l‘)

Check for
updates

Monte Carlo Search Algorithms
for Network Traffic Engineering

Chen Dang' 2@, Cristina Bazgan®®, Tristan Cazenave’®,
Morgan Chopin'@®, and Pierre-Henri Wuillemin?®

L Orange Labs, Chatillon, France
{chen.dang,morgan.chopin}@orange. com
2 Université Paris-Dauphine, PSL Research University, CNRS, UMR 7243,
LAMSADE, 75016 Paris, France
{cristina.bazgan,tristan.cazenave}@dauphine.psl.eu
3 Sorbonne Université, CNRS, UMR 7606, LIP6, 75005 Paris, France

pierre-henri.wuillemin@lip6.fr

Abstract. The aim of Traffic Engineering is to provide routing config-
urations in networks such that the used resources are minimized while
maintaining a high level of quality of service (QoS). Among the opti-
mization problems arising in this domain, we address in this paper the
one related to setting weights in networks that are based on shortest
path routing protocols (OSPF, IS-IS). Finding weights that induce effi-
cient routing paths (e.g. that minimize the maximum congested link) is
a computationally hard problem.

We propose to use Monte Carlo Search for the first time for this
problem. More specifically we apply Nested Rollout Policy Adaptation
(NRPA). We also extend NRPA with the force_ezploration algorithm to
improve the results. In comparison to other algorithms NRPA scales bet-
ter with the size of the instance and can be easily extended to take into
account additional constraints (cost utilization, delay, ...) or linear /non-
linear optimization criteria. For difficult instances the optimum is not
known but a lower bound can be computed. NRPA gives results close to
the lower bound on a standard dataset of telecommunication networks.

Keywords: Traffic engineering - Policy adaptation - Monte Carlo
search

1 Introduction

Despite the emergence of new network routing technologies such as Segment
Routing or MPLS (MultiProtocol Label Switching), many telecommunication
networks still mostly rely on the computation of shortest paths for the trans-
portation of packets, such as Open Shortest Path First (OSPF) or Intermediate
System to Intermediate System (IS-IS). In such routing protocols, the network
manager controls the data flow by simply supplying so-called administrative
weights to the links of the networks. Then, every packet is routed from its origin

© Springer Nature Switzerland AG 2021
Y. Dong et al. (Eds.): ECML PKDD 2021, LNAI 12978, pp. 486-501, 2021.
https://doi.org/10.1007/978-3-030-86514-6_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86514-6_30&domain=pdf
http://orcid.org/0000-0003-1885-0583
http://orcid.org/0000-0002-5460-6222
http://orcid.org/0000-0003-4669-9374
http://orcid.org/0000-0002-9668-1300
http://orcid.org/0000-0003-3691-4886
https://doi.org/10.1007/978-3-030-86514-6_30

Monte Carlo Search Algorithms for Network Trafic Engineering 487

to its destination along the shortest paths induced by those weights. While this
method has the advantage of being easy to manage, it lacks precise control over
the paths that are elected to route the traffic because one can only modify those
paths indirectly by changing the weights. As a consequence, the main challenge
for a network manager is to find a set of weights that induce routing paths
such that the load is minimized while maintaining a high level of QoS on opera-
tional networks. Unfortunately, this task turns out to be computationally hard
to solve. In this paper, we are interested in one of the network optimization prob-
lems related to this issue: Given a bidirected graph and a set of demands, the
task is to find a set of weights such that the demands routed along the induced
shortest paths generate a minimum congestion i.e., the maximum ratio value of
the total traffic going through an edge over the edge’s capacity is minimized.
There are mainly two variants of this optimization problem studied in the lit-
erature namely the splittable and unsplittable versions. In the former, we allow
each demand to be routed along several shortest paths while, in the latter, each
demand is required to be routed on a unique shortest path between its origin
and its destination.

Several authors proposed to solve this problem using integer programming
models and meta-heuristics methods, the reader is referred to [6] for a complete
overview of these approaches. Regarding the splittable variant of the problem,
Fortz and Thorup [23] showed that it is NP-hard to approximate within a factor
% — ¢ for all € > 0. Hence, to cope with the hardness of this problem, many dif-
ferent meta-heuristics approaches were investigated. Fortz and Thorup [23] first
proposed a local search algorithm to solve the splittable variant which was latter
implemented in the TOTEM library [27] and called IGP-WO. This approach was
further extended to compute robust solutions against single link failures [24] or
in the context of oblivious routing [2]. Genetic algorithms were also proposed to
solve this problem [8,21]. The reader is referred to the surveys [1,22] for more
details and references about the existing meta-heuristics approaches proposed
to solve this splittable variant. Most of the previous meta-heuristics were tested
on networks of small/moderate size and do not consider the unsplittable case
or QoS constraints such as the delay. Regarding the unsplittable case, Bley [4]
showed that this variant is NP-hard even on bidirected cycles and not O(n*—°(1))-
approximable unless P = NP in the general case. In [5], the author proposed
an exact algorithm using a two-phase approach: the problem is decomposed into
a master problem that aims at finding an optimal shortest path routing, and
a client problem which consists in finding a compatible set of weights for those
shortest paths. This master problem is modeled using an integer linear program
and solved using a branch-and-cut algorithm. In [3], further exact algorithms are
proposed either based on a compact formulation of the problem or a dynamic
programming algorithm using a tree decomposition of the input graph. Unfor-
tunately, the current exact methods can only handle networks of moderate size
(e.g. dozens of nodes) while real networks can have hundreds of routers and links.
In this paper, we propose to use a Monte Carlo Search approach in order to get
algorithms that (i) achieve a better scalability and (i¢) can easily be extended
to integrate operational constraints (unique shortest paths, delay, ...).

