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Abstract

We study the differential approximability of several optimization satisfiability problems.
We prove that, unless co — RP = NP, MIN SaT is not differential 1/m!'~¢-approximable for
any ¢ > 0, where m is the number of clauses. We also prove that any differential approxi-
mation algorithm for MAX MINIMAL VERTEX COVER can be transformed into a differential
approximation algorithm for MIN KSAT achieving the same differential performance ratio.
This leads us to study the differential approximability of MAX MINIMAL VERTEX COVER
and MIN INDEPENDENT DOMINATING SET. Both of them are equivalent for the differential
approximation. For these problems we prove a strong inapproximability result, informally,
unless P = NP, any approximation algorithm has worst-case approximation ratio equal to 0.

Keywords: Combinatorial optimization, Complexity theory, Heuristics.

1 Introduction

In this paper we deal with the approximation of classical optimization satisfiability problems as
MAax and MIN SAT, MAX and MIN DNF, as well as of restrictive versions of these problems
as the ones where the size of any clause is bounded, or/and the number of the occurrences
of any literal is bounded. We also deal with some related graph-problems as MAX and MIN
INDEPENDENT DOMINATING SET and MAX and MIN MINIMAL VERTEX COVER. We study the
approximability of all these problems (formally defined in section 2) using the so-called differential
approximation ratio which, informally, for an instance I measures the relative position of the
value of an approzimated solution in the interval [worst-value feasible solution of I, optimal-
value solution of I].

Optimization satisfiability problems are of interest from both theoretical and practical points
of view. On the one hand, the satisfiability problem (SAT) is the first complete problem for NP.
On the other hand, many problems in mathematical logic and in artificial intelligence can be
expressed in terms of versions of SAT; constraints satisfaction is one such version. Also problems
in database integrity constraints or in knowledge bases can be seen as optimization satisfiabil-
ity problems. Finally, some approaches to inductive inference can be modeled as MAX SAT
problems (]9, 10]).

All the problems dealt in this paper have no polynomial time approximation schemata for
the standard approximation (where one measures the ratio between the value of the approximate
solution of an instance and the value of an optimal one). The SAT problems admit algorithms
achieving constant standard approximation ratio, while algorithms for the DNF ones do not
guarantee such ratios (more details about the standard approximability of all these problems
can be found in [4, 5]). The MIN VERTEX COVER (called MIN MINIMAL VERTEX COVER
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in this paper) is standard 2-approximable, while the MAX INDEPENDENT SET (called MAX
INDEPENDENT DOMINATING SET in the paper) cannot be approximated within n!=¢ for any
€ > 0, unless co — RP = NP ([8]). On the other hand, MIN INDEPENDENT DOMINATING SET
is standard approximable within B where, B is the maximum graph-degree ([11]), while the
MAax MINIMAL VERTEX COVER has, to our knowledge, not been studied yet in the standard
approximation.

The initial objective of the paper was to study the differential approximability of some op-
timization satisfiability problems defined in section 2. This study has exhibited an interesting
relationship between MIN ESAT and MIN MINIMAL VERTEX COVER which can be informally de-
scribed as follows: any differential approximation algorithm for MIN MINIMAL VERTEX COVER
can be transformed into a differential approzimation algorithm for MIN kSAT achieving the same
differential performance ratio. On the other hand, as we will see just below, MAX MINIMAL
VERTEX COVER is equivalent, for the differential approximation, to the well-known MIN INDE-
PENDENT DOMINATING SET. We are so led to study differential approximation results for MAX
MINIMAL VERTEX COVER and MIN INDEPENDENT DOMINATING SET.

All the problems we deal with in this paper have the characteristic that computation of both
their optimal and worst solutions is NP-hard (for example, considering an instance ¢ of MAX
kSAT, its worst solution is an assignment satisfying the minimum number of the clauses of ¢,
i.e., an optimal solution for MIN kSAT on ¢). Remark also that, given a graph G = (V, E),
the complement, with respect to V' of a vertex cover (resp., independent set) is an independent
set (resp., vertex cover) of G. In other words, the objective values of MIN (MAX) MINIMAL
VERTEX COVER and of MIN (MAX) INDEPENDENT DOMINATING SET are linked by affine
transformations. On the other hand, the differential approximation ratio is stable for the affine
transformation, in the sense that pairs of problems, the objective values of which are linked by
affine transformations, are differential equivalent. Hence the following fact holds: MIN (MAX)
MINIMAL VERTEX COVER and MAX (MIN) INDEPENDENT DOMINATING SET are differential
equivalent.

