n3.We show in the following that if there is an independent set of size at least ℓ in G then Hontains a set S of ℓ verties suh that α(H − S) = (n − ℓ)n2, and otherwise removing anysubset S of ℓ verties from H, we have α(H − S) ≥ (n− ℓ)n2 + 1. Sine verties from V haveweight n2 and those from E have weight 1, in order to have a maximum-weight independentset as small as possible after removing a set S of size ℓ, S has to be inluded in V .If G ontains an independent set S of size ℓ, then removing S from the vertex set of H, weobtain a graph whose maximum-weight independent set is V \S. This set has weight (n−ℓ)n2.If G ontains no independent set of size ℓ, then any S ⊂ V of size ℓ ontains at least anedge e ∈ E in G, and this e in H is nonadjaent to the entire V \ S. Thus, when we removeany set S of ℓ verties from H, α(H − S) ≥ (n − ℓ)n2 + 1.In order to prove the NP-hardness of k Most Vital Nodes Vertex Cover, we applythe deision problem assoiated to Clique, with the same weights on H as above. Sinethe entire E has smaller weight than just one vertex from V , minimum vertex overs in anysubgraph of H are subsets of E. We show that if there is a lique of size at least ℓ in G then
τ(H − S) = m − ℓ(ℓ−1)

2 , and otherwise removing any subset S of ℓ verties from H, we have
τ(H − S) ≥ m − ℓ(ℓ−1)

2 + 1.If G ontains a lique V ′ of size ℓ, then removing V ′ from the vertex set of H, we obtain agraph whose minimum-weight vertex over is E \ E′, where E′ is the edge set indued by V ′in G. This vertex over has weight m − ℓ(ℓ−1)
2 .Suppose that G ontains no lique of size ℓ. Let S ⊂ V ∪ E be a set of ℓ verties in H.From a vertex over, this S saves us the seleted edges S ∩E, plus those edges of G from the

E-part of H whih have both endpoints in S ∩ V . Consequently,
τ(H − S) ≥ m − |E(G[S ∩ V ])| − |S ∩ E| ≥ m − ℓ(ℓ − 1)

2
+ 1where the last inequality holds beause if S ∩ E 6= ∅ then S ∩ V indues at most (ℓ−|S∩E|

2

)

<
(

ℓ
2

)

− |S ∩ E| edges (for ℓ > 3), and if S ∩ E = ∅ then S annot be a lique in G and heneindues fewer than (ℓ2) edges.Due to Remark 1, Min Node Bloker Independent Set and Min Node BlokerVertex Cover are also strongly NP-hard. 2We are going to prove some approximation hardness results, too. In the redutions, thefollowing problems will be used.Dense k SubgraphInput: An undireted graph G = (V,E).Output: A subset V ′ ⊆ V of size k so as to maximize the number of edges whose bothendpoints are in V ′.Max k Vertex CoverInput: An undireted graph G = (V,E).Output: A subset V ′ ⊆ V of size k so as to maximize the number of edges with at least oneendpoint in V ′. 8



Max k Vertex Cover-B is the version ofMax k Vertex Cover where the maximumdegree of the graph is at most B.We extrat the key points of the redutions in the following lemma on independent setsand vertex overs.Lemma 2 Let G = (V,E) be a graph with n verties and m edges, and let H be the bipartiteinidene graph of G. Then the following properties are valid.
(1a) Suppose that G has maximum degree at most B, and the weights in H are wv = B + 1for all v ∈ V and we = 1 for all e ∈ E. Then, for any V ′ ⊂ V and any independent set

S disjoint from V ′ in H, there exists an independent set S′ suh that w(S′) ≥ w(S)and S′ ∩ V = V \ V ′. Thus, if S′ is maximal, then
S′ = (V \ V ′) ∪ {e ∈ E | e ⊂ V ′}and, in partiular, α(H − V ′) ≥ (B + 1) · (n − |V ′|) + |{e ∈ E | e ⊂ V ′}|.

(1b) Under the onditions of (1a), for any V ′ ⊂ V ∪E with |V ′| < |V | there exists a V ′′ ⊂ Vsuh that |V ′′| = |V ′| and the maximum weight of an independent set in H − V ′′ is notlarger than that in H − V ′. As a onsequene,
α(H − V ′) ≥ α(H − V ′′) = (B + 1) · (n − |V ′′|) + |{e ∈ E | e ⊂ V ′′}|.

(2a) Suppose that the weights in H are wv = d(v) (vertex degree) for all v ∈ V and we = 1for all e ∈ E. Then, for any V ′ ⊂ V ∪ E, there exists a minimum-weight vertex over
T ⊆ E in H − V ′, namely T = {e ∈ E \ V ′ | e 6⊂ V ′}.

(2b) Beside the onditions of (2a), assume further that G is onneted and ontains at leastone yle. Then, for any V ′ ⊂ V ∪ E with |V ′| ≤ |V | and |V ′| being at least as largeas the shortest yle length in G, there exists a V ′′ ⊂ V suh that |V ′′| = |V ′| and theminimum weight of a vertex over in H − V ′′ is not larger than that in H − V ′. As aonsequene,
τ(H − V ′) ≥ τ(H − V ′′) = |{e ∈ E | e 6⊂ V ′′}|.Moreover, the sets V ′′ in both (1b) and (2b) an be found e�iently.Proof : (1a) If S ontains all verties of V \ V ′, then we have nothing to prove. Otherwisewe modify S step by step, keeping it independent and not dereasing its value, until it ontainsthe entire V \ V ′. Hene, assume that v ∈ V is a vertex suh that v /∈ V ′ ∪ S. If v has noneighbor in S ∩ E, then S ∪ {v} is a proper extension. Suppose that this is not the ase;i.e., there is an edge e ∈ E ∩ S suh that v ∈ e. We now modify S to (S \ NH(v)) ∪ {v},where NH(v) denotes the set of verties adjaent to v in H, that is the set of edges inidentto v in G. In this way we have removed at most B neighbors of v from S, eah of weight 1,and inserted v of weight B + 1, hene the total weight of the modi�ed set is at least w(S).Moreover, the set remains independent beause all neighbors of v have been removed. Thus,after |(V \ V ′) \ S| steps, the required set S′ is obtained.

