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a b s t r a c t

A defensive alliance in a graph G = (V , E) is a set of vertices S satisfying the condition that
every vertex v ∈ S has at least as many neighbors (including itself) in S than it has in V \ S.
We also consider strong defensive alliances where the vertex itself is not considered in the
inequality.We consider twonotions ofminimality in this paper, local and globalminimality
and we are interested in minimal (strong) defensive alliances of maximum size. We also
look at connected versions of these alliances. We show that these problems are NP-hard.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Alliances in graphs were introduced first in 2000 by Kristiansen et al. in [13] and further studied by Shafique [17] and
other authors. The purpose is to form coalitions of vertices able to defend each other from attacks of other vertices (in the
case of defensive alliances) or able to collaborate to attack non-allied vertices (in the case of offensive alliances). Alliances
can be formed between nations in a security context, between companies in a business context, or between people wishing
to gather by affinity. Alliances can be viewed as communities. Identifying communities within social or biological networks,
or within the web graph, is a major and fashionable concern. In the web context, a community is defined by Flake et al. [7]
as a set of web pages that links to more web pages in the community than to pages out of the community.

Various types of alliances were formally defined. In this study, we focus on defensive alliances. A defensive alliance is
a set of vertices with the property that each vertex has at least as many neighbors in the alliance (counting itself in) as
neighbors outside the alliance. A defensive alliance is strong if each vertex has at least as many neighbors in the alliance (not
counting itself in) as outside the alliance. This last concept was defined by Kristiansen et al. in [13] and it corresponds to a
satisfactory subset defined in [2,3]. More general, a k-defensive alliance is a vertex subset such that each vertex has at least k
more neighbors in the alliance than outside the alliance, see [15].

The theory of alliances in graphswas developed over the last decade both from a combinatorial and from a computational
perspective. However, the focus has mostly been on finding small alliances, although studying large alliances do not only
make a lot of sense from the original motivation of these notions, but was actually also delineated in the very first papers on
alliances. Carvajal et al. [4] proved that deciding if a graph contains a strong defensive alliance of size at most ℓ is NP-hard.
This result was generalized to k-defensive alliances, for any k ∈ {−∆, . . . , ∆} [18], where ∆ is the maximum degree of the
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considered graph, and in particular for k = −1, the special case that corresponds to a defensive alliance. A survey establishing
the main known results on defensive alliances in graphs can be found in [20].

Note that being a (strong) defensive alliance is not a hereditary property, that is, a set contained in a (strong) defensive
alliance is not necessarily a (strong) defensive alliance. Shafique [17] called an alliance a locally minimal alliance if the set
obtained by removing any vertex of the alliance is not an alliance.2 We also consider another notion of minimal alliance
(called critical alliance or minimal alliance in [17]) that we call a globally minimal alliance or shorter minimal alliance which
has the property that no proper subset is an alliance.

In this paper we are interested in (locally) minimal (strong) alliances of maximum size. Considering such notions can be
well motivated by the community detection scenario mentioned above: clearly, big communities where every member still
matters somehow are of more interest than really small communities. Also, there is a general mathematical interest in such
type of problems, see [14].

The paper is organized as follows. Basic definitions and properties are given in Section 2.3 We also present examples that
show that the graph parameters that we study are substantially different. Section 3 establishes complexity results of these
problems. In particular, we prove NP-hardness results for all the graph parameters that we introduce in this paper, even on
degree-bounded graphs. We finish with presenting some research directions.

2. Basic notions and preliminary results

Let us recall some basic notions. Let G = (V , E) be a graph. We only consider simple undirected graphs, i.e., the edge
relation E ⊆ V × V is assumed to be symmetric and irreflexive. The components of the smallest equivalence relation
containing E are known as connected components. A graph is connected if it has exactly one connected component. The open
neighborhood of a vertex v ∈ V is the set NG(v) = {u ∈ V : uv ∈ E} (or shortly N(v) if G is clear from the context), and the
closed neighborhood of v is the setNG[v] = N(v)∪{v} (or shortlyN[v]). The degree of v is d(v) = |N(v)| and the average degree
of G is equal to 2|E|/|V |. A graph is called k-regular if all its vertices have degree k. A graph is called cubic if it is 3-regular. If
U ⊆ V , then G[U] denotes the graph induced by U , i.e., G[U] = (U, EU×U ), where EU×U is the restriction of relation E to the
set U . We also write dU (v) = |NG[U∪{v}](v)|. If I ⊆ V satisfies that G[I] is 0-regular, then I is called an independent set. A graph
is bipartite if its vertex set can be partitioned into two independent sets. A cycle is a connected 2-regular graph. Removing
exactly one edge from a cycle yields a path. G′

= (V ′, E ′) is a subgraph of G = (V , E) if V ′
⊆ V and E ′

⊆ E; and G′ is an
induced subgraph if G′

= G[V ′
]. An induced subgraph that forms a cycle is also known as a chordless cycle. A graph that can

be embedded into the plane is called a planar graph. A graph G = (V , E) is Hamiltonian if it has a subgraph G′
= (V ′, E ′), with

V ′
= V , that is a cycle. A setM of edges of G = (V , E) is amatching if no two edges fromM share an endpoint.
A non-empty set D ⊆ V is called

• a defensive alliance if ∀v ∈ D : |N[v] ∩ D| ≥ |N(v) \ D|;
• a strong defensive alliance if ∀v ∈ D : |N(v) ∩ D| ≥ |N(v) \ D|.