In what follows, we first study differential approximation preserving reductions for several op-
timization satisfiability problems. Combining them with a general result linking approximability
of maximization problems in differential and standard approximations, we obtain interesting dif-
ferential inapproximability results for optimal satisfiability. We also prove that MIN kSAT(B, B)
and MAX kSAT(B, B) reduce to MIN MINIMAL VERTEX COVER-B’ and MIN INDEPENDENT
DOMINATING SET-B’, respectively, where B’ = kB. These reductions lead us to study the dif-
ferential approximation of MIN INDEPENDENT DOMINATING SET. For this problem we prove
a strong inapproximability result, informally, unless P = NP, any approzimation algorithm has
worst-case approximation ratio equal to 0. To our knowledge, no such result was previously
known for the differential approximation.

2 Preliminaries

We first recall a few definitions about differential and standard approximabilities. Given an

instance I of an optimization problem and a feasible solution S of I, we denote by m(1,S) the

value of the solution S, by opt(I) the value of an optimal solution of I, and by w(I) the value of

a worst solution of I. The standard performance, or approximation, ratio of S is defined as
m(I,S) opt(I)

opt(I) " m(I,S)

while the differential performance, or approximation, ratio of S is defined as

’ lopt(I) — w([)|

r(I,8) = max{
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It is easy to see that the differential approximation ratio (originally defined in [3] and further
depthened in [7]) is stable for the affine transformation of the objective function of a problem,
while this does not hold for the standard approximation ratio.

For a function f, f(n) > 1, an algorithm is a standard f(n)-approximation algorithm for a
problem IT if, for any instance I of II, it returns a solution S such that r(I,S) < f(|I|), where |I|
is the size of I. We say that an optimization problem is standard constantly approximable if,
for some constant ¢ > 1, there exists a polynomial time standard c-approximation algorithm
for it. An optimization problem has a standard polynomial time approximation schema if it
has a polynomial time standard (1 + ¢)-approximation, for every constant ¢ > 0. Similarly,
for a function f, f(n) < 1, an algorithm is a differential f(n)-approzimation algorithm for a
problem II if, for any instance I of II, it returns a solution S such that p(I,S) > f(|I]). We say
that an optimization problem is differential constantly approximable if, for some constant § < 1,
there exists a polynomial time differential §-approximation algorithm for it. An optimization
problem has a differential polynomial time approximation scheme if it has a polynomial time
differential (1 + ¢)-approximation, for every constant ¢ > 0. We say that two optimization
problems are differential equivalent if a differential d-approximation algorithm for one of them
implies a differential §-approximation algorithm for the other one.

Given two problems IT and IT’, we say that IT' is differential reducible to 11, iff any differential
d-approximation algorithm for IT can be used to approximately solve I’ within differential ratio 4.

In this paper, we study the differential approximability of the following NP-hard optimal
satisfiability problems.

Max (MIN) SAT

Input: a set of clauses (i.e., disjunctions) C1,...,C,, on n variables x1, ..., Zy,.

Output: a truth assignment to the variables that maximizes (minimizes) the number of clauses
satisfied.

Max (MiN) DNF

Input: a set of conjunctions C1,...,Cy, on n variables x1, ..., z,.

Output: a truth assignment to the variables that maximizes (minimizes) the number of con-
junctions satisfied.

For a constant k > 2, MAX kSAT, MAX kDNF, MIN £SAT, MIN kDNF are the versions of MAX
SaT, MAX DNF, MIN SAT, MIN DNF where each clause or conjunction has size at most k.
For two constants B, B’ > 1, MAX kSAT(B, B’), MAX kDNF (B, B'), MIN kSAT(B,B’), MIN
EDNF(B, B'), MAX SaT(B, B'), MAX DNF(B, B'), MIN SAT(B, B'), MiN DNF(B, B') are the
versions of these problems where any positive literal appears at most B times and any negative
one appears at most B’ times.