(1b) If V ′ ⊂ V , then V ′′ = V ′ is a proper hoie. Hene suppose V ′ ∩ E 6= ∅. Let usintrodue the notation n′ = |V ′ ∩ V |, m′ = |E(G[V ′ ∩ V ]) \ (V ′ ∩ E)|. By (1a) we see that9



α(H −V ′) = (B +1) · (n−n′)+m′ holds. Choose e ∈ V ′∩E and v ∈ V \V ′, and modify V ′ tothe set (V ′\{e})∪{v}. This keeps ardinality unhanged, while the �rst term (B+1) ·(n−n′)dereases by preisely B + 1. Moreover, sine G has maximum degree at most B, the seondterm an inrease by at most B when we insert v into the set, and an further inrease by atmost 1 when we omit e. Thus, the sum does not inrease. Repeatedly eliminating all e ∈ Efrom V ′, the required V ′′ is obtained. Then (1a) implies that the independent set of maximumweight in H − V ′′ onsists of all v /∈ V ′′ and all e ⊂ V ′′.
(2a) Consider any vertex over T of H − V ′. Suppose v ∈ T ∩ V for some vertex v /∈ V ′.Remove v from T and insert the entire neighborhood NH(v) \ V ′ of v in H into T . Sine
wv = d(v) ≥ |NH(v) \ (V ′ ∪ T )|, this modi�ation does not inrease the weight of T . After atmost |V | − |V ′| steps all verties of V are eliminated from T .
(2b) Due to (2a), if V ′ ⊂ E, then τ(H − V ′) = |E| − |V ′|. In this ase we an get an at leastas good V ′′ by hoosing a |V ′|-element subset of V whih indues a onneted subgraph of Gontaining a shortest yle. On the other hand, if V ′ ⊂ V , then we have nothing to prove.Hene, assume that V ′ ∩ V 6= ∅ and V ′ ∩ E 6= ∅.If there is an edge e = vv′ ∈ V ′ suh that v ∈ V ′ and v′ /∈ V ′, then we replae e with v′in V ′. This modi�ation keeps |V ′| unhanged, and it does not inrease τ(H − V ′) beause
e is a subset of the modi�ed V ′ and therefore it does not have to be put into a vertex overof the new H − V ′. If no suh e exists but V ′ 6⊂ V , we onsider any e′ ∈ V ′ ∩ E. Sine Gis onneted, there is a path from e′ to V ′ ∩ V , and its last edge say e = vv′ satis�es theonditions e ∈ E \ V ′, v ∈ V ′, v′ /∈ V ′. Let us replae e′ with e in V ′. Then both |V ′| and
τ(H−V ′) remain unhanged, and we are bak to the previous situation where the replaementof e with v′ maintains the onditions but dereases the size of V ′ ∩ E. Hene, the repeatedappliation of these operations eliminates all elements of V ′ from E. 2Theorem 3 k Most Vital Nodes Independent Set has no ptas even for bipartite graphsif P6= NP. k Most Vital Nodes Vertex Cover has no ptas even for bipartite graphs ifNP * ∩δ>0 BPTIME (2nδ

), where ∩δ>0 BPTIME (2nδ
) is the lass of problems that admitrandomized algorithms that run in time 2nδ for some onstant δ > 0.Proof : For both problems, we onstrut gap-preserving redutions. Throughout the proof,

H denotes the bipartite inidene graph of the input graph G = (V,E), the latter having nverties and m edges.
k Most Vital Nodes Independent Set: We prove the non-existene of a ptas for k =
n/2, onstruting a gap-redution from Max n/2 Vertex Cover-B to n/2 Most VitalNodes Independent Set, where instanes of the former are restrited to graphs G of max-imum degree at most B. In Theorem 4 of [5℄, it is proved that there exists a onstant ρ > 1suh that it is NP-hard to distinguish whether suh a graph G has opt(G) = m or opt(G) < m

ρ .In this ase, let the verties of H have weight wv = B + 1 for all v ∈ V and we = 1 for all
e ∈ E.Consider �rst the ase opt(G) = m and let V ′ be an optimum solution in G for Max n/2Vertex Cover-B. Then removing V \ V ′ from the vertex set of H, we obtain a graph inwhih the maximum weight of an independent set is ((B +1)/2) ·n, as implied by part (1a) ofLemma 2. On the other hand, parts (1a) and (1b) together yield that after the removal of any
n/2 verties from H, there always remains an independent set of at least that large weight,thus opt(H) = B+1

2 · n. 10



Consider now the ase opt(G) < m
ρ and let V ′ be an optimum solution in G for Max

n/2 Vertex Cover-B. Using part (1a) of Lemma 2, when removing V \ V ′ from the vertexset of H, we obtain a graph in whih the maximum weight of an independent set is ((B +
1)/2) · n + m − opt(G). On the other hand, parts (1a) and (1b) together yield that after theremoval of any n/2 verties from H, there always remains an independent set of at least thatlarge weight, thus opt(H) = B+1

