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Place du Maréchal de Lattre de Tassigny, 75775 Paris Cedex 16, France

{aissi,bazgan,vdp}@lamsade.dauphine.fr

Abstract

Min-max and min-max regret criteria are commonly used to define robust solutions.
After motivating the use of these criteria, we present general results. Then, we survey
complexity results for the min-max and min-max regret versions of some combinatorial
optimization problems: shortest path, spanning tree, assignment, min cut, min s-t cut,
knapsack. Since most of these problems are NP -hard, we also investigate the approxima-
bility of these problems. Furthermore, we present algorithms to solve these problems to
optimality.

Keywords : Min-max, min-max regret, combinatorial optimization, complexity, approxima-
tion, robustness

1 Introduction

The definition of an instance of a combinatorial optimization problem requires to specify
parameters, in particular coefficients of the objective function, which may be uncertain or
imprecise. Uncertainty/imprecision can be structured through the concept of scenario which
corresponds to an assignment of plausible values to model parameters. There exist two natural
ways of describing the set of all possible scenarios. In the discrete scenario case, the scenario
set is described explicitly. In the interval scenario case, each numerical parameter can take
any value between a lower and an upper bound. The min-max and min-max regret criteria,
stemming from decision theory, are often used to obtain solutions hedging against parameters
variations. The min-max criterion aims at constructing solutions having the best possible
performance in the worst case. The min-max regret criterion, less conservative, aims at
obtaining a solution minimizing the maximum deviation, over all possible scenarios, between
the value of the solution and the optimal value of the corresponding scenario.

The study of these criteria is motivated by practical applications where an anticipation of
the worst case is crucial. For instance, consider the sensor placement problem when designing
contaminant warning systems for water distribution networks [22, 62]. A key deployment issue
is identifying where the sensors should be placed in order to maximize the level of protection.
Quantifying the protection level using the expected impact of a contamination event is not
completely satisfactory since the issue of how to guard against potentially high-impact events,
with low probability, is only partially handled. Therefore, standard approaches, such as
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deterministic or stochastic approaches, will fail to protect against exceptional high-impact
events (earthquakes, hurricanes, 9/11-style attacks,. . . ). In addition, reliable estimation of
contamination event probabilities is extremely difficult. Min-max and min-max regret criteria
are appropriate in this context by focusing on a subset of high-impact contamination events,
and placing sensors so as to minimize the impact of such events.

The purpose of this paper is to review the existing literature on the min-max and min-max
regret versions of combinatorial optimization problems with an emphasis on the complexity,
the approximation and the exact resolution of these problems, both for the discrete and
interval scenario cases.

The paper is organized as follows. Section 2 introduces, illustrates and motivates the
min-max and min-max regret criteria. General results for these two criteria are presented
in section 3. Section 4 provides complexity results for the min-max and min-max regret
versions of various combinatorial optimization problems. Since most of these problems are
NP -hard, section 5 describes the approximability of these problems. Section 6 describes exact
procedures to solve min-max and min-max regret versions in the discrete and interval scenario
cases. Conclusions are provided in the final section.

2 Presentation and motivations

We consider in this paper the class C of 0-1 problems with a linear objective function defined
as: {

min(or max)
∑n

i=1 cixi ci ∈ N

x ∈ X ⊂ {0, 1}n
(1)

This class encompasses a large variety of classical combinatorial problems, some of which
are polynomial-time solvable (shortest path problem, minimum spanning tree, . . . ) and others
are NP -difficult (knapsack, set covering, . . . ).

In the following, all the definitions and results are presented for minimization problems
P ∈ C. In general, they also hold with minor modifications for maximization problems, except
for some cases that will be explicitly mentioned.

