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Abstra
tWe study the di�erential approximability of several optimization satis�ability problems.We prove that, unless co− RP = NP,Min Sat is not di�erential 1/m1−ε-approximable forany ε > 0, where m is the number of 
lauses. We also prove that any di�erential approxi-mation algorithm for Max Minimal Vertex Cover 
an be transformed into a di�erentialapproximation algorithm for Min kSat a
hieving the same di�erential performan
e ratio.This leads us to study the di�erential approximability of Max Minimal Vertex Coverand Min Independent Dominating Set. Both of them are equivalent for the di�erentialapproximation. For these problems we prove a strong inapproximability result, informally,unless P = NP, any approximation algorithm has worst-
ase approximation ratio equal to 0.Keywords: Combinatorial optimization, Complexity theory, Heuristi
s.1 Introdu
tionIn this paper we deal with the approximation of 
lassi
al optimization satis�ability problems asMax and Min Sat, Max and Min DNF, as well as of restri
tive versions of these problemsas the ones where the size of any 
lause is bounded, or/and the number of the o

urren
esof any literal is bounded. We also deal with some related graph-problems as Max and MinIndependent Dominating Set and Max and Min Minimal Vertex Cover. We study theapproximability of all these problems (formally de�ned in se
tion 2) using the so-
alled di�erentialapproximation ratio whi
h, informally, for an instan
e I measures the relative position of thevalue of an approximated solution in the interval [worst-value feasible solution of I, optimal-value solution of I℄.Optimization satis�ability problems are of interest from both theoreti
al and pra
ti
al pointsof view. On the one hand, the satis�ability problem (Sat) is the �rst 
omplete problem for NP.On the other hand, many problems in mathemati
al logi
 and in arti�
ial intelligen
e 
an beexpressed in terms of versions of Sat; 
onstraints satisfa
tion is one su
h version. Also problemsin database integrity 
onstraints or in knowledge bases 
an be seen as optimization satis�abil-ity problems. Finally, some approa
hes to indu
tive inferen
e 
an be modeled as Max Satproblems ([9, 10℄).All the problems dealt in this paper have no polynomial time approximation s
hemata forthe standard approximation (where one measures the ratio between the value of the approximatesolution of an instan
e and the value of an optimal one). The Sat problems admit algorithmsa
hieving 
onstant standard approximation ratio, while algorithms for the DNF ones do notguarantee su
h ratios (more details about the standard approximability of all these problems
an be found in [4, 5℄). The Min Vertex Cover (
alled Min Minimal Vertex Cover
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in this paper) is standard 2-approximable, while the Max Independent Set (
alled MaxIndependent Dominating Set in the paper) 
annot be approximated within n1−ε, for any
ε > 0, unless co − RP = NP ([8℄). On the other hand, Min Independent Dominating Setis standard approximable within B where, B is the maximum graph-degree ([11℄), while theMax Minimal Vertex Cover has, to our knowledge, not been studied yet in the standardapproximation.The initial obje
tive of the paper was to study the di�erential approximability of some op-timization satis�ability problems de�ned in se
tion 2. This study has exhibited an interestingrelationship betweenMin kSat andMin Minimal Vertex Cover whi
h 
an be informally de-s
ribed as follows: any di�erential approximation algorithm for Min Minimal Vertex Cover
an be transformed into a di�erential approximation algorithm for Min kSat a
hieving the samedi�erential performan
e ratio. On the other hand, as we will see just below, Max MinimalVertex Cover is equivalent, for the di�erential approximation, to the well-known Min Inde-pendent Dominating Set. We are so led to study di�erential approximation results for MaxMinimal Vertex Cover and Min Independent Dominating Set.All the problems we deal with in this paper have the 
hara
teristi
 that 
omputation of boththeir optimal and worst solutions is NP-hard (for example, 
onsidering an instan
e ϕ of Max
kSat, its worst solution is an assignment satisfying the minimum number of the 
lauses of ϕ,i.e., an optimal solution for Min kSat on ϕ). Remark also that, given a graph G = (V, E),the 
omplement, with respe
t to V of a vertex 
over (resp., independent set) is an independentset (resp., vertex 
over) of G. In other words, the obje
tive values of Min (Max) MinimalVertex Cover and of Min (Max) Independent Dominating Set are linked by a�netransformations. On the other hand, the di�erential approximation ratio is stable for the a�netransformation, in the sense that pairs of problems, the obje
tive values of whi
h are linked bya�ne transformations, are di�erential equivalent. Hen
e the following fa
t holds: Min (Max)Minimal Vertex Cover and Max (Min) Independent Dominating Set are di�erentialequivalent.In what follows, we �rst study di�erential approximation preserving redu
tions for several op-timization satis�ability problems. Combining them with a general result linking approximabilityof maximization problems in di�erential and standard approximations, we obtain interesting dif-ferential inapproximability results for optimal satis�ability. We also prove thatMin kSat(B, B̄)and Max kSat(B, B̄) redu
e to Min Minimal Vertex Cover-B′ and Min IndependentDominating Set-B′, respe
tively, where B′ = kB. These redu
tions lead us to study the dif-ferential approximation of Min Independent Dominating Set. For this problem we provea strong inapproximability result, informally, unless P = NP, any approximation algorithm hasworst-
ase approximation ratio equal to 0. To our knowledge, no su
h result was previouslyknown for the di�erential approximation.2 PreliminariesWe �rst re
all a few de�nitions about di�erential and standard approximabilities. Given aninstan
e I of an optimization problem and a feasible solution S of I, we denote by m(I, S) thevalue of the solution S, by opt(I) the value of an optimal solution of I, and by ω(I) the value ofa worst solution of I. The standard performan
e, or approximation, ratio of S is de�ned as

