
General approximation schemes for min-max

(regret) versions of some (pseudo-)polynomial

problems∗

Hassene Aissi Cristina Bazgan Daniel Vanderpooten

Université Paris-Dauphine, LAMSADE

Place du Maréchal de Lattre de Tassigny, 75775 Paris Cedex 16, France

{aissi,bazgan,vdp}@lamsade.dauphine.fr

Abstract

While the complexity of min-max and min-max regret versions of most classical com-
binatorial optimization problems has been thoroughly investigated, there are very few
studies about their approximation. For a bounded number of scenarios, we establish gen-
eral approximation schemes which can be used for min-max and min-max regret versions
of some polynomial or pseudo-polynomial problems. Applying these schemes to shortest
path, minimum spanning tree, minimum weighted perfect matching on planar graphs, and
knapsack problems, we obtain fully polynomial-time approximation schemes with better
running times than the ones previously presented in the literature.

Keywords: min-max, min-max regret, approximation, fptas, shortest path, minimum span-
ning tree, knapsack, minimum weighted perfect matching.

1 Introduction

The definition of an instance of a combinatorial optimization problem requires one to specify
parameters, in particular objective function coefficients, which may be uncertain or impre-
cise. Uncertainty/imprecision can be structured through the concept of a scenario which
corresponds to an assignment of plausible values to parameters. There exist two natural
ways of describing the set of all possible scenarios. In the interval data case, each numerical
parameter can take any value between a lower bound and an upper bound. In the discrete
scenario case, which is considered here, the scenario set is described explicitly. Kouvelis and
Yu [11] proposed the min-max and min-max regret criteria, stemming from decision theory,
to construct solutions hedging against parameters variations. The min-max criterion aims
at constructing solutions having the best performance in the worst case. The min-max re-
gret criterion, less conservative, aims at obtaining a solution minimizing, over all possible
scenarios, the maximum deviation between the value of the solution and the optimal value
for the corresponding scenario. A recent survey about complexity, approximation, and exact
resolution of min-max and min-max regret versions of classical combinatorial optimization
problems can be found in [3].

∗This work is partially supported by the ANR project GUEPARD

1

The complexity of the min-max and min-max regret versions has been studied extensively
during the last decade. In [11], for the discrete scenario case, the complexity of min-max (re-
gret) versions of several combinatorial optimization problems was studied, including shortest
path and minimum spanning tree. In general, these versions are shown to be harder than the
classical versions. More precisely, if the number of scenarios is not constant, these problems
become strongly NP -hard, even when the classical problems are solvable in polynomial time.
On the other hand, for a constant number of scenarios, min-max (regret) versions of these
polynomial problems usually become weakly NP -hard.

While the complexity of these problems was studied thoroughly, their approximation was
not studied until now, except in [2]. That paper investigated the relationships between min-
max (regret) and multi-objective versions, and showed the existence, in the case of a constant
number of scenarios, of fully polynomial-time approximation schemes (fptas’s) for min-max
versions of several classical optimization problems (shortest path, minimum spanning tree,
knapsack). The interest of studying these relationships is that, unlike for min-max (regret)
versions, fptas’s which determine an approximation of the non-dominated set (or Pareto
set) have been proposed for the multi-objective version (see, e.g., [15, 18]). Approximation
algorithms for the min-max version, which basically consist of selecting one min-max solution
from an approximation of the non-dominated set, are then easy to derive but critically depend
on the running time of the approximation scheme for the multi-objective version.

In this paper, we adopt an alternative perspective and develop general approximation
schemes in the case of a constant number of scenarios, based on the scaling technique, which
can be applied to the min-max/max-min and min-max regret versions of some problems,
provided that some general conditions are satisfied. The advantage of this approach is that
the resulting fptas’s usually have a much better running time than those derived using multi-
objective fptas’s.

After presenting some background concepts in Section 2, we introduce the general ap-
proximation schemes in Section 3. In Section 4, we present applications of these general
schemes to shortest path, minimum spanning tree, minimum weighted perfect matching in
planar graphs, and knapsack problems, giving in each case fptas’s with better running times
than previously known fptas’s based on multi-objective versions.

2 Preliminaries

We consider in this paper the class C of 0-1 problems with a linear objective function defined
as: {

min(or max)
∑m

i=1 cixi ci ∈ N

x ∈ X ⊂ {0, 1}m

This class encompasses a large variety of classical combinatorial problems, some of which
are polynomial-time solvable (shortest path, minimum spanning tree, . . .) and others are NP -
hard (knapsack, set covering, . . .). The size of a solution x ∈ X is the number of variables
xi which are set to 1.

2.1 Min-max, max-min and min-max regret versions

Given a problem P ∈ C, the min-max, max-min, and min-max regret versions associated to P
have for input a finite set of scenarios S, |S| ≥ 2, where each scenario s ∈ S is represented by

2

a vector (cs
1, . . . , c

s
m). We denote by val(x, s) =

∑m
i=1 cs

ixi the value of solution x ∈ X under
scenario s ∈ S and by val∗s the optimal value in scenario s.

The min-max or max-min version associated to a problem P consists of finding a solution
having the best worst-case value across all scenarios. More precisely, for a minimization prob-
lem P, its min-max version, denoted by Min-Max P, can be stated as minx∈X maxs∈S val(x, s).
For a maximization problem P, its max-min version, denoted by Max-Min P, can be stated
as maxx∈X mins∈S val(x, s)

Given a solution x ∈ X, its regret under scenario s ∈ S is defined as R(x, s) = val(x, s)−
val∗s for minimization problems and R(x, s) = val∗s − val(x, s) for maximization problems.
The maximum regret Rmax(x) of solution x is then defined as Rmax(x) = maxs∈S R(x, s).

The min-max regret optimization problem corresponding to P, denoted by Min-Max
Regret P, consists of finding a solution x minimizing the maximum regret Rmax(x), which
can be stated as

min
x∈X

Rmax(x)

2.2 Approximation

Let us consider an instance I, of size |I|, of an optimization problem and a solution x of I. We
denote by cmax(I) the maximal value of the coefficients in the objective function and opt(I)

the optimum value of instance I. The performance ratio of x is r(x) = max
{

val(x)
opt(I) ,

opt(I)
val(x)

}
.

For a function f , an algorithm is an f(n)-approximation algorithm if, for any instance I of
size n of the problem, it returns a solution x such that r(x) ≤ f(n). An optimization problem
has a fully polynomial-time approximation scheme (an fptas, for short) if, for every constant
ε > 0, it admits an (1 + ε)-approximation algorithm which is polynomial both in the size of
the input and in 1/ε. The class of problems admitting an fptas is denoted by FPTAS.

3 General approximation schemes

We establish now general results giving necessary and sufficient conditions for the existence
of fptas’s for min-max (max-min) and min-max regret versions of problems P in C. The
sufficient conditions give rise to general approximation schemes.

3.1 Min-max and max-min

Investigating Min-Max P and Max-Min P, we provide necessary and sufficient conditions
for the existence of an fptas. Quite interestingly, we show that better fptas’s can be obtained
for the min-max version.

We first establish a general scheme that is valid for both cases. It is based on an approxi-
mate binary search which is a technique used to obtain fptas’s for combinatorial optimization
problems [7, 8, 18]. Let V be a given value and ε > 0 be fixed. The approximate binary
search is based on a testing procedure that outputs a positive or a negative answer; if it is
positive then the optimal value opt verifies opt ≥ V and if it is negative then opt < V (1 + ε).

