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AbstratWe study the di�erential approximability of several optimization satis�ability problems.We prove that, unless co− RP = NP,Min Sat is not di�erential 1/m1−ε-approximable forany ε > 0, where m is the number of lauses. We also prove that any di�erential approxi-mation algorithm for Max Minimal Vertex Cover an be transformed into a di�erentialapproximation algorithm for Min kSat ahieving the same di�erential performane ratio.This leads us to study the di�erential approximability of Max Minimal Vertex Coverand Min Independent Dominating Set. Both of them are equivalent for the di�erentialapproximation. For these problems we prove a strong inapproximability result, informally,unless P = NP, any approximation algorithm has worst-ase approximation ratio equal to 0.Keywords: Combinatorial optimization, Complexity theory, Heuristis.1 IntrodutionIn this paper we deal with the approximation of lassial optimization satis�ability problems asMax and Min Sat, Max and Min DNF, as well as of restritive versions of these problemsas the ones where the size of any lause is bounded, or/and the number of the ourrenesof any literal is bounded. We also deal with some related graph-problems as Max and MinIndependent Dominating Set and Max and Min Minimal Vertex Cover. We study theapproximability of all these problems (formally de�ned in setion 2) using the so-alled di�erentialapproximation ratio whih, informally, for an instane I measures the relative position of thevalue of an approximated solution in the interval [worst-value feasible solution of I, optimal-value solution of I℄.Optimization satis�ability problems are of interest from both theoretial and pratial pointsof view. On the one hand, the satis�ability problem (Sat) is the �rst omplete problem for NP.On the other hand, many problems in mathematial logi and in arti�ial intelligene an beexpressed in terms of versions of Sat; onstraints satisfation is one suh version. Also problemsin database integrity onstraints or in knowledge bases an be seen as optimization satis�abil-ity problems. Finally, some approahes to indutive inferene an be modeled as Max Satproblems ([9, 10℄).All the problems dealt in this paper have no polynomial time approximation shemata forthe standard approximation (where one measures the ratio between the value of the approximatesolution of an instane and the value of an optimal one). The Sat problems admit algorithmsahieving onstant standard approximation ratio, while algorithms for the DNF ones do notguarantee suh ratios (more details about the standard approximability of all these problemsan be found in [4, 5℄). The Min Vertex Cover (alled Min Minimal Vertex Cover
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in this paper) is standard 2-approximable, while the Max Independent Set (alled MaxIndependent Dominating Set in the paper) annot be approximated within n1−ε, for any
ε > 0, unless co − RP = NP ([8℄). On the other hand, Min Independent Dominating Setis standard approximable within B where, B is the maximum graph-degree ([11℄), while theMax Minimal Vertex Cover has, to our knowledge, not been studied yet in the standardapproximation.The initial objetive of the paper was to study the di�erential approximability of some op-timization satis�ability problems de�ned in setion 2. This study has exhibited an interestingrelationship betweenMin kSat andMin Minimal Vertex Cover whih an be informally de-sribed as follows: any di�erential approximation algorithm for Min Minimal Vertex Coveran be transformed into a di�erential approximation algorithm for Min kSat ahieving the samedi�erential performane ratio. On the other hand, as we will see just below, Max MinimalVertex Cover is equivalent, for the di�erential approximation, to the well-known Min Inde-pendent Dominating Set. We are so led to study di�erential approximation results for MaxMinimal Vertex Cover and Min Independent Dominating Set.All the problems we deal with in this paper have the harateristi that omputation of boththeir optimal and worst solutions is NP-hard (for example, onsidering an instane ϕ of Max
kSat, its worst solution is an assignment satisfying the minimum number of the lauses of ϕ,i.e., an optimal solution for Min kSat on ϕ). Remark also that, given a graph G = (V, E),the omplement, with respet to V of a vertex over (resp., independent set) is an independentset (resp., vertex over) of G. In other words, the objetive values of Min (Max) MinimalVertex Cover and of Min (Max) Independent Dominating Set are linked by a�netransformations. On the other hand, the di�erential approximation ratio is stable for the a�netransformation, in the sense that pairs of problems, the objetive values of whih are linked bya�ne transformations, are di�erential equivalent. Hene the following fat holds: Min (Max)Minimal Vertex Cover and Max (Min) Independent Dominating Set are di�erentialequivalent.In what follows, we �rst study di�erential approximation preserving redutions for several op-timization satis�ability problems. Combining them with a general result linking approximabilityof maximization problems in di�erential and standard approximations, we obtain interesting dif-ferential inapproximability results for optimal satis�ability. We also prove thatMin kSat(B, B̄)and Max kSat(B, B̄) redue to Min Minimal Vertex Cover-B′ and Min IndependentDominating Set-B′, respetively, where B′ = kB. These redutions lead us to study the dif-ferential approximation of Min Independent Dominating Set. For this problem we provea strong inapproximability result, informally, unless P = NP, any approximation algorithm hasworst-ase approximation ratio equal to 0. To our knowledge, no suh result was previouslyknown for the di�erential approximation.2 PreliminariesWe �rst reall a few de�nitions about di�erential and standard approximabilities. Given aninstane I of an optimization problem and a feasible solution S of I, we denote by m(I, S) thevalue of the solution S, by opt(I) the value of an optimal solution of I, and by ω(I) the value ofa worst solution of I. The standard performane, or approximation, ratio of S is de�ned as