2 · n + m − opt(G) > B+1
2 · n + m − m

ρ ≥ B+1
2 · n · ρ′, where

ρ′ = 1 + 2(1−1/ρ)
B+1 sine m ≥ n.

k Most Vital Nodes Vertex Cover: We onstrut a gap-preserving redution from theDense k Subgraph problem. To ahieve this goal, we �rst analyze whih instanes are hardfor Dense k Subgraph. In Theorem 1.1 of [16℄ it is proved that the problem has no ptas inthe range k = Θ(n) if NP * ∩δ>0 BPTIME (2nδ
).In general, the ondition k = Θ(n) implies opt(G) = Θ(m) beause for c := k/n theseletion of a k-element set at random indues an expeted number of (k2)/(n2) = (c2 − o(1))medges, whih is a positive fration of E. We observe further that non-approximability remainsvalid for instanes restrited to onneted input graphs ontaining at least one yle of length3. Indeed, let G′ be obtained from G taking a new vertex w and inserting the new edges vwfor all v ∈ V . We view G′ as an instane of Dense (k + 1) Subgraph. Denote by opt theoptimum value of G and by opt′ the optimum value of G′. Clearly opt′ = opt + k. Moreover,we may assume without loss of generality that a densest subgraph of G′ ontains w. Indeed,if the algorithm on G′ �nds a solution V ′ of value val′ not ontaining w, then we remove avertex whih has minimum degree in the subgraph indued by V ′ and insert w into V ′. Thistransformation (exeutable in linear time) does not derease the number of edges inside V ′.Then, restriting attention to the (k +1)-subgraphs ontaining w in G′ they are in one-to-oneorrespondene with the k-subgraphs of G. This bijetion yields val = val′ − k.Let ε > 0 be �xed, and suppose that an algorithm �nds a solution on G′ with value

val′ ≥ (1 − ε
3) opt′. Then the orresponding solution on G has value

val = val′ − k ≥ (1 − ε

3
) opt′ − k = (opt′ − k) − ε

3
opt′ = (1 −

ε
3 opt′

opt
) opt

= (1 −
ε
3 (opt + k)

opt
) opt = (1 − (

ε

3
+

ε/3

opt/k
)) opt ≥ (1 − ε) optbeause opt ≥ k/2 (exept for the rather trivial ase where G is a mathing and k is odd).Thus, a ptas on the onneted instanes of type G′ would yield a ptas on general instanes

G. As a onsequene, we may assume without loss of generality that all input graphs areonneted and ontain at least one yle of length 3, hene making Lemma 2 (2b) appliable.Turning now to the gap-preserving redution, let the verties of the bipartite inidenegraph H of G have weight wv = d(v) for v ∈ V and we = 1 for e ∈ E. The ase k = n beingtrivial, we assume k < n and hene opt(G) < m.Consider �rst the ase opt(G) = v and let V ′ be an optimum solution in G for Dense
k Subgraph, that is a set of k verties that indues v edges. Then removing V ′ from thevertex set of H, we obtain a graph whose minimum-weight vertex over is not larger than
|E \ E′|, where E′ is the edge set indued by V ′ in G, as implied by part (2a) of Lemma 2.On the other hand, parts (2a) and (2b) together yield that after the removal of any subset of
k verties from H, there always remains a minimum-weight vertex over of at least that largeweight and thus opt(H) = m − opt(G) = m − v.11



Consider now the ase opt(G) < v
ρ and let V ′ be an optimum solution in G for Dense kSubgraph. Using part (2a) of Lemma 2, when removing V ′ from the vertex set of H, weobtain a graph whose minimum-weight vertex over is not larger than |E \E′|, where E′ is theedge set indued by V ′ in G, and hene we have opt(H) = τ(H − V ′) = |{e ∈ E | e 6⊂ V ′}|.On the other hand, parts (2a) and (2b) together yield that after the removal of any subsetof k verties from H, there always remains a minimum-weight vertex over of at least thatlarge weight and thus denoting c′ := v/m and ρ′ := 1−c′/ρ

1−c′ we obtain opt(H) = m − opt(G) >
m− v

ρ = ρ′(m− v). Here c′ < 1 beause opt(G) < m; moreover, as we noted at the beginning,
c′ ≥ c2 − o(1) > 0 and hene ρ > 1 implies ρ′ > 1. 24 Graph lasses related to tree struturesIn this setion we onsider graph lasses representable over tree strutures (trees, graphs ofbounded treewidth, ographs), and prove that they admit algorithms solving the onsideredfour problems in polynomial time. E�ient solvability for the graph lasses in the �rst twosubsetions are implied by the results of the third subsetion, too, but the methods for theformer are simpler. The �avor of our algorithm for graphs of bounded treewidth is similarto that of the one in [23℄, whih solves related problems on maximum mathings in pseudo-polynomial time and is, to our best knowledge, the �rst work applying dynami programmingfor node/edge interdition. The mathing interdition problem in the partiular lass of treeswith its dynami programming approah was also studied in [20℄.4.1 TreesTheorem 4 k Most Vital Nodes Independent Set and k Most Vital Nodes VertexCover are polynomial on trees. On trees of order n the problems an be solved in O(nk2)time, for any k ≥ 1.Proof : Our general approah is to �nd not only a set of k most vital nodes but simultaneouslyalso the value of a orresponding largest independent set or smallest vertex over. For thispurpose we view the input as a rooted tree with an arbitrarily hosen root, and organizeomputation aording to a postorder traversal.Consider any tree T with verties v1, . . . , vn. Eah vertex vi an have three positions in asolution, that we shall denote by marks +,−, 0 as follows:

