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Abstract

This paper investigates the complexity of the min-max and min-max regret versions of
the min s-t cut and min cut problems. Even if the underlying problems are closely related
and both polynomial, the complexity of their min-max and min-max regret versions, for a
constant number of scenarios, is quite contrasted since they are respectively strongly NP -
hard and polynomial. However, for a non constant number of scenarios, these versions
become strongly NP -hard for both problems. In the interval scenario case, min-max
versions are trivially polynomial. Moreover, for min-max regret versions, we obtain the
same contrasted result as for a constant number of scenarios: min-max regret min s-t cut
is strongly NP -hard whereas min-max regret min cut is polynomial.

Keywords: min-max, min-max regret, complexity, min cut, min s-t cut.

1 Introduction

The definition of an instance of a combinatorial optimization problem requires to specify
parameters, in particular objective function coefficients, which may be uncertain or imprecise.
Uncertainty/imprecision can be structured through the concept of scenario which corresponds
to an assignment of plausible values to model parameters. Each scenario s can be represented
as a m-dimensional vector where m is the number of relevant numerical parameters. Kouvelis
and Yu [10] proposed the min-max and min-max regret criteria, stemming from decision
theory, to construct robust solutions hedging against parameters variations. In min-max
optimization, the aim is to find a solution having the best worst case value across all scenarios.
In min-max regret versions, it is required to find a feasible solution minimizing the maximum
deviation, over all possible scenarios, of the value of the solution from the optimal value of
the corresponding scenario. Two natural ways of describing the set of all possible scenarios S

have been considered in the literature. In the discrete scenario case, S is described explicitly
by the list of all vectors s ∈ S. In this case, we distinguish situations where the number
of scenarios is constant from those where the number of scenarios is non constant. In the
interval scenario case, each numerical parameter can take any value between a lower and
upper bound, independently of the values of the other parameters. Thus, in this case, S is
the cartesian product of the intervals of uncertainty for the parameters.

Complexity of the min-max (regret) versions has been studied extensively during the last
decade. In the discrete scenario case, this complexity was investigated for several combinato-
rial optimization problems in [10]. In general, these versions are shown to be harder than the
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classical versions. For a constant number of scenarios, pseudo-polynomial algorithms, based
on dynamic programming, are given in [10] for the min-max (regret) versions of shortest path,
knapsack and minimum spanning tree for grid graphs. The latter result is extended to general
graphs in [1]. When the number of scenarios is not constant, these versions usually become
strongly NP -hard, even if the underlying problem is polynomial. In the interval scenario case,
extensive research has been devoted for studying the complexity of min-max regret versions
of various optimization problems including shortest path [5], minimum spanning tree [4, 5]
and assignment [2].

We investigate in this paper the complexity of min-max and min-max regret versions of
two closely related polynomial problems, min cut and min s-t cut. Quite interestingly, for a
constant number of scenarios, the complexity status of these problems is widely contrasted.
More precisely, min-max (regret) versions of min cut are polynomial whereas min-max (regret)
versions of min s-t cut are strongly NP -hard even for two scenarios. For a non constant
number of scenarios, min-max (regret) min cut become strongly NP -hard. These results were
established by, or can be derived from, Armon and Zwick [3].

In the interval scenario case, min-max versions are trivially polynomial. Moreover, for
min-max regret versions, we obtain the same contrasted result as for a constant number of
scenarios: min-max regret cut is polynomial whereas min-max regret min s-t cut is strongly
NP -hard.

After presenting preliminary concepts (Section 2), we investigate the complexity of min-
max (regret) versions of min cut and min s-t cut in the discrete scenario case (Section 3), and
in the interval scenario case (Section 4). Conclusions and perspectives are provided in a final
section.

2 Preliminaries

Let us consider an instance of a 0-1 minimization problem Q with a linear objective function
defined as:

{
min

∑m
i=1 cixi ci ∈ Q+

x ∈ X ⊂ {0, 1}m

This class encompasses a large variety of classical combinatorial problems, some of which
are polynomial-time solvable (shortest path problem, minimum spanning tree, . . . ) and others
are NP -hard (knapsack, set covering, . . . ).

