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Abstract

In this paper, we introduce a domination-related problem called Harmless Set: given
a graph G = (V,E), a threshold function t : V → N and an integer k, find a subset
of vertices V ′ ⊆ V of size at least k such that every vertex v in V has less than t(v)
neighbors in V ′. We study its parameterized complexity and the approximation of the
associated maximization problem. When the parameter is k, we show that the problem is
W[2]-complete in general and W[1]-complete if all thresholds are bounded by a constant.

Moreover, we prove that, if P 6= NP , the maximization version is not n
1
2−ε-approximable

for any ε > 0 even when all thresholds are at most two. When each threshold is equal to
the degree of the vertex, we show that Harmless Set is fixed-parameter tractable for
parameter k and the maximization version is APX-complete. We give a polynomial-time
algorithm for graphs of bounded treewidth and a polynomial-time approximation scheme
for planar graphs. Finally, we show that the parametric dual problem (n− k)-Harmless
Set is fixed-parameter tractable for a large family of threshold functions.

1 Introduction

The diffusion of information through social networks is a large and well-studied topic [20].
One of the most well known problems that appears in this context is Target Set Selection
introduced by Chen [12] and defined as follows. The input is a graph where each vertex v has
a threshold value t(v), an integer k, and the following propagation rule: a vertex becomes
active if at least t(v) neighbors of v are active. The propagation process proceeds in several
steps and stops when no further vertex becomes active. The task is then to determine the
existence of a subset of at most k vertices, called a target set, such that all vertices of the
input graph become active. This problem may occur for example in the context of disease
propagation, faults in distributed computing or even viral marketing [19, 29, 36]. In this
last example, the task for a company would be to advertise few but influential individuals
such that by a so-called “word-of-mouth” process, a large fraction of customers is convinced
about the usefulness of a product. This problem received considerable attention in a series of
papers from classical complexity [10, 13, 19, 25, 37], polynomial-time approximability [1, 12],

∗The preliminary results of this publication were presented at MFCS 2012 [4].
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parameterized approximability [5], and parameterized complexity [6, 14, 33] perspectives.
Altogether these results emphasize the strong intractability nature of this problem even on
very restricted graph classes and threshold functions. A natural research direction considering
this fact is to look for the complexity of variants or constrained versions of this problem.
In this work, we follow this line of research by introducing the notion of harmless set. A
harmless set consists of a set S of vertices with the property that no propagation occurs if
any subset of S gets activated. In other words we define harmless set as a converse notion of
target set. Formally, a set S is a harmless set if every vertex v of the input graph has less
than t(v) neighbors in S. Now we may ask for the complexity of the following Harmless
Set problem. Given a graph G = (V,E), a threshold function t : V → N, and an integer k,
determine whether there exists a harmless set of size at least k (see Figure 1). Observe that
in our definition of harmless set we impose the threshold condition on every vertex, including
those in the solution S. Another perhaps more natural definition could have been a set S such
that every vertex v 6∈ S has less than t(v) neighbors in S. This definition rises the following
two problems. First, it makes Harmless Set meaningless as a trivial solution would be to
take the whole set of vertices of the input graph. Second, there might be some propagation
steps inside S if some vertices are activated in it.

Interestingly enough we may exhibit several connections between Harmless Set and
other well known domination problems such as Total Dominating Set [27] which is to
find a set S of vertices such that every vertex of the input graph is adjacent to an element
of S. One can observe that if all thresholds are unanimity (every threshold is equal to the
degree of the vertex) then a harmless set is exactly the complement of a total dominating set
also called a total non-blocker by Dehne et al. [16]. As a matter of fact, for the unanimity
case, the relationship between a harmless set and a total dominating set is similar as the
relationship between a non-blocker [16] or a spanning star forest [32] and a dominating set.
While parameterized complexity and approximability results were found for the non-blocker
or spanning star forest problems, such results are hitherto unknown for the complement
version of the problem (that is finding a total non-blocker in a graph). This paper provides
first results for this later problem. Furthermore, in the case of general thresholds, there
exists an equivalence between our problem and a generalized version of Total Dominating
Set called `-tuple Total Dominating Set and introduced by Henning et al. [26]. The
difference with the original version is that a vertex v is now dominated if and only if at least ` of
its neighbors are in S. One can observe that an `-tuple total dominating set is the complement
of a harmless set when the threshold of every vertex v is set to d(v)− `+ 1 where d(v) is the
degree of v. In a very recent survey, Fernau and Rodŕıguez-Velázquez provided a connection
between harmless set and alliances in graphs [21]. Finally, we can relate our problem to
(σ, ρ)-Dominating Set introduced by Telle [38]. Given a graph G = (V,E), two sets σ, ρ of
non-negative integers, and an integer k, the goal is to find an (σ, ρ)-dominating set S ⊆ V of
size at most k in G, i.e. |S ∩N(v)| ∈ σ for every vertex v ∈ S and |S ∩N(v)| ∈ ρ for every
vertex v 6∈ S. To see the relation between the two problems notice that if every threshold
has the same value c ∈ N then Harmless Set is equivalent to finding an (σ, ρ)-dominating
of size k [23] where σ = ρ = {0, . . . , c− 1}.

In this paper, we study the parameterized complexity of Harmless Set and the approxi-
mation of the associated maximization problem Max Harmless Set. The paper is organized
as follows. In Section 2 we give the definitions, terminology and preliminaries. In Section 3
we establish parameterized intractability results for Harmless Set with various threshold
functions (see Table 1). We show that the parametric dual problem (n− k)-Harmless Set
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Figure 1: Example of a harmless set (dashed rectangle) of size three. The number in each
vertex indicates the threshold value. Observe that there is no “propagation phenomenon” if
one activates any vertices in the dashed rectangle.

is fixed-parameter tractable for a large family of threshold functions. In Section 4 we give
a polynomial-time algorithm to solve Harmless Set for graphs of bounded treewidth. In
Section 5 we establish that Max Harmless Set is not n

1
2
−ε- approximable for any ε > 0

even when all thresholds are at most two. If each threshold is equal to the degree of the
vertex, we show that Max Harmless Set is APX-complete. Moreover Max Harmless
Set has a polynomial-time approximation scheme on planar graphs. Conclusions and open
problems are given in Section 6.

Thresholds Harmless Set (n− k)-Harmless Set Max Harmless Set

General W[2]-complete (Th.4) W[2]-hard Not n
1
2
−ε-approx

Constant W[1]-complete (Th.6) FPT (Th.9) Not n
1
2
−ε-approx (Th.13)

Majority W[1]-hard (Th.6) FPT (Th.9) Not n
1
2
−ε-approx (Th.13)

Unanimity FPT (Th.8) W[2]-hard∗ APX-complete (Th.15)

Table 1: A summary of our parameterized complexity results for Harmless Set and its para-
metric dual (n−k)-Harmless Set along with our approximation results for Max Harmless
Set. Here, the parameter is k both for Harmless Set and (n − k)-Harmless Set. The
result marked with ∗ is due to the equivalence between (n−k)-Harmless Set with unanim-
ity and the Total Dominating Set problem proved W[2]-hard with respect to the solution
size in [23].

2 Preliminaries

In this section, we give the notation used throughout this paper as well as the statement of
the problems. We conclude by providing the basic background on parameterized complexity
and approximation.