488 C. Dang et al.

Monte Carlo Search algorithms have been successfully applied to many dif-
ficult problems but not yet to telecommunication networks optimization. We
address in this paper the use of Monte-Carlo Search for this difficult problem.
We compare UCT [26], Nested Monte Carlo Search (NMCS) [9] and Nested Roll-
out Policy Adaptation (NRPA) [32] which is an algorithm that learns a playout
policy online on each instance. NMCS is an algorithm that works well for puz-
zles. It biases its playouts using lower level playouts. At level zero NMCS adopts
a uniform random playout policy. Online learning of playout strategies com-
bined with NMCS has given good results on optimization problems[31]. Other
applications of NMCS include Single Player General Game Playing [28], Coding
Theory [25], Cooperative Pathfinding [7], Software testing and heuristic Model-
Checking [30], the Pancake problem, Games [13], Cryptography and the RNA
inverse folding problem.

Online learning of a playout policy in the context of nested searches has been
further developed for puzzles and optimization with Nested Rollout Policy Adap-
tation (NRPA) [32]. NRPA has found new world records in Morpion Solitaire
and crosswords puzzles. Edelkamp, Cazenave and co-workers have applied the
NRPA algorithm to multiple problems. They have optimized the algorithm for
the Traveling Salesman with Time Windows (TSPTW) problem [15,16]. Other
applications deal with 3D Packing with Object Orientation [18], the physical
traveling salesman problem [19], the Multiple Sequence Alignment problem [20],
Logistics [11,17], Graph Coloring [12] and Inverse Folding [10]. The principle of
NRPA is to adapt the playout policy so as to learn the best sequence of moves
found so far at each level.

The paper is organized as follows. Section 2 is devoted to the basic definitions
and presentation of the optimization problem. Section 3 explains the application
of Monte Carlo Search to the routing problem. Section4 gives experimental
results while concluding remarks and future research directions are given in
Sect. 5.

2 Problem Formulation

In this paper we consider a bidirected graph that is a digraph where, for any
arc uv, the reverse arc vu is also present. Given a bidirected graph G = (V, A),
every vertex v € V corresponds to a router while an arc uv corresponds to a link
between routers u and v. Every arc uv is associated a capacity denoted by cyy,.
Let K denote a set of demands or commodities to be routed in G. Each demand
k € K is defined by a pair of vertices s* and t* representing the source and the
target of k, a traffic volume D* to be routed from s* to t*. Such a demand k
will be denoted by the quadruplet (s*,t*, D¥). Given a metric w € ZLAl, each
demand k € K is routed along the shortest paths between s* and t*. If there are
more than one shortest paths joining the extremities of k, the traffic volume D is
splitted evenly among those paths according to the so-called ECMP (Equal-Cost
Multi-Path) rule. More precisely, the traffic volume that reaches a node v € V
must be split equally among all arcs leaving v and belonging to the shortest

Monte Carlo Search Algorithms for Network Trafic Engineering 489

paths toward destination t*. We then define the load of an arc uv induced by w,
denoted by load(uv,w), as the amount of traffic traversing the arc uv over its
capacity (see Fig.1). The congestion cong(w) of a given metric w is defined by
maxXyyea load(uv, w), that is the maximum load over all arcs.

Fig. 1. Illustration of a shortest path routing with the ECMP rule. In this figure,
we assume unit capacities and suppose that a demand k with traffic volume D* = 1
must be routed from s* = a to t* = ¢g. A label wyy; load(uv,w) is associated to each
arc uv € A.

We are now in position to define the optimization problem studied in this
paper. The MINIMUM CONGESTION SHORTEST PATH ROUTING (MIN-CON-

SPR) problem is to find a metric w € ZLA‘ and the routing paths induced
by these weights such that the network congestion cong(w) is minimum. The
problem MIN-CON-SPR can be defined formally as follows:

MIN-CoN-SPR

Input: A bidirected graph G = (V, A), where each arc uv has a capacity ¢y, > 0
and a set of communities K defined for each k € K by the quadruplet (s*,t*, DF).

Output: A metric w € ZLAI of minimum congestion cong(w).
In this paper, we also consider the MIN-CON-SPR problem with some or all
of the following additional constraints

Unicity: In this constraint, we require that each demand is routed along a
uniquely determined shortest path.

Delay: This constraint requires that the routing paths have length at most
the length of a shortest (s*,t*)-path (in terms of number of arcs) plus a
constant c € N7T.

From an operational point of view, the unicity constraint is sometimes required
by the network manager to monitor the flow circulating in the system more
easily. In addition to minimizing the congestion, the delay constraint ensure a
certain level of QoS regarding the latency of answering the requests made by the
clients.

It is worth noting that all of our results regarding the delay constraint can
easily be extended to the more general case where each arc is associated with
a latency value and each demand k has a delay value AF and must be routed
along shortest paths with total latency value less than A*.

490 C. Dang et al.

3 Monte Carlo Search on Routing Problem

Monte Carlo Search is a general optimization technique. We detail in this section
how it can be used and improved for MIN-CON-SPR with or without the previ-
ous additional constraints.