r(I, S) = max

{

m(I, S)

opt(I)
,

opt(I)

m(I, S)

}

while the di�erential performan
e, or approximation, ratio of S is de�ned as
ρ(I, S) =

|m(I, S) − ω(I)|

|opt(I) − ω(I)|
.
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It is easy to see that the di�erential approximation ratio (originally de�ned in [3℄ and furtherdepthened in [7℄) is stable for the a�ne transformation of the obje
tive fun
tion of a problem,while this does not hold for the standard approximation ratio.For a fun
tion f , f(n) > 1, an algorithm is a standard f(n)-approximation algorithm for aproblem Π if, for any instan
e I of Π, it returns a solution S su
h that r(I, S) 6 f(|I|), where |I|is the size of I. We say that an optimization problem is standard 
onstantly approximable if,for some 
onstant c > 1, there exists a polynomial time standard c-approximation algorithmfor it. An optimization problem has a standard polynomial time approximation s
hema if ithas a polynomial time standard (1 + ε)-approximation, for every 
onstant ε > 0. Similarly,for a fun
tion f , f(n) < 1, an algorithm is a di�erential f(n)-approximation algorithm for aproblem Π if, for any instan
e I of Π, it returns a solution S su
h that ρ(I, S) > f(|I|). We saythat an optimization problem is di�erential 
onstantly approximable if, for some 
onstant δ < 1,there exists a polynomial time di�erential δ-approximation algorithm for it. An optimizationproblem has a di�erential polynomial time approximation s
heme if it has a polynomial timedi�erential (1 + ε)-approximation, for every 
onstant ε > 0. We say that two optimizationproblems are di�erential equivalent if a di�erential δ-approximation algorithm for one of themimplies a di�erential δ-approximation algorithm for the other one.Given two problems Π and Π′, we say that Π′ is di�erential redu
ible to Π, i� any di�erential
δ-approximation algorithm for Π 
an be used to approximately solve Π′ within di�erential ratio δ.In this paper, we study the di�erential approximability of the following NP-hard optimalsatis�ability problems.Max (Min) SatInput: a set of 
lauses (i.e., disjun
tions) C1, . . . , Cm on n variables x1, . . . , xn.Output: a truth assignment to the variables that maximizes (minimizes) the number of 
lausessatis�ed.Max (Min) DNFInput: a set of 
onjun
tions C1, . . . , Cm on n variables x1, . . . , xn.Output: a truth assignment to the variables that maximizes (minimizes) the number of 
on-jun
tions satis�ed.For a 
onstant k > 2, Max kSat, Max kDNF,Min kSat,Min kDNF are the versions ofMaxSat, Max DNF, Min Sat, Min DNF where ea
h 
lause or 
onjun
tion has size at most k.For two 
onstants B, B′ > 1, Max kSat(B, B̄′), Max kDNF(B, B̄′), Min kSat(B, B̄′), Min
kDNF(B, B̄′),Max Sat(B, B̄′),Max DNF(B, B̄′),Min Sat(B, B̄′),Min DNF(B, B̄′) are theversions of these problems where any positive literal appears at most B times and any negativeone appears at most B′ times.Max NAE 3SatInput: a set of 
onjun
tions C1, . . . , Cm of three literals on n variables x1, . . . , xn.Output: a truth assignment to the variables that maximizes the number of 
onjun
tions satis�edin su
h a way that any one of them has at least one true literal and at least one false literal.Min (Max) Minimal Vertex CoverInput: a graph G = (V, E).Output: a minimal vertex 
over (a set S ⊆ V su
h that, ∀(u, v) ∈ E, u ∈ S or v ∈ S) ofminimum (maximum) size.Min (Max) Independent Dominating SetInput: a graph G = (V, E).Output: a maximal independent set (a set S ⊆ V su
h that, ∀u, v ∈ S, (u, v) /∈ E and
∀u /∈ S, ∃v ∈ S, (u, v) ∈ E) of minimum (maximum) size.