Theorem 1 Max-Min P (resp. Min-Max P) is in FPTAS if and only if there exists an al-
gorithm that finds for any instance I of Max-Min P (resp. Min-Max P) an optimal solution
in time r(|I|, cmax(I)), where r is a non-decreasing polynomial and cmax(I) = maxi,s cs

i .

3

The running time of the fptas is O(log log m·cmax(I)
log(1+ε) r(|I|, t

ε
)), where m is the number of

coefficients in the objective function and t is an upper bound of the size of any feasible solution
of I.

Proof : (⇐) Consider an instance I of Max-Min P defined on a scenario set S where each
scenario s ∈ S is represented by a vector (cs

1, . . . , c
s
m). We denote by A the algorithm that

solves I in time r(|I|, cmax(I)). Let L0 and U0 be a lower bound and an upper bound of the
optimal value opt(I), and V a given value such that L0 < V < U0. The approximate binary
search is used to tighten the bounds by either increasing the lower bound to V or decreasing
the upper bound to V (1+ ε) and continue this way until the ratio between the current upper
and lower bounds falls below 1 + ε.

In order to do this, given V and ε > 0, we compute an optimal solution of a simplified
instance I ′ of the same problem by rounding cs

i to c′si = ⌊ tcs
i

εV
⌋, where t is an upper bound of

the size of any feasible solution of I. However, applying algorithm A to I ′ can be very time
consuming. We need to construct a more simplified instance I ′′ of Max-Min P defined as
follows: c′′si = c′si if c′si < t

ε
and c′′si = t

ε
otherwise.

We show in the following that if opt(I ′′) ≥ t
ε

then opt(I) ≥ V and if opt(I ′′) < t
ε

then
opt(I) < V (1 + ε).

First, suppose that opt(I ′′) ≥ t
ε

and let x′′ denote an optimal solution of I ′′ and x∗ denote
an optimal solution of I. Then, the following inequalities hold:

opt(I) = min
s∈S

val(x∗, s) ≥ min
s∈S

val(x′′, s) ≥ εV

t
min
s∈S

val′(x′′, s) ≥ εV

t
min
s∈S

val′′(x′′, s) ≥ V

where val′(x, s) and val′′(x, s) denote respectively the value of a solution x ∈ X, under
scenario s ∈ S, for instance I ′ and instance I ′′.

Suppose now that opt(I ′′) < t
ε
. Then, for any solution x̃, there exists a scenario s̃ such

that val′′(x̃, s̃) < t
ε
. This implies that c′′s̃i < t

ε
for any i such that x̃i = 1. Therefore, we have

val′(x̃, s̃) = val′′(x̃, s̃), which gives opt(I ′) < t
ε
.

We show now that opt(I ′) < t
ε

implies that opt(I) < V (1 + ε). Since c′si = ⌊ tcs
i

εV
⌋, we have

cs
i <

εV

t
(c′si + 1), for all s ∈ S.

Then an optimal solution x∗ for I satisfies val(x∗, s) < εV
t

val′(x∗, s) + εV, for all s ∈ S,
which implies that

opt(I) = min
s∈S

val(x∗, s) <
εV

t
min
s∈S

val′(x∗, s) + εV <
εV

t
opt(I ′) + εV < V (1 + ε).

Instead of using a standard binary search with V = L+U
2 , we can use an accelerated version

of the approximate binary search by setting iteratively V =
√

LU , as suggested in [7]. More
precisely, since computing the exact value

√
LU can be time consuming, it is shown in [7]

that an approximate value of
√

LU can be computed without affecting the time complexity.
In our case, using this accelerated version requires one to have L0 6= 0. In order to detect if
instance I has opt(I) = 0, we construct an instance I of Max-Min P, where cs

i = cs
i if cs

i = 0
and cs

i = 1 otherwise. Clearly, opt(I) = 0 if and only if opt(I) = 0. If applying algorithm A

4

to I we obtain opt(I) = 0 then the same solution is an optimal solution for I. Otherwise, we
can start the accelerate approximate binary search with L0 = 1.

The number of tests for obtaining a lower bound and an upper bound L and U such that

U
L
≤ 1 + ε is O(log

log
U0
L0

log(1+ε))) (see [7] for more details). Each test requires solving an instance

I ′′ in r(|I ′′|, t
ε
) time. We obtain a total O(log log m·cmax(I)

log(1+ε) r(|I|, t
ε
)).

(⇒) Consider I an instance of Max-Min P. Applying the fptas to instance I with ε0 =
1/(m · cmax(I) + 1) returns a solution whose value val0 has the property opt(I) − val0 ≤
(1 + ε0)val0 − val0 = ε0val0 < 1. Since val0 and opt(I) are integers, we get val0 = opt(I).
Moreover, the time of the algorithm is polynomial in |I| and cmax(I).

The proof can be easily adapted to Min-Max P. 2

The sufficient part of Theorem 1 gives a first general approximation scheme. However,
one can often obtain a faster fptas by stopping the approximate binary search as soon as we
get polynomially related upper and lower bounds and then applying the scaling technique
only once.

Proposition 1 Assuming that any instance I of Max-Min P (resp. Min-Max P) can be
solved in time r(|I|, cmax(I)), where r is a non-decreasing polynomial and cmax(I) = maxi,s cs

i ,
if a lower bound and an upper bound L and U of opt(I) are given such that U ≤ q(|I|)L, where
q is a non-decreasing polynomial, then an (1 + ε)-approximate solution can be found in time
r(|I|, t

ε
q(|I|)), where t is an upper bound of the size of any feasible solution of I.

Proof : Consider P a maximization problem and an instance I of Max-Min P defined on
a scenario set S where each scenario s ∈ S is represented by a vector (cs

1, . . . , c
s
m). Let I be

the instance of Max-Min P derived from I where each scenario s ∈ S is represented by a
vector (cs

1, . . . , c
s
m), with cs

i = ⌊ tcs
i

εL
⌋. Let x∗ and x∗ denote respectively an optimal solution of

instance I and instance I. Let val(x, s) denote the value of a solution x in scenario s for I.
We have

εL

t
cs
i 6 cs

i <
εL

t
(cs

i + 1), for all s ∈ S,

and thus, εL
t

val(x∗, s) 6 val(x∗, s) < εL
t

val(x∗, s) + εL, for all s ∈ S,

which implies mins∈S val(x∗, s) >
εL
t

mins∈S val(x∗, s).

Since x∗ is an optimal solution in I, we have

opt(I) = min
s∈S

val(x∗, s) > min
s∈S

val(x∗, s)

and thus, the value of an optimal solution of I has, in I, the value

min
s∈S

val(x∗, s) >
εL

t
min
s∈S

val(x∗, s) >
εL

t
min
s∈S

val(x∗, s) > min
s∈S

val(x∗, s) − εL > opt(I)(1 − ε).

The proof can be easily adapted to Min-Max P. 2

For the min-max version, we can compute polynomially related upper and lower bounds
directly, i.e. without resorting to approximate binary search. This allows us to obtain fast
fptas’s by solving only one scaled instance using Proposition 1.

5

Proposition 2 If a minimization problem P is f(n)-approximable in time p(n), where p and
f are polynomials, then for any instance I of Min-Max P defined on a set of k scenarios,
there exist a lower bound and an upper bound L and U of opt(I) computable in time p(|I|)
such that U ≤ kf(|I|)L.