Graph terminology. Let G = (V,E) be an undirected graph. The neighborhood of a
vertex v ∈ V , denoted by NG(v), is the set of all neighbors of v. The degree of a vertex v is
denoted by dG(v). We may simply write N(v) and d(v) if the graph is clear from the context.
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Problem definitions. Let G = (V,E) be an undirected graph, and t : V → N a threshold
function. A subset V ′ ⊆ V is called harmless if for every v ∈ V we have |N(v) ∩ V ′| < t(v)
(see Figure 1). In each figure, we indicate the thresholds inside the vertices. We define in the
following the problems we study in this paper.

Harmless Set
Input: A graph G = (V,E), a threshold function t : V → N where 1 ≤ t(v) ≤ d(v) for
every v ∈ V , and an integer k.
Parameter: k.
Question: Is there a harmless set V ′ ⊆ V of size at least k?

We also consider the parametric dual problem (n− k)-Harmless Set which asks for the
existence of a harmless set of size at least n− k. The parameter is still k and n denotes the
number of vertices in the input graph.

The optimization version of Harmless Set is defined as follows.

Max Harmless Set
Input: A graph G = (V,E) and a threshold function t : V → N where 1 ≤ t(v) ≤ d(v) for
every v ∈ V .
Output: A harmless set V ′ ⊆ V such that |V ′| is maximized.

If the threshold function is defined by t(v) = d(v) for every v ∈ V then we add the suffix

With Unanimity to the problem name. The majority threshold is t(v) = dd(v)
2 e for all v ∈ V .

Parameterized complexity. Here we only give the basic notions on parameterized com-
plexity, for more background the reader is referred to [18, 22, 34]. Parameterized complexity
is a framework which provides a new way to express the computational complexity of prob-
lems. A problem parameterized by k is called fixed-parameter tractable (fpt) if there exists
an algorithm, called an fpt algorithm, that solves it in time f(k) · nO(1) (fpt-time) where n is
the size of the input. The function f is typically super-polynomial and only depends on k. In
other words, the combinatorial explosion is confined into f . The FPT class contains all pa-
rameterized problems that are fixed-parameter tractable. The XP class is the set of problems
parameterized by k that can be solved in time ng(k) for a given function g.

One of the main tools to design such algorithms is the kernelization technique. A kerneliza-
tion algorithm transforms in polynomial time any instance I of a given problem parameterized
by k into an equivalent instance I ′ of the same problem parameterized by k′ ≤ k such that the
size of I ′ is bounded by g(k) for some function g. The instance I ′ is called a kernel of size g(k)
— if g is a polynomial then I ′ is a polynomial kernel. By applying any algorithm that solves
the problem to the reduced instance I ′, we directly derive an fpt algorithm (assuming the
problem to be decideable). In this paper, the kernel size is expressed in terms of the number
of vertices.

Conversely we can prove presumable parameterized intractability of a problem. To this
end, we need to introduce the notion of parameterized reduction. An fpt-reduction is an algo-
rithm that reduces any instance I of a problem with parameter k to an equivalent instance I ′

with parameter k′ = g(k) in fpt-time for some function g. The basic class of parameterized
intractability is W[1] and there is a good reason to believe that W[1]-hard problems — ac-
cording to the fpt-reduction — are unlikely to be in FPT. In fact there is a hierarchy of classes
W[i] with the following inclusions FPT ⊆W[1] ⊆W[2] . . . ⊆ XP. Informally speaking, a prob-
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lem in W[i] is considered “harder” than those lying in W[i − 1] where i > 1. These classes
are defined via the boolean circuit satisfiability problems. More specifically, a parameterized
problem belongs to W[i] if every instance (I, k) can be transformed in fpt-time to a boolean
circuit C of constant depth and weft at most i, such that (I, k) is a Yes-instance if and only
if there is a satisfying truth assignment for C of weight exactly k. The weft of a circuit is
the maximum number of large gates, i.e. gates with a number of inputs not bounded by any
constant, on a path from an input to the output. The depth is the maximum number of all
gates on a path from an input to the output.

Approximation. Given an optimization problem A and an instance I of this problem, we
denote by |I| the size of I, by optA(I) the optimum value of I and by val(I, S) the value
of a feasible solution S of I. For a function ρ > 1, an algorithm is a ρ-approximation for
a maximization problem A if for any instance I of the problem it returns a solution S such
that val(I, S) ≥ optA(I)

ρ(|I|) . We say that a maximization problem is constant approximable if, for
some constant ρ > 1, there exists a polynomial-time ρ-approximation for it. A maximization
problem has a polynomial-time approximation scheme if, for every constant ε > 0, there exists
a polynomial-time (1+ε)-approximation for it. APX is the class of problems that are constant
approximable and PTAS the class of problems that have a polynomial-time approximation
scheme. In this paper, we will make use of the following approximation preserving reductions.

Definition 1 (L-reduction [35]) Let A and B be two optimization problems. Then A is
said to be L-reducible to B if there are two constants α, β > 0 and two polynomial time
computable functions f , g such that

1. f maps an instance I of A into an instance I ′ of B such that optB(I ′) ≤ α · optA(I),

2. g maps each solution S′ of I ′ into a solution S of I such that |val(I, S) − optA(I)| ≤
β · |val(I ′, S′)− optB(I ′)|.

If a problem A is L-reducible to a problem B then the following holds: If A is APX-hard
then B is also APX-hard and if B ∈ PTAS then A ∈ PTAS. However, this property is no
longer true for a class beyond APX. For instance, let ε ∈ (0, 1) be any fixed constant, if a
problem A is not n1−ε-approximable unless P = NP and L-reduces to another problem B
then we cannot deduce the same hardness result for B. To get rid of this problem, we need
to use the E-reduction.

Definition 2 (E-reduction [30]) Let A and B be two optimization problems. Then A is
said to be E-reducible to B if there exist a constant β > 0 and two polynomial time computable
functions f , g such that

1. f maps an instance I of A to an instance I ′ of B such that optA(I) and optB(I ′) are
related by a polynomial factor, i.e. there exists a polynomial p such that optB(I ′) ≤
p(|I|)optA(I),

2. g maps each solution S′ of I ′ into a solution S of I such that ε(I, S) ≤ βε(I ′, S′),

where ε(I, S) = max
{
val(I,S)
optA(I) ,

optA(I)
val(I,S)

}
− 1.

For more details about approximation the reader is referred to [2, 28, 40].
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Tree decomposition and treewidth. A tree decomposition T = (T,H) of a graph G =
(V,E) consists of a tree T = (X,F ) with node set X and edge set F , and a set system H
over V whose members Hx ∈ H are labeled with the node x ∈ X, such that the following
conditions are met:

1.
⋃
x∈X Hx = V .

2. For each uv ∈ E there is an x ∈ X with u, v ∈ Hx.

3. For each v ∈ V , the node set {x ∈ X : v ∈ Hx} induces a subtree of T .

The third condition is equivalent to assuming that if v ∈ Hx′ and v ∈ Hx′′ then v ∈ Hx

holds for every node x of the (unique) x′ — x′′ path in T . The width of a tree decomposition T
is w(T ) = maxx∈X |Hx|−1 and the treewidth of G is defined as tw(G) = minT w(T ) where the
minimum is taken over all tree decompositions T = (T,H) of G. The “−1” in the definition
of w(T ) is included for the convenience that trees have treewidth 1 (rather than 2).