r(I, S) = max

{

m(I, S)

opt(I)
,

opt(I)

m(I, S)

}

while the di�erential performane, or approximation, ratio of S is de�ned as
ρ(I, S) =

|m(I, S) − ω(I)|

|opt(I) − ω(I)|
.
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It is easy to see that the di�erential approximation ratio (originally de�ned in [3℄ and furtherdepthened in [7℄) is stable for the a�ne transformation of the objetive funtion of a problem,while this does not hold for the standard approximation ratio.For a funtion f , f(n) > 1, an algorithm is a standard f(n)-approximation algorithm for aproblem Π if, for any instane I of Π, it returns a solution S suh that r(I, S) 6 f(|I|), where |I|is the size of I. We say that an optimization problem is standard onstantly approximable if,for some onstant c > 1, there exists a polynomial time standard c-approximation algorithmfor it. An optimization problem has a standard polynomial time approximation shema if ithas a polynomial time standard (1 + ε)-approximation, for every onstant ε > 0. Similarly,for a funtion f , f(n) < 1, an algorithm is a di�erential f(n)-approximation algorithm for aproblem Π if, for any instane I of Π, it returns a solution S suh that ρ(I, S) > f(|I|). We saythat an optimization problem is di�erential onstantly approximable if, for some onstant δ < 1,there exists a polynomial time di�erential δ-approximation algorithm for it. An optimizationproblem has a di�erential polynomial time approximation sheme if it has a polynomial timedi�erential (1 + ε)-approximation, for every onstant ε > 0. We say that two optimizationproblems are di�erential equivalent if a di�erential δ-approximation algorithm for one of themimplies a di�erential δ-approximation algorithm for the other one.Given two problems Π and Π′, we say that Π′ is di�erential reduible to Π, i� any di�erential
δ-approximation algorithm for Π an be used to approximately solve Π′ within di�erential ratio δ.In this paper, we study the di�erential approximability of the following NP-hard optimalsatis�ability problems.Max (Min) SatInput: a set of lauses (i.e., disjuntions) C1, . . . , Cm on n variables x1, . . . , xn.Output: a truth assignment to the variables that maximizes (minimizes) the number of lausessatis�ed.Max (Min) DNFInput: a set of onjuntions C1, . . . , Cm on n variables x1, . . . , xn.Output: a truth assignment to the variables that maximizes (minimizes) the number of on-juntions satis�ed.For a onstant k > 2, Max kSat, Max kDNF,Min kSat,Min kDNF are the versions ofMaxSat, Max DNF, Min Sat, Min DNF where eah lause or onjuntion has size at most k.For two onstants B, B′ > 1, Max kSat(B, B̄′), Max kDNF(B, B̄′), Min kSat(B, B̄′), Min
kDNF(B, B̄′),Max Sat(B, B̄′),Max DNF(B, B̄′),Min Sat(B, B̄′),Min DNF(B, B̄′) are theversions of these problems where any positive literal appears at most B times and any negativeone appears at most B′ times.Max NAE 3SatInput: a set of onjuntions C1, . . . , Cm of three literals on n variables x1, . . . , xn.Output: a truth assignment to the variables that maximizes the number of onjuntions satis�edin suh a way that any one of them has at least one true literal and at least one false literal.Min (Max) Minimal Vertex CoverInput: a graph G = (V, E).Output: a minimal vertex over (a set S ⊆ V suh that, ∀(u, v) ∈ E, u ∈ S or v ∈ S) ofminimum (maximum) size.Min (Max) Independent Dominating SetInput: a graph G = (V, E).Output: a maximal independent set (a set S ⊆ V suh that, ∀u, v ∈ S, (u, v) /∈ E and
∀u /∈ S, ∃v ∈ S, (u, v) ∈ E) of minimum (maximum) size.
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In what follows, we denote byMin (Max) Independent Dominating Set-B andMin (Max)Minimal Vertex Cover-B the versions of the above problems on graphs with maximum degreebounded by B.Finally, note that the satis�ability problems dealt here have, under the di�erential approx-imation ratio, a natural interpretation. For instane, Max Sat an be seen as the problem ofdetermining a truth assignment that minimizes the number of falsi�ed lauses.3 Satis�ability problems3.1 Approximation preserving redutions for optimization satis�abilityWe �rst prove the di�erential equivalene for Max Sat and Min DNF and for Min Sat andMax DNF.Theorem 1. Max Sat and Min DNF, as well as Min Sat and Max DNF are di�erentialequivalent.Proof. We onstrut a redution from Max Sat to Min DNF that preserves the di�erentialapproximation ratio. Let I be an instane of Max Sat on n variables and m lauses. Theinstane I ′ of Min DNF ontains m lauses and the same set of n variables. With eah lause
ℓ1∨ . . .∨ℓt of I we assoiate in I ′ the onjuntion ℓ̄1∧ . . .∧ ℓ̄t, where ℓ̄i = x̄j if ℓi = xj and ℓ̄i = xjif ℓi = x̄j . It is easy to see that opt(I ′) = m−opt(I) and ω(I ′) = m−ω(I). Also, if m(I ′, y) is thevalue of the solution y in I ′, then the same solution y has in I the value m(I, y) = m−m(I ′, y).Thus, ρ(I, y) = ρ(I ′, y). The redution from Min DNF to Max Sat is the same.By an exatly similar redution, one an prove that Min Sat and Max DNF are alsoapproximate equivalent.By the proof of theorem 1 one easily an dedue that for eah onstant k > 2, Max kSatand Min kDNF as well as Min kSat and Max kDNF are di�erential equivalent.Consider an instane I of a maximization problem Π, an approximation algorithm A for Πand denote by S a feasible solution of Π omputed by A in I. Then,