2.1 Min-max, min-max regret versions

In the discrete scenario case, the min-max or min-max regret version associated to a mini-
mization problem P ∈ C has as input a finite set S of scenarios where each scenario s ∈ S is
represented by a vector cs = (cs

1, . . . , c
s
n), with cs

i ∈ N, i = 1, . . . , n
In the interval scenario case, each coefficient ci can take independently any value in the

interval [ci, ci], where 0 ≤ ci ≤ ci. In this case, the scenario set S is the cartesian product
of the intervals [ci, ci], i = 1, . . . , n. An extreme scenario is a scenario where ci = ci or ci,
i = 1, . . . , n.

We denote by val(x, s) =
∑n

i=1 cs
ixi the value of solution x ∈ X under scenario s ∈ S, by

x∗
s an optimal solution under scenario s, and by val∗s = val(x∗

s, s) the corresponding optimal
value.

The min-max version corresponding to P consists of finding a solution having the best
worst case value across all scenarios, which can be stated as:

min
x∈X

max
s∈S

val(x, s) (2)
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This version is denoted by Discrete Min-Max P in the discrete scenario case, and by
Interval Min-Max P in the interval scenario case.

Given a solution x ∈ X, its regret, R(x, s), under scenario s ∈ S is defined as R(x, s) =
val(x, s) − val∗s . The maximum regret Rmax(x) of solution x is then defined as Rmax(x) =
maxs∈S R(x, s).

The min-max regret version corresponding to P consists of finding a solution minimizing
its maximum regret, which can be stated as:

min
x∈X

Rmax(x) = min
x∈X

max
s∈S

(val(x, s) − val∗s) (3)

This version is denoted by Discrete Min-Max Regret P in the discrete scenario case,
and by Interval Min-Max Regret P in the interval scenario case.

For maximization problems, the corresponding max-min and min-max regret versions can
be defined.

A related problem, which is not reviewed in the current paper, is the min-max relative
regret version where the relative regret of a solution x ∈ X under scenario s ∈ S is given by
val(x,s)−val∗s

val∗s
. For this version, the interested reader can refer to [43] for the discrete scenario

case and to [14] for the interval scenario case.

2.2 An illustrative example

In order to illustrate the previous definitions and to show the interest of using the min-max
and min-max regret criteria, we consider a capital budgeting problem with uncertainty or
imprecision on the expected profits. Suppose we wish to invest a capital b and we have
identified n investment opportunities. Investment i requires a cash outflow wi at present
time and yields an expected profit pi at some term, i = 1, . . . , n. Due to various exogenous
factors (evolution of the market, inflation conditions, . . . ), the profits are evaluated with
uncertainty/imprecision.

The capital budgeting problem is a knapsack problem where we look for a subset I ⊆
{1, . . . , n} of items such that

∑
i∈I wi ≤ b which maximizes the total expected profit, i.e.,∑

i∈I pi.
Depending on the type of uncertainty or imprecision, we use either discrete or interval

scenarios. When the profits of investments are influenced by the occurrence of well-defined
future events (e.g., different levels of market reactions, public decisions of constructing or
not a facility which would impact on the investment projects), it is natural to define discrete
scenarios corresponding to each event. When the evaluation of the profit is simply imprecise,
a definition using interval scenarios is more appropriate.

As an illustration, consider a small size capital budgeting problem where profit uncertainty
or imprecision is modelled with three discrete scenarios or with interval scenarios. Numerical
values are given in Table 1 with b = 12 and n = 6.

In the discrete scenario case, we observe in Table 2 that the optimal solutions of the three
scenarios are not completely satisfactory since they give low profits in some scenarios. An
appropriate solution should behave well under any variation of the future profits. In this
example, optimal solutions to max-min and min-max regret versions are more acceptable
solutions since their performances are more stable. A risk-averse decision maker would favor
the max-min solution that guarantees at least 12 in all scenarios. If the decision maker is
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i wi p1
i p2

i p3
i p

i
pi

1 3 4 3 3 3 5
2 5 8 4 6 2 6
3 2 5 3 3 2 5
4 4 3 2 4 2 3
5 5 2 8 2 3 9
6 3 4 6 2 1 7

Table 1: Cash outflows and profits of the investments

1 2 3 Optimal solution

17 10 12 scenario 1: (1,1,1,0,0,0)
11 17 7 scenario 2: (0,0,1,0,1,1)
16 9 13 scenario 3: (0,1,1,1,0,0)
15 12 12 max-min: (0,1,0,1,0,1)
15 15 11 min-max regret: (0,1,1,0,1,0)

Table 2: Optimal values and solutions (discrete scenario case)

willing to accept a small degradation of the performance in the worst case scenario with
an increase of the average performance over all scenarios, then the optimal solution of the
min-max regret version is more appropriate than the optimal solution of the min-max version.