A (strong) defensive alliance is connected if the subgraph induced by D is connected.
An alliance D is called a locally minimal alliance if for any v ∈ D, D \ {v} is not an alliance. An alliance is globally minimal

alliance or shorterminimal alliance if no proper subset is an alliance. An allianceD is called a connected locally minimal alliance
if for any v ∈ D, D \ {v} is not a connected alliance. Notice that any globally minimal alliance is also connected.

In this paper we use the following notations, introduced in [17] for global minimality. Hence, we use

• A(G) for the cardinality of the largest minimal defensive alliance in a graph G, known as the upper defensive alliance
number;

• Â(G) for the cardinality of the largest minimal strong defensive alliance in a graph G, known as the upper strong
defensive alliance number;

• AL(G) for the cardinality of the largest locally minimal defensive alliance in a graph G, called local upper defensive
alliance number;

• ÂL(G) for the cardinality of the largest locally minimal strong defensive alliance in a graph G, called local upper strong
defensive alliance number;

• AcL(G) for the cardinality of the largest connected locallyminimal defensive alliance in a graph G, called connected local
upper defensive alliance number and

• ÂcL(G) for the cardinality of the largest connected locally minimal strong defensive alliance in a graph G, called
connected local upper strong defensive alliance number.

Since any minimal (strong) defensive alliance is connected and it is a (strong) locally minimal defensive alliance we have
A(G) ≤ AL(G), A(G) ≤ AcL(G) and Â(G) ≤ ÂL(G), Â(G) ≤ ÂcL(G). However, AcL(G) (resp. ÂcL(G)) could be smaller or larger than
AL(G) (resp. ÂL(G)).

Some upper bounds for the upper defensive alliance numbers are also contained in [13].

2 This corresponds to the notion of 1-minimality in [9].
3 We assume knowledge on some basic notions of complexity theory, but we will indicate some related facts through this paper.
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Fig. 1. A graph Gwith Â(Gn) < ÂL(Gn) < ÂcL(Gn).

Fig. 2. A graph G′
n with A(G′

n) < AL(G′
n) < AcL(G′

n).

Example 1. Wepresent a family of graphswhereAcL (and ÂcL, respectively) is arbitrarily smaller thanAL (and ÂL, respectively).
In a cycle Cn = {v1, . . . , vn} of size n = 3t ,A(Cn) = Â(Cn) = AcL(Cn) = ÂcL(Cn) = 2 (namely, take any two adjacent vertices,

for example {v1, v2}), AL(Cn) = ÂL(Cn) = 2n/3 (take all vertices except vi with i = 1 mod 3, that is, an induced maximum
matching). In order to see that Â(Cn) = 2, observe that Cn is not a connected locally minimal defensive alliance, and a path
is a connected locally minimal defensive alliance if and only if it is an edge, otherwise an end-vertex can be removed.

Example 2. We exhibit a family of graphs where ÂcL is arbitrarily larger than ÂL.
Consider the graph Gn on n vertices from Fig. 1 where all vertices are of degree 2 except the 10 vertices from the gadgets

at the left and at the right, that are of degree 3. We have Â(Gn) = 4 (namely, consider a chordless cycle of size 4, for example
{a2, a3, a5, a4}), ÂcL(Gn) = n− 2 (take all vertices except a1 and its symmetric counterpart in the left gadget), ÂL(Gn) ≈ 2n/3
(this is seen by considering a cycle of size 3, for example a1, a2, a3, followed on the path by pairs of consecutive vertices
{a6, a7}, {a9, a10}, . . . , skipping every third vertex).

Example 3. We show a family of graphs where AcL is arbitrarily larger than AL.
Consider the graph G′

n on n vertices from Fig. 2 where all vertices are of degree 2 except the 12 vertices from the gadgets
at the left and at the right, that are of degree 3 and 4. We have A(G′

n) = 4 (verified, e.g., by the 4-cycle a2, a4, a6, a5),
AcL(G′

n) = n − 4 (take all vertices except a1, a3 and the symmetric ones in the left gadget), AL(G′
n) ≈ 2n/3 (also here a

cycle of size 3, for example a1, a2, a3, can be supplemented on the path by pairs of consecutive vertices a6, a7, . . .).

Theorem 4. If G is a 3-regular graph then ÂL(G) > n/2, and if G is 3-regular and connected then also ÂcL(G) > n/2. Moreover,
a locally minimal strong defensive alliance larger than n/2 can be found in polynomial time for both cases.

Proof. Wenote first that it suffices to prove the theorem for connected graphs. Indeed, ifG is disconnected, with components
G1, . . . ,Gs, then clearly ÂL(G) =

∑s
i=1ÂL(Gi) >

∑s
i=1|V (Gi)|/2 = n/2 follows once the connected case is settled.

Hence assume that G is connected. We describe a polynomial-time procedure that generates a locally minimal strong
defensive alliance DL and a connected locally minimal strong defensive alliance DcL, such that DL ⊆ DcL and |DL| > n/2.
Initially let D := V . Of course, G itself is a connected strong defensive alliance. In the first phase of the algorithm, in each
step, search for a vertex v such that D \ {v} is a strong defensive alliance, moreover the induced subgraph G[D \ {v}] is
connected. If no such v exists, then the first phase terminates and we set DcL := D, otherwise we continue with D := D \ {v}.
The second phase applies essentially the same steps, except that now v can also be a cut vertex of G[D], i.e., from then on
the connectivity constraint is dropped. The second phase terminates when D \ {v} fails to be a strong defensive alliance, for
every v ∈ D. We then define DL := D (where DL = DcL may occur).

It is clear by definition that DL is a locally minimal strong defensive alliance and DcL is a connected locally minimal strong
defensive alliance. Since G is 3-regular, after each step the induced subgraph G[D] has minimum degree 2, therefore when
we move a vertex v from D to V \ D, this v becomes either an isolated vertex or a pendant vertex in the re-defined G[V \ D].
Consequently, G[V \ DL] is acyclic.