Proof : Consider an instance I of Min-Max P defined on a set S of k scenarios where each
scenario s ∈ S is represented by (cs

1, . . . , c
s
m) and let X be the set of feasible solutions of I. We

define the following instance I ′ of a single scenario problem minx∈X

∑
s∈S

1
k
val(x, s) obtained

by taking objective function coefficients c′i =
∑k

s=1
cs
i

k
, i = 1, . . . ,m. Let x̃ be an f(|I|)-

approximate solution of I ′. Thus we have
∑

s∈S
1
k
val(x̃, s) ≤ f(|I|)minx∈X

∑
s∈S

1
k
val(x, s).

Clearly U = maxs∈S val(x̃, s) is an upper bound. Moreover L = 1
f(|I|)

∑
s∈S

1
k
val(x̃, s) is a

lower bound since

L ≤ min
x∈X

∑

s∈S

1

k
val(x, s) ≤ min

x∈X

∑

s∈S

1

k
(max

s∈S
val(x, s)) = min

x∈X
max
s∈S

val(x, s) = opt(I)

Finally, we have U = maxs∈S val(x̃, s) ≤ ∑
s∈S val(x̃, s) = k

∑
s∈S

1
k
val(x̃, s) = kf(|I|)L.

2

The condition in Proposition 2 is not restrictive, since if P is not approximable, we cannot
hope to obtain an fptas for Min-Max P. However, the following more restrictive corollary
may prove useful.

Corollary 1 If a minimization problem P is solvable in time p(n), where p is a polynomial,
then for any instance I of Min-Max P defined on a set of k scenarios, there exist a lower
bound and an upper bound L and U of opt(I) computable in time p(|I|) such that U ≤ kL.

For the max-min version, however, constructing L and U as before with L = mins∈S val(x̃, s)
and U = f(|I|)

∑
s∈S

1
k
val(x̃, s), where x̃ is an f(|I|)-approximate solution of I ′, does not allow

us to bound the ratio U
L

. In particular, for the knapsack problem, this ratio can be exponen-
tial in the size of the input, as can be seen from the following simple example. Consider an
instance with two scenarios, n items with weights wi = 1, profits p1

i = 1 and p2
i = 2n − 1,

i = 1, . . . , n, and a capacity b = 1. Computing L and U as before yields L = 1 and U = 2n−1.

3.2 Min-max regret

We prove first that min-max regret versions of NP -hard problems are not at all approximable.

Proposition 3 Given an NP-hard problem P, for any function f : N → (1,∞), Min-Max
Regret P is not f(n)-approximable even for two scenarios, unless P = NP.

Proof : We construct a polynomial reduction from P to Min-Max Regret P. Consider an
instance I of P on m variables where X is the set of feasible solutions and ci is the coefficient
of variable xi in the objective function, i = 1, . . . ,m. We define an instance I ′ of Min-Max
Regret P on two scenarios s1 and s2 on the same set of m variables and same set of feasible
solutions X. The coefficients of variable xi in scenarios s1 and s2 are ci, i = 1, . . . ,m. Clearly
a solution is an optimal solution for I of value opt(I) if and only if it is also an optimal

6

solution for I ′ of value 0. Suppose now that Min-Max Regret P is f(n)-approximable for a
given function f : N → (1,∞). Applying this f(n)-approximation algorithm on I ′, we obtain
an optimal solution for I ′, and thus we can obtain in polynomial time an optimum solution
for I. 2

Therefore, in the following we consider only min-max regret versions of polynomial-time
solvable problems.

Proposition 4 If problem P is solvable in time p(n), where p is a polynomial, then for any
instance I of Min-Max Regret P defined on a set of k scenarios, there exist a lower bound
and an upper bound L and U of opt(I) computable in time p(|I|) such that U ≤ kL.

Proof : Consider P a minimization problem and an instance I of Min-Max Regret P
defined on a set S of k scenarios where each scenario s ∈ S is represented by (cs

1, . . . , c
s
m),

and let X be the set of feasible solutions of I. We define the following instance I ′ of a
single scenario problem minx∈X

∑
s∈S

1
k
val(x, s) obtained by taking objective function co-

efficients c′i =
∑k

s=1
cs
i

k
, i = 1, . . . ,m. Let x∗ be an optimal solution of I ′. Clearly U =

maxs∈S(val(x∗, s)−val∗s) is an upper bound of opt(I). Moreover L =
∑

s∈S
1
k
(val(x∗, s)−val∗s)

is a lower bound of opt(I) since

L = min
x∈X

1

k

∑

s∈S

(val(x, s) − val∗s) ≤ min
x∈X

1

k
k max

s∈S
(val(x, s) − val∗s) = opt(I)

Finally, we have U = maxs∈S(val(x∗, s) − val∗s) ≤
∑

s∈S(val(x∗, s) − val∗s) = kL.

Consider now P a maximization problem and an instance I of Min-Max Regret P
defined on a set S of k scenarios. We can show as before that the bounds L =

∑
s∈S

1
k
(val∗s −

val(x∗, s)) and U = maxs∈S(val∗s − val(x∗, s)) satisfy U ≤ kL. 2

We can now provide a necessary and sufficient condition for obtaining fptas’s for Min-Max
Regret P.

Theorem 2 Given a polynomial-time solvable problem P, Min-Max Regret P is in FP-
TAS if and only if there exists an algorithm that finds for any instance I of Min-Max Regret
P an optimal solution in time r(|I|, U), where r is a non-decreasing polynomial and U is an
upper bound of opt(I), such that U ≤ kL, L being a lower bound of opt(I).

If P is solvable in time p(n), the running time of the fptas is (k + 1)p(|I|) + r(|I|, 2tk
ε

+ t)
where k is the number of scenarios and t is an upper bound of the size of any feasible solution
of I.

Proof : (⇐) Consider P a minimization problem and an instance I of Min-Max Regret P
defined on a scenario set S where each scenario s ∈ S is represented by a vector (cs

1, . . . , c
s
m).

Let I denote the instance derived from I, by scaling each entry cs
i as follows: cs

i = ⌊2tcs
i

εL
⌋.

Let x∗ and x∗ denote respectively an optimal solution of instance I and instance I and let
x∗

s, x∗
s denote respectively, an optimal solution of instance I and I restricted to scenario s.

Then, we have, for all s ∈ S,

val(x∗, s) − val(x∗
s, s) <

εL

2t
val(x∗, s) − val(x∗

s, s) +
ε

2
L

≤ εL

2t
(val(x∗, s) − val(x∗

s, s)) +
ε

2
L

≤ εL

2t
(val(x∗, s) − val(x∗

s, s)) +
ε

2
L

7

and thus

max
s∈S

{val(x∗, s) − val(x∗
s, s)} < max

s∈S

{
εL

2t
(val(x∗, s) − val(x∗

s, s))

}
+

ε

2
L

≤ max
s∈S

{
εL

2t
(val(x∗, s) − val(x∗

s, s))

}
+

ε

2
L

≤ max
s∈S

{val(x∗, s) − val(x∗
s, s) + val(x∗

s , s) −
εL

2t
val(x∗

s, s)} +
ε

2
L

≤ max
s∈S

{val(x∗, s) − val(x∗
s, s) + val(x∗

s, s) −
εL

2t
val(x∗

s, s)} +
ε

2
L

< max
s∈S

{val(x∗, s) − val(x∗
s, s)} + εL ≤ opt(I)(1 + ε)

We show in the following that such a solution x∗ of instance I for Min-Max Regret P
can be obtained in polynomial time in |I| and 1

ε
. The bounds L and U can be computed in

time p(|I|) by Proposition 4. In order to compute an optimal solution for I, we apply the
algorithm (which exists by hypothesis) that runs in time r(|I |, U(I)).