Any tree decomposition T = (T,H) of a graph can be transformed in linear time into
a so-called nice tree decompositionn T ′ = (T ′,H′) with w(T ′) = w(T ), |H′| = O(|H|) and
with Hx 6= ∅ for all Hx ∈ H where T ′ is a rooted tree satisfying the following conditions
(see [31] for more details):

1. Each node of T ′ has at most two children.

2. For each node x with two children y, z, we have H ′y = H ′z = H ′x (x is called join node)
with H ′x, H

′
y, H

′
z ∈ H′.

3. If a node x has just one child y, then H ′x ⊂ H ′y (x is called forget node) or H ′y ⊂ H ′x (x
is called insert node) and ||H ′x| − |H ′y|| = 1 with H ′x, H

′
y ∈ H′.

One can see that the subtree Tx of T rooted at node x represents the subgraph Gx induced
by precisely those vertices of G which occur in at least one Hy where y runs over the nodes
of Tx.

3 Parameterized complexity

In this section, we consider the parameterized complexity of Harmless Set. In some re-
ductions we make use of the following gadget: a forbidden edge denotes an edge uv where
both vertices have threshold one. Attaching a forbidden edge to a vertex w means to create
a forbidden edge uv and make w adjacent to u. Notice that none of the three vertices u, v
or w can be part of a harmless set. Moreover, we need the following simple but useful data
reduction rule.

Data reduction rule 1 Let (G, t, k) be an instance of Harmless Set. If there is a ver-
tex v such that t(v) > k + 1 then set the threshold t(v) to k + 1 to get a new equivalent
instance (G, t′, k).

To see that the above rule is correct, observe that if S ⊆ V is a harmless set of size at least k
for (G, t, k), then any subset of size k of S is a harmless set for (G, t′, k). The converse is
clear.
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T0 . . . v1 v2 v4 . . .

T1 . . . × × . . .

T2 . . . × × . . .

T3 . . . × × × × . . .

T4 . . . × . . .

T5 . . . × × . . .

T6 . . . × . . .

Figure 2: A non-deterministic multi-tape Turing machine (right) accepting an instance of
Harmless Set where k = 3 (left). The guessed solution is the set {v1, v2, v4}.

We now show that Harmless Set belongs to W[2] using the Turing way, that is, we
reduce Harmless Set to the Short Multi-tape Nondeterministic Turing Machine
problem that is proved to belong to W[2] in [11] and is defined as follows. Given a multi-tape
nondeterministic Turing machine M , a word x on the input alphabet of M , and an integer k,
determine if there is a computation of M on input x that reaches a final accepting state in
at most k steps. The parameter is k.

Proposition 3 Harmless Set is in W[2].

Proof : We construct an fpt-reduction from Harmless Set to Short Multi-tape Non-
deterministic Turing Machine as follows. Let (G, t, k) be an instance of Harmless Set
with G = (V,E) and V = {v1, . . . , vn}. First, exhaustively apply Data reduction rule 1 to
obtain a new equivalent instance (G, t′, k). Then construct the following Turing machine M
from (G, t′, k) (see Figure 2). We create n + 1 tapes denoted by T0, Tv1 . . . , Tvn . The tape
alphabet is V ∪ {×} plus the blank symbol �. Initially, every tape is filled with �. The
transition function is defined hereafter. First, M non-deterministically chooses k vertices and
writes them on tape T0, that is, if M picks a vertex v ∈ V then it writes symbol v on T0 and
moves T0’s head one step to the right. The previous procedure is done in k steps. Next, for
each i = 1, . . . , k+1, the Turing machine writes a symbol × on each tape Tvj and moves Tvj ’s
head one step to the right if vj has a threshold greater or equal to i. Recall that no vertex
has a threshold greater than k + 1 due to Data reduction rule 1. During the third phase, M
checks whether the selected set is a harmless set as follows. First, the machine moves all
heads one step to the left. If T0’s head reads symbol v then for every u ∈ N(v), we simply
move Tu’s head one step to the left. We repeat the previous procedure until T0’s head reads
a blank symbol. If all the other tapes read a × symbol then M goes in an accepting state;
otherwise it goes to a rejecting state. This checking phase can be done in at most k+ 1 steps.
Finally, the input word x is empty and k′ = 3k + 2. It is not hard to see that (G, t, k) is a
Yes-instance if and only if there is a computation of M that accepts x in at most k′ steps. �

Now in order to prove the W[2]-hardness of Harmless Set, we construct a simple fpt-
reduction from Red/Blue Dominating Set defined as follows. Given a bipartite graph G =
(R∪B,E) and a positive integer k, determine if there exists a set R′ ⊆ R of cardinality k such
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Figure 3: Illustration of the construction of G′ (right) from the graph G (left) after carrying
out the modifications of Theorem 4 with k = 3.

that every vertex in B has at least one neighbor in R′. The parameter is k. The Red/Blue
Dominating Set problem is equivalent to Hitting Set and, thus, W[2]-hard [18].

Theorem 4 Harmless Set is W[2]-complete even on bipartite graphs.

Proof : Membership follows from Proposition 3. Now, let us show the W[2]-hardness.
Let (G = (R ∪ B,E), k) be an instance of Red/Blue Dominating Set, we construct an
instance (G′ = (V ′, E′), t, k) of Harmless Set as follows. We consider the complement Ḡ
of the graph G, that is two vertices u ∈ R and v ∈ B are adjacent in Ḡ if and only if they
are not adjacent in G. Moreover, the sets R and B remain independent sets. Graph G′

is obtained from Ḡ by attaching max{k − dḠ(v), 1} forbidden edges to each vertex v ∈ B.
Finally, set t(v) = k for every vertex v ∈ B and t(v) = 1 for every vertex v ∈ R. Adding
several forbidden edges to the vertices of B ensures that the threshold of these vertices is less
than or equal to their degree as required (see Figure 3).

Assume that (G, k) has a solution R′ ⊆ R of size k. One can see that R′ is also a solution
for (G′, t, k) since no vertex in B is adjacent to all vertices in R′. Conversely, suppose that
there is a harmless set S ⊆ V ′ of size k in G′. Since S is harmless, S cannot contain any vertex
from B because of the forbidden edges, and thus S is entirely contained in R. Moreover, every
vertex v in B is adjacent in G′ to at most t(v)− 1 = k− 1 vertices in S. Hence, every vertex
in B is adjacent in G to at least one vertex in S. Therefore, S is a solution of size k for (G, k).

�

In the next two theorems, we show that Harmless Set goes one level down in the
W-hierarchy when all thresholds are bounded by a constant.

Proposition 5 Harmless Set is in W[1] if all thresholds are bounded by a constant.

Proof : Let (G = (V,E), t, k) be an instance of Harmless Set where t(v) ≤ c for ev-
ery v ∈ V and some constant c > 0. We construct in O(nc)-time, where n is the number of
vertices of G, a boolean circuit C of depth 3 and weft 1 as follows. We identify the inputs
of the circuit with the vertices of G. Connect a ¬-gate to every input. For all v ∈ V and all
subsets S′ ⊆ N(v) of size t(v), add a ∨-gate connected to the ¬-gates of inputs in S′. Finally,
add a large ∧-gate connected to every ∨-gate. It is not hard to see that G admits a harmless
set of size k if and only if there is a weight-k assignment that satisfies C. �
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We establish the W[1]-hardness of Harmless Set by an fpt-reduction from the Clique
problem [17] defined as follows. Given an undirected graph G = (V,E) and a positive inte-
ger k, determine if there is a clique C ⊆ V of size at least k. The parameter is k.

