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Abstract

We prove that the number of colors required to color properly the
edges of a graph of order n and δ(G) > n/3 in such a way that any two
vertices are incident with different sets of colors is at most ∆(G) + 5.

1 Introduction

In this paper we consider only simple graphs and we use the standard notation
of graph theory. Definitions not given here may be found in [2]. Let G =
(V,E) be a graph of order n with the set of vertices V and the edge set E. We
denote by Vd(G) the set of vertices of degree d in G and nd(G) = |Vd(G)|. A
k-edge-coloring f of a graph G is an assignment of k colors to the edges of G.
Let f(e) be the color of the edge e. Denote by F (v) = {f(e) : e = uv ∈ E}
the multiset of colors assigned to the set of edges incident to v. The coloring

1



f is proper if no two adjacent edges are assigned the same color and vertex-
distinguishing proper (VDP for short) coloring if it is proper and F (u) 6= F (v)
for any two distinct vertices u, v.

Observe that if G contains more than one isolated vertex or any isolated
edges, then no coloring of G is VDP. The minimum number of colors required
to find a VDP coloring of a graph G without isolated edges and with at most
one isolated vertex is called the vertex-distinguishing proper edge-coloring
number and denoted by χ̃′(G).

The VDP coloring number was introduced and studied by Burris and
Schelp in [3] and [4] and, independently, as ”observability” of a graph, by
Černý, Horňák and Soták in [5], [7] and [8].

Among the graphs G for which we know the value χ̃′(G), the largest value
χ̃′(G) is realized when G = Kn with n even and equals n + 1.

The following result has been conjectured by Burris and Schelp in [3] and
[4], and proved recently by the authors of this note in [1].

Theorem 1 A graph G on n vertices, without isolated edges and with at
most one isolated vertex has χ̃′(G) ≤ n + 1.

Of course, this last estimation of χ̃′(G) cannot be improved in general
as it shows the example of complete graphs. However, for some families of
graphs the VDP coloring number is rather closer to the maximum degree
than to the order of the graph. The aim of this note is to give an example
of such a situation. Using similar methods as in the proof of Theorem 1 we
can prove the following theorem which is the main result of this paper.

Theorem 2 Let G be a graph of order n ≥ 3 without isolated edges and with
at most one isolated vertex. If δ(G) > n/3, then

χ̃′(G) ≤ ∆(G) + 5.

Recall that by Vizing’s theorem, for any graph G, we need ∆(G) or
∆(G) + 1 colors in order to color it properly.

Mention by the way that in [6] it is proved that a graph with n vertices

and minimum degree δ ≥ 5 and maximum degree ∆ < (2c−1)n−4
3

, where c is
a constant with 1

2
< c ≤ 1 has χ̃′(G) ≤ ⌈cn⌉.

In the following we shall use some additional notation. Given a proper
coloring f , we denote by Bf (v) = {u ∈ V (G) : F (u) = F (v)}. Observe that
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v ∈ Bf (v). A vertex v is called good if Bf (v) = {v} and bad otherwise. The
members of Bf (v) − {v} are called brothers of v. A semi-VDP coloring is a
proper coloring with |Bf (v)| ≤ 2 for any vertex v of G. Given a proper
coloring f that contains the colors α and β, an (α, β)-Kempe path is a
maximal path formed by the edges colored with α and β.

For a given path P denote by
−→
P one of its orientations. For v, w ∈ V (P )

such that v precedes w, we denote by v
−→
P w the path starting in v and ending

in w which contains all vertices of P between v and w following the orientation
−→
P .

Let v be a vertex of P . We denote by v+ and v− the successor and the
predecessor, respectively, of the vertex v on the path P with respect to given
orientation

−→
P (if they exist).

2 Two lemmas

The following two lemmas have been first proved in [1]. So, we give here only
the sketches of the proofs.

Lemma 3 Let G be a graph such that the following inequality holds for any
d, δ(G) ≤ d ≤ ∆(G):

d(k − d) ≥ nd(G) − 2

where k ≥ ∆(G) + 1.
Then there exists a semi-VDP coloring of G with k colors.

Proof. By Vizing’s theorem, since k ≥ ∆(G)+1, there is a proper coloring of
G with k colors. Let f be such a proper coloring of G that has the minimum
number of bad vertices, and subject to this, with the maximum number of
two-element bad families. Suppose that f is not a semi-VDP coloring of G.
Thus, there exists a vertex u ∈ Vd(G) with |Bf (u)| ≥ 3.