In the interval scenario case, the optimal solution to the max-min version is obtained by
considering only the worst-case scenario p = (p

1
, . . . , p

6
) and corresponds to x1 = x3 = x5 = 1,

x2 = x4 = x6 = 0 with a worst value 8. The obtained solution only depends on one scenario
and, in particular, is completely independent of the interval upper bound values. An optimal
solution of the min-max regret version is given by x1 = x5 = x6 = 1, x2 = x3 = x4 = 0 with a
worst value and a maximum regret 7. Unlike for the max-min criterion, the optimal min-max
regret solution does depend on the interval lower and upper bound values. In particular,
when an interval upper bound increases, the maximum regret of each feasible solution either
increases or remains stable. Obviously, this may impact on the resulting optimal solution.
For instance, if we increase p3 from 5 to 8, the new min-max regret optimal solution becomes
x3 = x5 = x6 = 1, x1 = x2 = x4 = 0 with a worst value 6 and a maximum regret 8. Observe,
in the previous example, that improving the prospects of investment 3 leads to include this
investment in the new optimal solution.

2.3 Relevance and limits of the min-max (regret) criteria

When uncertainty or imprecision on the parameter values of decision aiding models is a crucial
issue, decision makers may not feel confident using results derived from parameters taking
precise values. Robustness analysis is a theoretical framework that enables the decision maker
to take into account uncertainty or imprecision in order to produce decisions that will behave
reasonably under any likely input data (see, e.g., Roy [57], Vincke [60], Hites et al. [32] for
general contexts, Kouvelis and Yu [43] in combinatorial optimization, and Mulvey et al. [54] in
mathematical programming). Different criteria can be used to select among robust decisions.
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The min-max and min-max regret criteria are often used to obtain conservative decisions
to hedge against variations of the input data [56]. We briefly review situations where each
criterion is appropriate.

The min-max criterion is suited for non-repetitive decisions (construction of a high voltage
line, highway, . . . ) and for decision environments where precautionary measures are needed
(nuclear accidents, public health). In such cases, classical approaches like deterministic or
stochastic optimization are not relevant. This criterion is also appropriate in competitive
situations [56] or when the decision maker must reach a pre-defined goal (sales, inventory,
. . . ) under any variation of the input data.

The min-max regret criterion is suitable in situations where the decision maker may feel
regret if he/she makes a wrong decision. He/she thus takes this anticipated regret into account
when deciding. For instance, in finance, an investor may observe not only his own portfolio
performance but also returns on other stocks or portfolios in which he was able to invest
but decided not to [28]. Therefore, it seems very natural to assume that the investor may
feel joy/disappointment if his own portfolio outperformed/underperformed some benchmark
portfolio or portfolios. The min-max regret criterion reflects such a behavior and is less
conservative than the min-max criterion since it considers missed opportunities. It has also
been shown that, in the presence of uncertainty on prices and yields, the behavior of some
economical agents (farmers) could sometimes be better predicted using a min-max regret
criterion, rather than a classical profit maximization criterion [41].

Maximum regret can also serve as an indicator of how much the performance of a decision
can be improved if all uncertainties/imprecisions could be resolved [43]. The min-max regret
criterion is relevant in situations where the decision maker is evaluated ex-post.