3.1 Monte Carlo Search

In this section, we present three different Monte Carlo search-based approaches
which are applicable to the target problem. The first approach is UCT (Upper
Confidence Trees), which uses bandit ideas to guide Monte Carlo planning [26].
Assuming the state s, playouts will be completed in a certain amount of time
and statistics about the states and the actions will be collected. Supposing the
action space for state s is A(s), the action a is chosen such that the upper bound
of the score is maximized:

~ In(N
as = argmax (Q&a + 7 n()>

a€A(s) Ns.a

)

where Qs’a is the estimated score of the action a at state s, Ny is the number of
times state s was visited, N, , is the number of times action a was selected at
state s. 7 is a constant value which controls the degree of exploration.

Another approach is NMCS (Nested Monte Carlo Search) [13]. By nesting
the evaluation function inside another evaluation function, the ability of the
traditional Monte Carlo is greatly improved. However this approach is more
sensible to the size of the search space.

Algorithm 1: The playout algorithm

Function playout (state, policy):
sequence «— []
while state is not terminal do

Z Za/E.A(state) e
Draw a with probability 1epelicvlcode(state,a)]
state < play(state, a)
append a to sequence

policy[code(state,a’)]

end
return (score(state), sequence)

NRPA (Nested Rollout Policy Adaptation) [32] is also used in our study. The
NRPA can be decomposed into three principal functions: the playout function,
the adapt function and the NRPA function. The Algorithms 1 and 2 show the
three functions respectively. The NRPA use a domain specific code code(state, a)
for the action a in the representation of the policy, where many actions may share
the same code, and actions with different codes are searched separately. For each
nesting level, NRPA recursively calls to the lower level, searching to improve its

Monte Carlo Search Algorithms for Network Trafic Engineering

491

current best score. When it succeeds, the best score of the corresponding state
score(state) is updated, and the current action sequence is recorded as the best

sequence.

Algorithm 2: The adapt and NRPA algorithm

Function adapt (policy, sequence, a):
pol «— policy
state < root
for a in sequence do
2 Za’eA(state) epolicy[code(state,a’)]

Va' € A(state), polcode(state,a’)] —= a x %em”cy[wde(smm’“,)]
pol[code(state, a)] += «
state < play(state, a)
end
return pol
end
Function NRPA (level, policy):
if level == 0 then
‘ return playout(root, policy)
end
else
bestScore «— inf
for N iterations do
(result, new) « NRPA(level — 1, policy)
if result < bestScore then
bestScore «— result
seq < new
end
policy <+ adapt(policy, seq)
end
return (bestScore, seq)
end
end

3.2 Modeling with Monte Carlo Search

To model the MIN-CON-SPR problem with Monte Carlo Search algorithms,
we suppose that a solution to the MIN-CON-SPR problem is represented by a

point (i.e. the metric w = (w1, ws, ..., w|4|)) in the discrete space [1,65535]

A

To reduce the search space, we set the value space of the metric as a subspace

W of the original space [1,65535].

For each playout, the metric of the graph is assigned and the objective func-

tion is evaluated. In our case, cong(w) is used as the score. After obtaining
congestion of the graph, an additional bias will be added in the case that

the
the

constraints are not fully satisfied, which will encourage the algorithm to explore

492 C. Dang et al.

the solutions with smaller congestion value which satisfies all the constraints.
The final score for state s is then Qs = cong(w) + cost(unchecked_constraints).

Furthermore, we assume that the arcs of a graph have a default order, and the
metric values corresponding to them are assigned sequentially. Thus, an action
a is therefore a choice of metric values for an arc, and the state s is uniquely
determined by the metric values already assigned to the arcs. For NRPA, the
domain-specific code is uniquely determined by the node of the graph to which
the metric is currently to be assigned.

3.3 Improvement

In order to improve the stability of the NRPA algorithm, a stabilized version
of NRPA is proposed in [14] to encourage exploration before the adaptation of
the policy. During the level 0 of NRPA, instead of running a single playout and
use its result as the score, multiple playouts will be performed and only the best
result will be used as the score. It improves the average scores for many problems.
In our experiments, the stabilized NRPA also achieved better performance than
the original NRPA. For brevity, we denote the stabilized NRPA with m playouts
as NRPA(m).

We also found that, during the execution of the NRPA, for small and medium-
sized graphs, the algorithm tends to prefer exploitation over exploration, which
means that the same metric would be obtained many times without exploring
new ones. To avoid or limit this behavior, we propose to (i) use a hashtable
to record all explored metrics and their scores to avoid recalculation of the
congestion and (1) a force_exploration mechanism, which can be of independent
interest for the NRPA algorithm. This mechanism works as follows: firstly, all
explored metrics w are recorded with their hash codes. Instead of just proposing
the metric based on the policy, if one metric has already been explored, a random
metric value will be assigned to a random arc of the graph until the generated new
metric have never been explored. This simple technique increases the exploration
to the maximum, without changing the original NRPA’s mechanic. We find that
force_exploration greatly increases the performance of the NRPA and Stabilized
NRPA.

For some graphs, it is difficult to find routing metrics that satisfy all con-
straints, especially unique path constraints. In such cases, using a unique metric
for each arc can greatly increase the proportion of results that satisfy the con-
straints. However, this limits the number of metrics to be greater than or equal
to the number of arcs. This will in many cases increase the proportion of valid
solutions, i.e. solutions that satisfy the constraints. But as we will show later, in
the absence of constraints, this restriction reduces the quality of the solution.