mA(I, S) − ω(I)

opt(I) − ω(I)
> δ =⇒

mA(I, S)

opt(I)
> δ + (1 − δ)

ω(I)

opt(I)

ω(I),opt(I)>0
=⇒

mA(I, S)

opt(I)
> δand the following proposition immediately holds.Proposition 1. Approximation of a maximization problem Π within di�erential approximationratio δ, implies approximation of Π within standard approximation ratio 1/δ.Combining the results of theorem 1 and proposition 1 with the fat that for k > 2, B > 2and B′ > 1, Max kSat(B, B̄′) and Max kDNF(B, B̄′) have no standard polynomial timeapproximation shemata ([2℄), one dedues the following.Corollary 1. For k > 2, and (B, B′) > (2, 1), or (B, B′) > (1, 2), Max kSat(B, B̄′), Max

kDNF(B, B̄′), Min kSat(B, B̄′) and Min kDNF(B, B̄′) have no di�erential polynomial timeapproximation shemata, unless P = NP.3.2 Min Sat and Min Vertex CoverMin Vertex Cover is as the Min Minimal Vertex Cover de�ned in setion 2 modulo thefat that the feasible solutions for the former are not mandatorily minimal. In what follows, byredution from Min Vertex Cover, we establish an inapproximability result for Min Sat.
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Theorem 2. Unless co − RP = NP, Min Sat is not di�erential 1/m1−ε-approximable forany ε > 0, where m is the number of lauses of the instane.Proof. Let G = (V, E) be a graph on n verties and denote by V = {1, . . . , n} its vertex set.In order to onstrut an instane I of Min Sat, at eah edge (i, j) ∈ E, i < j we assoiate avariable xij . For eah vertex i we de�ne a lause Ci, where
Ci =

∨

j:(i,j)∈E∧i<j

xij ∨
∨

j:(i,j)∈E∧i>j

x̄ji.