• `+' means that vi is seleted into an independent set or a vertex over;
• `−' means that vi is seleted for deletion;
• `0' means that vi is none of the above two types.In a solution exatly k marks `−' have to our.The subtree rooted in vi is denoted by Ti. For eah i = 1, . . . , n, eah ∗ ∈ {+,−, 0}, andeah j = 0, 1, . . . , k, a value zi(j, ∗) will be omputed. This zi(j, ∗) represents the minimumahievable weight of a solution (largest independent set or smallest vertex over) on Ti underthe onditions that exatly j verties are removed from Ti and vi has mark ∗. For the reursiveomputation the hildren of vi with degree d will be denoted by vi1 , . . . , vid . We traverse T inpostorder and apply dynami programming. 12



Reursion for Independent Set. If vi is marked `+', then all its hildren must have `−' or `0',sine otherwise two verties seleted for the independent set would be adjaent. Moreover,
zi(j, ∗) requires that the total number of verties marked `−' should be exatly j in Ti. On theother hand, we have one and only one way to make the �nal result as small as possible: deidewhih of the verties should be marked with `−'. One this has been deided, the distributionof `+' and `0' positions aims at maximizing the total weight of `+'. This leads to the followinggeneral reursions:

zi(j,+) = wi + min
j1,...,jd≥0

j1+...+jd=j

d
∑

ℓ=1

min (ziℓ(jℓ,−), ziℓ(jℓ, 0)) ,

zi(j,−) = min
j1,...,jd≥0

j1+...+jd=j−1

d
∑

ℓ=1

min (ziℓ(jℓ,−), max (ziℓ(jℓ,+), ziℓ(jℓ, 0))) ,

zi(j, 0) = min
j1,...,jd≥0

j1+...+jd=j

d
∑

ℓ=1

min (ziℓ(jℓ,−), max (ziℓ(jℓ,+), ziℓ(jℓ, 0))) ,For a leaf vi we learly have zi(0,+) = wi and zi(1,−) = zi(0, 0) = 0. Further, to indiatethat all other ombinations of j ∈ {0, 1, . . . , k} and ∗ ∈ {+,−, 0} are infeasible, we set adummy symbol zi(j, ∗) = NIL for them. In the reursive step, terms with value NIL on theright-hand side are negleted, exept when all terms are the same, and in this ase we de�ne
zi(j, ∗) = NIL, too.Reursion for Vertex Cover. If vi is marked `0', then all its hildren must have `+' or '−',beause no edge must have both endpoints marked with `0'. Further, we again need for zi(j, ∗)that the total number of verties marked `−' should be exatly j in Ti. The reursive step issimpler than above, however, beause τ is de�ned to be minimum, what mathes the goal ofthe `most vital nodes' problem. Hene, we now have:

zi(j,+) = wi + min
j1,...,jd≥0

j1+...+jd=j

d
∑

ℓ=1

min (ziℓ(jℓ,+), ziℓ(jℓ,−), ziℓ(jℓ, 0)) ,

zi(j,−) = min
j1,...,jd≥0

j1+...+jd=j−1

d
∑

ℓ=1

min (ziℓ(jℓ,+), ziℓ(jℓ,−), ziℓ(jℓ, 0)) ,

zi(j, 0) = min
j1,...,jd≥0

j1+...+jd=j

d
∑

ℓ=1

min (ziℓ(jℓ,+), ziℓ(jℓ,−)) .Also here, for a leaf vi we have zi(0,+) = wi and zi(1,−) = zi(0, 0) = 0. Now, asan alternative of NIL, it is equally �ne to set zi(j, ∗) = +∞ for the other ombinations of
j ∈ {0, 1, . . . , k} and ∗ ∈ {+,−, 0}.Finding an optimal solution. Assuming that T has root vi0 , after the removal of k properlyhosen verties, the smallest possible value of τ is just min∗∈{+,−,0} zi0(k, ∗) ; whereas for αit is min (zi0(k,−), max (zi0(k,+), zi0(k, 0))). (In fat, inserting a new vertex v0 with weight
w0 = 0 as new root and parent for vi0 does not hange the optimum, and then we would have13