4 Experimental Results

The algorithms are implemented in C++ and the experiments are done on a
server (64-core Intel(R) Xeon(R) Gold 5218 CPU), with 125 GB of memory.
Only one core is used during the experiments.

Monte Carlo Search Algorithms for Network Trafic Engineering 493

4.1 Dataset

The experiments are done on several graphs from SNDIlib [29] of different sizes.
In addition to these instances, some random graphs are also generated using the
same configuration as in [23]. The nodes are generated uniformly in a unit square,
and the probability of having an arc between any two nodes is determined by a
constant. The capacity of all arcs is set to 1000. We also used Waxman graphs
[23] for our test. The probability of having an arc between two nodes is given
by:
—d(u,v)
p(u,v) = ae PImax

where d(u,v) is the Euclidean distance between v and v, dpax is the Maximum
Euclidean distance between any two nodes, « and are parameters which control
the density of the graph. The capacities of the arcs are also set to 1000.

For the generated graphs, demands are generated the same way as [23], i.e.,
the traffic volume D* for demand k between nodes s* and t* is:

& —d(sk tF)
D* = OéSsthkO(sk7tk)€ 2dmax

where S, T, € [0,1] are two random numbers for node u, and C(,4) € [0,1] is
a random number for couple (s,t). Every generated graph is verified to be con-
nected. Table 1 shows the information of the graphs we used in our experiments.
Each graph is pre-processed before the computation: all arcs connected to iso-
lated nodes have a pre-determined metric, since their values do not affect the
traffic and therefore are not considered again in the Monte Carlo computation.

Table 1. Information of networks: network name, number of nodes, number of arcs,
number of demands, total demand, maximum demand

Name V1 1A ||K]| S D* |max(D*)|Name V| ||A] [|K| |32 D* |max(D*)
abilene 12 | 30 132 | 3000002 | 424969 rand50a 50 |1322450| 81419 |251
atlanta 15 | 44 210 |136726 |7275 rand50b 50 |2782450| 86981 |249
newyork 16 | 98 240 |1774 42 rand100a | 100 | 2789900 |269535 |240
france 25 | 90 300 99830 1808 rand100b | 100 |534 9900 307699 |228
norway 27 102 702 | 5348 14 wax50a 50 |142/2450| 85150 |235
nobel-us | 14 | 42 91 | 5420 324 wax50b 50 |2982450| 82208 |221
nobel-ger| 17 | 52 121 | 660 50 wax100a | 100 |284 /9900 331386 |270
nobel-eu | 28 | 82 378 1898 54 wax100b | 100 |492|9900 | 293799 |243
brain 161 | 332 14311 |12.3e9 |69.1e6

4.2 Comparison of the Monte Carlo Algorithms

With both unique path and delay constraints applied, the Monte Carlo search
approaches are evaluated during a limited runtime.

During our experiments, we found that executing several different runs was
generally better than executing only one long run, because different runs allows

494 C. Dang et al.

the policy to start over, thus avoiding the algorithm getting stuck at some local
minimum. Table2 shows the average score of each approach on 5 executions.
Since for a limited period of time, UCT and NRPA can perform multiple runs of
short duration or one long run, we kept both results for comparison. For NRPA
and Stabilized NRPA, only force exploration is used.

Table 2. Comparison of the best scores of Monte Carlo Search Algorithms in limited
runtime with all constraints. Format: average score of 5 executions (number of exe-

cutions in which no valid solution was found). “~: no valid solution is found in all

executions.
Class |Name Runtime (min) | |[W]| | UCT NMCS |NRPA NRPA(10)
Multiple |Single Multiple | Single

SNDIib | abilene 10 50 |65.158 87.108 60.905 |60.905 |60.90560.905
atlanta |10 50 2.9608 4.3968 |2.3626 |2.318 2.318 |2.318
newyork |30 100 [0.1255(1) |0.172(4) |0.0978 |0.0636 |0.062 |0.0622
france 30 100 |3.983 - 3.20836 |2.892 2.92 2.9268
norway |60 150 |— - 0.508(2) | 0.3054 |0.295 |0.3042
nobel-us |10 50 |29.48 35.04 25.68 25.2 25.2 25.2
nobel-ger | 10 100 |4.44 6.06 4.4 4.4 4.4 4.4
nobel-eu |30 100 |12.08 14.6(3) |10.94 10.7 10.88 |10.74
brain 60 50 |1.002 1.0513 0.9848 |0.974 0.961 |0.98

The table very clearly shows that NRPA and its variants outperform the
other two MC methods. Moreover, the number of playouts of NRPA does not
depend on the size of the graph or the size of the metric space, which makes it
easier to scale the algorithm to larger graphs and search spaces. As for NMCS, it
performs well with smaller graphs and small search spaces, but does not scale well
to larger cases. Therefore, in the subsequent experiments, we will only consider
the use of NRPA-based algorithms.

Since there are many variants for NRPA, we first investigated the effect of
these techniques. Figure 2 shows the distribution of the scores on several SNDIib
graphs with different techniques of NRPA. The more the distribution is concen-
trated around the low values, the higher the chance of getting lower congestion
values, thus the better this configuration is.

The distribution clearly demonstrates the improvement of force_exploration
for NRPA and stabilized NRPA, while stabilized NRPA greatly increases the
ratio of valid solutions. However the effect of unique metrics is not as obvious,
and this extra constraint can sometimes make it more difficult to find better
results.