There are d possibilities to choose a color incident to u and k − d possi-
bilities to replace it by another one. So, there are d(k − d) possibilities to
change the color of an edge incident with u with another one such that u is
not incident to two edges with the same color. Recall that there are at least
two other vertices that are incident with the same set of colors as u. By the
assumption, we can choose two colors α ∈ F (u) and β /∈ F (u) in such a way
that the set of colors incident to u becomes unique.
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Let P be an (α, β)-Kempe path having u and v as end-vertices. We
transform the coloring f in another coloring f1 by exchanging the colors α
and β on the path P .

Observe that the vertex v cannot be good with respect to f1 since other-
wise the coloring f1 would have less bad vertices than f . Thus, v is bad in
f1.

If F1(v) = F1(u), then v forms, together with u, a new bad family of
cardinality two which contradicts the maximality of two-element families.

So, v is bad in f1. Let v′ be one of his brothers. We have F1(u) 6= F1(v
′).

This implies that there exists another (α, β)-Kempe path, starting at v′.
Since the set of all (α, β)-Kempe paths in G is finite, we get a contradiction
(for more details we refer the reader to [1]).

Let P1, . . . , Pk be a set of vertex disjoint paths. The set P = {P1, . . . , Pk} is
called a long path system if |V (Pi)| ≥ 3 for any i = 1, . . . , k. If the vertices
of a graph G are covered by a long path system then P is called a long path
covering of G.

The following lemma allows us to transform a semi-VDP coloring of a
subgraph of G to a VDP coloring of G that uses three new colors.

Lemma 4 Let P = {P1, ..., Pk} be a long path covering of G. If there exists
a semi-VDP coloring f of the edges of G′ = G − E(P) with k colors, then
there exists a VDP coloring of the edges of G with k + 3 colors.

Proof. Let us fix an orientation of the paths of P and let
−→
P = (

−→
P 1, . . . ,

−→
P k)

be a long path covering with a given order on the paths. The vertices in each
bad family (with respect to f) are denoted by (x, x′) where x is the first and

x′ is the second vertex on P with respect to the order introduced by
−→
P . It

suffices now to color the edges of P with three new colors, say α, β, γ, in a
way that distinguishes bad vertices (with respect to the coloring f).

We describe below a quasi-algorithm to color P. We color the edges of
P in the order given by the orientation

−→
P . We start with one of the colors,

say α, and we assign to the successive edges a color as follows:
Suppose that the next edge to be colored is e = uu+. We distinguish two

cases.

• The vertex u is not bad or u is the first bad vertex. Then

– if u is the first vertex of a path we use for uu+ one of three colors;
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– if u is an interior vertex we assign to uu+ one of two colors not
used for u−u.

• The vertex u is the second bad vertex. That means that is u = x′ for
some x and that the edges x−x and xx+ (or one of these edges in the
case where x is an end-vertex) have already been colored. Then,

– if x is an end-vertex of a path and u is an interior vertex of a path
P we color uu+ with one of the colors not used for u−u;

– if x is an interior vertex and u is an end-vertex we color uu+ with
one of the three colors;

– if both x and u are interior vertices then we color uu+ in such a
way that {f(x−x), f(xx+)} 6= {f(u−u), f(uu+)};

– if x and u are end-vertices of a path then we color uu+ with one
of two colors not used for the edge incident with x.

It is easy to see that such a coloring is always possible except, may be, in
the situation where uu+ is the last edge on a path P where u and u+ are
both second bad vertices, that is u = x′ and u+ = y′ where x, y are the first
elements of bad families. In this case we have to modify the coloring in order
to avoid such a situation. We can do it in the following way. We begin to
change the colors at the second of two edges, xx+ or yy+ and preserve the
colors of the edges that are before it (see [1] for more details).

3 Proof of Theorem 2

Observe first that by Theorem 1 our result is true for n ≤ 6 for regular
graphs, and for n ≤ 9 for non-regular graphs.

We shall show now that G contains a long path covering. Suppose, con-
versely, that there is no such path covering of V (G).

Let P = {P1, . . . , Pk} be a long path system that covers a maximum
number of vertices of G and let v be a vertex belonging to V (G)−V (P). We
can assume additionally that the covering is chosen in such a way that the
number of paths is as small as possible.

Observe that the graph induced by V (G)−V (P) contains either isolated
vertices or isolated edges. This implies, in particular, that v cannot have two
neighbors that are outside of P.
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Denote by Pi a path of P that contains a neighbor of v and by ai, bi the
end-vertices of Pi. Let

−→
Pi be an orientation of Pi from ai to bi.