3



In what follows, we denote byMin (Max) Independent Dominating Set-B andMin (Max)Minimal Vertex Cover-B the versions of the above problems on graphs with maximum degreebounded by B.Finally, note that the satis�ability problems dealt here have, under the di�erential approx-imation ratio, a natural interpretation. For instan
e, Max Sat 
an be seen as the problem ofdetermining a truth assignment that minimizes the number of falsi�ed 
lauses.3 Satis�ability problems3.1 Approximation preserving redu
tions for optimization satis�abilityWe �rst prove the di�erential equivalen
e for Max Sat and Min DNF and for Min Sat andMax DNF.Theorem 1. Max Sat and Min DNF, as well as Min Sat and Max DNF are di�erentialequivalent.Proof. We 
onstru
t a redu
tion from Max Sat to Min DNF that preserves the di�erentialapproximation ratio. Let I be an instan
e of Max Sat on n variables and m 
lauses. Theinstan
e I ′ of Min DNF 
ontains m 
lauses and the same set of n variables. With ea
h 
lause
ℓ1∨ . . .∨ℓt of I we asso
iate in I ′ the 
onjun
tion ℓ̄1∧ . . .∧ ℓ̄t, where ℓ̄i = x̄j if ℓi = xj and ℓ̄i = xjif ℓi = x̄j . It is easy to see that opt(I ′) = m−opt(I) and ω(I ′) = m−ω(I). Also, if m(I ′, y) is thevalue of the solution y in I ′, then the same solution y has in I the value m(I, y) = m−m(I ′, y).Thus, ρ(I, y) = ρ(I ′, y). The redu
tion from Min DNF to Max Sat is the same.By an exa
tly similar redu
tion, one 
an prove that Min Sat and Max DNF are alsoapproximate equivalent.By the proof of theorem 1 one easily 
an dedu
e that for ea
h 
onstant k > 2, Max kSatand Min kDNF as well as Min kSat and Max kDNF are di�erential equivalent.Consider an instan
e I of a maximization problem Π, an approximation algorithm A for Πand denote by S a feasible solution of Π 
omputed by A in I. Then,

mA(I, S) − ω(I)

opt(I) − ω(I)
> δ =⇒

mA(I, S)

opt(I)
> δ + (1 − δ)

ω(I)

opt(I)

ω(I),opt(I)>0
=⇒

mA(I, S)

opt(I)
> δand the following proposition immediately holds.Proposition 1. Approximation of a maximization problem Π within di�erential approximationratio δ, implies approximation of Π within standard approximation ratio 1/δ.Combining the results of theorem 1 and proposition 1 with the fa
t that for k > 2, B > 2and B′ > 1, Max kSat(B, B̄′) and Max kDNF(B, B̄′) have no standard polynomial timeapproximation s
hemata ([2℄), one dedu
es the following.Corollary 1. For k > 2, and (B, B′) > (2, 1), or (B, B′) > (1, 2), Max kSat(B, B̄′), Max

kDNF(B, B̄′), Min kSat(B, B̄′) and Min kDNF(B, B̄′) have no di�erential polynomial timeapproximation s
hemata, unless P = NP.3.2 Min Sat and Min Vertex CoverMin Vertex Cover is as the Min Minimal Vertex Cover de�ned in se
tion 2 modulo thefa
t that the feasible solutions for the former are not mandatorily minimal. In what follows, byredu
tion from Min Vertex Cover, we establish an inapproximability result for Min Sat.
4



Theorem 2. Unless co − RP = NP, Min Sat is not di�erential 1/m1−ε-approximable forany ε > 0, where m is the number of 
lauses of the instan
e.Proof. Let G = (V, E) be a graph on n verti
es and denote by V = {1, . . . , n} its vertex set.In order to 
onstru
t an instan
e I of Min Sat, at ea
h edge (i, j) ∈ E, i < j we asso
iate avariable xij . For ea
h vertex i we de�ne a 
lause Ci, where
Ci =

∨

j:(i,j)∈E∧i<j

xij ∨
∨

j:(i,j)∈E∧i>j

x̄ji.