4.3 Impact of the Metric Space

Although in many previous studies of heuristics, the metric space is generally
a continuous set of integers, in the course of our research, we found that the

Monte Carlo Search Algorithms for Network Trafic Engineering 495

abilene atlanta
m—NRPA valid:100.00% m— NRPA valid:99.86%
WmE NRPA + FE valid:100.00% 175 W NRPA + FE valid:100.00%
400 = NRPA + FE + UM valid:100.00% = NRPA + FE + UM valid:100.00%
| NRPA(10) valid:100.00% NRPA(10) valid:100.00%
NRPA(L0) + FE valid:100.00% 150 NRPA(10) + FE valid:100.00%
NRPA(10) + FE + UM valid:100.00% NRPA(10) + FE + UM valid:100.00%

frequency
frequency
5 58 B
3 08 B

“
&

°
N
o &

60 65 70 75 80 85 90 2.0 25 3.0 35 4.0 4.5 5.0
congestion congestion
(a) |W|=50, t=10 min (b) |[W|=50, t=10 min
newyork norway
EEE NRPA valid:5.74% 16 B NRPA valid:0.74%
50 m NRPA + FE valid:63.67% m NRPA + FE valid:18.45%
m NRPA + FE + UM valid:43.07% 14 = NRPA + FE + UM valid:13.43%
NRPA(10) valid:42.58% NRPA(10) valid:10.75%
40 NRPA(10) + FE valid:95.12% 12 NRPA(10) + FE valid:23.53%
NRPA(10) + FE + UM valid:56.00% NRPA(10) + FE + UM valid:36.49%
z T 10
< <
o 30)
El S g
o o
L L
20 e
¢ I
10
2
] 1 |
. - . ki
0.04 0.06 0.08 0.10 012 0.14 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
congestion congestion
(c) |[W|=100, t=30 min (d) |[W]=150, t=60 min

Fig. 2. Distribution of the congestion values with all constraints on SNDIlib graphs

metric space has an important impact on the performance of the algorithm. For
example, compared to a continuous set of integers or the set of prime numbers,
a set of random numbers of the same size usually gives a much higher rate of
valid solutions. Figure 3 shows an example of the distribution of scores obtained
with different metric spaces of the same size. The random numbers are uniformly
pre-generated in [1,65535], and remain the same during the experiment.

We also find out that for most graphs, when no constraints are applied, a
smaller metric space helps the algorithm to converge better because the algo-
rithm can better explore the search space. Figure4 shows the convergence of
different metric space sizes. However when unique path and delay constraints
are applied, a small metric space can make it more difficult to find a metric
that induces a valid solution. Therefore, increasing the search space can greatly
increase the chance of obtaining a solution that satisfies all constraints. Figure 5
shows the influence of the metric space on the percentage of valid solutions.

4.4 Comparison

In this test, we compare the congestion value computed by our algorithm after
a fixed amount of time with the congestion values obtained via other common
approaches. The first approach for the problem, which is also the most basic
approach is the UnitOSPF, which assigns all arcs the same unit metric value.

496 C. Dang et al.

atlanta newyork
160 = w=random(50) valid:100.00% 60 = \W=random(100) valid:65.27%
s W=[1,50] valid:98.45% - W=[1,100] valid:29.98%
140 W=prime(50) valid:100.00% W=prime(100) valid:25.04%
50
120
> 40
g 100])
] -]
3 80 3
o 30
o Q
9 L
E g &
20
40
-
10
2
0 0 n
2.0 22 2.4 2.6 28 3.0 32 3.4 0.04 0.06 0.08 0.10 0.12 0.14
congestion congestion
(a) |W]=50, t=10 min (b) [W]=100, t=30 min

france

norway

= W=random(100) valid:59.79%
= W=random(150) valid:19.24%

= W=[1,100] valid:29.94% m W=[1,150] valid:6.19%
" - ; " X =[1,150] valid:6.19%
W=prime(100) valid:31.31% W=prime(150) valid:3.16%
I 75
10 - 5.0
- |

N
S8
n o

w

s
-
ol
o

,_.
N
0

H
5
>

frequency
8

frequency

I 25

o L — 00
25 3.0 3.5 4.0 4.5 5.0 .0.25 0.30 0.35 0.40 0.45 0.50
congestion congestion
(c) [W|=100, t=30 min (d) [W]=150, t=60 min

Fig. 3. Distribution of the congestion values with different metric spaces of the same
size using NRPA with force_exploration

InvCapOSPF is another approach recommended by Cisco, which sets the metric
inversely proportional to the arc’s capacity. However, in many graphs the capac-
ity on all arcs is the same, so in many cases this method will give the same results
as UnitOSPF. We also compare our algorithm with the local search IGP-WO
implemented in [27] and based on [23]. We slightly modify the objective function
of IGP-WO to minimize the congestion and, when considering the unicity con-
straint, add a high penality for solutions that violate that constraint. We did not
further modify the algorithm to take into account the delay constraint as this
would require deeper modifications and understanding of the implementation of
IGP-WO.

In order to evaluate the quality of the heuristic solutions, we compare them
with the optimal value obtained using the compact formulation of the MAXIMUM
CONCURRENT FLOwW (MCF) problem. It is not hard to see that any optimal solu-
tion for MCF is a lower bound for MIN-CON-SPR (denoted LPLB for Linear
Programming Lower Bound). Indeed, a solution of a MCF instance defines rout-
ing paths for each demand that are not constrained to follow the ECMP rule or
being induced by shortest paths w.r.t some metric.