Another justification of the min-max regret criterion is as follows. In uncertain/imprecise
decision contexts, a reasonable objective is to find a solution with performances as close as
possible from the optimal values under all scenarios. This amounts to setting a threshold ε
and looking for a solution x ∈ X such that val(x, s)− val∗s ≤ ε, for all s ∈ S. Equivalently, x
should satisfy Rmax(x) ≤ ε. Then, looking for such a solution with ε as small as possible is
equivalent to determining a min-max regret solution.

Min-max and min-max regret criteria are simple to use since they do not require any
additional information unlike other approaches based on probability or fuzzy set theory. Fur-
thermore, they are often considered as reference criteria and a starting point in robustness
analysis. However, the min-max and min-max regret criteria are sometimes inappropriate.
In some situations, these criteria are too pessimistic for decision makers who are willing to
accept some degree of risk. In addition, they attach a great importance to worst case scenarios
which are sometimes unlikely to occur. In the discrete scenario case, this difficulty could be
handled, at the modelling stage, by including only relevant scenarios in the scenario set. In
the interval scenario case, min-max and min-max regret optimal solutions are obtained for
extreme scenarios, as will be shown in section 3.2. Clearly not all these scenarios are likely
to happen and this limits the applicability of these criteria. This difficulty becomes all the
more important than the intervals get larger.

Some approaches have been designed so as to reduce these drawbacks. In the discrete
scenario case, Daskin et al. [26] propose a model called the α-reliable min-max regret model
that identifies a solution that minimizes the maximum regret with respect to a selected subset
of scenarios whose probability of occurrence is at least some user-defined value α. Kalai et al.
[34] propose another approach called lexicographic α-robustness which, instead of focusing on
the worst case, considers all scenarios in lexicographic order, from the worst to the best, and
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also includes a tolerance threshold α in order not to discriminate among solutions with similar
values. In the interval scenario case, Bertsimas and Sim [20, 21] propose a robustness model
with a scenario set restricted to scenarios where the number of parameters that are pushed
to their upper bounds is limited by a user-specified parameter. The robust version obtained
using this model has the same approximation complexity as the classical version. This is
a clear advantage over the classical robustness criteria since their robust counterpart are
generally NP -hard. The main difficulty is, however, the definition of this technical parameter
whose value may impact on the resulting solution.

3 General results on min-max (regret) versions

We present in this section general results that give an insight on the nature and difficulty
of min-max (regret) versions. They also serve as a basis for further results or algorithms
presented in the next sections.

3.1 Discrete scenario case

3.1.1 Relationships between min-max (regret) and classical versions

We investigate, in this part, the quality of the solutions obtained by solving P for specific
scenarios.

A first attempt to solve Discrete Min-Max (Regret) P is to construct an optimal
solution x∗

s for each scenario s ∈ S, compute maxs∈S val(x∗
s, s) (or Rmax(x∗

s)), and then, select
the best of the obtained candidate solutions. However, this solution can be very bad, since
the gap between its value and the optimal value may increase exponentially in the size of the
instance as we can see in the following example. Consider for example a pathological instance
of Discrete Min-Max (Regret) Shortest Path. Figure 1 depicts a graph G = (V,A)
with 2n vertices where each arc is valued by costs on 2 scenarios. The optimal solution in the
first scenario is given by path 1, n + 1, . . . , 2n − 1, 2n with values (0, 2n − 1), a worst value
2n − 1 and a maximum regret 2n − 1, whereas the optimal solution in the second scenario is
given by path 1, 2, . . . , n, 2n with values (2n − 1, 0), a worst value 2n − 1, and a maximum
regret 2n − 1. However, the optimal solution of the min-max and min-max regret versions is
given by path 1, 2n with a worst value 1 and a maximum regret 1. Thus the gap between the
best value (regret) among the optimal solutions of each scenario and the optimum of min-max
(min-max regret) is 2n − 2.