Consider any tree component T of G[V \ DL]. Say, T has t vertices. The degree sum in G[T ] is 2t − 2, hence 3-regularity
implies that there are exactly t + 2 edges from T to DL, i.e., more edges than |V (T )|. Since all degrees inside G[DL] are at least
2, the edges from V \ DL to DL have mutually distinct endpoints in DL. This implies |DL| > |V | − |DL|, thus

ÂcL(G) ≥ |DcL| ≥ |DL| > n/2,

and of course |DL| is a lower bound on ÂL(G). It is also clear that the above steps can be performed efficiently. □
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Consider in the following a simple computational aspect. It is clear that (connected) local minimality of a (strong)
defensive alliance can be detected in polynomial time. This is less clear for the (more usual) inclusion-wise notion of
minimality, that is, for global minimality. In fact, by its definition, this notion of global minimality seems to require going
through all subsets of the alliance in question. However, we can establish the following result.

Proposition 5. There is a polynomial-time algorithm to determine whether a (strong) defensive alliance D is minimal or not.

Proof. We describe first an algorithm to determine if a vertex set D is a minimal defensive alliance. Consider some vertex
v ∈ D. If D \ {v} is a defensive alliance, then we know that D is not minimal and we can stop. If D \ {v} is not a defensive
alliance, then there must be a reason for this. Namely, while |NG[u] ∩D| ≥ |NG(u) \D| for all u ∈ D, this condition is violated
for D′

= D \ {v}. Hence, there is some vertex u ∈ D′ such that |NG[u] ∩ D′
| < |NG(u) \ D′

|. Clearly, u ∈ NG(v). Hence, in order
to find a subset of D′ that is a defensive alliance, any x ∈ D′ that satisfies |NG[x] ∩ D′

| < |NG(x) \ D′
| must be removed from

D′. The set D′′ obtained this waymight be a defensive alliance (in which case we can terminate the procedure), or it is empty
(which causes us to conclude that the v ∈ D that we originally considered cannot be removed in order to produce a subset
of D that is a defensive alliance), or we find (recursively) more vertices that should be removed. Doing this kind of testing
for all v ∈ D allows us to conclude (in polynomial time) whether or not D is minimal.

The algorithm for determining if a set D is a minimal strong defensive alliance is very similar, we only have to change the
condition that each vertex must satisfy. □

The preceding result has the following (trivial) consequences; recall that the O∗-notation neglects polynomial factors.

Corollary 6. There are algorithms that compute A(G), Â(G), AL(G), ÂL(G), ÂcL(G) and AcL(G) for a given graph of order n in time
O∗(2n).

For the following results, it is important to know that Hamiltonian Cycle (i.e., given a graph G, is G Hamiltonian?) is
NP-hard. Related decision problems are Longest Cycle (i.e., given a graph G and an integer k, does G possess a cycle on at
least k vertices as a subgraph?) and Longest Path (i.e., given a graphG and an integer k, doesGpossess a path on k vertices as a
subgraph?); slightly abusing terminology, we name the correspondingmaximization problems the same. Another important
NP-hard problem is Minimum Maximal Matching, i.e., given a graph G and an integer k, does G possess an inclusion-wise
maximal matching with at most k edges?

3. Complexity results

In this section, we show that computing all these six numbers A(G), AL(G), AcL(G) and Â(G), ÂL(G), ÂcL(G) is NP-hard.
Togetherwith Proposition 5 thismeans that the six decision problems associated to these graphparameters areNP-complete.
We also consider these parameters under the perspective of approximability and concerning the impossibility for certain
exact algorithms, assuming the Exponential Time Hypothesis (or ETH for short) to hold. ETH basically states that there are no
sub-exponential algorithms for solving 3-SAT, one of the core problems of NP-completeness theory. Recall that if ETH is true,
then P is not equal to NP, but if ETH fails, then it is still unclear if P is equal to NP or not. For more details, we refer to [12].

In order to get the NP-hardness in the globally minimal case we use the following remarks. (i) In a cubic graph, finding a
globallyminimal strong defensive alliance ofmaximum size is equivalent to finding a longest chordless cycle (or amaximum
induced cycle). (ii) In a graph with degrees 3 or 4, a globally minimal defensive alliance of maximum size corresponds to a
longest chordless path between two vertices of degree 3 where vertices inside the path have degree 4 or a longest chordless
cycle among vertices of degree 4.

Theorem 7. Deciding if a graph contains a globally minimal strong defensive alliance of size at least k is NP-complete, even for
cubic graphs. Moreover, deciding if a graph contains a globally minimal defensive alliance of size at least k is NP-complete, even
for graphs of degree 3 or 4.

Proof. Both decision problems belong to NP, due to Proposition 5.
In order to obtain the NP-hardness result for the strong version, we establish a polynomial reduction from Longest Cycle

on cubic graphs proved NP-hard in [1]. Given a graph G = (V , E), |V | = n, V = {v1, . . . , vn}, |E| = m = 3n/2 and an
integer k we construct an instance of our problem G′

= (V ′, E ′) as follows (see Fig. 3): each edge vivj of E is replaced by the
edges viaij, aijbij, aijdij, bijcij, bijdij, cijdij, cijvj where aij, bij, cij, dij are new vertices. Thus G′ contains n+ 4m = 7n vertices and
7m = 21n/2 edges. We show that G contains a cycle of size at least k if and only if G′ contains an induced cycle of size at
least 4k.