Computing optimal values on each scenario and bounds L and U requires solving k + 1
instances of problem P. Since opt(I) ≤ 2topt(I)

εL
+t ≤ 2tU

εL
+t ≤ 2tk

ε
+t, and r is non-decreasing,

the total time for computing the (1 + ε)-approximation is (k + 1)p(|I|) + r(|I|, U(I)) ≤ (k +
1)p(|I|) + r(|I|, 2tk

ε
+ t).

(⇒) Consider P a minimization problem, and let I be an instance of Min-Max Regret P.
Applying the fptas for instance I with ε0 = 1/(U + 1), returns an optimal solution in time
polynomial in |I| and U + 1.

The proof can be easily adapted to Min-Max Regret P where P is a maximization
problem. 2

3.3 General remarks

It is well known that the existence of a pseudo-polynomial algorithm, that is an algorithm that
runs in polynomial time in the size of the input and the largest value in the instance, is not
a sufficient condition for the existence of an fptas. General subclasses of pseudo-polynomial
algorithms were investigated previously for standard combinatorial optimization problems. In
particular, Pruhs and Woeginger [16] identify the same subclass as in Theorem 1, dedicated
to min-max (max-min) versions. However, their proof, which relies on a complete ranking of
decision variables xi according to values ci, cannot be extended to the min-max (max-min)

case where values c1
i , . . . , c

|S|
i associated to variables xi only lead to a partial ranking of these

variables. In [19], the existence of fptas’s is proved for standard combinatorial optimization
problems which admit dynamic programming formulations verifying specific conditions. Even
if this result is quite interesting, it cannot be applied to the large variety of problems, including
Spanning Tree and Weighted Perfect Matching, which are not known to admit such
formulations.

Theorems 1 and 2 identify two subclasses of pseudo-polynomial algorithms that provide
necessary and sufficient conditions for the existence of an fptas for min-max and min-max
regret versions respectively.

For the min-max (max-min) version, the condition is related to the existence of an algo-
rithm polynomial in cmax(I), the largest value of the coefficients in the objective function.

8

Observe that U0 = m.cmax(I) is a trivial upper bound of the optimal value in the min-max
(max-min) version. Thus, for any upper bound U ≤ U0, an algorithm polynomial in U is also
polynomial in cmax(I).

For the min-max regret version, the existence of an fptas requires stronger conditions
than the min-max (max-min) version despite the similarity of these problems. Even if there
exists an exact algorithm polynomial in the largest value in the objective function cmax(I),
it cannot be transformed into an fptas in general. This is illustrated by Min-Max Regret
Knapsack, which admits such an algorithm, but does not admit an fptas as a consequence
of Proposition 3.

Min-max and min-max regret versions of some problems, like shortest path, admit pseudo-
polynomial algorithms based on dynamic programming [11]. For some dynamic programming
formulations, we can easily obtain algorithms polynomial in the size of the instance and in U ,
by discarding partial solutions with value more than U on at least one scenario. We illustrate
this approach in sections 4.1 and 4.4 for the shortest path and knapsack problems.

For other problems, which are not known to admit pseudo-polynomial algorithms based
on dynamic programming, specific algorithms polynomial in the size of the instance and in U
are required. We present such algorithms for Min-Max Spanning Tree (section 4.2) and
Min-Max Weighted Perfect Matching in planar graphs (section 4.3).

Unfortunately, these algorithms cannot be adapted directly in order to obtain algorithms
satisfying Theorem 2 for min-max regret versions. The basic difficulty here is that, if we can
find an algorithm in r(|I|, U(I)) for any instance I of Min-Max P, the direct extension of this
algorithm for the corresponding instance I ′ of Min-Max Regret P will be in r(|I ′|, U(I ′)+
optmax) where optmax = maxs∈S val∗s is a value which is not necessarily polynomially related
to U(I ′).

However, for problems whose feasible solutions have a fixed size, such as spanning tree
and perfect matching problems, we reduced the min-max regret version to a min-max version
in [2]. In this context, we need to consider instances where some coefficients are negative and
possibly non-integral but such that any feasible solution has a non-negative integral value.
For an optimization problem P, we denote by P ′ the extension of P to these instances. More
precisely, we proved the following result.

Proposition 5 ([2]) For any polynomial-time solvable minimization problem P whose fea-
sible solutions have a fixed size and for any function f : N → (1,∞), if Min-Max P ′ is
f(n)-approximable in time p(n), where p is a polynomial, then Min-Max Regret P is
f(n)-approximable in time p(n).

Proposition 5 can be adapted to handle the min-max regret version of maximization
problems.

4 Applications

In this section, we apply the previous results to min-max and min-max regret versions of short-
est path, minimum spanning tree, minimum weighted perfect matching in planar graphs, and
knapsack problems with a constant number k of scenarios. We also compare the running time
for our algorithms and for the fptas obtained using an approximation of the non-dominated
set, and show a significant improvement.

9

4.1 Shortest Path

In [11], Kouvelis and Yu proved the NP -hardness of min-max and min-max regret versions of
shortest path, even for two scenarios.

Consider an instance I of Min-Max (Regret) Shortest Path defined by a directed
graph G = (V,A), with V = {1, . . . , n} and |A| = m, and a set S of k scenarios giving for
each arc (i, j) ∈ A its cost cs

ij under scenario s. Denote by cij the vector of size k formed by
cs
ij , s ∈ S. We are interested in optimal paths from 1 to n.

We give now pseudo-polynomial algorithms satisfying Proposition 1 (and respectively
Theorem 2) for Min-Max Shortest Path (and respectively Min-Max Regret Shortest
Path).

Proposition 6 Given U an upper bound on the optimal value, then Min-Max Shortest
Path and Min-Max Regret Shortest Path can be solved in time O(n2Uk−1).

Proof : For Min-Max Shortest Path, the algorithm aims at generating candidate vectors
(v1, . . . , vk) corresponding to feasible paths from 1 to n whose value under scenario s is vs,
s = 1, . . . , k. Since we know an upper bound U , we can restrict to vectors such that vs ≤ U ,
s = 1, . . . , k. Moreover, a min-max solution will necessarily correspond to a non-dominated
vector, which means that the number of candidate vectors is in O(Uk−1). Since checking
non-dominance is computationally costly, we shall actually consider a superset of the set of
non-dominated vectors which is easier to determine. This superset consists of all possible
vectors (v1, . . . , vk) with vs ≤ U , s = 1, . . . , k, such that for every possible configuration
(v1, . . . , vk−1) we only retain the vector (v1, . . . , vk−1, vk) with the smallest vk value. We
observe that the cardinality of this superset is also in O(Uk−1). Once this set is determined,
we scan all of its vectors in order to select one which minimizes maxs=1,...,k vs.

A possible implementation for determining this superset progressively updates a (k − 1)-
dimensional matrix M(v1, . . . , vk−1), with vs ∈ {0, . . . , U}, s = 1, . . . , k − 1. Each entry of M
contains an n-dimensional vector indexed by i from 1 to n, which stores the smallest value
vk for a path from 1 to i whose values on the first k − 1 scenarios are v1, . . . , vk−1 (as well as
the index of the previous node in the path if we wish to exhibit a corresponding path). All
the entries of M are initialized to U + 1, except for M(0, . . . , 0)(1) which is set to 0.