z0(k,+) ≤ opt = z0(k, 0) ≤ z0(k,−) for Independent Set.) A set of k most vital nodesan also be determined in O(n) additional steps in the following way. At the reursive stepfor eah zi(j, ∗) we register for eah edge viviℓ the orresponding value of jℓ in the optimaldistribution (j1, . . . , jd) for j and also the mark ∗ ∈ {+,−, 0} of iℓ whih gave the optimumfor vi. One these data are available for all vi and all pairs (j, ∗), we an traverse T in preorderand selet the verties having `−' mark for the most vital set.E�ient implementation. The key point is to �nd in polynomial time a best distribution
(j1, . . . , jd) for the `max' and `min' funtions ating on the sums. This an be done, despitethat the number of possibilities an even be exponential if d is proportional to n.If d = 2 then we have at most j + 1 ombinations of feasible pairs j1, j2. Hene, optimalhoie an be made in O(k) steps for any one partiular j, and in O(k2) steps for all 0 ≤ j ≤ k.If d is larger, we an split the hildren of vi into two sets of (nearly) equal size, {vℓ | 1 ≤ ℓ ≤
⌊d/2⌋} and {vℓ | ⌊d/2⌋ + 1 ≤ ℓ ≤ d}, make all omputation separately for eah of them, andthen ombine the results for vi. (Splitting orresponds to inserting a `supernode' above eahof the two sets, whih has weight zero and beomes a virtual hild of vi.) This requires d − 1rounds for vi. Sine T is a tree, those d− 1 sum up to n− 2, thus the overall running time is
O((k2 + 1)n), and never exeeds O(n3). (Here `+1' is needed for k = 0.) Note that there areno `hidden large onstants' in the `O' notation. 2Theorem 5 Min Node Bloker Independent Set and Min Node Bloker VertexCover are polynomial on trees. On trees of order n the problems an be solved in O(n3 log n)time.Proof : The above algorithm in one iteration for any 1 ≤ v ≤ n runs in O(v2n) = O(n3)time. Hene, using Lemma 1, �nding the smallest k for whih the solution has value at most
U takes total running time O(n3 log n). 2Remark 4 The algorithms proposed in Theorem 4 solve the k Most Vital Nodes Inde-pendent Set and k Most Vital Nodes Vertex Cover problems on paths in O(kn)time. In fat, in the general time bound O(nk2) for trees, the fator k2 ours due to thepresene of verties with more than one hild. This observation implies further that the al-gorithms proposed in Theorem 5 solve Min Node Bloker Independent Set and MinNode Bloker Vertex Cover on paths in O(n2 log n) time.4.2 CylesTheorem 6 k Most Vital Nodes Independent Set and k Most Vital Nodes VertexCover are polynomial on yles. On yles of order n the problems an be solved in O(kn2)time, for any k ≥ 1.Proof : Let S∗ = {v1, . . . , vr} ⊂ V be a maximum-weight independent set of a given yle
C = (V,E). An optimal solution V ′ ⊂ V of k Most Vital Nodes Independent Set mustontain at least one node of S∗, sine otherwise α(C − V ′) is not smaller than α(C). Thus,for eah vj ∈ S∗, j = 1, . . . , r, we determine the k− 1 further nodes to remove in the resultingpath as follows. We delete vj from C and determine a maximum-weight independent set inthe resulting path C − vj by applying the algorithm given in Theorem 4 in order to �nd anoptimal solution R∗

j ⊂ V \{vj} of k−1 Most Vital Nodes Independent Set on the path14



C − vj. Then, an optimal solution for k Most Vital Nodes Independent Set on C is
R∗

ℓ ∪ {vℓ} suh that α(C − vℓ − R∗
ℓ ) = min1≤j≤r α(C − vj − R∗

j ). If the root is hosen to bean endpoint of the path, the omplexity of the algorithm given in Theorem 4 for path C − vjis O(kn). Sine |S∗| ≤ n, in this way k Most Vital Nodes Independent Set is solved in
O(kn2).The proof for k Most Vital Nodes Vertex Cover is similar. 2Theorem 7 Min Node Bloker Independent Set and Min Node Bloker Ver-tex Cover are polynomial on yles. On yles of order n the problems an be solved in
O(n3 log n) time.Proof : The theorem follows from Theorem 6 and Lemma 1. 24.3 Graphs of bounded treewidthA tree deomposition of a graph G = (V,E) without isolated verties is a pair (T,X ) where

• T = (X,F ) is a tree graph with a set X = {x1, . . . , xm} of nodes and a set F of lines;
• X = {X1, . . . ,Xm} is a set system over V (i.e., over the vertex set of G), where eah Xqis assoiated with node xq of T ;
• eah edge vivj ∈ E of G is ontained in at least one Xq for some 1 ≤ q ≤ m;
• for any vi ∈ V , if vi ∈ Xq′ and vi ∈ Xq′′ , then vi ∈ Xq for all q suh that xq lies on the

xq′�xq′′ path in T .The width of (T,X ) is max
1≤q≤m

|Xq| − 1, and the treewidth of G, denoted by tw(G), is thesmallest integer t for whih G admits a tree deomposition of width t. For unde�ned detailson tree deomposition we refer to [17℄.Theorem 8 k Most Vital Nodes Independent Set and k Most Vital Nodes VertexCover are polynomial on bounded treewidth graphs. On graphs of order n the problems anbe solved in O(nk2) time for any k ≥ 1.Proof : Suppose that we wish to solve the problems on graphs of treewidth at most t − 1.Hene, assume that G has treewidth less than t, and let (T,X ) be a tree deomposition of
G, suh that |Xq| ≤ t holds for all 1 ≤ q ≤ m. We view T as a rooted tree, by hoosing anarbitrary node as root. The hoie of the root generates parent-hild relation between nodesin the usual way. Using standard terminology in a slightly striter (but still wide-spread) way,we say that the tree deomposition (T,X ) is a nie tree deomposition if it has only four typesof nodes, as follows:

• a start node xq that has no hildren (a leaf in T ), with |Xq| = 1;
• a join node xq that has two hildren xq′ , xq′′ , with Xq = Xq′ = Xq′′ ;
• an introdue node xq that has one hild xq′ , with Xq = Xq′ ∪ {v} for some v ∈ V ;
• a forget node xq that has one hild xq′ , with Xq = Xq′ \ {v} for some v ∈ V (G).15



As is well known, a nie tree deomposition of size O(n) and of minimum width an befound in linear time for graphs of bounded treewidth [6, 17℄. Hene, we may assume withoutloss of generality that T is a nie tree deomposition of width less than t for G. We are going toshow how α(k) and τ(k) an be determined using dynami programming. The general frameis the same for both problems, only the details of omputation will be di�erent.Let Tq denote the subtree of T rooted in xq, for 1 ≤ q ≤ m. Over the nodes of Tq we set
Vq =