Let C be a cycle of size at least k in G. Then the cycle C ′ in G′ obtained by replacing any edge vivj of C by edges
viaij, aijbij, bijcij, cijvj is a chordless cycle of size 4|C | that is at least 4k.

Consider now a chordless cycle C ′ in G′ of size at least 4k. Then if edges viaij and cijvj are on C ′ then C ′ contains either aijbij
and bijcij or aijdij and cijdij since C ′ does not contain chords. The cycle C obtained from C ′ by considering edges vivj when viaij
and cijvj are on C ′ is of size at least k.
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Fig. 3. The replacement gadget of an edge vivj .

Fig. 4. The gadget H .

In order to obtain the NP-hardness result for the globallyminimal defensive alliance, we establish a polynomial reduction
from Longest Path on cubic graphs proved NP-hard in [1]. Given a graph G = (V , E), |V | = n, V = {v1, . . . , vn},
|E| = m = 3n/2 and an integer k we construct an instance of our problem G′′

= (V ′′, E ′′) using the gadget H from Fig. 4.
The gadget H corresponds to the complete graph on 5 vertices K5 minus one edge, that is, it contains vertices s, f , g, h, t
and edges sf , sg , sh, fg , gh, fh, tf , tg , th, i.e., edge st is missing. Graph G′′ is obtained from G as follows: Each edge vivj of E
is replaced by a copy of H denoted Hij, with vertices fij, gij, hij, sij and tij, and we add edges visij, tijvj. At each vertex vj we
attached a copy of H denoted Hj, with vertices fj, gj, hj, sj and tj, and we add the edge tjvj. Thus G′′ has 6n + 5m = 27n/2
vertices and 10n + 11m = 53n/2 edges. Graph G′′ has only vertices of degree 3 and 4, and the only vertices of degree 3 are
vertices sj, j = 1, . . . , n. We show that G contains a path of size at least k if and only if G′′ contains an induced path of size at
least 4k + 6 between 2 vertices of degree 3 and containing only vertices of degree 4.

Let P be a path of size at least k in G between two vertices vℓ and vp. Then the path P ′′ in G′′ sℓfℓ, fℓtℓ, tℓvℓ, followed by
replacing any edge vivj of P by edges visij, sijfij, fijtij, tijvj and finally vptp, tpfp, fpsp is a chordless path between two vertices of
degree 3 and using only vertices of degree 4 inside and of size at least 4k + 6.

Consider now a chordless path P ′′ in G′′ of size at least 4k + 6 between 2 vertices of degree 3, sℓ and sp, and containing
only vertices of degree 4. Then P ′′ induces a path in G of size at least k between vℓ and vp. □

Theorem8. For any ε > 0, finding a globallyminimal strong defensive alliance ofmaximumsize is not 2O(log1−εn)-approximable on
graphs with n vertices, unless NP ⊆ DTIME(2O(log1/εn)), even for cubic graphs. Moreover, for any ε > 0, finding a globally minimal
defensive alliance of maximum size is not 2O(log1−εn)-approximable on graphs with n vertices, unless NP ⊆ DTIME(2O(log1/εn)), even
for graphs of degree 3 or 4.

Proof. For any ε > 0, Longest Path and Longest Cycle on cubic graphs are not 2O(log1−εn)-approximable, unless NP ⊆

DTIME(2O(log1/εn)), as shown in [1]. The reductions from the previous proof of Theorem 7 are E-reductions (see [10]) and
hence preserve non-approximability. □

It was mentioned in [12] that Hamiltonian Cycle (and hence Longest Cycle) admits no O∗(2o(n)) algorithm under
ETH because the standard reduction from 3-SAT is strong. The reduction for Hamiltonian Cycle on cubic (planar) graphs
presented in [8] (from 3-SAT) yields a graph whose number of vertices is in a linear relation to the number of variables and
clauses of the given 3-SAT instance, so that also such a restricted variant of Hamiltonian Cycle (and hence Longest Cycle)
admits no O∗(2o(n)) algorithm under ETH. Re-using our previous construction, we can hence conclude:

Corollary 9. Assuming ETH, there is no O∗(2o(|V |+|E|))-algorithm that decides, given a cubic graph G = (V , E) and some integer
k, if G contains a globally minimal strong defensive alliance of size at least k. Moreover, deciding if a graph contains a globally
minimal defensive alliance of size at least k is not possible in time O∗(2o(|V |+|E|)) either, when restricted to graphs with all vertex
degrees 3 or 4, assuming that ETH holds true.

In order to prove NP-hardness for the locallyminimal case, we apply a reduction fromMinimumMaximalMatching. This
problem is well-known to be NP-complete on general graphs. It was proved to be NP-hard even in several special classes
of graphs, including planar cubic graphs by Horton and Kilakos [11], and k-regular bipartite graphs for any fixed k ≥ 3 by
Demange and Ekim [6]. We have put all these NP-hardness results into one theorem, as the proofs are similar and somehow
connected to each other.
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Theorem 10. The following problems are NP-complete:

(i) deciding if a graph contains a locally minimal strong defensive alliance of size at least k, even for bipartite graphs with
average degree less than 3.6;

(ii) deciding if a graph contains a locally minimal defensive alliance of size at least k, even for bipartite graphs with average
degree less than 5.6;

(iii) deciding if a graph contains a connected locally minimal strong defensive alliance of size at least k, even for bipartite graphs
with average degree less than 2 + ε, for any ε > 0;

(iv) deciding if a graph contains a connected locally minimal defensive alliance of size at least k, even for bipartite graphs with
average degree less than 2 + ε, for any ε > 0.