The algorithm scans M in lexicographic order. For a given entry (v1, . . . , vk−1), it selects
the unvisited node i with the smallest value vk. If vk ≤ U then we update M considering
all arcs (i, j) in A: for each arc (i, j), M(v1 + c1

ij , . . . , vk−1 + ck−1
ij)(j) is updated with the

smallest value between its previous value and vk + ck
ij. This algorithm requires O(n2Uk−1)

total time for selection and O(mUk−1) total time for update. Therefore, its running time is
in O(n2Uk−1).

Consider now Min-Max Regret Shortest Path. Let (val∗s)
i, s ∈ S, i = 1, . . . , n, be

the value of a shortest path in graph G from 1 to i under scenario s.
We describe a similar algorithm that computes all possible vectors (r1, . . . , rk) of regrets

such that rs ≤ U , s = 1, . . . , k, corresponding to paths from 1 to n. For each possible
configuration (r1, . . . , rk−1), only the vector (r1, . . . , rk) with the smallest regret rk is retained.
As before, the resulting set of cardinality O(Uk) is scanned in order to detect one which
minimizes maxs=1,...,k rs.

As for the min-max case, the implementation progressively updates a regret matrix M ′

with the same structure as M . The selection step is also based on a lexicographic scanning

10

of M ′. The only difference is the way of updating regret vectors. Consider arc (i, j) ∈ A and
let Pi be a path in G from 1 to i of regret ri

s = val(Pi, s) − (val∗s)
i, s ∈ S. Denote by Pj

the path constructed from Pi by adding arc (i, j). The regret of Pj is rj
s = val(Pi, s) + cs

ij −
(val∗s)

j = ri
s + (val∗s)

i + cs
ij − (val∗s)

j , s = 1, . . . , k. Observe that (val∗s)
i + cs

ij − (val∗s)
j ≥ 0,

s = 1, . . . , k justifies the lexicographic scanning of M ′, without backtracking. Thus, once
a node is selected from an entry M ′(r1, . . . , rk−1), for each arc (i, j), we update M ′(r1 +
(val∗1)

i +c1
ij − (val∗1)

j, . . . , rk−1 +(val∗k−1)
i +ck−1

ij − (val∗k−1)
j) with the smallest value between

its previous value and rk + (val∗k)i + ck
ij − (val∗k)j. The running time of the algorithm is the

same as for the min-max version, i.e. O(n2Uk−1). 2

Corollary 2 Min-Max Shortest Path admits an fptas running in time O(nk+1

εk−1).

Proof : This results from Corollary 1, Proposition 6, and Proposition 1. 2

Corollary 3 Min-Max Regret Shortest Path admits an fptas running in time O(nk+1

εk−1).

Proof : This results from Proposition 4, Proposition 6, and Theorem 2. 2

Warburton describes in [18] an fptas for approximating the non-dominated set for the
multi-objective version of the shortest path problem. From this fptas, Warburton derives an
fptas for Min-Max Shortest Path in acyclic graphs with running time O(n2k+1

ε2k−2), whereas
our running time, for general graphs, is better.

4.2 Minimum Spanning Tree

In [11], Kouvelis and Yu proved the NP -hardness of min-max and min-max regret versions of
minimum spanning tree, even for two scenarios. We first describe algorithms for Min-Max
Spanning Tree with running time polynomial in a suitably chosen upper bound on the
optimal value.

Consider an instance of Min-Max (Regret) Spanning Tree represented by a graph
G = (V,E) where |V | = n, |E| = m, cs

ij is the cost of edge (i, j) in scenario s ∈ S and |S| = k.

Proposition 7 Given U an upper bound on the optimal value, then Min-Max Spanning
Tree can be solved in time O(mn4Uk log U).

Proof : We can solve Min-Max Spanning Tree using an extension of the matrix tree
theorem to the multiple scenarios case as presented in appendix A.

The optimal value opt of Min-Max Spanning Tree can be computed by considering,
for each monomial in (2), the largest power vmax = maxs=1,...,k vs. The minimum value of
vmax over all monomials corresponds to opt.

Actually, instead of computing all monomials, we can use, as suggested in [8], the algorithm
presented in [13]. When applied to matrix Ar(y1, . . . , yk), this algorithm can compute the
determinant polynomial up to a specified degree in each variable in opposition to the classical
method of Edmonds [5]. In this case, it is sufficient to compute the polynomial determinant
up to degree U in each variable ys for s = 1, . . . , k. The algorithm in [13] requires O(n4)
multiplications and additions of polynomials. The time needed to multiply two multivariate
polynomials of maximum degree ds in variable ys for s = 1, . . . , k is

∏k
s=1 ds log

∏k
s=1 ds [1].

Thus, the running time to compute the polynomial determinant is O(n4Uk log U).

11

Once an optimal vector is identified, a corresponding spanning tree can be constructed
using self-reducibility [14]. It consists of testing iteratively for each edge, if the graph obtained
by contracting this edge admits a spanning tree of the required vector of adjusted values on
all scenarios (subtracting iteratively from the required vector of values the vector of costs cs

ij ,
s ∈ S, for each edge (i, j) being tested). In at most m − (n − 1) iterations such a spanning
tree is obtained. Hence, the self-reducibility requires O(m) computations of determinant
polynomial. 2

Corollary 4 Min-Max Spanning Tree admits an fptas running in time O(mnk+4

εk log n
ε
).

Proof : This results from Corollary 1, Proposition 7, and Proposition 1. 2

Corollary 5 Min-Max Regret Spanning Tree admits an fptas running in time O(mnk+4

εk log n
ε
).

Proof : Notice that Corollary 1, Proposition 7, and Proposition 1 remain true even for the
instances of spanning tree where some coefficients are negative but any feasible solution has a
non-negative value. Thus, Min-Max Spanning Tree′ is in FPTAS. The result follows from
Proposition 5. 2

The obtained fptas’s for Min-Max (Regret) Spanning Tree are at least as good as,
and usually better than, those derived from multi-objective approximation schemes. Indeed,
the running time of the fptas obtained in [2] using the general multi-objective approximation

scheme presented in [15] is O(nk+4

ε2k (log n.cmax(I))k log n
ε
) to identify a vector. In order to

obtain a corresponding solution, we resort as before to self-reducibility, which leads to a total
time O(nk+4

ε2k (log n.cmax(I))k log n
ε

+ mnk+4

εk log n
ε
).

4.3 Minimum Weighted Perfect Matching in planar graphs

In this section we first state the complexity of min-max and min-max regret versions of
minimum weighted perfect matching in planar graphs.

Consider now an instance of Min-Max (Regret) Weighted Perfect Matching
defined on a planar graph G = (V,E) with |V | = 2n, |E| = m; cs

ij is the weight of edge (i, j)
in scenario s ∈ S and |S| = k.

Theorem 3 Min-Max (Regret) Weighted Perfect Matching is NP-hard even for
two scenarios and planar graphs.

Proof : See appendix B. 2

We give now an algorithm polynomial in the size of the input and an upper bound of the
optimal value for Min-Max Weighted Perfect Matching.

Proposition 8 Given U an upper bound on the optimal value, then Min-Max Weighted
Perfect Matching in planar graphs can be solved in time O(mn4Uk log U).