Max NAE 3Satr

Input: a set of conjunctions C1, ..., C), of three literals on n variables x1, ..., z,.

Output: a truth assignment to the variables that maximizes the number of conjunctions satisfied
in such a way that any one of them has at least one true literal and at least one false literal.
MIN (MAX) MINIMAL VERTEX COVER

Input: a graph G = (V, E).

Output: a minimal vertex cover (a set S C V such that, V(u,v) € E, u € S or v € S) of
minimum (maximum) size.

MIN (MAX) INDEPENDENT DOMINATING SET

Input: a graph G = (V, E).

Output: a maximal independent set (a set S C V such that, Yu,v € S, (u,v) ¢ E and
Vu ¢ S,3v € S, (u,v) € FE) of minimum (maximum) size.



In what follows, we denote by MIN (MAX) INDEPENDENT DOMINATING SET-B and MIN (MAX)
MINIMAL VERTEX COVER- B the versions of the above problems on graphs with maximum degree
bounded by B.

Finally, note that the satisfiability problems dealt here have, under the differential approx-
imation ratio, a natural interpretation. For instance, MAX SAT can be seen as the problem of
determining a truth assignment that minimizes the number of falsified clauses.

3 Satisfiability problems

3.1 Approximation preserving reductions for optimization satisfiability

We first prove the differential equivalence for MAX SAT and MIN DNF and for MIN SAT and
Max DNF.

Theorem 1. MAX SAT and MIN DNF, as well as MIN SAT and MAX DNF are differential
equivalent.

Proof. We construct a reduction from MAx SAT to MIN DNF that preserves the differential
approximation ratio. Let I be an instance of MAX SAT on n variables and m clauses. The
instance I’ of MIN DNF contains m clauses and the same set of n variables. With each clause
¢1V ...Vl of I we associate in I’ the conjunction f1 A...AZ;, where {; = z;if {; = x; and l; = xj
if ¢; = z;. It is easy to see that opt(I') = m—opt([) and w(I') = m—w(I). Also, if m(I’,y) is the
value of the solution y in I’ then the same solution y has in I the value m(I,y) = m—m(I’,y).
Thus, p(I,y) = p(I’,y). The reduction from MIN DNF to MAX SAT is the same.

By an exactly similar reduction, one can prove that MIN SAT and Max DNF are also
approximate equivalent. il

By the proof of theorem 1 one easily can deduce that for each constant & > 2, MAX KSAT
and MIN kDNF as well as MIN kSAT and MAX kKDNF are differential equivalent.

Consider an instance I of a maximization problem II, an approximation algorithm A for IT
and denote by S a feasible solution of II computed by A in I. Then,

ma(l,S) —w(l) 55— ma(l,S)

w(I) w@),opt(D)=0 ma(l,S) -
opt(I) —w(I) opt(])

opt () opt(I) =

>64(1-0)

and the following proposition immediately holds.

Proposition 1. Approximation of a maximization problem Il within differential approximation
ratio §, implies approximation of 11 within standard approrimation ratio 1/4.

Combining the results of theo;em 1 and proposition 1 yvith the fact that for k > 2, B > 2
and B" > 1, Max kSAT(B,B’) and Max kDNF(B, B’) have no standard polynomial time

approzimation schemata ([2]), one deduces the following,.

Corollary 1. For k > 2, and (B,B’) > (2,1), or (B,B’) > (1,2), MAX kSAT(B, B'), MAX
kDNF (B, B"), MIN kSAT(B, B") and MiIN kDNF (B, B') have no differential polynomial time
approzimation schemata, unless P = NP.

3.2 MiIN SAT and MIN VERTEX COVER

MIN VERTEX COVER is as the MIN MINIMAL VERTEX COVER defined in section 2 modulo the
fact that the feasible solutions for the former are not mandatorily minimal. In what follows, by
reduction from MIN VERTEX COVER, we establish an inapproximability result for MIN SAT.



Theorem 2. Unless co — RP = NP, MIN SAT is not differential 1/m'~¢-approzimable for
any € > 0, where m is the number of clauses of the instance.