Theorem 6 Harmless Set is

1. W[1]-hard even on bipartite graphs with majority thresholds.

2. W[1]-complete even on split graphs, i.e. graphs whose vertices can be partitioned into a
clique and an independent set, with thresholds t(v) = 2 for every vertex v.

Proof :
(1) Given (G = (V,E), k) an instance of Clique, we construct an instance (G′ =

(V ′, E′), t, k) of Harmless Set as follows. The set V ′ is obtained from V by adding for each
non-edge uv 6∈ E, an edge-vertex euv to V ′ and edges ueuv and euvv to E′. Remove every edge
in E. Attach a forbidden edge puvquv to each edge-vertex euv. Finally, set t(v) = dd(v)

2 e for
all v ∈ V ′. Observe that the vertices in a forbidden edge have majority thresholds (see Fig-
ure 4).

Let C ⊆ V be a clique of size at least k. Then C is clearly a harmless set in G′ since
no edge-vertex has more than one neighbor in C. Conversely, let C ′ ⊆ V ′ be a harmless set
in G′. Because of the forbidden edges, C ′ cannot contain an edge-vertex euv and puv, quv and
thus C ′ ⊆ V . Moreover, since t(euv) = 2, the set C cannot contain u and v such that uv /∈ E
and thus C ′ is a clique of size at least k in G.

(2) Membership follows from Proposition 5. We now prove the W[1]-hardness. Let (G =
(V,E), k) be an instance of Clique, we construct an instance (G′ = (V ′, E′), t, k) of Harm-
less Set as follows. As previously, for each non-edge uv 6∈ E, add an edge-vertex euv and the
edges ueuv and euvv. Add edges to make the set of all edge-vertices a clique. Remove every
edge in E. Finally, set t(v) = 2 for all v ∈ V ′. Without loss of generality we may assume
that k ≥ 2 and every vertex in V has minimum degree two (see Figure 4).

Let C ⊆ V be a clique of size at least k. One can easily verify that C is a harmless set
in G′. Conversely, suppose that there is a harmless set C ′ ⊆ V ′ of size k. Notice that C ′ ⊆ V
since otherwise we would not have been able to take more than one vertex in G′. Indeed, if
there are two vertices u, v ∈ C ′ with v ∈ V ′\V then there is always a vertex w ∈ V ′\V −{u, v}
adjacent to both v and u. Thus, C ′ is entirely contained in V . Now, it is not hard to see
that C ′ is a clique of size at least k in G. �

It is interesting to note that the ratio between the number nu of vertices with unbounded
threshold over the total number of vertices in G′ in the proof of Theorem 4 can be made
arbitrarily small by adding many forbidden edges. This implies a sharp dichotomy between
the W[2]- and W[1]-completeness of Harmless Set in the following sense. Let r denote the
ratio nu

n ≥ 0 where n is the order of the input graph. For any fixed ε > 0, the Harmless
Set problem is W[2]-complete even when r < ε and W[1]-complete when r = 0.

Unanimity thresholds. Now we consider the Harmless Set With Unanimity problem.
First, we start with the following easy observation. In the case of unanimity thresholds, any
harmless set is the complement of a total dominating set. Recall that a total dominating
set S is a set of vertices such that every vertex in the input graph has at least one neighbor
in S. Moreover, we have the following theorem.
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Figure 4: Illustration of the reductions (1) and (2) from Clique as described in Theorem 6.
The vertices in the grey box form a clique.

Theorem 7 (Cockayne et al. [15]) If G is a connected graph of order at least 3 then there
is a total dominating set of size at most 2n/3.

Now we can prove the following

Theorem 8 Harmless Set With Unanimity admits a kernel with 3k vertices.

Proof : Let (G = (V,E), k) be an instance of Harmless Set With Unanimity. The aim
of the proof is to apply Theorem 7 on G. For this to work, we need to get rid of connected
components of size 1 and 2 using the following two reduction rules.

1. If there is an isolated vertex v (i.e. d(v) = 0) then delete v from G and reduce k by one.

2. If there is an isolated edge uv ∈ E (i.e. d(u) = d(v) = 1) then delete u and v from G.

The correctness of the above rules follows from the fact that every isolated vertex is included
in any maximal harmless set while both endpoints of an isolated edge must be excluded.

Let (G′, k′) be the instance obtained after exhaustively applying the above rules. Let n′

be the order of G′. From Theorem 7, we know that there exists a harmless set in G′ of size
least n′/3. Hence, if k′ ≤ n′/3 then return a trivial Yes-instance. If k′ > n′/3 then (G′, k′) is
a kernel of size at most 3k′. �

Observe that the parameter k might be “large” in the previous kernel. This suggests to
look for other parameterizations. One possibility is to decide the existence of solutions of size
at least dn3 e+ k. Another one is to decide the existence of solutions of size at least n− k. We
study in the following this last problem and leave as an open question the first one.

Parametric dual. Notice that (n−k)-Harmless Set with unanimity thresholds is exactly
the Total Dominating Set problem which is known to be W[2]-hard with respect to
the solution size [23]. Nonetheless the parameterized tractability of the problem for other
threshold functions is open. In what follows, we show that (n− k)-Harmless Set is in FPT
with respect to the parameter k for a large family of threshold functions including majority
and constant thresholds. Toward this goal, we provide a kernelization through the following
data reduction rule.
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Data reduction rule 2 Let (G, t, k) be an instance of (n − k)-Harmless Set. If there is
a vertex v such that d(v) ≥ k + t(v) − 1 then remove v and decrease by one the threshold of
every vertex in N(v) to get a new equivalent instance (G′, t′, k).

Regarding the correctness of the above rule, let S be a harmless set of size at least n − k.
Notice that if there is a vertex v with d(v) ≥ k+ t(v)− 1 then v must be in S since otherwise
it will have at most k − 1 neighbors outside S and then at least t(v) neighbors in S.

We can now state the main result.

Theorem 9 (n−k)-Harmless Set admits a kernel with O(k2) vertices if for every vertex v
in the input graph t(v) = dαvd(v)βv + γve for any fixed constants αv, βv ∈ [0, 1], αvβv 6= 1,
and γv ∈ Q.

Proof : Let (G, t, k) be an instance of (n − k)-Harmless Set. Exhaustively apply Da-
ta reduction rule 2 to get (G′, t′, k). Assume that there exists a solution S ⊆ V of size at
least n− k. Because of Data reduction rule 2, we have

d(v) < k + t(v)− 1 = k + dαvd(v)βv + γve − 1 ≤ k + αvd(v)βv + γv (1)

We claim that d(v) ≤ θv(k) for all v ∈ V ′ where

θv(k) =


k + αv + γv if βv = 0
k+γv
1−αv if βv = 1
k+γv
1−βv + (1/βv)

1
1−βv otherwise

The first two cases are straightforward. Suppose now that βv ∈ (0, 1). First, it is not

hard to show that the following holds: xε ≤ εx if and only if x ≥ (1/ε)
1

1−ε for any x ≥ 1

and ε ∈ (0, 1). Hence, if d(v) ≥ (1/βv)
1

1−βv then, together with inequality (1), we ob-

tain d(v) ≤ k+αvβvd(v)+γv and thus d(v) ≤ k+γv
1−αvβv ≤ θv(k). Otherwise d(v) < (1/βv)

1
1−βv ≤

θv(k).
Since every vertex from S has at least one neighbor in V ′−S then |S| has at most |V ′ − S|dmax ≤
kθmax(k) vertices where θmax(k) = maxv∈V ′θv(k) and dmax is the maximum degree of vertices
in V ′ − S.