Proof. All these decision problems are trivially in NP. For NP-hardness we first describe the reductions and proofs for the
parts (i) and (ii), which will provide the basis for the other two parts. The next two arguments work for all n ≥ 4, while the
other two will work for n ≥ n0 for some n0 ≤ 10. Regarding complexity, the small inputs are irrelevant.

(i) For the strong version, we establish a polynomial reduction from Minimum Maximal Matching in 3-regular graphs.
Given a 3-regular graph G = (V , E), |V | = n, |E| = m = 3n/2, and an integer k, we construct an instance of our alliance
problem by considering the incidence graph of G. It has vertex set V ∪ E, and there is an edge between v ∈ V and e ∈ E
if v is an endpoint of e. We obtain the graph G′

= (V ′, E ′) by inserting a new vertex x that is adjacent to every e ∈ E.
Since the number of vertices of G′ is 5n/2 + 1 and the number of edges is 9n/2, the average degree of G′ is less than
18/5. We show that G contains a maximal matching of size at most k if and only if G′ contains a locally minimal strong
defensive alliance of size at least n + m − k.
If M is a maximal matching in G of size k then D = V ∪ (E \ M) is a locally minimal strong defensive alliance of G′.
Indeed, every vertex in V has degree at least 2 in D and every vertex in E has degree 2 in D. SinceM is maximal, it is not
possible to remove a vertex from D∩ E and keep a strong defensive alliance. Also, it is not possible to remove a vertex
from D ∩ V since otherwise some vertices from D ∩ E will have degree less than 2 inside D.
Consider now a locally minimal strong defensive alliance D in G′. Any vertex v ∈ D satisfies the following conditions:

• dD(v) ≥ m/2 if v = x, and dD(v) ≥ 2 if v ∈ V ∪ E.

Suppose thatD has size at least n+m−k. We show in the following that there exists a locallyminimal strong defensive
alliance D′ in G′ such that |D′

| ≥ |D| and x ̸∈ D′. If x ̸∈ D then D′
= D. If x ∈ D then the set D′ can be obtained from D in

several steps: remove x; add all vertices u ∈ V \D; add aminimal set A of vertices e ∈ E \D in order that the previously
added vertices from V \ (V ∩D) satisfy the condition of strong defensive alliance; remove a set B of vertices from E ∩D
in order that the new set is a locally minimal strong defensive alliance.
We show now that |D′

| ≥ |D|. Indeed, if x ∈ D, since D is locally minimal, there is at least one vertex u ∈ V \ D and
an edge e ∈ E ∩ D such that e is adjacent to u and x in G′, so x is compensated with the vertices from (V ∩ D′) \ D.
Further, every vertex from A has either one or two neighbors in V \ (V ∩ D), and since every such vertex is of degree 2
in G′

[V ∪ E], we have that every vertex from A has degree 0 or 1 in V ∩ D, that is, |N(A) ∩ (V ∩ D)| ≤ |A|. Finally, for
each vertex in N(A) ∩ (V ∩ D) we removed at most one vertex in E ∩ D since each such vertex has to have degree at
least 2 in D′. Thus the number of vertices removed from E ∩ D is at most |A|.
From D′ we defineM as the set of edges of G that are in E and not in D′. Since x ̸∈ D′,M is a matching; andM is maximal
because D′ is minimal.

(ii) For locally minimal defensive alliances, we consider a similar reduction except that instead of one vertex xwe add two
vertices x1, x2, joined to every e ∈ E, and moreover, we add one vertex y, joined to every v ∈ V . Denote by G′′ the
obtained bipartite graph. Since the number of vertices of G′′ is 5n/2 + 3 and the number of edges is 7n, the average
degree of G′′ is less than 28/5. We show that G contains a maximal matching of size at most k if and only if G′′ contains
a locally minimal defensive alliance of size at least n+m− k. We note that k ≤ n/2 andm = 3n/2, therefore we have
n + m − k ≥ 2n.
In one direction, it can be justified as in the previous proof that if M is a maximal matching in G, say of size k, then
D = V ∪ (E \ M) is a locally minimal defensive alliance of size n + m − k in G′′.
In the other direction, consider now a locally minimal defensive alliance D in G′′. Each vertex v ∈ D satisfies the
following conditions:

• dD(v) ≥
m−1
2 if v = x1 or v = x2, dD(v) ≥ 2 if v ∈ V ∪ E, and dD(v) ≥

n−1
2 if v = y. In particular, if y ∈ D and

v ∈ V ∩ D, then the requirement is dV∪E(v) ≥ 1.

Suppose that |D| = n + m − k. We show in the following that there exists a set D′′ with |D′′
| ≥ |D| such that D′′ is a

locally minimal defensive alliance and x1, x2, y ̸∈ D′′. This is very easy if |D| = 2n, because every matching in G has at
most n/2 edges, hence any maximal one provides a suitable solution and can be determined in polynomial time. For
this reason we may and will assume without loss of generality that |D| > 2n. The case of y ̸∈ D falls into two simple
subcases:

– If y ̸∈ D and at most one of x1, x2 is in D then we define D′′ as described above for the strong case, and the proof
is done by the argument given in (i).
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– If y ̸∈ D and x1, x2 ∈ D, then V ∩ D = ∅ since if there is a v ∈ V ∩ D then v can be removed and the remaining set
is also a defensive alliance. Consequently, |D| =

⌊m
2

⌋
+ 2 =

⌊ 3
4n

⌋
+ 2 < 2n, so that this case is excluded.