Proof. Let G = (V, E) be a graph on n vertices and denote by V = {1,...,n} its vertex set.
In order to construct an instance I of MIN SAT, at each edge (i,j) € E,i < j we associate a
variable x;;. For each vertex i we define a clause C;, where

C; = \/ Tij V \/ Zji-
Jji(i,J)EENI<] j:(4,4)EENI>]
From a vertex cover C' of G we define an assignment as follows. For each i ¢ C and each
(t,j) € E, zj; =1if i > j and x;; = 0 if ¢ < j. Since C' is a vertex cover, this definition is not
contradictory. If i ¢ C, then C; is not satisfied and so opt(/) < opt(G).

Given an assignment v of I, let C' = {i : C; is satisfied}. Note that set C is a vertex cover
since for (i,j) € E, at least one of C; and Cj is satisfied and so at least one of the vertices
i,7 appears in C. So, at each assignment v of I, we associate in G a vertex cover C with
m(G,C) = m(I,v). This also proves that opt(I) = opt(G).

Finally, using w(I) < w(G), it is easy to show that p(G) = p(I).

We have seen that MIN VERTEX COVER is differential equivalent to MAX INDEPENDENT
SET (which is as MAX INDEPENDENT DOMINATING SET modulo the fact that the independent
set to compute has not to be minimal). On the other hand since the worst solution for MAX
INDEPENDENT SET is the empty set (in other words, w(I) = 0, VI), standard and differential
approximation ratios coincide. Furthermore, MAX INDEPENDENT SET is not differential 1/n!¢-
approximable for any € > 0, unless co — RP = NP ([8]). Consequently, MIN VERTEX COVER
is not differential 1/n!'~*-approximable for any ¢ > 0, unless co — RP = NP and the result
claimed follows. I

From the above proof the following corollary is also deduced. In what follows, we denote by
MIN or MAX SAT(B, B) the versions of MIN or MAX SAT(B, B') with B = B'.

Corollary 2. MIN SAT(B, B) for B > 1 is not differential 1/m'~¢-approzimable for any ¢ > 0,
unless co — RP = NP.

3.3 A positive differential approximation result for MAX NAE 3SAT

We show in this section that a restrictive version of MAX NAE 3SAT, the one on satisfiable
instances is differential constantly approximable by the standard 1.096-approximation algorithm
of [13].

Theorem 3. MAX NAE 3SAT on satisfiable instances is differential 0.649-approzimable.

Proof. Consider a satisfiable instance ¢ of MAX NAE 3SAT defined on m clauses; obviously,
opt(¢) = m. Run the standard 1.096-approximation algorithm of [13] on ¢ to obtain a solution C'
satisfying m(p,C) = m/1.096. On the other hand any random assignment by values in {0, 1}
of the variables of ¢, where any of the two values is assigned with probability 1/2, will feasibly
satisfy 3m/4 clauses (in other words, the assignments (1,1,1) and (0,0,0) are to be excluded
from the eight possible assignments for each 3-clause); consequently, w(y) < 3m/4.

Using the values for opt(y), m(p,C) and w(p), and the fact that the differential approxima-
tion ratio decreases with w when dealing with maximization problems, we finally get

m(p,C) —w(y) _ 1o — 3™ _ 0.712
opt(p) —w(p) = m—3m  1.096

> 0.649. 1

On the other hand, using proposition 1 and the result of [13] that MAXx NAE 3SAT is not
standard approximable within 1.090, unless P=INNP, the following is deduced.



Proposition 2. MaAX NAE 3SAT is not differential 0.917-approzimable.

4 Optimal satisfiability and MIN INDEPENDENT DOMINATING SET

We now show that MIN kSAT(B, B) is differential reducible to MIN MINIMAL VERTEX COVER-
B’. Note that an analogous result, dealing with standard approximation, is presented in [6]
between MIN SAT and MIN VERTEX COVER. But this result does not work for the differential
approximation.

Theorem 4. MIN kSAT(B, B) is differential reducible to MIN MINIMAL VERTEX COVER-B’,
where B’ = kB.

Proof. Let I be an instance of MIN kSAT(B, B) with n variables and m clauses. In the
instance G of MIN MINIMAL VERTEX COVER, with each clause C; of I we associate a vertex 7.
We draw an edge between ¢ and j if there is a variable = such that C; contains x and C}j contains Z.
The vertex-degrees of the so constructed graph are bounded above by B’ = kB.