⋃

xq′∈V (Tq) Xq′ , and denote by Gq the subgraph indued by Vq in G. Hene, if xq is a joinnode with hildren xq′ and xq′′ , then Vq′ ∩ Vq′′ = Xq holds, and there are no edges between
Vq′ \ Xq and Vq′′ \ Xq in G.At eah xq ∈ X we onstrut a matrix Mq that represents the traes inside Xq for allpossible deisions with respet to the problem solution. This Mq has k + 1 olumns orre-sponding to the number j = 0, 1, . . . , k of verties removed from Gq in a solution, and 3|Xq|rows representing the partitions Z+ ∪ Z− ∪ Z0 = Xq into three disjoint labeled sets.Eah row of Mq an be assoiated with a sequene r ∈ {+,−, 0}|Xq |, where the ith termindiates whether the ith vertex of Xq belongs to the independent set to be seleted (+),or is to be removed from G (−), or neither of these (0). Hene, for ∗ ∈ {+,−, 0}|Xq |, theourrenes of ∗ in r represent the harateristi vetor of Z∗. We shall denote by |r−| thenumber of `−' omponents in row r. For 0 ≤ j ≤ k the jth entry of r in Mq, whih weshall denote by zq(r, j), is the optimum value of a solution in Gq that meets the onditionsexpressed in r. If a ombination of onditions is infeasible (e.g., there are fewer than j vertiesin Gq , or two verties assoiated with `+' in r are adjaent in G) then we assign the dummysymbol zq(r, j) = NIL.The omputation of zq(r, j) is problem spei�, we give the details next. The way of�nding the �nal solutions will be desribed afterwards.Reursion for Independent Set. For a start node, Mq is a 3 × (k + 1) matrix. Assuming
Xq = {vi}, vertex vi ounts with weight wi if it is seleted into the independent set and ounts0 otherwise. Hene we have zq(+, 0) = wi, zq(−, 1) = zq(0, 0) = 0, and zq(∗, j) = NIL for anyother ombination of ∗ ∈ {+,−, 0} and j ∈ {0, 1, . . . , k}.If xq is a join node with hildren xq′ , xq′′ , then row r of Mq has to be omposed from therows belonging to the same r in Mq′ and Mq′′ . Sine the sets Z+, Z− ⊆ Xq appear in both
Gq′ and Gq′′ , we see that jq′ resp. jq′′ verties deleted from Gq′ resp. Gq′′ mean jq′ + jq′′ −|r−|deleted ones for Gq. An optimal solution for Gq is obtained from the best possible ombinationof Gq′ and Gq′′ ; that is,

zq(r, j) = min
jq′ , jq′′≥|r−|

jq′+jq′′=j+|r−|

(zq′(r, jq′) + zq′′(r, jq′′)) −
∑

vi∈Z+

wi.If xq is an introdue node with Xq = Xq′∪{v}, there are three possible deisions onerning
v; and if v is seleted for the independent set, then none of its neighbors an be seleted. Hene,if r′ denotes the sequene obtained by deleting the v-omponent from r, then the three asesyield the following reursions:

• The v-omponent is + ⇒ zq(r, j) = zq′(r′, j) + wi if v is not adjaent to any vertex of
Z+, and zq(r, j) = NIL otherwise.

• The v-omponent is − ⇒ zq(r, j) = zq′(r′, j − 1) for j ≥ 1; zq(r, 0) = NIL.
• The v-omponent is 0 ⇒ zq(r, j) = zq′(r′, j).16



Finally, if xq is a forget node and its hild is assoiated with the set Xq = Xq′ \ {v}, thenr is obtained from some r′ of Mq′ by deleting its v-omponent, where the deleted omponentan be any ∗ ∈ {+,−, 0}. Let us denote the orresponding row by r′∗. While searhing formost vital nodes, we may deide whether or not the v-omponent should be `−' but we annotmake any deision between `+' and `0'. Thus, the smallest possible weight of a maximumindependent set is obtained by
zq(r, j) = min

(

zq(r′−, j),max
(

zq(r′+, j), zq(r′0, j))) .Reursion for Vertex Cover. Sine the approah is similar to the one given above, we desribethe method here in less detail. In the present ase `+' means that the orresponding vertex isseleted into a vertex over. The union of the sets Z+ has to meet all edges after the removalof all Z− from G. Sine eah edge is a subset of at least one Xq , a neessary and su�ientondition for this property is that the sets Z0 must be independent for eah Xq. It will beenough to hek this property at the introdue nodes.For a start node with Xq = {vi}, we have zq(+, 0) = wi, zq(−, 1) = zq(0, 0) = 0, and
zq(∗, j) = NIL for any other ombination of ∗ ∈ {+,−, 0} and j ∈ {0, 1, . . . , k}.If xq is a join node with hildren xq′ , xq′′ , then no vertex of Vq′ \ Xq is ontained in anyedge meeting Vq′′ \ Xq, and vie versa. Thus, vertex overs in Gq are the unions of those in
Gq′ and Gq′′ , therefore we have

zq(r, j) = min
jq′ , jq′′≥|r−|

jq′+jq′′=j+|r−|

(zq′(r, jq′) + zq′′(r, jq′′)) −
∑

vi∈Z+

wi.If xq is an introdue node with Xq = Xq′ ∪ {v}, vertex v may belong to Z+, Z−, or Z0;and in the third ase if v has a neighbor in Z0, then the seletion is not feasible for vertexover. Let r′ denote the sequene obtained by deleting the v-omponent from r. Dependingon the position of v, we have the following rules for the reursion:
• The v-omponent is + ⇒ zq(r, j) = zq′(r′, j) + wi.
• The v-omponent is − ⇒ zq(r, j) = zq′(r′, j − 1) for j ≥ 1; zq(r, 0) = NIL.
• The v-omponent is 0 ⇒ zq(r, j) = zq′(r′, j) if v is not adjaent to any vertex of Z0,and zq(r, j) = NIL otherwise.Finally, if xq is a forget node and its hild is assoiated with the set Xq = Xq′ \ {v}, thenr is obtained from some r′ of Mq′ by deleting its v-omponent, where the deleted omponentan be any ∗ ∈ {+,−, 0}. Denoting the orresponding row of Mq′ by r′∗, the best loal hoieis:

zq(r, j) = min
∗∈{+,−,0}

zq(r′∗, j).Finding an optimal solution. For any of the two problems, assume that the matries Mq havebeen determined for all nodes xq, and let the root of T be xq0
. Then the optimal value for

k Most Vital Nodes Vertex Cover is simply zq0
(r0, k), where row r0 attains minimumin the last olumn of Mq0