In the discrete scenario case, the min-max (regret) version associated to Q has as input a
finite set of scenarios S where each scenario s ∈ S is represented by a vector (cs

1, . . . , c
s
m). In

the interval scenario case, each coefficient ci can take any value in the interval [ci, ci]. In this
case, the scenario set S is the cartesian product of the intervals [ci, ci], i = 1, . . . , m.

We denote by val(x, s) =
∑m

i=1 cs
ixi the value of solution x ∈ X under scenario s ∈ S, by

x∗

s an optimal solution under scenario s, and by val∗s = val(x∗

s, s) the optimal value under the
scenario s.

The min-max optimization problem corresponding to Q, denoted by Min-Max Q, consists
of finding a solution x having the best worst case value across all scenarios, which can be

2



stated as:
min
x∈X

max
s∈S

val(x, s)

This version is denoted by Discrete Min-Max Q in the discrete scenario case, and by
Interval Min-Max Q in the interval scenario case.

Given a solution x ∈ X, its regret under scenario s ∈ S is defined as:

R(x, s) = val(x, s) − val∗s

The maximum regret of solution x is then defined as Rmax(x) = maxs∈S R(x, s).
The min-max regret optimization problem corresponding to Q, denoted by Min-Max

Regret Q, consists of finding a solution x minimizing its maximum regret Rmax(x) which
can be stated as:

min
x∈X

Rmax(x) = min
x∈X

max
s∈S

{val(x, s) − val∗s}

This version is denoted by Discrete Min-Max Regret Q in the discrete scenario case,
and by Interval Min-Max Regret Q in the interval scenario case.

In the interval scenario case, for a solution x ∈ X, we denote by c−(x) the worst scenario
associated to x, where c−i (x) = ci if xi = 1 and c−i (x) = ci if xi = 0, i = 1, . . . , m. Then we
can establish easily that Rmax(x) = R(x, c−(x)), as shown e.g. in [15] in the specific context
of the minimum spanning tree problem.

In this paper, we focus on the min-max (regret) versions of several minimum cut problems.
Given a graph G = (V, E), a cut C = (V1, V2) is the set of edges from E that have one

endpoint in V1 and one endpoint in V2, where V1 is a non-empty proper subset of V and
V2 = V \ V1. The value of a cut is the number of edges in this cut when G is unweighted and
the sum of the weights of the edges of this cut when G is weighted.

A bisection is a cut C = (V1, V2) such that |V1| = |V2|. Given two specified vertices s and
t, an s-t cut (respectively s-t bisection) is a cut (respectively bisection) C = (V1, V2) such
that s ∈ V1 and t ∈ V2.

The minimum cut problems for which we study min-max (regret) versions are:

Min Cut

Input: A connected undirected graph G = (V, E) with a nonnegative weight wij associated
with each edge (i, j) ∈ E.
Output: A cut in G of minimum value.

Min s-t Cut

Input: A connected undirected graph G = (V, E) with a nonnegative weight wij associated
with each edge (i, j) ∈ E, and two specified vertices s, t ∈ V .
Output: An s-t cut in G of minimum value.

Since both problems are minimization problems, we shall refer to their min-max versions
omitting Min from their names, while keeping it for their min-max regret versions to avoid any
ambiguity. Thus, these versions will be named Discrete Min-Max Cut, Discrete Min-

Max Regret Min Cut, Discrete Min-Max s-t Cut, Discrete Min-Max Regret Min

s-t Cut in the discrete scenario case and for the interval scenario case, we replace Discrete

by Interval.
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In order to prove one of our complexity results we use the following problem proved
strongly NP -hard in [6].

Min s-t Bisection

Input: An unweighted graph G = (V, E) with an even number of vertices, and two specified
vertices s, t ∈ V .
Output: An s-t bisection in G of minimum value.

3 Discrete scenario case

We investigate the complexity of the min-max (regret) versions of min s-t cut (Section 3.1)
and min cut (Section 3.2). Results for the min-max versions were established by, or can be
easily derived from, Armon and Zwick [3]. Results for the min-max regret versions follow
from the min-max case.