Monte Carlo Search Algorithms for Network Trafic Engineering 497

NRPA convergence on atlanta NRPA convergence on france
— W = {1,2,3} 4.75 — W= {123}
4.00 — W =[110] — W =[110]
W =[1,100] 450 W =[1,100]
3.75 W = [1,1000] : W = [1,1000]
3.50 4.25
c c
o o
325 7 400
U &D
2 2
o 3.00 s 3.75
S s}
275 3.50
250 3.25
2.25 3.00
o 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
number of playouts number of playouts

Fig. 4. Convergence of NRPA without constraints. The score is averaged on 10 runs.

100 1 —¢ atlanta

+— newyork
—o— france
804 —*— norway

60 1

40

204

Percentage of valid solutions

Fig. 5. Size of the metric space has a positive impact on the valid solution ratio when
constraints are applied. The result is averaged on 1000 runs

Table 3 shows the comparison of the results. To keep the results consistent
across configurations, for NRPA, the metric space size and computation time of
each graph are consistent with those shown in Table 2 for the constrained cases.
For all generated graphs, the metric space size is 250, and the computation time
is 30 min for graphs of 50 nodes, 60 min for graphs of 100 nodes. However when
no constraints are applied, the metric space for all graphs is set to [1,3] for better
performance. The scores are averaged on 5 executions.

For random graphs and waxman graphs, the applied delay constraint is often
too restrictive so that no valid solutions can be found. In this paper, we propose
an automatic delay relaxation mechanism that allows the NRPA algorithm to
relax the delay constraint when it is difficult to find a valid solution.

In the initial state, the delay constraint is actually defined as the length
of the shortest path (in terms of arcs) plus one for each demand. We relax the
constraint to shortest path plus ¢, where ¢ € NT. Assuming that the computation
has a target time or total number of runs 7', we divide all the computations into
different phases. At each stage, we count the total number of runned playouts,
the number of valid solutions and the number of solutions that violate the delay
constraint. After T'x (1—) time or iterations, if the percentage of valid solutions

498 C. Dang et al.

is less than 5% and the percentage of results that violate the delay constraint is
greater than 10%, we move to the next stage, where all statistics are recalculated
and ¢ = ¢+ 1, until ¢ reaches a maximum provided value ¢;,qz.

Table 3. Maximum congestion value of state-of-the-art heuristics and our NRPA. For
each constraint configuration (“Without constraints”, “Unicity” and “All” i.e. both
“Unicity” and “Delay”) and each heuristic (if available for the given configuration),
we show the congestion induced by the computed weights. This value is in bold if it is
the best one among those returned by the other heuristics (w.r.t the configuration). In
addition, a value is followed by * if equal to the lower bound LPLB (which is reported
in the last column). Finally, an entry ¢ = 4 indicates the minimum value ¢ of ¢ for
which we were able to find a solution when considering all constraints.

Name Without constraints Unicity All LPLB
Unit |InvCap|IGP-WO NRPA |IGP-WO NRPA |NRPA
OSPF |OSPF | [27]

abilene |187.55 89.48 |60.42 60.412|60.41 60.41 |60.90 60.411
atlanta |3.26 3.37 2.22 2.22 2.29 2.29 2.32 2.18
newyork [0.076 |0.076 |0.051 0.053 |0.062 0.065 |0.064 0.045
france 4.12 4.12 2.53 2.56 2.88 2.88 |2.89 2.41
norway |0.42 0.42 0.28 0.29 0.29 0.30 0.31 0.27
nobel-us |37.15 |37.15 |24.4 24.7 24.7 24.7 25.2 24.2
nobel-ger | 5.54 5.54 3.9 3.89 (4.4 4.4 4.4 3.87
nobel-eu |13.31 [13.31 10.68 10.67* 10.7 10.7 10.7 10.67
brain 1.415 |1.415 |0.962 0.903* |0.972 0.972 |0.974 0.903
rand50a |7.9 7.9 5.55 5.77 5.84 5.92 5.96(c = 2) |5.55
rand50b |2.88* |2.88* |2.88* 2.88* |- 2.88 2.88(c = 3) 2.88
rand100a [15.71 |15.71 |10.42 9.59 |- 10.35 |10.76(c = 4) [9.35
rand100b | 4.15 4.15 4.38 3.85 - 6.06 5.94(c = 5) 3.76
waxb0a | 6.46 6.46 4.63 4.66 4.665 4.67 4.71(c =2) |4.59
wax50b |2.279* |2.279* | 2.284 2.279* |- 2.279 [2.279(c = 3) |2.279
wax100a |17.46 |17.46 |15.049 15.048 |- 15.049 15.049(c = 4)15.048
wax100b | 5.51 5.51 4.14 4.04 |- 5.86 [5.91(c =5) |3.44

The results show that NRPA performs very well for all three different con-
straint configurations on all sizes of graphs and is very close to the lower bound.
Compared to local search, our algorithm gives better results in most cases. At
the same time, only very little computational time and resources are used. The
different runs can be computed in parallel, which substantially improves the
running time of NRPA.