From a vertex 
over C of G we de�ne an assignment as follows. For ea
h i /∈ C and ea
h
(i, j) ∈ E, xji = 1 if i > j and xij = 0 if i < j. Sin
e C is a vertex 
over, this de�nition is not
ontradi
tory. If i /∈ C, then Ci is not satis�ed and so opt(I) 6 opt(G).Given an assignment v of I, let C = {i : Ci is satis�ed}. Note that set C is a vertex 
oversin
e for (i, j) ∈ E, at least one of Ci and Cj is satis�ed and so at least one of the verti
es
i, j appears in C. So, at ea
h assignment v of I, we asso
iate in G a vertex 
over C with
m(G, C) = m(I, v). This also proves that opt(I) = opt(G).Finally, using ω(I) 6 ω(G), it is easy to show that ρ(G) > ρ(I).We have seen that Min Vertex Cover is di�erential equivalent to Max IndependentSet (whi
h is as Max Independent Dominating Set modulo the fa
t that the independentset to 
ompute has not to be minimal). On the other hand sin
e the worst solution for MaxIndependent Set is the empty set (in other words, ω(I) = 0, ∀I), standard and di�erentialapproximation ratios 
oin
ide. Furthermore, Max Independent Set is not di�erential 1/n1−ε-approximable for any ε > 0, unless co − RP = NP ([8℄). Consequently, Min Vertex Coveris not di�erential 1/n1−ε-approximable for any ε > 0, unless co − RP = NP and the result
laimed follows.From the above proof the following 
orollary is also dedu
ed. In what follows, we denote byMin or Max Sat(B, B̄) the versions of Min or Max Sat(B, B̄′) with B = B′.Corollary 2. Min Sat(B, B̄) for B > 1 is not di�erential 1/m1−ε-approximable for any ε > 0,unless co − RP = NP.3.3 A positive di�erential approximation result for Max NAE 3SatWe show in this se
tion that a restri
tive version of Max NAE 3Sat, the one on satis�ableinstan
es is di�erential 
onstantly approximable by the standard 1.096-approximation algorithmof [13℄.Theorem 3. Max NAE 3Sat on satis�able instan
es is di�erential 0.649-approximable.Proof. Consider a satis�able instan
e ϕ of Max NAE 3Sat de�ned on m 
lauses; obviously,
opt(ϕ) = m. Run the standard 1.096-approximation algorithm of [13℄ on ϕ to obtain a solution Csatisfying m(ϕ, C) > m/1.096. On the other hand any random assignment by values in {0, 1}of the variables of ϕ, where any of the two values is assigned with probability 1/2, will feasiblysatisfy 3m/4 
lauses (in other words, the assignments (1, 1, 1) and (0, 0, 0) are to be ex
ludedfrom the eight possible assignments for ea
h 3-
lause); 
onsequently, ω(ϕ) 6 3m/4.Using the values for opt(ϕ), m(ϕ, C) and ω(ϕ), and the fa
t that the di�erential approxima-tion ratio de
reases with ω when dealing with maximization problems, we �nally get

m(ϕ, C) − ω(ϕ)

opt(ϕ) − ω(ϕ)
>

m
1.096 − 3

4m

m − 3
4m

=
0.712

1.096
> 0.649.On the other hand, using proposition 1 and the result of [13℄ that Max NAE 3Sat is notstandard approximable within 1.090, unless P=NP, the following is dedu
ed.5