From a vertex over C of G we de�ne an assignment as follows. For eah i /∈ C and eah
(i, j) ∈ E, xji = 1 if i > j and xij = 0 if i < j. Sine C is a vertex over, this de�nition is notontraditory. If i /∈ C, then Ci is not satis�ed and so opt(I) 6 opt(G).Given an assignment v of I, let C = {i : Ci is satis�ed}. Note that set C is a vertex oversine for (i, j) ∈ E, at least one of Ci and Cj is satis�ed and so at least one of the verties
i, j appears in C. So, at eah assignment v of I, we assoiate in G a vertex over C with
m(G, C) = m(I, v). This also proves that opt(I) = opt(G).Finally, using ω(I) 6 ω(G), it is easy to show that ρ(G) > ρ(I).We have seen that Min Vertex Cover is di�erential equivalent to Max IndependentSet (whih is as Max Independent Dominating Set modulo the fat that the independentset to ompute has not to be minimal). On the other hand sine the worst solution for MaxIndependent Set is the empty set (in other words, ω(I) = 0, ∀I), standard and di�erentialapproximation ratios oinide. Furthermore, Max Independent Set is not di�erential 1/n1−ε-approximable for any ε > 0, unless co − RP = NP ([8℄). Consequently, Min Vertex Coveris not di�erential 1/n1−ε-approximable for any ε > 0, unless co − RP = NP and the resultlaimed follows.From the above proof the following orollary is also dedued. In what follows, we denote byMin or Max Sat(B, B̄) the versions of Min or Max Sat(B, B̄′) with B = B′.Corollary 2. Min Sat(B, B̄) for B > 1 is not di�erential 1/m1−ε-approximable for any ε > 0,unless co − RP = NP.3.3 A positive di�erential approximation result for Max NAE 3SatWe show in this setion that a restritive version of Max NAE 3Sat, the one on satis�ableinstanes is di�erential onstantly approximable by the standard 1.096-approximation algorithmof [13℄.Theorem 3. Max NAE 3Sat on satis�able instanes is di�erential 0.649-approximable.Proof. Consider a satis�able instane ϕ of Max NAE 3Sat de�ned on m lauses; obviously,
opt(ϕ) = m. Run the standard 1.096-approximation algorithm of [13℄ on ϕ to obtain a solution Csatisfying m(ϕ, C) > m/1.096. On the other hand any random assignment by values in {0, 1}of the variables of ϕ, where any of the two values is assigned with probability 1/2, will feasiblysatisfy 3m/4 lauses (in other words, the assignments (1, 1, 1) and (0, 0, 0) are to be exludedfrom the eight possible assignments for eah 3-lause); onsequently, ω(ϕ) 6 3m/4.Using the values for opt(ϕ), m(ϕ, C) and ω(ϕ), and the fat that the di�erential approxima-tion ratio dereases with ω when dealing with maximization problems, we �nally get

m(ϕ, C) − ω(ϕ)

opt(ϕ) − ω(ϕ)
>

m
1.096 − 3

4m

m − 3
4m

=
0.712

1.096
> 0.649.On the other hand, using proposition 1 and the result of [13℄ that Max NAE 3Sat is notstandard approximable within 1.090, unless P=NP, the following is dedued.5