3.1 Min s-t cut

We first review the min-max version of the min s-t cut problem. Papadimitriou and Yan-
nakakis [13, Th.6] showed that given a constant number k ≥ 2 of bounds b1, . . . , bk, the
problem of deciding whether there exists or not an s-t cut C such that val(C, si) ≤ bi, for
i = 1, . . . , k, is strongly NP -hard. Armon and Zwick [3, Th.2] reduced this problem to the
min-max version. Combining these results, we can state the following result.

Theorem 1 Discrete Min-Max s-t Cut is strongly NP-hard even for two scenarios.

Using this result, we show now that the min-max regret version is also strongly NP -hard.

Theorem 2 Discrete Min-Max Regret Min s-t Cut is strongly NP-hard even for two
scenarios.

Proof : Consider an instance G = (V, E) of Discrete Min-Max s-t Cut with the scenario
set S = {s1, s2}. Let W be the total sum of the weights of all edges under all scenarios.
We construct an instance G′ of Discrete Min-Max Regret Min s-t Cut with the same
scenario set. The graph G′ is obtained from G by adding two new vertices s′ and t′ and edges
(s′, s) and (t′, t). The weights of edges of G in S are kept in G′. Moreover, the weights of
edges (s′, s) and (t′, t) are w1

s′s = 0, w1
t′t = W under scenario s1, and w2

s′s = W w2
t′t = 0 under

scenario s2. Thus, the optimal values in G′ under scenarios s1 and s2 are zero. Therefore, a
solution is optimal in G if and only if it is optimal in G′. 2

3.2 Min cut

For a constant number of scenarios, Armon and Zwick [3] gave a polynomial-time algorithm
for Discrete Min-Max Cut based essentially on the result of Nagamochi, Nishimura, and
Ibaraki [12] for computing all α-approximate cuts in time O(m2n+mn2α). A cut C in a graph
G is called an α-approximate cut if val(C) ≤ α opt, where opt is the value of a minimum cut
in G.
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Theorem 3 ([3]) Discrete Min-Max Cut is solvable in polynomial time for a constant
number of scenarios.

In a graph on n vertices and m edges and with k scenarios, Armon and Zwick’s algo-
rithm [3] constructs an optimal solution in O(mn2k).

We show in the following that this algorithm can be modified in order to obtain a
polynomial-time algorithm for Discrete Min-Max Regret Min Cut.

Theorem 4 Discrete Min-Max Regret Min Cut is solvable in polynomial time for a
constant number of scenarios.

Proof : Consider an instance I of the problem given by graph G = (V, E) on n vertices
and m edges and a set of k scenarios S such that each edge (i, j) ∈ E has a weight ws

ij in
scenario s. We construct, as before, an instance I ′ of Min Cut on the same graph, where
w′

ij =
∑

s∈S ws
ij . The algorithm consists firstly of computing all k-approximate cuts and

secondly of choosing among these cuts one with a minimum maximum regret.
The first stage requires O(mn2k) time using the algorithm presented in [12]. In the second

stage, we first compute a minimum cut for each scenario, which can be performed in time
O(mn + n2 log m) using [11, 14]. Knowing, from [7, 8], that we have at most O(n2k) k-
approximate cuts in I ′, the complexity of the second stage is O(mn2k). Thus, the overall
running time of the algorithm is O(mn2k).

We prove now the correctness of the algorithm. Let C∗ be an optimal min-max regret cut
in G. We show that for any cut C of G, we have val′(C∗) ≤ k val′(C), where val′(C) is the
value of cut C in I ′. In fact,

val′(C∗) =
∑

s∈S

val(C∗, s) =
∑

s∈S

(val(C∗, s) − val∗s) +
∑

s∈S

val∗s ≤

k max
s∈S

{val(C∗, s) − val∗s} +
∑

s∈S

val∗s ≤ k max
s∈S

{val(C, s) − val∗s} +
∑

s∈S

val∗s ≤

k
∑

s∈S

(val(C, s) − val∗s) +
∑

s∈S

val∗s = k
∑

s∈S

val(C, s) − (k − 1)
∑

s∈S

val∗s ≤ k val′(C)

In particular, if C is a minimum cut in I ′, we obtain val′(C∗) ≤ k opt(I ′). Thus all optimal
solutions to Discrete Min-Max Regret Min Cut are among the k-approximate cuts in
I ′. 2

The algorithms described above to solve min-max (regret) versions of the min cut problem
are exponential in k. Armon and Zwick [3, Th.7] showed that given a non constant number
k of bounds b1, . . . , bk, the problem of deciding whether there exists or not a min cut C such
that val(C, si) ≤ bi, for i = 1, . . . , k, is strongly NP -hard. Using again the reduction of [3,
Th.2], from this problem to the min-max version, we can state the following result.