The proposed automatic delay relaxation mechanism is not the best way to
solve the problem of minimizing the congestion of the graph while keeping the
delay minimized. Nevertheless, we obtained rather encouraging results that show
the strong adaptability of our approach and a promising potential for solving
even more difficult variants of the problem (single-link failure, oblivious routing,
capacity planning, ...).

Monte Carlo Search Algorithms for Network Trafic Engineering 499

4.5 Random Dense Graphs

For dense networks, the number of potential routing paths increases rapidly,
which makes the problem even harder to solve in particular with the unicity
constraint, as observed in [5]. We show that NRPA can easily scale up to graphs
with large amount of nodes and arcs. So we generated ten random graphs of
different sizes with the same generation mechanism as described in Sect. 4.1,
and the traffic between two nodes are generated with a probability of 0.1. The
largest graph contains 1000 nodes and 99450 arcs.

Figure 6 shows the scores of the random graphs without constraints. The
metric space is set to [1,3] for both local search and NRPA algorithms, and the
scores of NRPA are averaged on 10 executions.

random graph congestion

=& 1GP-WO 30 min
—— NRPA1min

—— NRPA'S min
—— NRPA 10 min
—— NRPA 30 min
— LPLB

congestion

103050 75100 150 200 250 300 1000

500
number of nodes

Fig. 6. Congestion with respect to the number of the nodes

Regarding the LPLB bound, with a compact formulation, we were not able
to compute the lower bounds for instances larger than 100 nodes because the
random graphs are more dense and thus the problem is too large to be solved.
In future experiments, using a non-compact path formulation of the MCF may
greatly improve the chances of obtaining lower bounds for larger graphs.

The results show that on large graphs, local search does not provide accept-
able results within an execution time of 30 min. On the contrary, even on graphs
with thousands of nodes, our method still gives reasonable results in a very short
time.

5 Conclusion

In this work we applied for the first time the Monte Carlo Search approach
in the context of setting efficient weights in IP networks, in particular for the
MIN-CON-SPR problem. The principle of the Monte Carlo Search algorithm is
to learn a policy online on each instance using nested levels of best solutions.
We compare several Monte Carlo methods and propose the most appropriate
to the target problem. Experiments show that for instances from the literature

500 C. Dang et al.

our approach is comparable with the existing ones. Nevertheless, for graphs
of larger size, our approach outperforms the local search heuristics and gives
results close to the lower bound. At the same time, this approach can be easily
extended for problems with additional constraints and is not sensitive to the size
of the graph or the size of the search space in particular the number of available
weights, giving it a large range of applications. Furthermore, for the unsplittable
case, this method may provide optimal solutions (or close to the optimal) for
instances where exact approaches fail, especially for dense graphs [5]. For some
instances where it is not possible to find a way to satisfy all the constraints, we
also propose a mechanism for automatically relaxing the constraints. Another
algorithm specifically aimed at optimizing congestion with the lowest possible
delay constraint will be the direction of subsequent research.

References

1. Altin, A., Fortz, B., Thorup, M., Umit, H.: Intra-domain traffic engineering with
shortest path routing protocols. Ann. Oper. Res. 204(1), 65-95 (2013). https://
doi.org/10.1007/s10479-012-1270-7

2. Altin, A., Fortz, B., Umit, H.: Oblivious OSPF routing with weight optimization
under polyhedral demand uncertainty. Networks 60(2), 132-139 (2012)

3. Benhamiche, A., Chopin, M.: Toward scalable algorithms for the unsplittable short-
est path routing problem. Research report, Orange Labs (2020)

4. Bley, A.: Approximability of unsplittable shortest path routing problems. Networks
54(1), 23-46 (2009)

5. Bley, A.: An integer programming algorithm for routing optimization in IP net-
works. Algorithmica 60(1), 21-45 (2011)

6. Bley, A., Fortz, B., Gourdin, E., Holmberg, K., Klopfenstein, O., Piéro, M.,
Tomaszewski, A., Umit, H.: Optimization of OSPF routing in IP networks. In:
Koster, A., Murioz, X. (eds.) Graphs and Algorithms in Communication Net-
works: Studies in Broadband, Optical, Wireless and Ad Hoc Networks. An EATCS
Series, pp. 199-240. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-02250-0_8

7. Bouzy, B.: Monte-Carlo fork search for cooperative path-finding. In: Cazenave, T.,
Winands, M.H.M., Iida, H. (eds.) CGW 2013. CCIS, vol. 408, pp. 1-15. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-05428-5_1

8. Buriol, L.S., Resende, M.G.C., Ribeiro, C.C., Thorup, M.: A hybrid genetic algo-
rithm for the weight setting problem in OSPF/IS-IS routing. Networks 46(1),
36-56 (2005)

9. Cazenave, T.: Nested Monte-Carlo search. In: Boutilier, C. (ed.) IJCAI, pp. 456—
461 (2009)

10. Cazenave, T., Fournier, T.: Monte Carlo inverse folding. In: Monte Search at IJJCAI
(2020)

11. Cazenave, T., Lucas, J., Triboulet, T., Kim, H.: Policy adaptation for vehicle rout-
ing. Ai Commun. (2021)

12. Cazenave, T., Negrevergne, B., Sikora, F.: Monte Carlo graph coloring. In: Monte
Search at IJCAIT (2020)

13. Cazenave, T., Saffidine, A., Schofield, M.J., Thielscher, M.: Nested Monte Carlo
search for two-player games. In: AAAI, pp. 687-693 (2016)

https://doi.org/10.1007/s10479-012-1270-7
https://doi.org/10.1007/s10479-012-1270-7
https://doi.org/10.1007/978-3-642-02250-0_8
https://doi.org/10.1007/978-3-642-02250-0_8
https://doi.org/10.1007/978-3-319-05428-5_1