The kernelization procedure is then defined as follows. From an instance (G, t, k) of
(n−k)-Harmless Set, exhaustively apply Data reduction rule 2 to get an instance (G′, t′, k).
If |V ′| > kθmax(k) + k then return a trivial No-instance. Otherwise, return the reduced
instance (G′, t′, k). �

4 Algorithms for trees and tree-like graphs

In this section we establish a t
O(ω)
max ·n-time algorithm for Max Harmless Set and a kO(ω) ·n-

time algorithm for Harmless Set where tmax is the maximum threshold and ω the width
of a given tree decomposition of the input graph. We first describe an O(log(tmax) · n)-time
algorithm for trees. Besides to be more efficient in this case, this algorithm introduces the
underlying ideas used later for the algorithm on general graphs.

Proposition 10 Max Harmless Set is solvable in O(log(tmax) · n) time on trees.
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Proof : Let (T = (V,E), t) be an instance of Max Harmless Set where T is a tree rooted
at r. We describe a dynamic programming algorithm as follows. We denote by Tv the subtree
of T rooted at v. Moreover, we denote by C(v) the set of children of v and p(v) the parent
of v.

For each v ∈ V and each b ∈ {0, 1}, we define Iv[b] (resp. Ev[b]) as the optimal solution
for the subtree Tv with the additional constraints that t(v) is decreased by b and v is included
(resp. excluded). When no harmless set satisfying the constraints exists, we set the value ⊥.

As a preliminary step, we set F (p(v)) =⊥ whenever t(v) = 1 for every vertex v 6= r. Thus
a vertex v such that F (v) =⊥ cannot be part of any solution since it has a threshold one
neighbor.

For every leaf v of T (recall that t(v) = 1 in this case), set Iv[0] = {v}, Ev[0] = ∅,
and Iv[1] = Ev[1] =⊥. For each non-leaf vertex v perform the following steps

1. For each child c ∈ C(v) and each b ∈ {0, 1}, compute the magnitude value m(c, b) =
|Ic[b]| − |Ec[b]|.

2. For each b1 ∈ {0, 1} and b2 ∈ {0, 1}, partition the set C(v) into two sets C1(v, b1, b2)
and C2(v, b1, b2) such that C1(v, b1, b2) contains the t(v) − b1 − 1 vertices with the
largest positive magnitude value m(c, b2), that is every pair c1, c2 ∈ C1(v, b1, b2) ×
C2(v, b1, b2) verifies m(c1, b2) ≥ m(c2, b2) and m(c1, b2) > 0. If t(v) − b1 − 1 ≤ 0 then
set C1(v, b1, b2) = ∅.

3. For each b ∈ {0, 1}, update Iv[b] and Ev[b] as follows

Iv[b] =


⊥ if F (v) =⊥
⊥ if t(v) = 1 and b = 1

{v} ∪
⋃

c∈C1(v,b,1)

Ic[1] ∪
⋃

c∈C2(v,b,1)

Ec[1] otherwise

(1)

Ev[b] =


⊥ if t(v) = 1 and b = 1⋃
c∈C1(v,b,0)

Ic[0] ∪
⋃

c∈C2(v,b,0)

Ec[0] otherwise
(2)

In the above equations, we adopt the convention that Q∪ ⊥=⊥ for any set Q. To get the
optimal solution for the tree T , return the largest solution between Ir[0] and Er[0].

As to the correctness, notice that when we make a decision for a vertex v, we do not
know the decision about its parent. We then have to deal with two cases: one where the
parent is in the solution and the other one when it is not. The first case can be handled by
computing an optimal solution with the threshold of v set to t(v)−1. For the second case, we
compute another optimal solution without modifying v’s threshold. Notice that in each case,
the optimal solution for Tv takes either v (Eq. 1) or not (Eq. 2). Therefore the subtree Tv is
associated with four optimal solutions Iv[0], Ev[0], Iv[1], and Ev[1].

We now prove equation (1) (equation (2) is proved using similar arguments). In the first
case (F (v) =⊥) there exists a child c of v such that t(c) = 1 and thus v cannot be part of
any harmless set thus Iv[b] =⊥. In the second case, we set Iv[b] =⊥ since the parent of v is
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included in the solution (b = 1) while t(v) = 1. Consider now the third case. For simplicity,
let us assume that the parent of v is taken in the solution and then we want to update Iv[1].
Observe that we cannot add more than t(v) − 2 children of v in the solution and that for
each child c ∈ C(v) we need to determine what is the best to include between Ic[1] and Ec[1].
To this end, we simply compute the so-called magnitude value of each child c of v which
corresponds to the gain we obtain by choosing to include Ic[1] instead of Ec[1]. Now, let us
associate a binary variable xc to each child c where xc = 1 if Ic[1] is chosen and xc = 0 if Ec[1]
is taken. The optimal solution Iv[1] is then equal to

{v} ∪
⋃

c:x∗c=1

Ic[1] ∪
⋃

c:x∗c=0

Ec[1]

where {x∗c}c∈C(v) is the solution that maximizes
∑

c∈C(v) |Ic[1]|xc+ |Ec[1]|(1−xc) (or, equiva-
lently, maximizes

∑
c∈C(v)m(c, 1)xc) subject to

∑
c∈C(v) xc ≤ t(v)− 2. Now it should be clear

that C1(v, 1, 1) = {c ∈ C(v) : x∗c = 1}. Therefore the equation correctly updates Iv[1].
As to the running time, observe that the preliminary step as well as the initialization of

the leave’s tables can be done in O(n) time. Futhermore, the number of steps performed
in each non-leaf vertex is O(log(tmax) · |C(v)|). Indeed, partitioning the set C(v) (Step 2)
requires O(log(tmax) · |C(v)|) time and Step 1 and Step 3 both uses O(|C(v)|) time. Overall,
the running time is O(

∑
v∈V log(tmax) · |C(v)|) = O(log(tmax) · n). This completes the proof.

�

Now, we present the algorithm for solving Max Harmless Set on general graphs.

Theorem 11 Given a tree decomposition of width ω of a graph G, a maximum harmless set

can be computed in time t
O(ω)
max · n where tmax is the maximum threshold.

Proof : Let (G = (V,E), t) be an instance of Max Harmless Set. Assume that we are
given a nice tree decomposition T = (T = (X,F ),H) of G of width at most ω. Let Tx be
the subtree of T rooted at some node x ∈ X. We denote by Gx = (Vx, Ex) the subgraph
induced by the vertices from

⋃
y∈Tx Hy. We describe a dynamic programming algorithm to

solve (G, t) using T .

Description. The general idea of the algorithm is as follows. For each node x ∈ X, we
store a set of optimal solutions for the subgraph Gx in a table denoted by Ax. These tables are
updated using a bottom-up procedure that starts from the leaves and ends at the root of T .
More precisely, we use a two-entry table Ax[t, c] where t ∈ {1, . . . , tmax}Hx , c ∈ {0, 1}Hx ,
and Ax[t, c] corresponds to a maximum harmless set in Gx whose intersection with Hx is
exactly {v ∈ Hx : c(v) = 1} and by imposing the threshold t(v) = t(v) for every v ∈ Hx.
We set Ax[t, c] =⊥, if no such harmless set is possible. During the computation, we may
interrogate the table Ax with t(v) ≤ 0 for some v ∈ Hx. In such case, the table simply
returns the value ⊥.