1

2 3 n

n + 1 n + 2 2n− 1

2n

(20,0)

(0,20)

(2n−1,0)

(0,2n−1)

(21,0)

(0,21)

(1,1)

Figure 1: A critical instance of Discrete Min-Max (Regret) Shortest Path where optimal
solutions in each scenario are very bad

The previous example shows that by solving P for all scenarios in S, we cannot guarantee
the performance of the obtained solution. Another idea is to solve problem P for a fictitious
scenario in the hope that the obtained solution has a good performance. The following
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proposition considers the median scenario, i.e. with costs corresponding to the average value
over all scenarios.

Proposition 1 ([43]) Consider an instance I of Discrete Min-Max P (or Discrete
Min-Max Regret P) with k scenarios where each scenario s ∈ S is represented by (cs

1, . . . , c
s
n)

and where P is a minimization problem. Consider also an instance I ′ of P where each coef-
ficient of the objective function is defined by c′i =

∑k
s=1

cs

i

k , i = 1, . . . , n. Then x′ an optimal
solution of I ′ is such that maxs∈S val(x′, s) ≤ k.opt(I) (or Rmax(x′) ≤ k.opt(I)) where opt(I)
denotes the optimal value of instance I.

Proof : Consider an instance I of Discrete Min-Max Regret P. Let x′ be an optimal
solution of I ′. We first show that L =

∑
s∈S

1
k (val(x′, s)− val∗s) is a lower bound of opt(I).

L = min
x∈X

1

k

∑

s∈S

(val(x, s) − val∗s) ≤ min
x∈X

1

k
k max

s∈S
(val(x, s) − val∗s) = opt(I)

Moreover, U = maxs∈S(val(x′, s)− val∗s) is clearly an upper bound of opt(I) and we get

min
x∈X

max
s∈S

(val(x, s) − val∗s) ≤ max
s∈S

(val(x′, s)− val∗s) ≤
∑

s∈S

(val(x′, s)− val∗s)

= kL ≤ k.opt(I)

The proof for Discrete Min-Max P is exactly the same except that we take L =
∑

s∈S
1
kval(x′, s)

and U = maxs∈S val(x′, s) as lower and upper bounds of opt(I), and we remove val∗s every-
where in the proof. 2

Considering a maximization problem P, we can define lower and upper bounds L and U
similarly. For the min-max regret version, we also obtain a k-approximate solution in this
way. However, the previous result does not hold for the max-min version since the ratio U

L
is not bounded. In particular, for the knapsack problem, this ratio can be exponential in the
size of the input, as noticed in [64].

An alternative idea is to solve problem P on a fictitious scenario, called pessimistic sce-
nario, with costs corresponding to the worst values over all scenarios.

Proposition 2 Consider an instance I of Discrete Min-Max P with k scenarios where
each scenario s ∈ S is represented by (cs

1, . . . , c
s
n) and where P is a minimization problem.

Consider also an instance I ′ of P where each coefficient of the objective function is defined by
c′i = maxs∈S cs

i , i = 1, . . . , n. Then x′ an optimal solution of I ′ is such that maxs∈S val(x′, s) ≤
k.opt(I) where opt(I) denotes the optimal value of instance I.

Proof : Let x∗ denote an optimal solution of instance I. We have

max
s∈S

n∑

i=1

cs
ix

′
i ≤

n∑

i=1

c′ix
′
i ≤

n∑

i=1

c′ix
∗
i ≤

n∑

i=1

∑

s∈S

cs
ix

∗
i

=
∑

s∈S

n∑

i=1

cs
ix

∗
i ≤ k.max

s∈S

n∑

i=1

cs
ix

∗
i = k.opt(I)

2
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The same result cannot be extended to the min-max regret version. Figure 2 illustrates
a critical instance of Discrete Min-Max Regret Shortest Path with two scenarios.
The optimal solution for the first and second scenario is the same and corresponds to path
1, n − 1, n. Thus, this path is the min-max regret optimal solution with a maximum regret
0. However, the optimal solution for the pessimistic scenario is given by path 1, 2, . . . , n with
maximum regret 2n.