Proposition 2. Max NAE 3Sat is not di�erential 0.917-approximable.4 Optimal satis�ability and Min Independent Dominating SetWe now show that Min kSat(B, B̄) is di�erential reduible to Min Minimal Vertex Cover-
B′. Note that an analogous result, dealing with standard approximation, is presented in [6℄between Min Sat and Min Vertex Cover. But this result does not work for the di�erentialapproximation.Theorem 4. Min kSat(B, B̄) is di�erential reduible to Min Minimal Vertex Cover-B′,where B′ = kB.Proof. Let I be an instane of Min kSat(B, B̄) with n variables and m lauses. In theinstane G of Min Minimal Vertex Cover, with eah lause Ci of I we assoiate a vertex i.We draw an edge between i and j if there is a variable x suh that Ci ontains x and Cj ontains x̄.The vertex-degrees of the so onstruted graph are bounded above by B′ = kB.From an assignment v of I we de�ne a vertex over C as the set of verties that orrespondto lauses satis�ed by v. So, opt(G) ≤ opt(I).From a vertex over C of G we de�ne a partial assignment v as follows: if i /∈ C and xj ∈ Cithen xj = 0, and if i /∈ C and x̄j ∈ Ci then xj = 1. Hene, if i /∈ C then Ci is not satis�ed by v.By the way v has been de�ned, the number of the non satis�ed lauses in I is greater than, orequal to, the number of verties that are not in C, i.e., m(I, v) ≤ m(G, C). This, together with
opt(G) ≤ opt(I) proved just above, implies opt(G) = opt(I).If C is a minimal vertex over (for eah i ∈ C there exists j /∈ C suh that (i, j) ∈ E), then
m(I, v) = m(G, C) sine the lause Ci is satis�ed by v when i ∈ C. Consequently, in partiular,
ω(I) = ω(G) and this onludes the proof of the theorem.By a proof similar to the one of theorem 4, one an show that Max kSat(B, B̄) redues toMax Minimal Vertex Cover-B′. Sine the latter is di�erential equivalent to Min Indepen-dent Dominating Set-B′ the following theorem onludes the setion.Theorem 5. Max kSat(B, B̄) is di�erential reduible to Min Independent DominatingSet-B′, where B′ = kB.5 Min Independent Dominating SetThe results of setion 4 naturally bring us to study the di�erential approximation of Min In-dependent Dominating Set. In the following theorem we establish a strongly negative dif-ferential approximation result showing that any polynomial approximation algorithm for MinIndependent Dominating Set has (worst-ase) di�erential approximation ratio equal to 0.Theorem 6. If P 6= NP, then, for any dereasing δ : N → (0, 1), Min IndependentDominating Set on graphs of order n is not di�erential δ(n)-approximable.Proof. We show that, for any δ(n) ∈ (0, 1), a polynomial time di�erential δ(n)-approximationalgorithm A for Min Independent Dominating Set, ould distinguish in polynomial time ifan instane of Sat on n variables is satis�able or not.Given an instane ϕ of Sat with n variables x1, . . . , xn and m lauses C1, . . . , Cm we onstruta graph G, instane of Min Independent Dominating Set as follows. With eah positiveliteral xi we assoiate a vertex ui and for eah negative literal x̄i we assoiate a vertex vi. For
i = 1, . . . , n we draw edges (ui, vi). For any lause Cj we add in G a vertex wj and an edgebetween wj and eah vertex orresponding to a literal ontained in Cj . Finally, we add edgesin G in order to obtain a omplete graph on w1, . . . , wm.6



Remark that an independent set of G ontains at most n + 1 verties sine it ontains atmost one vertex among w1, . . . , wm and at most one vertex among ui and vi for i = 1, . . . , n.An independent dominating set ontaining the verties orresponding to true literals of a nonsatis�able assignment and one vertex orresponding to a lause not satis�ed by this assignmentis a worst solution of G of size n + 1.If ϕ is satis�able then opt(G) = n sine the set of verties orresponding to the true literalsof an assignment satisfying ϕ is an independent dominating set (eah vertex wj is dominated bya vertex orresponding to a true literal of Cj) of minimum size. On the other hand, if ϕ is notsatis�able then opt(G) = n + 1.In fat any independent dominating set of G has ardinality either n, or n + 1. Hene, if Aomputes a solution of value n then ϕ is satis�able, otherwise ϕ is not satis�able.As we have already mentioned, an interesting onsequene of theorem 6 above is that unless
P = NP, any polynomial time approximation algorithm for Min Independent DominatingSet has worst-ase di�erential approximation ratio equal to 0. This makes Min IndependentDominating Set one of the hardest problems for the di�erential approximation. Let us notethat, to our knowledge, no problem verifying a statement as the one of theorem 6 were known untilnow for the di�erential approximation. Moreover, theorem 6 has also the following interestingorollary.Corollary 3. Any approximation algorithm for Min Independent Dominating Set-B thatahieves approximation ratio δ(B), for any dereasing funtion δ : N → (0, 1), has time-omplexity exponential in B.Consider the re�nement, due to Arora et al.( [1℄), of Cook's theorem on the NP-hardness of3Sat.Theorem 7. ([1℄) Let L be a language in NP. There exists a polynomial-time algorithm anda onstant 0 < ε < 1 suh that, given any input x, the algorithm onstruts an instane ϕx of3Sat whih satis�es the following properties:1. if x ∈ L, then ϕx is satis�able;2. if x /∈ L, then no assignment satis�es more than a fration (1 − ε) of the lauses.Using now the L-redution of [12℄ from Max 3Sat to Max 3Sat(4, 4̄), and observing thatsatis�able instanes are mapped into satis�able instanes, theorem 7 holds also if we replae3Sat with 3Sat(4, 4̄) and ε with some onstant ε′. This allows us to provide an upper bound forthe di�erential approximation ratio of any algorithm polynomially solving Min IndependentDominating Set-B.Theorem 8. Min Independent Dominating Set-B is not di�erential f(B)-approximable,for f(B) = 1 − (2ε′(B − 5)/(2B − 5)), unless P = NP.Proof. We show that if Min Independent Dominating Set-B was di�erential f(B)-ap-proximable, then we ould distinguish in polynomial time if an instane of Max 3Sat(4, 4̄) issatis�able or at most a fration (1 − ε′) of the lauses are satis�ed.Given an instane ϕ of 3Sat(4,4̄) with n variables x1, . . . , xn and m lauses C1, . . . , Cm, weonstrut a graph G, instane of Min Independent Dominating Set-B, as follows. Witheah positive literal xi we assoiate a vertex ui, and with eah negative literal x̄i we assoiate avertex vi. For i = 1, . . . , n we draw in G the edges uivi. Also with eah lause Cj we assoiate
c = ⌊(B − 1)/4⌋ verties wj1, . . . , wjc. For eah lause Cj we add in G an edge between eah
wjk, k = 1, . . . , c and any vertex orresponding to a literal ontained in Cj .7