Consider the updating step occuring in a join node. Let x ∈ X be a join node with
children y and z such that Hx = Hy = Hz. The nodes y and z have their respective
tables Ay and Az already computed by dynamic programming and we want to compute the
table Ax. Let B = NG(Hx) \ Vx. Notice that, when computing Ax, we do not know what
vertices in B will be in the maximum harmless set. Thus, one has to take into consideration
that any subset S ⊆ B might be in the optimal solution. Hence, we have to compute a
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maximum harmless set in Gx for each subset S ⊆ B considering S as part of a harmless
set. This can be done by computing a maximum harmless set in Gx for every possible
thresholds t ∈ {1, . . . , tmax}Hx . To do this, we first need to solve the following two problems.
Consider the optimal solution Sy (resp. Sz) in Gy (resp. Gz) by imposing the thresholds t
to Hy (resp. Hz) for some t ∈ {1, . . . , tmax}Hx . We cannot directly make the union of Sy
and Sz to get the optimal solution Sx of Gx under the restriction that vertices of Hx have
thresholds set to t. Indeed, consider a vertex u ∈ Hx. It may happen that u has less than t(u)
neighbors in Sy and Sz but more than t(u) in Sy ∪ Sz. So as to overcome this situation, we
have to consider the union of a pair of optimal solutions Sy, Sz for each possible thresholds
value t1 ∈ {1, . . . , tmax}Hy and t2 ∈ {1, . . . , tmax}Hz of the vertices in Hy and Hz, respectively,
with t1+t2 = t (t1+t2 is the function defined as (t1+t2)(u) = t1(u)+t2(u) for every u ∈ Hx).

The other problem is whenever we make the previous union, we do not take into consid-
eration that the sets Hy and Hz are equal. The consequence is that a vertex v in Gy might
have a number of neighbors in Hy∩ (Sy∪Sz) that sums over its threshold. We solve this issue
using the function c. According to the definition of Ax[t, c], this function ensures that the
same vertices in both Hy and Hz are in the solution. Observe that a vertex v in Hx taken in
the solution (c(v) = 1) may be adjacent to some vertex u in Hx and thus affects t(u). Since
we consider Hy and Hz separately, we count the vertex v once for t1(u) and a second time
for t2(u). This problem can be overcome by simply increasing the thresholds of u in both Hx

and Hy so as to balance this overcounting.
This completes the description of the algorithm, we now give the formal details.

Algorithm. We denote by f⊕ (a, b) the extended function defined as (f⊕ (a, b))(x) = f(x)
if x 6= a and (f ⊕ (a, b))(a) = b. Similarly to the proof of Proposition 10, we adopt the
convention that Q∪ ⊥=⊥ for any set Q.

Initialization step. We initialize all the tables Ax where x is a leaf of T as follows. For
each leaf x of T , t ∈ {1, . . . , tmax}Hx and c ∈ {0, 1}Hx . Let S = {v ∈ Hx : c(v) = 1}

Ax[t, c] =

{
S if S is a harmless set for Gx according to t
⊥ otherwise

Updating step. Starting from the leaves, we apply the following rules to each node x ∈ X
we visit until we reach the root.

Case 1 (insert node). Suppose that x is an insert node with child y such that Hx =
Hy ∪ {u}. Following the above discussion, we update the table Ax as follows. For all t ∈
{1, . . . , tmax}Hy , c ∈ {0, 1}Hy and i = 1, . . . , tmax

Ax[t⊕ (u, i), c⊕ (u, 0)] =

{
Ay[t, c] if Ay[t, c] is a harmless set in Gx with t(u) = i.
⊥ otherwise

Ax[t⊕ (u, i), c⊕ (u, 1)] =


Ay[t

′, c] ∪ {u} if Ay[t
′, c] ∪ {u} is a harmless set in Gx

with t(u) = i
⊥ otherwise

where t′(v) = t(v)− 1 if v ∈ N(u) and t′(v) = t(v) otherwise.

Case 2 (forget node). Suppose that x is a forget node with child y such that Hx =
Hy − {u}. Let t ∈ {1, . . . , tmax}Hy . Notice that vertex u has its neighbors entirely contained
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in Gx. Hence, the maximum harmless set for Gx where t(v) = t(v) for all v ∈ Hx is exactly
the maximum harmless set for Gy where t(v) = t(v) for all v ∈ Hy and such that u has
threshold t(u). Formally, we update the table Ax as follows. For all t ∈ {1, . . . , tmax}Hx
and c ∈ {0, 1}Hx

Ax[t, c] = max
i∈{0,1}

{Ay[t⊕ (u, t(u)), c⊕ (u, i)]}

Case 3 (join node). Suppose that x is a join node with children y and z such that Hx =
Hy = Hz. According to the above discussion, we update the table Ax as follows. For
all t ∈ {1, . . . , tmax}Hx and c ∈ {0, 1}Hx , perform the following steps

• Set e(u) = |{v ∈ Hx : u ∈ N(v) and c(v) = 1}| for all u ∈ Hx.

• (t∗1, t
∗
2) = arg max

t1,t2∈{1,...,tmax}Hx
: t1+t2=t−e

|Ay[t1 + e, c] ∪Az[t2 + e, c]|

• Ax[t, c] = Ay[t
∗
1 + e, c] ∪Az[t∗2 + e, c]

Final step. The optimal solution is then arg maxc∈{0,1}Hr |Ar[tr, c]| where r is the root
of T and tr(v) = t(v) for all v ∈ Hr. As to the running time observe that enumerating all

possible functions t and c takes t
O(ω)
max time and that updating the table can be done in linear

time. This completes the proof. �

Now we show that Harmless Set is fixed-parameter tractable with respect to the com-
bined parameter k and treewidth of the input graph. For that purpose consider an in-
stance I = (G, t, k) of Harmless Set. After applying Data reduction rule 1 exhaustively
on I we get in polynomial-time a new equivalent instance I ′ = (G, t′, k) such that the thresh-
old value of every vertex is bounded by k + 1 and thus tmax = k + 1. We can apply the
algorithm of Theorem 11 on (G, t′) and then decide whether the given solution is greater or
equal k. This gives us the following result.

Proposition 12 Given a tree decomposition of width ω of the input graph Harmless Set
is solvable in time kO(ω) · n.

Since a tree decomposition of width tw(G) of a graph G can be found in fpt-time with
respect to tw(G) [8], it follows that Harmless Set is in FPT with respect to the combined
parameter k and the treewidth of the input graph.

Notice that the above results are of purely theoretical interest as the current running time
makes the treewidth algorithm not practical. Using techniques like fast subset convolution
may help in speeding up the algorithm [39].

5 Approximability

We first observe that Max Harmless Set is inapproximable even for majority and small
constant thresholds. In order to prove this result, we consider the Max Clique problem:
given a graph G = (V,E), find a clique C ⊆ V of maximum size.
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Theorem 13 If NP 6= ZPP , Max Harmless Set is not approximable within n
1
2
−ε for

any ε > 0 even

1. For bipartite graphs with majority thresholds.

2. For split graphs with thresholds t(v) = 2 for every vertex v.

Proof : We construct an E-reduction (see Definition 2) from Max Clique. Let G be an
instance of Max Clique. Consider the constructed instance I ′ = (G′, t) fromG as it is defined
in Theorem 6. Let C be a harmless set in G′. From the proof of Theorem 6, we know that C
is a clique in G. Thus, it is not hard to see that opt(I ′) = opt(G) and ε(G,C) = ε(I ′, C).
Let n and n′ be the orders of G and G′, respectively. Since Max Clique is not approximable
within n1−ε for any ε > 0 unless NP = ZPP [24] and n′ = O(n2), the result follows. �

We now prove the APX-completeness of Max Harmless Set With Unanimity.