Proof : We can solve Min-Max Weighted Perfect Matching in planar graphs by
adapting the result of Pfaffian orientations to the multiple scenarios case as presented in ap-
pendix A. The algorithm described in [12] can compute the Pfaffian polynomial of B(y1, . . . , yn)

12

up to a specified degree in each variable. The running time to compute the optimal value is
the same as for spanning tree. An optimal solution can be constructed by self-reducibility in
O(m) calls to the procedure of Pfaffian polynomial computation. 2

Corollary 6 Min-Max Weighted Perfect Matching in planar graphs admits an fptas
running in time O(mnk+4

εk log n
ε
).

Proof : This results from Corollary 1, Proposition 8, and Proposition 1. 2

Corollary 7 Min-Max Regret Weighted Perfect Matching in planar graphs admits
an fptas running in time O(mnk+4

εk log n
ε
).

Proof : Observing that Corollary 1, Proposition 8, and Proposition 1 remain true even for
the instances of Min-Max Weighted Perfect Matching′, we can apply Proposition 5 to
obtain an fptas. 2

Here again, the obtained fptas’s for Min-Max (Regret) Weighted Perfect Match-
ing in planar graphs are at least as good as, and usually better than, those derived from
multi-objective approximation schemes. Indeed, the running time of the fptas obtained in [2]

by applying the general scheme presented in [15] is O(nk+4

ε2k (log n.cmax(I))k log n
ε
) to identify

a vector. In order to obtain a corresponding solution, we resort as before to self-reducibility,
which leads to a total time O(nk+4

ε2k (log n.cmax(I))k log n
ε

+ mnk+4

εk log n
ε
).

Concerning Min-Max (Regret) Weighted Perfect Matching for general graphs,
the existence of an fptas remains an open question. With our approach, even if Proposition 2
(or respectively Proposition 4) is clearly satisfied, the existence of an algorithm polynomial
in cmax(I) (or respectively U) is open.

4.4 Knapsack

We describe in this section a pseudo-polynomial algorithm to solve Max-Min Knapsack.
The standard procedure to solve the classical knapsack problem is based on dynamic pro-
gramming. We give an extension to the multi-scenario case which is very similar to the
procedure presented in [6] by Erlebach et al. to solve the multi-objective knapsack problem.
This procedure is easier and more efficient than the one originally presented by Yu [20].

Consider an instance of Max-Min Knapsack where each item i has a weight wi and
profit ps

i , for i = 1, . . . , n and s = 1, . . . , k, and a capacity b.

Proposition 9 Given U an upper bound on the optimal value, then Max-Min Knapsack
can be solved in time O(nUk).

Proof : Let Wi(v1, . . . , vk) denote the minimum weight of any subset of items among the
first i items with profit vs in each scenario s ∈ S. The initial condition of the algorithm is
given by setting W0(0, . . . , 0) = 0 and W0(v1, . . . , vk) = b + 1 for all other combinations. The
recursive relation is given by the following
If vs ≥ ps

i for all s ∈ S, then

Wi(v1, . . . , vk) = min{Wi−1(v1, . . . , vk),Wi−1(v1 − p1
i , . . . , vk − pk

i) + wi}

13

else Wi(v1, . . . , vk) = Wi−1(v1, . . . , vk)
for i = 1, . . . , n.

Each entry of Wn satisfying Wn(v1, . . . , vk) ≤ b corresponds to a feasible solution with
profit vs in scenario s. The set of items leading to a feasible solution can be determined
easily using standard bookkeeping techniques. The feasible solutions are collected and an
optimal solution to Max-Min Knapsack is obtained by picking a feasible solution minimizing
maxs∈S vs. Since vs ∈ {0, . . . , U}, the running time of this approach is given by going through
the complete profit space for every item, and is O(nUk). 2

The algorithm presented by Yu [20] has a running time O(nbUk).

Corollary 8 Max-Min Knapsack admits an fptas running in time O(nk+1 log log(n.cmax(I))+
nk+1

εk).

Proof : This results from Proposition 9 and Theorem 1 and stopping the binary search used
in Theorem 1 when U

L
≤ 2. 2

We can also obtain an fptas for Max-Min Knapsack using Proposition 9 and Theorem 1
and stopping the binary search used in Theorem 1 when U

L
≤ 1 + ε, but in this case the time

of the fptas is O(nk+1

εk (log log(n.cmax(I))
log(1+ε))), which is larger than the time of the previous fptas.

The running time of the fptas obtained in [2] by using the relationship between the max-

min and multi-objective versions of knapsack is O(nk+1

εk (log n.cmax(I))k). Thus, in this paper,
we obtain an fptas for Max-Min Knapsack with a better running time than the previous
one.

Consider now an instance of Min-Max Knapsack where each item i has a weight wi and
cost cs

i , for i = 1, . . . , n and s = 1, . . . , k, and a required minimal total weight b.
We can adapt the proof of Proposition 9 obtaining a similar result.

Proposition 10 Given U an upper bound on the optimal value, then Min-Max Knapsack
can be solved in time O(nUk).

Corollary 9 Min-Max Knapsack admits an fptas running in time O(nk+1

εk).

Proof : This results from Proposition 2 (for f(n) = 1+ε), Proposition 9, and Proposition 1.
2

5 Conclusions

In this paper we have presented characterizations for the existence of an fptas for the min-
max (regret) versions of several combinatorial optimization problems. These results lead to
new fptas’s with better running times than the ones previously presented in the literature.
However, the applicability of these results is limited to problems where the min-max (regret)
versions can be solved using a pseudo-polynomial algorithm (shortest path, spanning tree,
knapsack, . . .). Specialized techniques are thus needed for approximating strongly NP -hard
min-max (regret) versions.

14

References

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullmann. The design and analysis of computer
algorithms. Addison-Wesley, Reading, 1976.

[2] H. Aissi, C. Bazgan, and D. Vanderpooten. Approximation of min-max and min-max
regret versions of some combinatorial optimization problems. European Journal of Op-
erational Research, 179(2):281–290, 2007. Preliminary version published in ESA 2005,
Mallorca, LNCS 3669, 862-873.

[3] H. Aissi, C. Bazgan, and D. Vanderpooten. Min-max and min-max regret versions
of combinatorial optimization problems: a survey. European Journal of Operational
Research, 197(2):427–438, 2009.

[4] F. Barahona and R. Pulleyblank. Exact arborescences, matching and cycles. Discrete
Applied Mathematics, 16:91–99, 1987.

[5] J. Edmonds. System of distinct representatives and linear algebra. Journal of Research
of the National Bureau of Standards, 718(4):241–245, 1967.

[6] T. Erlebach, H. Kellerer, and U. Pferschy. Approximating multiobjective knapsack prob-
lems. Management Science, 48(12):1603–1612, 2002.

[7] R. Hassin. Approximation schemes for the restricted shortest path. Mathematics of
Operations Research, 17(1):36–42, 1992.

[8] S. P. Hong, S. J. Chung, and B. H. Park. A fully polynomial bicriteria approxima-
tion scheme for the constrained spanning tree problem. Operations Research Letters,
32(3):233–239, 2004.

[9] R. M. Karp. Reducibility among combinatorial problems. In Complexity of Computer
Computations, pages 85–103, 1972.

[10] P. W. Kasteleyn. Graph theory and theoretical physics. In Graph theory and crystal
physics, pages 43–110. Academic Press London, 1967.