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Monte Carlo Search Algorithms for Network Trafic Engineering 501

Cazenave, T., Sevestre, J.B., Toulemont, M.: Stabilized nested rollout policy adap-
tation. In: Monte Search at IJCAI (2020)

Cazenave, T., Teytaud, F.: Application of the nested rollout policy adaptation
algorithm to the traveling salesman problem with time windows. In: Hamadi, Y.,
Schoenauer, M. (eds.) LION 2012. LNCS, pp. 42-54. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-34413-8_4

Edelkamp, S., Gath, M., Cazenave, T., Teytaud, F.: Algorithm and knowledge
engineering for the TSPTW problem. In: 2013 IEEE Symposium on Computational
Intelligence in Scheduling (SCIS), pp. 44-51. IEEE (2013)

Edelkamp, S., Gath, M., Greulich, C., Humann, M., Herzog, O., Lawo, M.: Monte-
Carlo tree search for logistics. In: Clausen, U., Friedrich, H., Thaller, C., Geiger, C.
(eds.) Commercial Transport. LNL, pp. 427—440. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-21266-1_28

Edelkamp, S., Gath, M., Rohde, M.: Monte-Carlo tree search for 3D packing with
object orientation. In: Lutz, C., Thielscher, M. (eds.) KI 2014. LNCS (LNAI),
vol. 8736, pp. 285-296. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11206-0-28

Edelkamp, S., Greulich, C.: Solving physical traveling salesman problems with
policy adaptation. In: 2014 IEEE Conference on Computational Intelligence and
Games (CIG), pp. 1-8. IEEE (2014)

Edelkamp, S., Tang, Z.: Monte-Carlo tree search for the multiple sequence align-
ment problem. In: SOCS 2015, pp. 9-17. AAAI Press (2015)

Ericsson, M., Resende, M.G.C., Pardalos, P.M.: A genetic algorithm for the weight
setting problem in OSPF routing. J. Comb. Optim. 6(3), 299-333 (2002). https://
doi.org/10.1023/A:1014852026591

Fortz, B.: Applications of meta-heuristics to traffic engineering in IP networks. Int.
Trans. Oper. Res. 18(2), 131-147 (2011)

Fortz, B., Thorup, M.: Increasing internet capacity using local search. Comput.
Optim. Appl. 29, 13-48 (2000). https://doi.org/10.1023/B:COAP.0000039487.
35027.02

Fortz, B., Thorup, M.: Robust optimization of OSPF/IS-IS weights. In: INOC, pp.
225-230 (2003)

Kinny, D.: A new approach to the snake-in-the-box problem. In: ECAI 2012, pp.
462-467. 10S Press (2012)

Kocsis, L., Szepesvari, C.: Bandit based Monte-Carlo planning. In: Fiirnkranz, J.,
Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp.
282-293. Springer, Heidelberg (2006). https://doi.org/10.1007/11871842_29
Leduc, G., et al.: An open source traffic engineering toolbox. Comput. Commun.
29(5), 593-610 (2006)

Méhat, J., Cazenave, T.: Combining UCT and Nested Monte Carlo search for
single-player general game playing. IEEE TCIAIG 2(4), 271-277 (2010)
Orlowski, S., Piéro, M., Tomaszewski, A., Wessély, R.: SNDIib 1.0-survivable net-
work design library. Networks 55(3), 276-286 (2010)

Poulding, S.M., Feldt, R.: Heuristic model checking using a Monte-Carlo tree search
algorithm. In: GECCO, pp. 1359-1366 (2015)

Rimmel, A., Teytaud, F., Cazenave, T.: Optimization of the Nested Monte-Carlo
algorithm on the traveling salesman problem with time windows. In: Di Chio,
C., et al. (eds.) EvoApplications 2011. LNCS, vol. 6625, pp. 501-510. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-20520-0-51

Rosin, C.D.: Nested rollout policy adaptation for Monte Carlo Tree search. In:
LJCAL pp. 649-654 (2011)

https://doi.org/10.1007/978-3-642-34413-8_4
https://doi.org/10.1007/978-3-319-21266-1_28
https://doi.org/10.1007/978-3-319-21266-1_28
https://doi.org/10.1007/978-3-319-11206-0_28
https://doi.org/10.1007/978-3-319-11206-0_28
https://doi.org/10.1023/A:1014852026591
https://doi.org/10.1023/A:1014852026591
https://doi.org/10.1023/B:COAP.0000039487.35027.02
https://doi.org/10.1023/B:COAP.0000039487.35027.02
https://doi.org/10.1007/11871842_29
https://doi.org/10.1007/978-3-642-20520-0_51

	Monte Carlo Search Algorithms for Network Traffic Engineering
	1 Introduction
	2 Problem Formulation
	3 Monte Carlo Search on Routing Problem
	3.1 Monte Carlo Search
	3.2 Modeling with Monte Carlo Search
	3.3 Improvement

	4 Experimental Results
	4.1 Dataset
	4.2 Comparison of the Monte Carlo Algorithms
	4.3 Impact of the Metric Space
	4.4 Comparison
	4.5 Random Dense Graphs

	5 Conclusion
	References