Proposition 14 Max Harmless Set With Unanimity is 3-approximable in O(log(∆)·n)-
time where ∆ is the maximum degree of the input graph.

Proof : Let G = (V,E) be an instance of Max Harmless Set With Unanimity. We
denote by V1 the set of isolated vertices and by V2 the set of vertices corresponding to endpoints
of isolated edges in G. Let V≥3 = V \ (V1 ∪ V2) The algorithm consists of the following two
steps:

1. Compute a spanning forest T of G.

2. Compute an optimal solution S of T using Proposition 10 with unanimity thresholds.

Observe that any feasible solution S for T is also a solution for G. Indeed, if a vertex v in T
is such that NT (v) 6⊆ S then we have NG(v) 6⊆ S. Observe also that no vertices in V2 can be
part of a solution and any maximal solution contains V1. Hence, using Theorem 7, we know
that |S| ≥ |V1|+ |V≥3|/3. Moreover, opt(G) ≤ |V1|+ |V≥3|. It follows that |S| ≥ opt(G)/3. �

Theorem 15 Max Harmless Set With Unanimity is APX-complete even on bipartite
graphs.

Proof : Membership follows from Proposition 14. In order to prove the APX-hardness
we provide an L-reduction (see Definition 1) from Max E2Sat-3 proved APX-hard in [7]
and defined as follows: given a CNF formula φ with n variables and m clauses, in which
every clause contains exactly two literals and every variable appears in exactly three clauses,
determine an assignment to the variables satisfying a maximum number of clauses. Notice
that m = 3n/2.

Given a formula φ of Max E2Sat-3, we construct an instance I = (G = (V,E)) of Max
Harmless Set With Unanimity as follows (see Figure 5).

• For every variable xi, we construct the complete bipartite graph K3,3(xi) =
(V −(xi), V

+(xi)) in which every edge uv is replaced by an edge-vertex euv and two
edges ueuv and euvv. We denote by E(xi) this set of edge-vertices. The vertices
in V +(xi) (resp. V −(xi)) represent the positive (resp. negative) literals of xi.
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Figure 5: The construction of G. Each subgraph in a dashed box corresponds to a gad-
get K3,3(xi) of a variable xi. A grey box represents either V +(xi) or V −(xi).

We denote by A the set of all vertices added so far.

• For every clause cj in φ add two adjacent clause-vertices c̄j and c̄′j .

• For every variable xi, if xi appears positively (resp. negatively) in a clause cj then
choose a vertex v of V −(xi) (resp. V +(xi)) not adjacent to a clause-vertex and add the
edge c̄′jv. Thus, vertex c̄′j represents the complement of the clause cj in φ.

• Finally, add two adjacent vertices c and c′. For every vertex v ∈ V −(xi) ∪ V +(xi), if v
is not adjacent to a clause-vertex then add the edge vc′.

This completes the construction. From the proof of [7], we may assume that each variable
of φ appears positively and negatively. Thus c′ is adjacent to at least one vertex of V −(xi)
and one vertex of V +(xi), i.e.

N(c′) ∩ V −(xi) 6= ∅ (1)

and
N(c′) ∩ V +(xi) 6= ∅ (2)

for each i = 1, . . . , n.
Observe that the optimal value in I is bounded by the number of vertices of G and thus,

opt(I) ≤ 15n+ 2m+ 2 ≤ 16opt(φ) + 2 which implies

opt(I) ≤ 18opt(φ)

since opt(φ) ≥ 3/4m and opt(φ) ≥ 1.
Moreover, let x∗ be an optimal assignment for φ and let

S =
⋃

i:x∗i=1

V +(xi) ∪
⋃

i:x∗i=0

V −(xi) ∪
n⋃
i=1

E(xi) ∪ {c̄j : cj is satisfied by x∗} ∪ {c}.

We can easily verify that S is a harmless set and |S ∩ (V −(xi) ∪ V +(xi) ∪ E(xi))| = 12 and
thus |S ∩A| = 8m and then

opt(I) ≥ |S| = 8m+ opt(φ) + 1 (3)
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Let S be a maximal harmless set for I. We first establish several useful observations.

Observation 1 For each i = 1, . . . , n, the set S cannot contain vertices from both V −(xi)
and V +(xi).

The correctness follows from the fact that an edge-vertex cannot have both neighbors inside S.

Observation 2 The set S cannot contain the vertex c′ as well as any vertex c̄′j.

The observation holds because any vertex c̄′j (resp. vertex c′) is adjacent to the degree one
vertex c̄j (resp. c).

Observation 3 For each i = 1, . . . , n, the set S contains all vertices in E(xi).

As to the correctness, consider a vertex e ∈ E(xi) \ S with its two neighbors v and v′. The
set S ∪ {e} is also a harmless set since we know that v and v′ are each adjacent to a vertex
that is not contained in S according to Observation 2.

Observation 4 The set S contains the vertex c.

Indeed, using Observation 1 together with equations (1) and (2) we deduce
that N(c′) 6⊆ S ∪ {c} and then S ∪ {c} is a harmless set.

Now, we show how to construct an assignment aS for φ from the solution S such
that val(φ, aS) = |S| − 8m − 1. If S contains for every i = 1, . . . , n one of the sets V −(xi)
or V +(xi) then |S ∩ A| = 8m and we can define the following assignment aS : xi = 1 ⇔
|S∩V +(xi)| 6= 0. In this case, a clause-vertex c̄j is in S if and only if the corresponding clause is
satisfied by aS . Thus, the number of clauses satisfied by aS is exactly val(φ, aS) = |S|−8m−1.

Assume now that |S ∩ A| < 8m. We show that there exists another solution S′

with |S′| ≥ |S| such that |S′ ∩ A| = 8m. We may assume that for each i = 1, . . . , n, we
have either |V −(xi) ∩ S| ≥ 1 or |V +(xi) ∩ S| ≥ 1. Indeed, there always exists at least
one vertex v ∈ V −(xi) ∪ V +(xi) ∩N(c′) that can be added to S according to Observation 1
and equations (1) and (2). Moreover, we have |V −(xi) ∩ S| < 3 and |V +(xi) ∩ S| < 3
for some i ∈ {1, . . . , n} since |S ∩ A| < 8m and, according to Observation 3, we know
that S contains all vertices in E(xi) for every i = 1, . . . , n. Let i ∈ {1, . . . , n} be such
that 1 ≤ |V −(xi) ∩ S| < 3 (the case 1 ≤ |V +(xi) ∩ S| < 3 is symmetric). There must exist a
vertex v ∈ V −(xi) \ S which is either adjacent to c′ or to a clause-vertex c̄′j . We first add v
in S to get the new set Sv. If v is adjacent to a clause-vertex c̄′j such that N(c̄′j) ⊆ Sv then
remove c̄j from Sv. If v is adjacent to c′ then we cannot have N(c′) ⊆ Sv since the way we
added v into S is such that Observation 1 is preserved for the set Sv. We repeat the previous
argument for each v ∈ V −(xi) \ Sv and each i = 1, . . . , n such that 1 ≤ |V −(xi) ∩ Sv| < 3.
Thus, we obtain a new solution S′ such that |S′| ≥ |S| and |S′ ∩ A| = 8m. Similarly to
the above case, we can obtain an assignment aS′ such that |S′| − val(φ, aS′) = 8m + 1. In
particular, if S′ is an optimal solution, then

opt(φ) ≥ val(φ, aS′) = opt(I)− 8m− 1 (4)

It follows from the inequalities (3) and (4) that opt(I)− opt(φ) = 8m+ 1 and then

opt(φ)− val(φ, aS′) = opt(I)− |S′|
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This completes the proof. �

While the previous approximability results were essentially negative, we conclude this sec-
tion with a polynomial-time approximation scheme for Max Harmless Set on planar graphs.
Notice that the problem is still NP-hard in this case since Harmless Set With Unanimity
is equivalent to Total Dominating Set which is NP-complete on planar graphs [27]. We
leave as open question whether Harmless Set on planar graphs is fixed-parameter tractable
with respect to k.