1

2 3 4 n− 2

n− 1

n

(2n, 2n)

(0,2n + 1)

(2n, 2n) (0, 0)

(0, 0)

(2n,0)

Figure 2: A critical instance of Discrete Min-Max Regret Shortest Path where the optimal
solution in the pessimistic scenario is very bad

Extension of Proposition 2 to a maximization problem P does not hold neither for Dis-
crete Max-Min P nor for Discrete Min-Max Regret P.

Quite interestingly, however, solving P for the pessimistic scenario leads to optimal solu-
tions for the specific class of bottleneck problems defined as

{
minmaxi=1,...,n cixi ci ∈ N

x ∈ X ⊂ {0, 1}n

This class encompasses bottleneck versions of classical optimization problems (shortest
path, spanning tree, . . . ). The min-max and min-max regret bottleneck versions are defined
by (2) and (3) respectively, with val(x, s) = maxi=1,...,n cs

ixi.
These versions are denoted Discrete Min-Max (Regret) Bottleneck P in the dis-

crete scenario case, and Interval Min-Max (Regret) Bottleneck P in the interval
scenario case.

Proposition 3 Consider an instance I of Discrete Min-Max Bottleneck P with k sce-
narios where each scenario s ∈ S is represented by (cs

1, . . . , c
s
n) and where P is a minimization

problem. Consider also an instance I ′ of P where each coefficient of the objective function is
defined by c′i = maxs∈S cs

i , i = 1, . . . , n. Then x′ an optimal solution of I ′ is also an optimal
solution of I.

Proof :

min
x∈X

max
s∈S

val(x, s) = min
x∈X

max
s∈S

max
i=1,...,n

cs
ixi = min

x∈X
max

i=1,...,n
max
s∈S

cs
ixi = min

x∈X
max

i=1,...,n
c′ixi

2

The next proposition gives a reduction from Discrete Min-Max Regret Bottleneck
P to Discrete Min-Max Bottleneck P.

Proposition 4 Consider an instance I of Discrete Min-Max Regret Bottleneck P
with k scenarios where each scenario s ∈ S is represented by (cs

1, . . . , c
s
n) and where P is a

minimization problem. Consider also an instance Ĩ of Discrete Min-Max Bottleneck
P where each coefficient of the objective function is defined by c̃s

i = max{cs
i − val∗s , 0}, i =

1, . . . , n. Then x̃, an optimal solution of Ĩ, is also an optimal solution of I.
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Proof :

min
x∈X

max
s∈S

(val(x, s)− val∗s) = min
x∈X

max
s∈S

( max
i=1,...,n

cs
ixi − val∗s) = min

x∈X
max
s∈S

max
i=1,...,n

c̃s
ixi

2

The previous propositions are summarized in the following corollary.

Corollary 1 Given P an optimization problem, Discrete Min-Max Bottleneck P and
Discrete Min-Max Regret Bottleneck P reduce to P.

3.1.2 Relationships between min-max (regret) and multi-objective versions

It is natural to consider scenarios as objective functions. This leads us to investigate rela-
tionships between min-max (regret) and multi-objective versions.

The multi-objective version associated to P ∈ C, denoted by Multi-objective P, has
for input k objective functions where the hth objective function has coefficients ch

1 , . . . , ch
n.

We denote by val(x, h) =
∑n

i=1 ch
i xi the value of solution x ∈ X on criterion h, and assume

w.l.o.g. that all criteria are to be minimized. Given two feasible solutions x and y, we say that
x dominates y if val(x, h) ≤ val(y, h) for h = 1, . . . , k with at least one strict inequality. The
problem consists of finding the set E of efficient solutions. A feasible solution x is efficient
if there is no other feasible solution y that dominates x. In general Multi-objective P is
intractable in the sense that it admits instances for which the size of E is exponential in the
size of the input (see, e.g., Ehrgott [29]).

val(x, s2)

val(x, s1)

u

u

u

u
u

u

u

u

u

u
u

u
u

b

b
b

b

b

b

b

b

b
b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

opt

opt

: Efficient solutionsu

Figure 3: Relationships between min-max and multi-objective versions

Proposition 5 Given a minimization problem P, at least one optimal solution for Discrete
Min-Max P is necessarily an efficient solution.
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Proof : If x ∈ X dominates y ∈ X then maxs∈S val(x, s) ≤ maxs∈S val(y, s). Therefore,
we obtain an optimal solution for Discrete Min-Max P by taking, among the efficient
solutions, one that has a minimum maxs∈S val(x, s), see Figure 3. 2

Proposition 6 Given a minimization problem P, at least one optimal solution for Discrete
Min-Max Regret P is necessarily an efficient solution.