[11] P. Kouvelis and G. Yu. Robust discrete optimization and its applications. Kluwer Aca-
demic Publishers, Boston, 1997.

[12] M. Mahajan, P. R. Subramanya, and V. Vinay. The combinatorial approach yields an
NC algorithm for computing Pfaffians. Discrete Applied Mathematics, 143(1-3):1–16,
2004.

[13] M. Mahajan and V. Vinay. Determinants: combinatorics, algorithms, and complexity. In
Proceedings of the Eigth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
1997), New Orleans, USA, pages 730–738, 1997.

[14] C. H. Papadimitriou. Computational complexity. Addison Wesley, 1994.

[15] C. H. Papadimitriou and M. Yannakakis. On the approximability of trade-offs and
optimal access of web sources. In IEEE Symposium on Foundations of Computer Science
(FOCS 2000), Redondo Beach, California, USA, pages 86–92, 2000.

15

[16] K. Pruhs and G. J. Woeginger. Approximation schemes for a class of subset selection
problems. Theoretical Computer Science, 382(2):151–156, 2007.

[17] W.T. Tutte. Graph Theory, volume 21 of Encyclopedia of Mathematics and its Applica-
tions. Addison-Wesley, 1984.

[18] A. Warburton. Approximation of Pareto optima in multiple-objective, shortest-path
problems. Operations Research, 35(1):70–79, 1987.

[19] G. J. Woeginger. When does a dynamic programming formulation guarantee the exis-
tence of a fully polynomial time approximation scheme (fptas)? INFORMS Journal on
Computing, 12(1):57–74, 2000.

[20] G. Yu. On the max-min 0-1 knapsack problem with robust optimization applications.
Operations Research, 44(2):407–415, 1996.

A Matrix tree theorem and Pfaffian orientations

We briefly recall classical results concerning the matrix tree theorem and Pfaffian orientations
that enable us to derive approximation schemes for min-max and min-max regret versions
of spanning tree and weighted perfect matching in planar graphs in sections 4.2 and 4.3
respectively.

The matrix tree theorem provides a way of counting all the spanning trees in a graph (see,
e.g., [17]). Consider a graph G = (V,E) with |V | = n, |E| = m and let cij denote the cost of
edge (i, j) ∈ E.

Define an n × n matrix A whose entries are given as follows:

aij =





−cij if i 6= j and (i, j) ∈ E∑
(i,ℓ)∈E ciℓ if i = j

0 otherwise
Define Ar as the submatrix of A obtained by deleting the rth row and rth column and

D(Ar) as its determinant. The matrix tree theorem states that, for any r ∈ {1, . . . , n}, the
following equality holds:

D(Ar) =
∑

T∈T

∏

(i,j)∈T

cij (1)

where T is the set of all spanning trees of G.
As indicated in [4], this theorem can be extended to count the number of spanning trees

of value v for each possible value v using a matrix depending on one variable. Following this
idea, we can extend the matrix tree theorem to the multiple scenarios case as in [8]. Define
the n × n matrix A(y1, . . . , yk) whose entries are given as follows:

aij(y1, . . . , yk) =





−∏k
s=1 y

cs
ij

s if i 6= j and (i, j) ∈ E∑
(i,ℓ)∈E

∏k
s=1 y

cs
iℓ

s if i = j

0 otherwise

Then, the determinant of the submatrix Ar(y1, . . . , yk) obtained by deleting any rth row
and rth column is given by

D(Ar(y1, . . . , yk)) =
∑

v1,...,vk∈V T

av1,...,vk

k∏

s=1

yvs
s (2)

16

where av1,...,vk
is the number of spanning trees with value vs in scenario s, for all s ∈ S, and

V T is the set of values reached on all scenarios, for all spanning trees of G.

Equality (2) is obtained by replacing each cij in (1) by
∏k

s=1 y
cs
ij

s . Then each product term

in (1) corresponding to tree T becomes
∏k

s=1 y

∑
(i,j)∈T cs

ij
s .

Kasteleyn [10] gives an efficient procedure to count all perfect matchings in planar graphs.
Let G = (V,E) be a planar graph with |V | = 2n, and let cij denote the weight of edge
(i, j) ∈ E. Given an orientation of the edges, let B denote a 2n × 2n matrix defined as
follows:

bij =





cij if (i, j) ∈ E and (i, j) is oriented from i to j
−cij if (i, j) ∈ E and (i, j) is oriented from j to i
0 otherwise

Let Pf (B) denote the Pfaffian of matrix B. Kasteleyn [10] gives an efficient algorithm to
obtain an orientation of the graph such that the following identity holds:

Pf (B) =
∑

M∈M

∏

(i,j)∈M

cij (3)

where M is the set of all matchings of G.
As for the matrix tree theorem, identity (3) can be extended to count the number of perfect

matchings of value v1, . . . , vk for each possible profile of values, using a matrix depending on
k variables. Given an orientation of the edges, let B(y1, . . . , yk) denote a 2n × 2n matrix
defined as follows:

bij(y1, . . . , yk) =





∏k
s=1 y

cs
ij

s if (i, j) ∈ E and (i, j) is oriented from i to j

−∏k
s=1 y

cs
ij

s if (i, j) ∈ E and (i, j) is oriented from j to i
0 otherwise

Following this extension we can adapt equality (3), in the same way as for the matrix tree
theorem, obtaining:

Pf (B(y1, . . . , yk)) =
∑

v1,...,vk∈V M

av1,...,vk

k∏

s=1

yvs
s (4)

where av1,...,vk
is the number of matchings with value vs reached on scenario s, for all s ∈ S

and V M is the set of values reached on all scenarios for all matchings of G.

B Proof of Theorem 3

We prove here that min-max and min-max regret versions of Minimum Weighted Perfect
Matching in planar graphs are NP -hard even for two scenarios. For this purpose, we use
a reduction from a variant of the Partition problem, proved NP -hard [9], and defined as
follows.

Even Odd Partition
Input: A finite set of positive integers A = {a1, a2, . . . , a2n−1, a2n}.
Question: Is there a subset A′ ⊆ A, containing exactly one of a2i−1, a2i for 1 ≤ i ≤ n, such

17

that
∑

ap∈A′ ap =
∑

ap∈A\A′ ap?

Proof of Theorem 3. In order to obtain our result for Min-Max Weighted Perfect
Matching in planar graphs, we construct a polynomial reduction from Even Odd Parti-
tion. Let I be an instance of this problem on 2n integers a1, a2, . . . , a2n−1, a2n. We con-
struct an instance G = (V,E) of Min-Max Weighted Perfect Matching with two
scenarios s1, s2, such that G is planar. The vertex set is V = {1, . . . , 4n}, where vertices
2i− 1, 2i, 2n + i, and 3n + i correspond to integers a2i−1, a2i, for i = 1, . . . , n. The edge set is
E = {(2i− 1, 2n + i), (2i− 1, 3n + i), (2i, 2n + i), (2i, 3n + i) : i = 1, . . . , n}. The edge weights
for scenario s1 and s2 are defined as follows: cs1

2i−1,2n+i = a2i−1, cs1
2i,2n+i = a2i, cs2

2i−1,2n+i = a2i

and cs2
2i,2n+i = a2i−1 for i = 1, . . . , n, and cs

i,j = 0 for any other edge (i, j) of G and scenario s
(see Figure 1).