. But the situation for k Most Vital Nodes Independent Setis more ompliated. With respet to the most vital set, the rows of Mq0
an be lassi�edaording to the positions of their `−' omponents. In this way we have ∑k
i=0

(|Xq0
|

i

) lasses17



(where i represents the number of `−'). We have no in�uene on the 0/+ distribution; the onlydetail we an deide is the position of the `−' marks; that is, from whih lass we hoose thesolution. One the lass is �xed, under this onstraint the solution would be the maximumtaken over all 0/+ distributions, let us all this the value of the lass. Then the overalloptimum of the problem is the minimum value taken over all lasses.An optimal set of k verties an also be onstruted if we do a little more bookkeepingduring the reursive steps. For eah triple (q, r, j) we store the relevant pointer(s) showingwhih entry (entries) of the hild(ren) have given the value of zq(r, j) in the reursion. Then,starting from (q0, r0, k) we an trae all relevant triples (qℓ, rℓ, jℓ) whih have ontributed tothe omposition of zq0
(r0, k). A most vital k-set is obtained by the union of the sets Z−belonging to those sequenes rℓ. This top-down (partial preorder) traversal needs only O(n)additional steps. Indeed, the union of the Z− an be gathered while moving from the forgetnodes to their hildren, adding the orresponding vertex v to the most vital set if v ∈ Z− inthe atual Xq′ .Time analysis. To ompute one entry of Mq we need onstant time for start, introdue andforget nodes. This also inludes the side onditions on introdue nodes, beause nonadjaenyof the new vertex has to be heked1 with respet to fewer than t other verties of Z+ or

Z−. Hene, the most time-onsuming ase of the reursion ours at the join nodes. For apartiular r, we have 0 ≤ |r−| ≤ j′ ≤ j; i.e., minimum or maximum has to be seleted fromat most j + 1 possibilities, whih takes at most j omparisons. Here j ranges from 0 to k,therefore the omputation of an entire row requires at most (k+1)2 steps. There are at most 3trows in any Mq, whih is onstant whenever treewidth is bounded; and the number of matriesto be omputed is O(n). Consequently, the total number of steps needed is O(nk2) = O(n3)beause k ≤ n holds in both problems. Traversing T needs as few as O(n) additional steps. 2Theorem 9 Min Node Bloker Independent Set and Min Node Bloker VertexCover are polynomial on bounded treewidth graphs. On graphs of order n the problems anbe solved in O(n3 log n) time.Proof : The theorem follows from Theorem 8 and Lemma 1. 24.4 CographsTo eah ograph G with n verties, we an assoiate a rooted tree T , alled the otree of G.Leaves of T orrespond to verties of the graph G and internal nodes of T are labeled witheither `∪' (union-node) or `×' (join-node). A subtree rooted at node `∪' orresponds to theunion of the subgraphs de�ned by the hildren of that node, and a subtree rooted at node `×'orresponds to the join of the subgraphs de�ned by the hildren of that node; that is, we addan edge between every two verties orresponding to leaves in di�erent subtrees. Cographs anbe reognized in linear time and the otree representation an be obtained e�iently [7, 12℄.Moreover, this otree an easily be transformed in linear time to a binary otree with O(n)nodes.Theorem 10 k Most Vital Nodes Independent Set and k Most Vital Nodes Ver-tex Cover are polynomial on ographs. On ographs of order n, k Most Vital Nodes1Eah hek an be done in onstant time if adjaeny matrix is used with diret addressing. This requires
O(n2) spae. 18



Independent Set an be solved in O(nk2) time and k Most Vital Nodes Vertex Coveran be solved in O(n2 + nk2) time, for any k ≥ 1.Proof : Consider a ograph G with n verties v1, . . . , vn. Given a binary otree representation
T of G, we show in the following how to solve the k Most Vital Nodes Independent Setand k Most Vital Nodes Vertex Cover using dynami programming.Let x1, . . . , xt be the nodes of T where xr is its root and t is in O(n). For i = 1, . . . , t,denote by Ti the subtree rooted at xi, Gi the subgraph indued by the verties orrespondingto the leaves of Ti, and Vi these verties.Reursion for Independent Set. We assoiate a (k+1)-vetor to eah node xi of T , i = 1, . . . , t.In the following, a (k +1)-vetor is simply alled a vetor. For eah i and eah j = 0, 1, . . . , k,we ompute zi(j) that is the minimum weight of a maximum independent set on Gi whereexatly j verties are removed from Gi. These vetors are omputed `bottom-up' in the otree.So, we start by omputing vetors of leaves and after that the vetor of an internal node ifthe vetors of its two hildren are already omputed.Given a node xi of the otree, the orresponding vetor is obtained as follows:

• If xi is a union-node with two hildren xℓ and xr, we have no edges between Gℓ and Gr.Then the maximum independent set in Gi is the union of those in Gℓ and Gr. Thus,sine we want to �nd a maximum-weight independent set as small as possible, the besthoie is given by zi(j) = minj1+j2=j (zℓ(j1) + zr(j2)).
• If xi is a join-node with two hildren xℓ and xr, every vertex in Vℓ is adjaent to everyvertex in Vr. Then eah independent set in Gi is entirely ontained either in Gℓ or in

Gr. So, zi(j) = minj1+j2=j (max(zℓ(j1), zr(j2))).
• If xi is a leaf then zi(0) = wi, zi(1) = 0, and zi(j) = NIL for j = 2, . . . , k whih meansthat the latter on�gurations are infeasible. In the reursive step, terms with value NILon the right-hand side are negleted, exept when all terms are the same, and in thisase we de�ne zi(j) = NIL, too.Reursion for Vertex Cover. The approah is similar to the previous one. We assoiate avetor to eah node xi of T , i = 1, . . . , t. For eah i and eah j = 0, 1, . . . , k, a value zi(j)and a subset Si(j) are omputed. Here zi(j) means the minimum weight of a vertex over of

Gi where exatly j verties are removed from Gi, and Si(j) is the subset of verties that areneither inluded in the vertex over of Gi nor are removed from Gi.Given a node xi of the otree, the orresponding vetor is obtained as follows:
• If xi is a union-node with two hildren xℓ and xr , we have no edges between Gℓ and Gr.Then the minimum vertex over in Gi is the union of those in Gℓ and Gr. Thus, sinewe want to �nd a minimum-weight vertex over as small as possible, the best hoie isgiven by zi(j) = minj1+j2=j (zℓ(j1) + zr(j2)) and Si(j) = Sℓ(j

∗
1) ∪ Sr(j

∗
2) where j∗1 and

j∗2 are the indies that realize the minimum for zi(j). If we have many j∗1 and j∗2 , wehoose the one with the smallest ∑vs∈Sℓ(j
∗

1
)∪Sr(j∗

2
) ws.

• If xi is a join-node with two hildren xℓ and xr then a vertex over in Gi has to ontainall non-removed verties in one of Vℓ or Vr, and also a vertex over of the non-removedsubgraph in the other part. One we deide whih part is ompletely inluded as removaland over, the best way to selet its given number j′ of removed verties is to delete19



the j′ verties of largest weights of that part. Assuming that j1 verties are removedfrom Vℓ and j2 are removed from Vr, we denote by sℓ(j1) and sr(j2) the minimumsum of weights of the remaining |Vℓ| − j1 and |Vr| − j2 verties, respetively. That is,
sℓ(j1) = w(Vℓ) − max

Y ⊂Vℓ, |Y |=j1
w(Y ), and sr(j2) is de�ned analogously. If j1 > |Vℓ| or

j2 > |Vr|, the value of s is de�ned to be +∞. Then we have
zi(j) = min

j1+j2=j
min (sℓ(j1) + zr(j2), sr(j2) + zℓ(j1))and Si(j) = Sℓ(j1) or Si(j) = Sr(j2), depending on whether the minimum for zi(j) hasbeen obtained from zℓ(j1) or zr(j2).

• If xi is a leaf then zi(0) = zi(1) = 0, zi(j) = +∞ for j = 2, . . . , k, Si(0) = {vi} and
Si(j) = ∅ for j = 1, . . . , k.Finding an optimal solution. For eah of the two problems, an optimal solution is obtainedat the root xr of T and its weight is equal to zr(k). Moreover, an optimal set of k removedverties an be omputed step by step in the reursion. Indeed, let S−

i (j) be the subset of jremoved verties in Gi. For a leaf xi we have S−
i (0) = ∅, S−

i (1) = {vi} and S−
i (j) = ∅ for

j = 2, . . . , k. For a union-node or a join-node xi with two hildren xℓ and xr, reursion yields
S−

i (j) = S−
ℓ (j∗1) ∪ S−

r (j∗2 ) where j∗1 and j∗2 are the indies that realize the minimum for zi(j).Time analysis. For k Most Vital Nodes Independent Set, vetors are omputed in
O(k) for eah leaf and in O(k2) for eah union-node and eah join-node. Sine t = O(n), thealgorithm runs in O(nk2).For k Most Vital Nodes Vertex Cover, the omputation of vetor for a leaf takes
O(k) time. For a union-node and a join-node, we have to ompare and selet a minimumvalue from at most j + 1 possibilities and determine a subset of verties whih attains thisminimum. Note that at most k verties of largest weight are relevant for s. For leaves of theotree this is just one element and an be viewed to be in dereasing order of weight; and thenfor any union- or join-node the (at most) k largest elements an be seleted in O(k) time fromthe lists of the hildren using merge sort and keeping the dereasing order. Sine∑vs∈Si(j)

wsand Si(j) are obtained in O(n) for any given i and j, the omputation of vetor orrespondingto an internal node takes O(k2 + n). Therefore, the algorithm runs in O(n2 + nk2). Speed-upfor the sets Si(j) an also be made if we do not expliitly list them at eah node but onlystore their values and the pointers to the hildren from whih they have been obtained. 2Theorem 11 Min Node Bloker Independent Set and Min Node Bloker VertexCover are polynomial on ographs. On ographs of order n the problems an be solved in
O(n3 log n) time.Proof : The theorem follows from Theorem 10 and Lemma 1. 25 ConlusionIn this paper we studied the omplexity of the k most vital nodes and min node blokerversions of the maximum-weight independent set and minimum-weight vertex over problems.While maximum-weight independent set and minimum-weight vertex over are polynomial on20
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