It remains to study the case y ∈ D. We are going to prove that this assumption implies |D| ≤ 2n, thus it cannot occur
under the condition |D| > 2n.
Let us introduce the notations V ′

= D ∩ V , E ′
= D ∩ E, n′

= |V ′
|, and m′

= |E ′
|. Also, let d′(x) denote the degree of an

x ∈ D in the subgraph induced by D in G′′. The minimality of D means that each x ∈ D has at least one neighbor x′
∈ D

such that d′(x′) =
⌊ 1

2dG′′ (x′)
⌋
.

Next, we prove thatm′
≤

⌊ 3
4n

⌋
. This is immediate (in factwith equality) if each neighbor v of some e ∈ E ′ has d′(v) ≥ 3,

because only x1 or x2 (or both) can play the role of a neighbor x′ of v whose D-degree is
⌊ 1

2dG′′ (x′)
⌋
. Ifm′ is larger, then

for each e ∈ E ′ we can specify a ve ∈ V ′ whose unique neighbor in E ′ is e. Let V ′′ denote the set of those ve; we have
|V ′′

| = m′. Each e ∈ E ′ has its other neighbor in V \ V ′′, hence there are exactly m′ edges joining E ′ with V \ V ′′.
On the other hand, there exist at most 3(n − m′) such edges, since G is 3-regular. This implies the claimed inequality
m′

≤
⌊ 3

4n
⌋
.

Now we are in a position to prove that y ∈ D implies |D| ≤ 2n. Note that n ≥ 4 and n is even. If n′
=

1
2n (the smallest

possible case, as dG′′ (y) = n) then

|D| ≤ n′
+ m′

+ 3 ≤
1
2
n +

⌊
3
4
n
⌋

+ 3 ≤ 2n

is valid for all even integers n ≥ 4. Also, if n′ is in the range 1
2n + 1 ≤ n′

≤ n − 1, we cannot have both x1 ∈ D and
x2 ∈ D because otherwise D \ {v} would be a defensive alliance for any v ∈ V ′, contradicting the minimality of D. Thus,
in this case,

|D| ≤ n′
+ m′

+ 2 ≤ n − 1 +

⌊
3
4
n
⌋

+ 2 ≤ 2n

as
⌊ 3

4n
⌋

≤ n−1 holds for all even n ≥ 4. Finally, if n′
= n, then every e ∈ E ′ has both of its neighbors v in V ′, therefore

the presence of x1 or x2 in Dwould imply the contradiction that D \ {v} is a defensive alliance for any v. This implies

|D| ≤ n′
+ m′

+ 1 ≤ n +

⌊
3
4
n
⌋

+ 1 ≤ 2n

which is the same conclusion as the one for n′ < n.
This contradiction completes the proof of part (ii).

Now we turn to the parts (iii) and (iv), assuming that n is sufficiently large. We shall make use of the graphs G′ and G′′

constructed in (i) and (ii), respectively. The substantial difference between (i)–(ii) and (iii)–(iv) is that the cut vertices do not
have to satisfy any degree constraints in a locally minimal alliance. For this reason we first describe both constructions and
prove that if some cut vertices of an alliance D arise from the vertices of G′ or G′′, then D cannot be too large. Afterwards we
complete the proofs for (iii) and (iv) separately. Note that here we do not analyze small graphs anymore, we assume that n
is sufficiently large.

From any 3-regular graph G = (V , E), the graphs G′
c for (iii) and G′′

c for (iv) are constructed as follows. Both constructions
share the idea to take two slightly modified copies of a previously constructed graph and join them by a path of sufficient
length in order to arrive at the desired average degree upper bound. We refrain from giving an illustration, as similar ideas
were used in the introductory examples.

• Supplement G′ with two new vertices y1, y2 joined completely to the set V , i.e., G′
[V ∪ {y1, y2}] is a complete bipartite

graph K2,|V |; join a new vertex z to both y1 and y2; take two vertex-disjoint copies of this graph, and connect them
with a path P whose endpoints are the copies of z and whose length is Cn, where C is a sufficiently large constant. This
yields an instance G′

c for the connected strong defensive alliance problem. Since the average degree of G′ is less than
18/5, there is a suitable choice of C to ensure an average degree of at most 2 + ε in G′

c .
• The construction of the graphG′′

c is fairly similar, now starting fromG′′, inwhichwe rename y as y1. SupplementG′′ with
two new vertices y2, y3 joined completely to the set V ; join a new vertex z to all of y1, y2, y3; take two vertex-disjoint
copies of this graph, and connect themwith a path P whose endpoints are the copies of z andwhose length is Cn, where
C is a sufficiently large constant. This yields an instance G′′

c for the connected defensive alliance problem. Here again,
there is a suitable choice of C to ensure an average degree of at most 2 + ε in G′′

c .

To unify notation, we rename x of G′ as x1. Throughout, D will denote a connected defensive alliance or a connected
strong defensive alliance, locally minimal in either case. From above, we keep the notation n′

= |V ∩ D| and m′
= |E ∩ D|,

where V and E are meant as the corresponding sets in a copy of G′ or G′′ in the construction. The next part of the discussion
assumes that y1 ∈ D at an end of P – more precisely that the corresponding copy of y1 belongs to D; this will later turn out
to be necessary in order to have a large D – and analyzes the possibilities of cut vertices in the subgraph induced by D in G′

c
or G′′

c .
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Fact X. The vertex x1 cannot be a cut vertex in D.
Indeed, otherwise there would be two edges e, e′

∈ E which are in distinct components of D \ {x1}. Only one of e and
e′ – say, e – can be adjacent to V ∩ D, because V ⊂ N(y1). By the alliance degree condition this requires the two neighbors
x1, x2 for e′ to lie inside of D, but then x1 cannot be a cut vertex.