Theorem 16 Max Harmless Set on planar graphs is in PTAS.

Proof : Given a planar embedding of an input graph, we consider the set of the vertices
which are on the exterior face, they will be called level 1 vertices. By induction we define
level k as the vertices which are on the exterior face when we have removed the vertices of
levels smaller than k [3]. A planar embedding is k-level if it has no vertices of level greater
than k. If a planar graph is k-level, it has a k-outerplanar embedding.

If we want to achieve an approximation within 1+ε, let us consider k = 2(2+
⌈

1
ε

⌉
). Let Xt

be the set of vertices of level t and let Hi, 0 ≤ i < k − 2, be the graph obtained from G by
considering the subgraphs formed by the set of vertices

⋃
t+1≤j≤t+kXj , for t ≡ i(mod (k−2)).

The subgraph containing exactly
⋃
t+1≤j≤t+kXj is k-outerplanar, and so is Hi, too.

Since Hi is k-outerplanar, it has treewidth at most 3k − 1 [9]. We construct graph H ′i
from Hi by attaching a forbidden edge to each vertex on the boundary (that means vertices
in Xt+1, Xt+2, Xt+k−1, Xt+k with t ≡ i (mod (k − 2))). Thus, in each subgraph of H ′i the
vertices in Xt+1, Xt+2, Xt+k−1, Xt+k cannot be part of any harmless set.

On applying Theorem 11, we can efficiently determine an optimal harmless set in each
subgraph of H ′i. Denote by Si the union of these harmless sets. Clearly Si is a harmless set
on Hi.

Among S0, . . . , Sk−1 we choose the best solution that we denote S and we are going to
prove that S is an (1 + ε)-approximation of the optimal value on G. We can easily show that
there is at least one r, 0 ≤ r < k−2 such that at most 2

k−2 of vertices in an optimal solution Sopt
of G are on levels Xt+1, Xt+2, Xt+k−1, Xt+k with t ≡ r (mod (k − 2))). This means that the
solution Sr obtained by deleting the vertices from levels Xt+1, Xt+2, Xt+k−1, Xt+k from Sopt
will have at least |Sopt|(1− 2

k−2) = k−4
k−2opt vertices. According to our algorithm, |S| ≥ |Sr| ≥

opt
1+ε .

The overall running time of the algorithm is k times what we need for graphs of treewidth

at most k, that is O(kt
O(k)
max n) = nO(1/ε) where tmax is the maximum threshold. �

6 Conclusion

In this paper, we introduced the Harmless Set problem. We established positive and ne-
gative results concerning its parameterized tractability and approximability. However, several
questions remain open. For instance, we do not know if the problem is fixed-parameter
tractable on general graphs with respect to the parameter treewidth and on planar graphs
with respect to the solution size. Another interesting open question is whether Harmless
Set With Unanimity is fixed-parameter tractable for parameter k when we ask to determine
the existence of a harmless set of size at least dn3 e+ k. Finally, another challenging question
is to improve the factor-3 approximation of Max Harmless Set With Unanimity.

19



Acknowledgments. We would like to thank the two anonymous referees for insightful
comments that helped us to improve the presentation of the paper.

References

[1] A. Aazami and K. Stilp. Approximation algorithms and hardness for domination with
propagation. SIAM Journal on Discrete Mathematics, 23(3):1382–1399, 2009.

[2] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and M. Pro-
tasi. Complexity and Approximation: Combinatorial Optimization Problems and Their
Approximability Properties. Springer, 1999.

[3] B. S. Baker. Approximation algorithms for NP-complete problems on planar graphs.
Journal of the ACM, 41(1):153–180, 1994.

[4] C. Bazgan and M. Chopin. The robust set problem: parameterized complexity and
approximation. In 37th International Symposium on Mathematical Foundations of Com-
puter Science (MFCS ’12), LNCS 7464, pages 136–147. 2012.

[5] C. Bazgan, M. Chopin, A. Nichterlein, and F. Sikora. Parameterized approximability of
influence in social networks. In Proceedings of the 19th Annual International Computing
and Combinatorics Conference (COCOON ’13), LNCS 7936, pages 543–554. 2013.

[6] O. Ben-Zwi, D. Hermelin, D. Lokshtanov, and I. Newman. Treewidth governs the com-
plexity of Target Set Selection. Discrete Optimization, 8(1):87–96, 2011.

[7] P. Berman and M. Karpinski. On some tighter inapproximability results (extended
abstract). In Proceedings of the 26th International Colloquium on Automata, Languages
and Programming (ICALP ’99), LNCS 1644, pages 200–209. 1999.

[8] H. L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM Journal on Computing, 25(6):1305–1317, 1996.

[9] H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theoretical
Computer Science, 209(12):1–45, 1998.

[10] C. C. Centeno, M. C. Dourado, L. D. Penso, D. Rautenbach, and J. L. Szwarcfiter. Irre-
versible conversion of graphs. Theoretical Computer Science, 412(29):3693–3700, 2011.

[11] M. Cesati. The Turing way to parameterized complexity. Journal of Computer and
System Sciences, 67(4):654–685, 2003.

[12] N. Chen. On the approximability of influence in social networks. SIAM Journal on
Discrete Mathematics, 23(3):1400–1415, 2009.

[13] C.-Y. Chiang, L.-H. Huang, B.-J. Li, J. Wu, and H.-G. Yeh. Some results on the target
set selection problem. Journal of Combinatorial Optimization, 25(4):702–715, 2013.

[14] M. Chopin, A. Nichterlein, R. Niedermeier, and M. Weller. Constant thresholds can
make target set selection tractable. Theory of Computing Systems, 55(1):61–83, 2014.

20



[15] E. J. Cockayne, R. M. Dawes, and S. T. Hedetniemi. Total domination in graphs.
Networks, 10(3):211–219, 1980.

[16] F. Dehne, M. Fellows, H. Fernau, E. Prieto, and F. Rosamond. nonblocker: Param-
eterized algorithmics for minimum dominating set. In Proceedings of SOFSEM 2006:
Theory and Practice of Computer Science, pages 237–245, 2006.

[17] R. G. Downey and M. R. Fellows. Fixed-parameter tractability and completeness II: On
completeness for W[1]. Theoretical Computer Science, 141(12):109–131, 1995.

[18] R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Complexity. Springer-
Verlag, 2013.

[19] P. A. Dreyer, Jr. and F. S. Roberts. Irreversible k-threshold processes: Graph-theoretical
threshold models of the spread of disease and of opinion. Discrete Applied Mathematics,
157(7):1615–1627, 2009.

[20] D. Easley and J. Kleinberg. Networks, Crowds, and Markets: Reasoning about a Highly
Connected World. Cambridge University Press, 2010.
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