Proposition 2. Max NAE 3Sat is not di�erential 0.917-approximable.4 Optimal satis�ability and Min Independent Dominating SetWe now show that Min kSat(B, B̄) is di�erential redu
ible to Min Minimal Vertex Cover-
B′. Note that an analogous result, dealing with standard approximation, is presented in [6℄between Min Sat and Min Vertex Cover. But this result does not work for the di�erentialapproximation.Theorem 4. Min kSat(B, B̄) is di�erential redu
ible to Min Minimal Vertex Cover-B′,where B′ = kB.Proof. Let I be an instan
e of Min kSat(B, B̄) with n variables and m 
lauses. In theinstan
e G of Min Minimal Vertex Cover, with ea
h 
lause Ci of I we asso
iate a vertex i.We draw an edge between i and j if there is a variable x su
h that Ci 
ontains x and Cj 
ontains x̄.The vertex-degrees of the so 
onstru
ted graph are bounded above by B′ = kB.From an assignment v of I we de�ne a vertex 
over C as the set of verti
es that 
orrespondto 
lauses satis�ed by v. So, opt(G) ≤ opt(I).From a vertex 
over C of G we de�ne a partial assignment v as follows: if i /∈ C and xj ∈ Cithen xj = 0, and if i /∈ C and x̄j ∈ Ci then xj = 1. Hen
e, if i /∈ C then Ci is not satis�ed by v.By the way v has been de�ned, the number of the non satis�ed 
lauses in I is greater than, orequal to, the number of verti
es that are not in C, i.e., m(I, v) ≤ m(G, C). This, together with
opt(G) ≤ opt(I) proved just above, implies opt(G) = opt(I).If C is a minimal vertex 
over (for ea
h i ∈ C there exists j /∈ C su
h that (i, j) ∈ E), then
m(I, v) = m(G, C) sin
e the 
lause Ci is satis�ed by v when i ∈ C. Consequently, in parti
ular,
ω(I) = ω(G) and this 
on
ludes the proof of the theorem.By a proof similar to the one of theorem 4, one 
an show that Max kSat(B, B̄) redu
es toMax Minimal Vertex Cover-B′. Sin
e the latter is di�erential equivalent to Min Indepen-dent Dominating Set-B′ the following theorem 
on
ludes the se
tion.Theorem 5. Max kSat(B, B̄) is di�erential redu
ible to Min Independent DominatingSet-B′, where B′ = kB.5 Min Independent Dominating SetThe results of se
tion 4 naturally bring us to study the di�erential approximation of Min In-dependent Dominating Set. In the following theorem we establish a strongly negative dif-ferential approximation result showing that any polynomial approximation algorithm for MinIndependent Dominating Set has (worst-
ase) di�erential approximation ratio equal to 0.Theorem 6. If P 6= NP, then, for any de
reasing δ : N → (0, 1), Min IndependentDominating Set on graphs of order n is not di�erential δ(n)-approximable.Proof. We show that, for any δ(n) ∈ (0, 1), a polynomial time di�erential δ(n)-approximationalgorithm A for Min Independent Dominating Set, 
ould distinguish in polynomial time ifan instan
e of Sat on n variables is satis�able or not.Given an instan
e ϕ of Sat with n variables x1, . . . , xn and m 
lauses C1, . . . , Cm we 
onstru
ta graph G, instan
e of Min Independent Dominating Set as follows. With ea
h positiveliteral xi we asso
iate a vertex ui and for ea
h negative literal x̄i we asso
iate a vertex vi. For
i = 1, . . . , n we draw edges (ui, vi). For any 
lause Cj we add in G a vertex wj and an edgebetween wj and ea
h vertex 
orresponding to a literal 
ontained in Cj . Finally, we add edgesin G in order to obtain a 
omplete graph on w1, . . . , wm.6