From an assignment v of I we define a vertex cover C' as the set of vertices that correspond
to clauses satisfied by v. So, opt(G) < opt(I).

From a vertex cover C' of G we define a partial assignment v as follows: if i ¢ C' and z; € C;
then z; =0, and if ¢ ¢ C and Z; € C; then z; = 1. Hence, if i ¢ C then C; is not satisfied by v.
By the way v has been defined, the number of the non satisfied clauses in [ is greater than, or
equal to, the number of vertices that are not in C, i.e., m(I,v) < m(G,C). This, together with
opt(G) < opt(I) proved just above, implies opt(G) = opt([).

If C is a minimal vertex cover (for each ¢ € C there exists j ¢ C such that (¢,7) € E), then
m(I,v) = m(G,C) since the clause C; is satisfied by v when ¢ € C. Consequently, in particular,
w(I) = w(G) and this concludes the proof of the theorem. I

By a proof similar to the one of theorem 4, one can show that MAX kSAT(B, B) reduces to
MAX MINIMAL VERTEX COVER-B’. Since the latter is differential equivalent to MIN INDEPEN-
DENT DOMINATING SET-B’ the following theorem concludes the section.

Theorem 5. MAX kSAT(B, B) is differential reducible to MIN INDEPENDENT DOMINATING
SET-B’, where B’ = kB.

5 MIN INDEPENDENT DOMINATING SET

The results of section 4 naturally bring us to study the differential approximation of MIN IN-
DEPENDENT DOMINATING SET. In the following theorem we establish a strongly negative dif-
ferential approximation result showing that any polynomial approzimation algorithm for MIN
INDEPENDENT DOMINATING SET has (worst-case) differential approximation ratio equal to 0.

Theorem 6. If P # NP, then, for any decreasing § : N — (0,1), MIN INDEPENDENT
DOMINATING SET on graphs of order n is not differential 6(n)-approzimable.

Proof. We show that, for any d(n) € (0, 1), a polynomial time differential ¢(n)-approximation
algorithm A for MIN INDEPENDENT DOMINATING SET, could distinguish in polynomial time if
an instance of SAT on n variables is satisfiable or not.

Given an instance ¢ of SAT with n variables x1, . .., z, and m clauses C1, . .., Cy,, we construct
a graph G, instance of MIN INDEPENDENT DOMINATING SET as follows. With each positive
literal x; we associate a vertex u; and for each negative literal Z; we associate a vertex v;. For

i =1,...,n we draw edges (u;,v;). For any clause C; we add in G a vertex w; and an edge
between w; and each vertex corresponding to a literal contained in C;. Finally, we add edges
in G in order to obtain a complete graph on wy, ..., wy,.



Remark that an independent set of G contains at most n + 1 vertices since it contains at
most one vertex among wi, ..., W, and at most one vertex among u; and v; for i = 1,...,n.
An independent dominating set containing the vertices corresponding to true literals of a non
satisfiable assignment and one vertex corresponding to a clause not satisfied by this assignment
is a worst solution of G of size n + 1.

If ¢ is satisfiable then opt(G) = n since the set of vertices corresponding to the true literals
of an assignment satisfying ¢ is an independent dominating set (each vertex w; is dominated by
a vertex corresponding to a true literal of C}j) of minimum size. On the other hand, if ¢ is not
satisfiable then opt(G) = n + 1.

In fact any independent dominating set of G has cardinality either n, or n 4+ 1. Hence, if A
computes a solution of value n then ¢ is satisfiable, otherwise ¢ is not satisfiable. il

As we have already mentioned, an interesting consequence of theorem 6 above is that unless
P = NP, any polynomial time approximation algorithm for MIN INDEPENDENT DOMINATING
SET has worst-case differential approzimation ratio equal to 0. This makes MIN INDEPENDENT
DOMINATING SET one of the hardest problems for the differential approximation. Let us note
that, to our knowledge, no problem verifying a statement as the one of theorem 6 were known until
now for the differential approximation. Moreover, theorem 6 has also the following interesting
corollary.

Corollary 3. Any approzximation algorithm for MIN INDEPENDENT DOMINATING SET-B that
achieves approzimation ratio §(B), for any decreasing function 6 : N — (0,1), has time-
complexity exponential in B.