Theorem 5 Discrete Min-Max Cut is strongly NP-hard for a non constant number of
scenarios.

We prove in the following that when k is not constant, the min-max regret version becomes
also strongly NP -hard.
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Theorem 6 Discrete Min-Max Regret Min Cut is strongly NP-hard for a non constant
number of scenarios.

Proof : Consider an instance G = (V, E) of Discrete Min-Max Cut with the scenario set
S = {s1, s2, . . . , sk}. Let W be the total sum of the weights of all edges under all scenarios.
We construct an instance G′ of Discrete Min-Max Regret Min Cut with the same
scenario set. The graph G′ is obtained from G by adding two new vertices v1 and v2 and
edges (v1, v) and (v2, v) for an arbitrarily chosen vertex v of G. The weights of edges of G in
S are kept in G′. Moreover, w1

v1v = W , w2
v2v = W and the weights of (v1, v) and (v2, v) in the

other scenarios are 0. Thus, the optimal values in G′ under each scenario are zero. Therefore,
a solution is optimal in G if and only if it is optimal in G′. 2

4 Interval scenario case

We first state the polynomiality of the min-max cut problems (Section 4.1), then we establish
the strong NP -hardness of Interval Min-Max Regret Min s-t Cut (Section 4.2.1) and
the polynomiality of Interval Min-Max Regret Min Cut (Section 4.2.2).

4.1 Min-max versions

In the interval scenario case, the min-max version of a minimization problem corresponds to
solving this problem in the worst-case scenario defined by the upper bounds of all intervals.
Therefore, a minimization problem and its min-max version have the same complexity. In-

terval Min-Max s-t Cut and Interval Min-Max Cut are thus polynomial-time solvable.

4.2 Min-max regret versions

When the number u ≤ m of uncertain/imprecise parameters, corresponding to non-degenerate
intervals, is small enough, then the problem becomes polynomial. More precisely, as shown
by Averbakh and Lebedev [5] for general networks problems solvable in polynomial time, if u

is fixed or bounded by the logarithm of a polynomial function of m, then the min-max regret
version is also solvable in polynomial time (based on the fact that an optimal solution for
the min-max regret version corresponds to one of the optimal solutions for the 2u extreme
scenarios, where extreme scenarios have values on each edge corresponding to either the lower
or upper bound of its interval). This clearly applies to the min s-t cut and min cut problems.

4.2.1 Min s-t cut

We show now that Interval Min-Max Regret Min s-t Cut is strongly NP -hard. For
this purpose, we construct a reduction from the decision version of Min s-t Bisection.

Theorem 7 Interval Min-Max Regret Min s-t Cut is strongly NP-hard.

Proof : Consider G = (V, E) an instance of Min s-t Bisection with |V | = 2n, where
V = {s = 1, . . . , t = 2n}. We construct from G an instance G̃ = (Ṽ , Ẽ) of Interval Min-

Max Regret Min s-t Cut as illustrated in Figure 1. The vertex set is Ṽ = V ∪{1′, . . . , 2n′}
∪{1′′, . . . , 2n′′} ∪{1′′′, . . . , 2n′′′} ∪{s̃, 2n + 1}, and t̃ = t.
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4′ 4′′ 4′′′

Figure 1: Interval Min-Max Regret Min s-t Cut instance resulting from a Min s-t Bisection

instance

The edge set is Ẽ = E ∪ {(i′, i′′), (i′′, i′′′) : i = 1, . . . , 2n} ∪ {(i, i′′) : i = 2, . . . , 2n − 1} ∪
{(2n + 1, i′) : i = 1, . . . , 2n} ∪{(i′′′, t) : i = 1, . . . , 2n} ∪ {(s̃, 2n + 1), (s̃, s)}.