We shall show that

Claim 1 v has exactly one neighbor on Pi.

Proof of Claim 1. Suppose, contrary to our claim that v has many neigh-
bors on Pi and denote by x1, x2 the two first of them (with respect to a given
orientation). Neither x1 nor x2 is an end-vertex of the path Pi for, other-

wise we could replace Pi by vx1
−→
Pi or

−→
Pix2v and obtain a long path system

covering more vertices than P.
It is easy to see that x2 cannot be the successor of x1, since the path

a1
−→
Pix1vx2

−→
Pib1 would cover one vertex more than Pi.

So, there is at least one vertex on Pi between x1 and x2. But then we can
replace Pi by two paths, namely a1

−→
Pix1v and (x1)

+−→Pib1 and get in this way
a long path system larger than P.

Consider first the case where there is only one vertex outside of P, say v.
Since each path P ∈ P has at least three vertices, there are at most n−1

3

paths in P. This implies, by Claim 1 that the vertex v /∈ V (P) has the
degree at most n−1

3
. This contradicts the fact that δ > n

3
. Thus there are at

least two vertices outside of P. If two paths of P are of length at least three
or one path is of length at least four, then the number of paths is at most
n−4

3
. As above, this implies that the vertex v /∈ V (P) has the degree at most

n−4
3

+ 1, a contradiction.
Consider now the case where all paths are of length two. Denote by v

one of vertices outside of the path system and by a, b two end-vertices of the
same path, say P . The vertex a is neither joined to end-vertices on paths
different from P (because the number of paths is minimal) nor to vertices
outside of P. If there is no edge between a and b, then the degree of a does
not exceed n−2

3
, a contradiction. If ab ∈ E(G), then the vertex v cannot be

connected by an edge with the path P . Thus its degree does not exceed n−2
3

.
Finally, consider the case where all paths but one are of length two and

one path is of length three. With the same notation as in the case above,
it is easy to see that either the degree of a or the degree of v is not greater
than n

3
, a contradiction.

Finally we may conclude that G contains a long path covering.
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Denote it by P and let G′ be the graph G − E(P). We shall show that G′

has a semi-VDP coloring that uses k = ∆ + 2 colors where ∆ = ∆(G).
In order to use Lemma 3, we have to verify the following condition

(∗) d′(k − d′) ≥ nd′(G
′) − 2

for any d, δ′ ≤ d′ ≤ ∆′, where δ′ = δ(G′) and ∆′ = ∆(G′). We shall consider
some cases.

Case 1. d′ = ∆′.
Since G′ has been obtained from G by removing the edges of some paths,

we have two possibilities for ∆′.

Case 1a. ∆′ =∆ − 1.
Then k − d′ = 3 and (∗) is implied by the inequality (∆ − 1)3 ≥ n − 2

since δ ≥ n+1
3

.

Case 1b. ∆′ =∆ − 2.
Then k−d′ = 4. Moreover, observe that in this case G cannot be regular.

In consequence, ∆ ≥ δ+1 ≥ n+4
3

. So, we have to verify that (∆−2)4 ≥ n−2.
This inequality is equivalent to ∆ ≥ n+6

4
which holds for n ≥ 2.

Case 2. d′ <∆′.
This ensures, in particular, that G′ is not regular. Thus nd′ ≤ n − 1.

Moreover we have: k − d′ ≥ 4 and d′ ≥ δ − 2. So, to get (∗) it suffices to
verify that

(δ − 2)4 ≥ n − 3.

This inequality holds for n ≥ 9. By the remark at the beginning of this
section we are done if G is not regular. But if G is regular then d′ = ∆ − 2
and nd′ ≤ n − 2.

Therefore, we have to examine if ∆ − 2 ≥ n−4
4

. It is easy to see that
this inequality holds for n ≥ 6. This finishes the proof of the existence of a
semi-VDP coloring of G′ with ∆ + 2 colors. By Lemma 4 this finishes also
the proof of the theorem.
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4 Concluding remark

Observe that the methods used in the proof enable us to formulate a more
general result.

Theorem 5 If G contains a long path covering P such that there exists a
semi-VDP coloring of G′ = G−E(P) with k colors, then there exists a VDP
coloring of the edges of G with k + 3 colors.

¿From this point of view, Theorem 2 can be considered as an example of the
application of the above general theorem.
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