Consider the refinement, due to Arora et al.( [1]), of Cook’s theorem on the NP-hardness of
3SAT.

Theorem 7. ([1]) Let L be a language in NP. There exists a polynomial-time algorithm and
a constant 0 < € < 1 such that, given any input x, the algorithm constructs an instance @y of
3SAT which satisfies the following properties:

1. if x € L, then p, is satisfiable;
2. if x ¢ L, then no assignment satisfies more than a fraction (1 — ¢) of the clauses.

Using now the L-reduction of [12] from MAX 3SAT to MAX 3SAT(4,4), and observing that
satisfiable instances are mapped into satisfiable instances, theorem 7 holds also if we replace
3SAT with 3SAT(4,4) and & with some constant &’. This allows us to provide an upper bound for
the differential approximation ratio of any algorithm polynomially solving MIN INDEPENDENT
DOMINATING SET-B.

Theorem 8. MIN INDEPENDENT DOMINATING SET-B is not differential f(B)-approximable,
for f(B)=1—(2¢/(B—15)/(2B —5)), unless P = NP.

Proof. We show that if MIN INDEPENDENT DOMINATING SET-B was differential f(B)-ap-
proximable, then we could distinguish in polynomial time if an instance of MAX 3SAT(4,4) is
satisfiable or at most a fraction (1 — ¢’) of the clauses are satisfied.

Given an instance ¢ of 3SAT(4,4) with n variables z1, ..., x, and m clauses Cj,...,Cp,, we
construct a graph G, instance of MIN INDEPENDENT DOMINATING SET-B, as follows. With
each positive literal x; we associate a vertex u;, and with each negative literal Z; we associate a

vertex v;. For i = 1,...,n we draw in G the edges w;v;. Also with each clause C; we associate
c = |(B—1)/4] vertices wji,...,wj.. For each clause C; we add in G an edge between each
wjk, k=1,...,cand any vertex corresponding to a literal contained in C}.



Suppose that each literal appears at least once. Remark that an independent set of G contains
at most m - ¢ vertices. An independent dominating set containing the vertices corresponding to
the m clauses of ¢ is a worst solution of size m - c.

If ¢ is satisfiable then opt(G) = n since the set of vertices corresponding to the true literals
of an assignment satisfying ¢ is an independent dominating set (each vertex wjj is dominated
by a vertex corresponding to a true literal of C;) of minimum size. On the other hand, if the
optimal value of ¢ is m' < (1 —&’)m then opt(G) =n+ (m—m')-c=2n+¢e -m-c.

We show that a differential f(B)-approximation algorithm A for MIN INDEPENDENT DOMI-
NATING SET-B with f(B) =1— (2¢/(B —5)/(2B — 5)) gives in the case where ¢ is satisfiable a
solution of value less that the value of the optimum solution in the case where ¢ is not satisfiable.

Denote by val the value of the solution computed by A. Then, (m-c—val)/(m-c—mn) >
f(B). Since c < (B—1)/4and m < 8n/3,val<n+ (m-&'(B—-5)/4) <n+m-£ ¢, qed. 1

6 Discussion

We have given in this paper differential inapproximability results for optimal satisfiability prob-
lems, as well as for MIN INDEPENDENT DOMINATING SET. For this problem we have shown that
any polynomial time approximation algorithm has worst-case differential approximation ratio 0.
This result brings MIN INDEPENDENT DOMINATING SET to the status of one of the hardest
problems for the differential approximation.

Differential approximation for optimal satisfiability misses until now in positive results. De-
spite our efforts, the only one we have been able to produce is the one of section 3.3 on a class of
instances of MAX NAE 3SAT, the satisfiable ones. It would be interesting to produce non-trivial
such results and this is a major open problem. However, it seems to us that, in the opposite
of the standard approximation, obtaining constant differential approximation ratios for optimal
satisfiability is a rather hard task.

As we have already mentioned, results as the one of theorem 6 have not been produced until
now. However such strongly negative results are very interesting since they draw the hardest
of the NP-hard problems classes in the differential approximability hierarchy. Establishing such
results for other problems is an equally interesting open problem.
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