Let p and q verifying, respectively, p > n2 and q > 4n(p + 1)2. The weights are defined as
follows :

• wij = wij = 1, for all (i, j) ∈ E;

• wi′i′′ =

{
q for i = 1
0 otherwise

and wi′i′′ =

{
q for i = 1
p2 + p otherwise

• wi′′i′′′ = wi′′i′′′ =





p2 + np for i = 1
p2 for i = 2, . . . , 2n − 1
q for i = 2n

• wii′′ = wii′′ = q, for i = 2, . . . , 2n − 1;

• w(2n+1)i′ =

{
0 for i = 1
2p otherwise

and w(2n+1)i′ = q, for i = 1, . . . , 2n;

• wi′′′t = wi′′′t = q, for i = 1, . . . , 2n;

• ws̃(2n+1) = 2np and ws̃(2n+1) = q;

• ws̃s = 0 and ws̃s = q.
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Clearly this transformation can be obtained in polynomial time.

We first establish the following property.

For any s̃-t̃ cut C̃ = (Ṽ1, Ṽ2) in G̃ not including any edge (i, j) ∈ Ẽ with wij = q, a minimum

s̃-t̃ cut C∗

w−(C̃)
in, w−(C̃), the worst scenario associated to C̃, has value val(C∗

w−(C̃)
, w−(C̃)) =

2p min{n, |V2|}, where V2 = Ṽ2 ∩ V .
Indeed, consider such a cut C̃ = (Ṽ1, Ṽ2) with s̃ ∈ Ṽ1, t̃ ∈ Ṽ2 and denote V1 = Ṽ1 ∩ V .

Clearly, vertices 2n + 1, 1′′ and i′, i = 1, . . . , 2n belong to Ṽ1. Also, vertices 2n′′ and i′′′,
i = 1, . . . , 2n belong to Ṽ2. Moreover, i and i′′ belong to the same part, Ṽ1 or Ṽ2. It follows
that

val(C̃, w−(C̃)) = x + (n + |V2|)p + 2np2 (1)

where x denotes the number of edges that have one endpoint in V1 and one endpoint in V2.
By construction, C∗

w−(C̃)
necessarily cuts edge (s̃, s). Furthermore, there exist two cases:

1. If |V2| ≤ n then C∗

w−(C̃)
= (Ṽ ∗

1 , Ṽ \ Ṽ ∗

1 ), where Ṽ ∗

1 = {s̃, 2n + 1} ∪ {i′ : i′′ ∈ Ṽ1, i 6= 1}

and thus val(C∗

w−(C̃)
, w−(C̃)) = 2|V2|p.

2. If |V2| > n then C∗

w−(C̃)
= ({s̃}, Ṽ \ {s̃}) and thus val(C∗

w−(C̃)
, w−(C̃)) = 2np.

We claim that there exists an s-t bisection C = (V1, V2) of value no more than v if and
only if there exists an s̃-t̃ cut C̃ = (Ṽ1, Ṽ2) in G̃ with Rmax(C̃) ≤ v + 2np2.

⇒ Consider an s-t bisection C = (V1, V2) in G of value x ≤ v. We construct an s̃-t̃ cut
C̃ in G̃ deduced from C as follows: Ṽ1={s̃, 2n + 1} ∪ {1′, . . . , 2n′} ∪ V1 ∪ {i′′ : i ∈ V1} and
Ṽ2={1′′′, . . . , 2n′′′}∪V2∪{i′′ : i ∈ V2}. It is easy to verify that val(C̃, w−(C̃)) = x+2n(p+p2)
and using the previous result, we have Rmax(C̃) = x + 2np2 ≤ v + 2np2.
⇐ Consider an s̃-t̃ cut C̃ in G̃ with Rmax(C̃) ≤ v + 2np2. We first show that cut C̃ does not
cut any edge (i, j) ∈ Ẽ such that wij = q. Otherwise, we would have val(C̃, w−(C̃)) ≥ q.