Fact E. If some e ∈ E is a cut vertex in D and n is sufficiently large, then |D| has fewer than 2n vertices in G′
∪ {y1, y2} or in

G′′
∪ {y1, y2, y3}.
To prove this, we first note that e cannot separate vertices of V ∩D from each other, because V ⊂ N(y1). Hence e separates

x1 or x2 (or both) from V ∩ D. In particular, we may assume that x1 ∈ D, and this implies m′
≥

m−1
2 > 1. Thus there exists

e′
∈ E ∩Dwith e′

̸= e and (N(e′)∩ V )∩D = ∅. Such an e′ needs two neighbors in D, which can now only be x1 and x2. This is
impossible in G′

c . In G′′
c assume that x1, x2 ∈ D. Since e′ has no other neighbors, and D \ {e′

} is not an alliance, we obtain that
e′ is locally critical for x1, therefore E∩D contains exactly ⌈

m−3
2 ⌉ vertices different from e. From them there are at leastm−3

edges to V , incident with at least m−3
3 =

n
2 −1 vertices of V , none of which can belong to D. Consequently n′

+m′ < 2n−5 if
n is sufficiently large, thus D cannot have 2n vertices or more in this part of the graph even if we count all of x1, x2, y1, y2, y3.

Fact V. If some v ∈ V is a cut vertex in D and n is sufficiently large, then |D| has fewer than 2n vertices in G′
∪ {y1, y2} or in

G′′
∪ {y1, y2, y3}.
Choose an e ∈ E ∩Dwhich becomes separated from y1 in the subgraph D \ {v}. We may assume that e is not a cut vertex,

otherwise Fact E applies and the proof is done. The unique neighbor of this e in V ∩D is v, therefore e needs a further neighbor
in D; hence x1 ∈ D (or x2 ∈ D). Moreover, v has a further neighbor e′

∈ E ∩ D because e is not a cut vertex. Hence v has at
least three neighbors in D, but D \ {e} is not an alliance while still connected, thus m′

= ⌈
m−1
2 ⌉ or m′

= ⌈
m
2 ⌉. Among those

m′ vertices at leastm′
− 3 (namely the non-neighbors of v) have no neighbors in V ∩ D. From each of them, two edges go to

V , hence n− n′
= |V \D| ≥ 2m′/3− c ≈ n/2− c for a small constant c . This leads to the same conclusion as above, namely

n′
+ m′ < 2n − 5 if n is sufficiently large.
The relevance of the upper bound in Facts E and V is that – as we shall see soon – such a small D cannot be an optimal

solution to the alliance problems considered. Hence, in the rest of the proof we restrict our attention to alliances in which
no vertex originating from G′ or G′′ is a cut-vertex, except for y1.

(iii) For connected strong defensive alliances we consider the graph G′
c . A strong defensive alliance D puts the following set

of conditions for a vertex v ∈ D; for simplicity we omit the word ‘‘copy’’ from phrasing, e.g., ‘v = x’ will mean that v is
one of the two copies of x in G′

c .

• dD(v) ≥
1
2m if v = x, dD(v) ≥ 2 if v ∈ E, dD(v) ≥ 3 if v ∈ V , dD(v) ≥

1
2 (n + 1) if v = yj, dD(v) ≥ 2 if v = z, and

dD(v) ≥ 1 if v is an internal vertex of P .

We claim that a largest connected locally minimal strong defensive alliance of G′
c can be obtained by taking a largest

locally minimal strong defensive alliance in each of the two copies of G′, plus exactly one yj (j = 1 or j = 2) in each
copy, plus the path P connecting the two copies. (This means, in particular, that the two copies of V can entirely be
contained in the alliance in question.) It is clear that such a subgraph satisfies the degree conditions of a strong alliance,
and it is minimal because the vertices in P and the yj are critical for connectivity, and the vertices in the copies of V
and E cannot be deleted due to the degree constraints for E and V , respectively.
Consider any connected locally minimal strong defensive alliance D in G′

c . If no yj is involved in D at some end of P ,
then its neighbor z cannot belong to D, and then the internal vertices of P but the one preceding the other copy of z
would be removable (unless D is an internal edge of P), hence at most 4 vertices of D are outside a copy of G′. Thus, in
this case we have |D| ≤ 5n/2 + 5, while the alliance constructed above has at least 4n + |P| vertices.
Hence, we may assume without loss of generality that D contains one or two of the yj in each copy. Consider now the
situation in any one copy. If D contains precisely one yj, then this yj is critical for connectivity, and its presence reduces
the degree constraints within the corresponding copy of G′ as follows:

• dD(v) ≥ m/2 if v = x, and dD(v) ≥ 2 if v ∈ V ∪ E.

This is exactly the set of conditions listed in (i), consequently in this case the maximum of |D| is attained by precisely
the construction described above.
Suppose now that D contains both y1 and y2 in the copy considered. Then the degree constraints within the
corresponding copy of G′ are modified as follows:

• dD(v) ≥ m/2 if v = x, dD(v) ≥ 2 if v ∈ E, and dD(v) ≥ 1 if v ∈ V .

This situation has also been analyzed already, namely in part (ii), within the subcase y ∈ D (this corresponds to the
sub-subcase x1 ∈ D, x2 ̸∈ D), where we have seen that it cannot lead to any alliance larger than the one constructed
above.

(iv) For connected (not strong) defensive alliances we consider the graph G′′
c .

A defensive alliance D now puts the following set of conditions for a vertex v ∈ D; as in (iii), also here we omit the
word ‘‘copy’’ from phrasing.
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• dD(v) ≥
m−1
2 if v = xi, dD(v) ≥ 2 if v ∈ E, dD(v) ≥ 3 if v ∈ V , dD(v) ≥ n/2 if v = yj, and dD(v) ≥ 1 if v is on P (also

including its end z).