We show in the following that there exists a subset A′ ⊆ A, containing exactly one of
a2i−1, a2i for 1 ≤ i ≤ n, such that

∑
ap∈A′ ap =

∑
ap∈A\A′ ap if and only if there exists a

perfect matching M in G such that max{val(M,s1), val(M,s2)} ≤ 1
2

∑
ap∈A ap.

(a
1
, a

2
)

(a
2 , a

1)

0

0

2n + 1

1

3n + 1

2

(a
2i
−
1
, a

2i
)

(a
2
i , a

2
i−

1)

0

0

2n + i

2i − 1

3n + i

2i
(a

2n
−
1
, a

2n
)

(a
2
n , a

2
n
−
1)

0

0

3n

2n − 1

4n

2n

Figure 1: Min-Max Weighted Perfect Matching instance resulting from Even Odd Partition
instance.

Suppose first that such a subset A′ exists. Consider the following matching M : if
a2i−1 ∈ A′ then M contains (2i− 1, 2n + i), (2i, 3n + i), and if a2i ∈ A′ then M contains (2i−
1, 3n+ i), (2i, 2n+ i). The values of M in scenarios s1 and s2 are val(M,s1) =

∑
ap∈A′ ap and

val(M,s2) =
∑

ap∈A\A′ ap. Since
∑

ap∈A′ ap =
∑

ap∈A\A′ ap, we have max{val(M,s1), val(M,s2)} =
1
2

∑
ap∈A ap.

Suppose now that there exists a perfect matching M in G such that its value max{val(M,s1),
val(M,s2)} ≤ 1

2

∑
ap∈A ap. We consider the set A′ among the 2n integers defined as fol-

lows: if M contains (2i − 1, 2n + i), (2i, 3n + i), then we introduce a2i−1 in A′ and if
M contains (2i − 1, 3n + i), (2i, 2n + i) then we introduce a2i in A′. The values of M
in scenarios s1 and s2 are val(M,s1) =

∑
ap∈A′ ap and val(M,s2) =

∑
ap∈A\A′ ap. Since

max{val(M,s1), val(M,s2)} ≤ 1
2

∑
ap∈A ap, we have

∑
ap∈A′ ap =

∑
ap∈A\A′ ap.

In order to obtain our result for Min-Max Regret Weighted Perfect Matching in
planar graphs, we construct a polynomial reduction from Even Odd Partition. Let I be
an instance of this problem on 2n integers a1, a2, . . . , a2n−1, a2n. We construct an instance
G = (V,E) of Min-Max Weighted Perfect Matching, with two scenarios s1, s2, such
that G is planar. The vertex set is V = {1, . . . , 6n}, where vertices 2i−1, 2i, 2n+i, 3n+i, 4n+i
and 5n+ i correspond to integers a2i−1, a2i, for i = 1, . . . , n. The edge set is E = E1∪E2∪E3

18

where E1 = {(2n+i, 3n+i), (4n+i, 5n+i) : i = 1, . . . , n}, E2 = {(2n+i, 5n+i), (3n+i, 4n+i) :
i = 1, . . . , n} and E3 = {(2i−1, 2n+ i), (2i, 2n+ i), (2i−1, 4n+ i), (2i, 4n+ i), (2i−1, 2i) : i =
1, . . . , n} ∪{(3n+ i, 5n+ i+1) : i = 1, . . . , n−1}∪{(5n+1, 4n)}. The edge costs for scenarios
s1 and s2 are defined as follows: cs1

i,j =
∑

ap∈A ap, for any edge (i, j) ∈ E1, cs2
i,j =

∑
ap∈A ap,

for any edge (i, j) ∈ E2, cs1
2i−1,4n+i = a2i−1, cs2

2i−1,4n+i = a2i, cs1
2i,4n+i = a2i, vs2

2i,4n+i = a2i−1,
for i = 1, . . . , n, and cs

i,j = 0, for any other edge (i, j) and scenario s ∈ S (see Figure 2).
Notice that the minimum weighted perfect matching M∗

i in scenario si verifies val(M∗
i , si) =

0, for i = 1, 2. Indeed, M∗
1 includes edges (2n + i, 5n + i), (3n + i, 4n + i) and (2i − 1, 2i)

for i = 1, . . . , n. On the other hand, M∗
2 includes edges (2n + i, 3n + i), (4n + i, 5n + i) and

(2i − 1, 2i) for i = 1, . . . , n.

0

0

0

(P
, 0)

(0
, P

)(P
, 0)

(0
, P

)

(a
1 , a

2)

(a
2
, a

1
)

1

2

5n + 1

4
n

+
1

2
n

+
1

3n + 1

0

0

0

0

(a
3 , a

4)

(a
4
, a

3
)

(P
, 0)

(0
, P

)(P
, 0)

(0
, P

)

5n + 2

3n + 2

3

4

4
n

+
2

2
n

+
2

0

0

0

(a
2n
−
1 , a

2n)

(a
2n

, a
2n
−
1
)

(P
, 0)

(0
, P

)(P
, 0)

(0
, P

)

2n − 1

4n

6n

2n

3
n

5
n

0

Figure 2: Min-Max Regret Weighted Perfect Matching instance resulting from Even
Odd Partition instance.

We claim that there exists a subset A′ ⊆ A, containing exactly one of a2i−1, a2i for
1 ≤ i ≤ n, such that

∑
ap∈A′ ap =

∑
ap∈A\A′ ap if and only if there exists a perfect matching

M in G such that Rmax(M) ≤ 1
2

∑
ap∈A ap.

Consider a subset A′ ⊆ A, containing exactly one of a2i−1, a2i for 1 ≤ i ≤ n, such that∑
ap∈A′ ap =

∑
ap∈A\A′ ap. We construct a perfect matching M in G associated with A′.

Matching M contains (2i − 1, 4n + i) and (2i, 2n + i) if a2i−1 ∈ A′ and (2i, 4n + i) and
(2i− 1, 2n + i) if a2i ∈ A′. Moreover, M contains edges (3n + i, 5n + i+ 1) for i = 1, . . . , n− 1
and (5n+1, 4n). Thus, we have val(M,s1) =

∑
ap∈A′ ap and val(M,s2) =

∑
ap∈A\A′ ap, which

implies that Rmax(M) = 1
2

∑
ap∈A ap.

Conversely, consider a perfect matching M in G with Rmax(M) ≤ 1
2

∑
ap∈A ap. Matching

M cannot contain one of the following edges (2n+i, 3n+i), (3n+i, 4n+i), (4n+i, 5n+i) and
(2n+i, 5n+i) for some i = 1, . . . , n, since otherwise Rmax(M) ≥ ∑

ap∈A ap. Thus, M contains

for i = 1, . . . , n either edges (2i − 1, 4n + i), (2i, 2n + i) or edges (2i, 4n + i), (2i − 1, 2n + i).

19

Moreover, M contains edges (3n+ i, 5n+ i+1) for i = 1, . . . , n−1 and (5n+1, 4n). We define
from M a subset A′ ⊆ A as follows : for i = 1, . . . , n, A′ contains a2i−1 if (2i− 1, 4n + i) ∈ M
and a2i if (2i, 4n+ i) ∈ M . Thus we have Rmax(M) = max{∑ap∈A′ ap,

∑
a∈A\A′ ap} and since

Rmax(M) ≤ 1
2

∑
ap∈A ap, we have

∑
ap∈A′ ap =

∑
a∈A\A′ ap. 2

20