Suppose that eah literal appears at least one. Remark that an independent set of G ontainsat most m · c verties. An independent dominating set ontaining the verties orresponding tothe m lauses of ϕ is a worst solution of size m · c.If ϕ is satis�able then opt(G) = n sine the set of verties orresponding to the true literalsof an assignment satisfying ϕ is an independent dominating set (eah vertex wjk is dominatedby a vertex orresponding to a true literal of Cj) of minimum size. On the other hand, if theoptimal value of ϕ is m′ 6 (1 − ε′)m then opt(G) = n + (m − m′) · c > n + ε′ · m · c.We show that a di�erential f(B)-approximation algorithm A for Min Independent Domi-nating Set-B with f(B) = 1− (2ε′(B − 5)/(2B − 5)) gives in the ase where ϕ is satis�able asolution of value less that the value of the optimum solution in the ase where ϕ is not satis�able.Denote by val the value of the solution omputed by A. Then, (m · c − val)/(m · c − n) >

f(B). Sine c 6 (B − 1)/4 and m 6 8n/3, val 6 n + (m · ε′(B − 5)/4) < n + m · ε′ · c, q.e.d.6 DisussionWe have given in this paper di�erential inapproximability results for optimal satis�ability prob-lems, as well as forMin Independent Dominating Set. For this problem we have shown thatany polynomial time approximation algorithm has worst-ase di�erential approximation ratio 0.This result brings Min Independent Dominating Set to the status of one of the hardestproblems for the di�erential approximation.Di�erential approximation for optimal satis�ability misses until now in positive results. De-spite our e�orts, the only one we have been able to produe is the one of setion 3.3 on a lass ofinstanes of Max NAE 3Sat, the satis�able ones. It would be interesting to produe non-trivialsuh results and this is a major open problem. However, it seems to us that, in the oppositeof the standard approximation, obtaining onstant di�erential approximation ratios for optimalsatis�ability is a rather hard task.As we have already mentioned, results as the one of theorem 6 have not been produed untilnow. However suh strongly negative results are very interesting sine they draw the hardestof the NP-hard problems lasses in the di�erential approximability hierarhy. Establishing suhresults for other problems is an equally interesting open problem.Aknowledgment. The very useful omments and suggestions of two anonymous referees aregratefully aknowledged.Referenes[1℄ S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof veri�ation and in-tratability of approximation problems. Journal of the Assoiation for Computing Mahin-ery, 45(3):501�555, 1998.[2℄ G. Ausiello, P. Cresenzi, G. Gambosi, V. Kann, A. Marhetti-Spaamela, and M. Protasi.Complexity and approximation. Combinatorial optimization problems and their approxima-bility properties. Springer, Heildemberg, 1999.[3℄ G. Ausiello, A. D'Atri, and M. Protasi. Struture preserving redutions among onvexoptimization problems. Journal of Computing and System Sienes, 21:136�153, 1980.[4℄ R. Battiti and M. Protasi. Algorithms and heuristis for max-sat. In D. Z. Du and P. M.Pardalos, editors, Handbook of Combinatorial Optimization. Kluwer Aademi Publishers,1998.
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