Remark that an independent set of G 
ontains at most n + 1 verti
es sin
e it 
ontains atmost one vertex among w1, . . . , wm and at most one vertex among ui and vi for i = 1, . . . , n.An independent dominating set 
ontaining the verti
es 
orresponding to true literals of a nonsatis�able assignment and one vertex 
orresponding to a 
lause not satis�ed by this assignmentis a worst solution of G of size n + 1.If ϕ is satis�able then opt(G) = n sin
e the set of verti
es 
orresponding to the true literalsof an assignment satisfying ϕ is an independent dominating set (ea
h vertex wj is dominated bya vertex 
orresponding to a true literal of Cj) of minimum size. On the other hand, if ϕ is notsatis�able then opt(G) = n + 1.In fa
t any independent dominating set of G has 
ardinality either n, or n + 1. Hen
e, if A
omputes a solution of value n then ϕ is satis�able, otherwise ϕ is not satis�able.As we have already mentioned, an interesting 
onsequen
e of theorem 6 above is that unless
P = NP, any polynomial time approximation algorithm for Min Independent DominatingSet has worst-
ase di�erential approximation ratio equal to 0. This makes Min IndependentDominating Set one of the hardest problems for the di�erential approximation. Let us notethat, to our knowledge, no problem verifying a statement as the one of theorem 6 were known untilnow for the di�erential approximation. Moreover, theorem 6 has also the following interesting
orollary.Corollary 3. Any approximation algorithm for Min Independent Dominating Set-B thata
hieves approximation ratio δ(B), for any de
reasing fun
tion δ : N → (0, 1), has time-
omplexity exponential in B.Consider the re�nement, due to Arora et al.( [1℄), of Cook's theorem on the NP-hardness of3Sat.Theorem 7. ([1℄) Let L be a language in NP. There exists a polynomial-time algorithm anda 
onstant 0 < ε < 1 su
h that, given any input x, the algorithm 
onstru
ts an instan
e ϕx of3Sat whi
h satis�es the following properties:1. if x ∈ L, then ϕx is satis�able;2. if x /∈ L, then no assignment satis�es more than a fra
tion (1 − ε) of the 
lauses.Using now the L-redu
tion of [12℄ from Max 3Sat to Max 3Sat(4, 4̄), and observing thatsatis�able instan
es are mapped into satis�able instan
es, theorem 7 holds also if we repla
e3Sat with 3Sat(4, 4̄) and ε with some 
onstant ε′. This allows us to provide an upper bound forthe di�erential approximation ratio of any algorithm polynomially solving Min IndependentDominating Set-B.Theorem 8. Min Independent Dominating Set-B is not di�erential f(B)-approximable,for f(B) = 1 − (2ε′(B − 5)/(2B − 5)), unless P = NP.Proof. We show that if Min Independent Dominating Set-B was di�erential f(B)-ap-proximable, then we 
ould distinguish in polynomial time if an instan
e of Max 3Sat(4, 4̄) issatis�able or at most a fra
tion (1 − ε′) of the 
lauses are satis�ed.Given an instan
e ϕ of 3Sat(4,4̄) with n variables x1, . . . , xn and m 
lauses C1, . . . , Cm, we
onstru
t a graph G, instan
e of Min Independent Dominating Set-B, as follows. Withea
h positive literal xi we asso
iate a vertex ui, and with ea
h negative literal x̄i we asso
iate avertex vi. For i = 1, . . . , n we draw in G the edges uivi. Also with ea
h 
lause Cj we asso
iate
c = ⌊(B − 1)/4⌋ verti
es wj1, . . . , wjc. For ea
h 
lause Cj we add in G an edge between ea
h
wjk, k = 1, . . . , c and any vertex 
orresponding to a literal 
ontained in Cj .7



Suppose that ea
h literal appears at least on
e. Remark that an independent set of G 
ontainsat most m · c verti
es. An independent dominating set 
ontaining the verti
es 
orresponding tothe m 
lauses of ϕ is a worst solution of size m · c.If ϕ is satis�able then opt(G) = n sin
e the set of verti
es 
orresponding to the true literalsof an assignment satisfying ϕ is an independent dominating set (ea
h vertex wjk is dominatedby a vertex 
orresponding to a true literal of Cj) of minimum size. On the other hand, if theoptimal value of ϕ is m′ 6 (1 − ε′)m then opt(G) = n + (m − m′) · c > n + ε′ · m · c.We show that a di�erential f(B)-approximation algorithm A for Min Independent Domi-nating Set-B with f(B) = 1− (2ε′(B − 5)/(2B − 5)) gives in the 
ase where ϕ is satis�able asolution of value less that the value of the optimum solution in the 
ase where ϕ is not satis�able.Denote by val the value of the solution 
omputed by A. Then, (m · c − val)/(m · c − n) >

f(B). Sin
e c 6 (B − 1)/4 and m 6 8n/3, val 6 n + (m · ε′(B − 5)/4) < n + m · ε′ · c, q.e.d.6 Dis
ussionWe have given in this paper di�erential inapproximability results for optimal satis�ability prob-lems, as well as forMin Independent Dominating Set. For this problem we have shown thatany polynomial time approximation algorithm has worst-
ase di�erential approximation ratio 0.This result brings Min Independent Dominating Set to the status of one of the hardestproblems for the di�erential approximation.Di�erential approximation for optimal satis�ability misses until now in positive results. De-spite our e�orts, the only one we have been able to produ
e is the one of se
tion 3.3 on a 
lass ofinstan
es of Max NAE 3Sat, the satis�able ones. It would be interesting to produ
e non-trivialsu
h results and this is a major open problem. However, it seems to us that, in the oppositeof the standard approximation, obtaining 
onstant di�erential approximation ratios for optimalsatis�ability is a rather hard task.As we have already mentioned, results as the one of theorem 6 have not been produ
ed untilnow. However su
h strongly negative results are very interesting sin
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