Now a largest connected locally minimal defensive alliance of G′′
c can be obtained by taking a largest locally minimal

defensive alliance in each of the two copies of G′, plus exactly one yj (j ∈ {1, 2, 3}) in each copy, plus the path P
connecting the two copies. It can be seen as before that this set satisfies the requirements.
Consider any connected locally minimal defensive alliance D in G′′

c . We see that D contains at least one yj from each
copy of G′′, for otherwise |D| is far from being largest. Hence, wemay assumewithout loss of generality that D contains
one or two or three of the yj in each copy. Consider now the situation in any one copy. If D contains precisely one yj,
then this yj is critical for connectivity, and its presence reduces the degree constraints inside the corresponding copy
of G′ as follows:

• dD(v) ≥
m−1
2 if v = xi, and dD(v) ≥ 2 if v ∈ V ∪ E.

Compared to the subcase y ̸∈ D of (ii) the only difference is that yj now requires n/2 − 1 vertices, one fewer
than previously. However, this relaxed condition has no essential effect on the argument given earlier. Indeed, with
reference to the relevant paragraph of the proof of (ii), if D contains at most one of x1 and x2 then the proof goes back
to a subcase of part (i), where no y occurs (hence the actual degree of yj is irrelevant); and if both x1 and x2 are in D
then the difference is that instead of V ∩ D = ∅ we now must have |V ∩ D| = n/2 − 1, hence we obtain the upper
bound |D| ≤ 3n/4 + n/2 + c with a small constant c , which is still smaller than 2n if n is sufficiently large.
If D contains two of the vertices y1, y2, y3 in the copy of G′′, then the degree constraints inside the corresponding copy
of G′ are modified to

• dD(v) ≥
m−1
2 if v = xi, dD(v) ≥ 2 if v ∈ E, and dD(v) ≥ 1 if v ∈ V .

This is essentially the case y ∈ D of (ii). We note that the yj cannot be critical for connectivity anymore, therefore the
degree requirements concerning a critical neighbor are valid also here for the vertices. The corresponding computation
in (ii) yields an upper bound around 7n/4.
Finally, if all of y1, y2, y3 are in D, then we have the degree requirements

• dD(v) ≥
m−1
2 if v = xi, dD(v) ≥ 2 if v ∈ E, and no condition if v ∈ V .

Moreover, y1 ∈ D requires n′
≥ n/2. By assumption, the set D\ {y1} is not an alliance, therefore V ∩D contains a vertex

v whose only neighbors in D are y1, y2, y3. Since D \ {v} is not an alliance either, we see that n′
= n/2. Further, the

removal of any e ∈ E ∩ D violates the alliance property, which can happen only to x1 or x2, thus m′
= ⌈

m−1
2 ⌉. In this

way we again obtain an upper bound around 7n/4.

This completes the proof of the theorem. □

Proposition 11. Unless ETH fails, there is no algorithm that determines if there is a locally minimal (strong) defensive alliance
of size at least k in a given graph G of order n in time O(2o(n)), even on bipartite graphs with the restrictions from the preceding
theorem. A similar statement holds for the connected locally minimal (strong) defensive alliance problems.

Proof. It has been argued in [16] that no O(2o(n)) algorithm exists for solving Vertex Cover on cubic graphs unless ETH
fails. Consider now the reduction of Theorem 1 in [19]. This shows that no O(2o(n)) algorithm exists for solving Edge
Dominating Set on subcubic bipartite graphs unless ETH fails, which is equivalent to the non-existence of an O(2o(n))
algorithm for Minimum Maximal Matching in subcubic bipartite graphs of order n. Zito has shown in [21, Lemma 29] how
to replace vertices of degree one by four-vertex-graphs, so that an ETH-based lower bound also holds forMinimumMaximal
Matching in bipartite graphs with vertex degrees two or three. The construction of Theorem 7 in [6] shows that there is no
O(2o(n)) algorithm for solvingMinimumMaximal Matching on cubic bipartite graphs, unless ETH fails. The reasoning of the
preceding theorem shows the claim. For the connected locally minimal (strong) defensive alliance problems, observe that
the resulting graphs have a linear number of vertices (compared to the original graph as an instance of Minimum Maximal
Matching); notice that the linearity factor depends on the chosen ε. □

The preceding proposition shows that the algorithms mentioned in Corollary 6 for determining AL(G) and ÂL(G), as well
as the connected variants, are essentially optimal.

Concerning the inapproximability of our problem, we remark that the reductions in Theorem 10 are L-reductions
(see [10]). Using the result from [5] that Minimum Maximal Matching in cubic graphs is NP-hard to approximate within a
factor 1+

1
487 , we can conclude that the optimization versions of all the problems studied in Theorem10 have no polynomial-

time approximation scheme (that is, they do not admit a polynomial-time (1 + ϵ)-approximation algorithm for very small
ϵ > 0) if P ̸= NP.

4. Conclusions

In this paper,we commenced a complexity-theoretic study of several variations ofmaximumminimal defensive alliances.
Many graph-theoretic questions are still to be explored for the new parameters that we introduced.
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Also, we think that the connectivity requirement that we introduced for the locally minimal type is of more general
interest for any type of alliance problem, because (in particular for the strategic motivations for these graph parameters) it
seems reasonable to look for connected alliances, as this also models the aspect of mutual (quick) help.

Finally, notice that the different notions ofminimality can also be studied in connectionwith other types of alliances with
the same motivation. This is also left for future work.
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