Moreover, since a minimum s̃-t̃ cut C∗

w−(C̃)
in w−(C̃) does not cut any edge (i, j) ∈ Ẽ such

that wij = q, we have, using (1), val(C∗

w−(C̃)
, w−(C̃)) ≤ n2 + 3np + 2np2 < 4np + 2np2.

Therefore, we have Rmax(C̃) > q − (4np + 2np2) > 2np2 + v, a contradiction.
Thus val(C̃, w−(C̃)) = y + 2np2 + np + p|V2| where y is the value of the cut induced by

C̃ in E. It follows that

Rmax(C̃) =

{
y + (n − |V2|)p + 2np2 if |V2| ≤ n

y + (|V2| − n)p + 2np2 if |V2| > n

Consequently, since Rmax(C̃) ≤ v + 2np2, and p > n2 ≥ v, we have |V1| = n = |V2| and
y ≤ v. 2

4.2.2 Min cut

We prove in this section that the min-max regret version of the min cut problem is polynomial
in the interval scenario case.
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Theorem 8 Interval Min-Max Regret Min Cut is solvable in polynomial time in the
interval scenario case.

Proof : Consider an instance I of Interval Min-Max Regret Min Cut given by graph
G = (V, E) on n vertices and m edges. The weight wij of each edge (i, j) ∈ E can take any
value in the interval [wij , wij ]. We construct an instance I ′ of Min Cut on the same graph,
where w′

ij = wij . The algorithm consists firstly of computing all the 2-approximate minimum
cuts in I ′ and secondly of choosing among these cuts one with a minimum maximum regret.

The running time of the first stage is O(mn4) using the algorithm presented in [12]. For
the second stage, the complexity for computing the maximum regret for any cut C corresponds
to the complexity for computing a minimum cut in scenario w−(C), that is O(mn+n2 log m)
using [11, 14]. Knowing, from [7, 8], that we have at most O(n4) 2-approximate cuts in I ′,
the complexity of the second stage is O(mn5 + n6 log m). Thus, the overall running time of
the algorithm is O(mn5 + n6 log m).

We prove now the correctness of the algorithm. Let C∗ be an optimal cut in I and val′(C)
denote the value of any cut C in I ′. Then the following inequalities hold:

val′(C∗) = Rmax(C∗) + val∗w−(C∗)

≤ Rmax(C) + val(C, w−(C∗)) ≤ 2val′(C)

In particular, if C is a minimum cut in I ′, we obtain val′(C∗) ≤ 2opt(I ′). Thus all optimal
solutions to Interval Min-Max Regret Min Cut are among the 2-approximate cuts in
I ′. 2

5 Conclusions

We reviewed in this paper positive and negative results concerning the complexity of min-max
and min-max regret versions of the min cut and min s-t cut problems. Table 1 summarizes
all the complexity results. Besides the fact that two closely related polynomial problems
have widely contrasted complexity status for their min-max (regret) versions, it should be
pointed out that, for a constant number of scenarios, min s-t cut is the first known polynomial
problem whose min-max (regret) versions become strongly NP -hard whereas min cut is one
of the few polynomial problems whose min-max (regret) versions remain polynomial.

Problem min cut min s-t cut
constant min-max polynomial [3] strongly NP -hard

Discrete case min-max regret polynomial strongly NP -hard
non constant min-max strongly NP -hard strongly NP -hard

min-max regret strongly NP -hard strongly NP -hard
Interval case min-max polynomial polynomial

min-max regret polynomial strongly NP -hard

Table 1: Complexity results of the min-max (regret) versions of min cut and min s-t cut

Now that the complexity status of these problems is clarified, it would be interesting to
study their approximability. Observing that all the negative results are strong NP -hardness
results, the best approximations that we could obtain for these problems are polynomial time
approximation schemes. Moreover, we know two general results for the approximability of
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min-max (regret) versions of polynomial-time solvable problems: a k-approximation algorithm
in the discrete scenario case by Kouvelis and Yu [10] and a 2-approximation algorithm in the
interval scenario case by Kasperski and Zieliński [9]. It remains an open question whether the
approximability of min-max (regret) versions of min cut and, above all, min s-t cut problems
can be improved using specific algorithms.
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