Proof : If x ∈ X dominates y ∈ X then val(x, s) ≤ val(y, s), for each s ∈ S, and thus
Rmax(x) ≤ Rmax(y). Therefore, we obtain an optimal solution for Discrete Min-Max
Regret P by taking, among the efficient solutions, a solution x that has a minimum Rmax(x),
see Figure 4. 2

val(x, s2)

val(x, s1)

u

u

u

u
u

u

u

u

u

u
u

u
u

b

b
b

b

b

b

b

b

b
b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

val∗ = (val∗s1
, val∗s2

)

val∗s2
+ opt

val∗s1
+ opt

: Efficient solutionsu

Figure 4: Relationships between min-max regret and multi-objective versions

Observe that if Discrete Min-Max (Regret) P admit several optimal solutions, some
of them may not be efficient, but at least one is efficient (see Figures 3 and 4).

3.2 Interval scenario case

For a minimization problem P ∈ C, solving Interval Min-Max P is equivalent to solving
P on the worst-case scenario c = (c1, . . . , cn) where the values of all coefficients ci are set to
their upper bounds (for a maximization problem, the worst-case scenario is c = (c1, . . . , cn)).
Therefore, the rest of the section is devoted to Interval Min-Max Regret P.

In order to compute the maximum regret of a solution x ∈ X, we only need to consider
its worst scenario c−(x). Yaman et al. [63] propose an approach to construct this scenario
for Interval Min-Max Regret Spanning Tree and characterize the optimal solution.
These approaches can, however, be generalized to any problem P ∈ C.
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Proposition 7 Given a minimization problem P, the regret of a solution x ∈ X is maximized
for scenario c−(x) defined as follows:

c−i (x) =

{
ci if xi = 1,
ci if xi = 0,

i = 1, . . . , n

Proof : Given a solution x ∈ X, let I(x) = {i ∈ 1, . . . , n : xi = 1}. For any scenario s ∈ S,
we have

R(x, s) = val(x, s) − val(x∗
s, s) =

∑

i∈I(x)\I(x∗

s)

cs
i −

∑

i∈I(x∗

s)\I(x)

cs
i

≤
∑

i∈I(x)\I(x∗

s)

ci −
∑

i∈I(x∗

s)\I(x)

ci

= val(x, c−(x))− val(x∗
s, c

−(x))

≤ val(x, c−(x))− val(x∗
c−(x), c

−(x))

= R(x, c−(x))

2

The following proposition shows that an optimal solution of Interval Min-Max Regret
P is an optimal solution of P for one of the extreme scenarios.

Proposition 8 Given a minimization problem P, an optimal solution x∗ of Interval Min-
Max Regret P corresponds to an optimal solution of P for at least one extreme scenario,
in particular its most favorable scenario c+(x∗) defined as follows:

c+
i (x∗) =

{
ci if x∗

i = 1,
ci if x∗

i = 0,
i = 1, . . . , n

Proof : Let x∗ denote an optimal solution of Interval Min-Max Regret P and I(x) =
{i ∈ 1, . . . , n : xi = 1}. For any s ∈ S, we have

val(x∗, s)− val(x∗
c+(x∗), s) =

∑

i∈I(x∗)\I(x∗

c+(x∗)
)

cs
i −

∑

i∈I(x∗

c+(x∗)
)\I(x∗)

cs
i

≥
∑

i∈I(x∗)\I(x∗

c+(x∗)
)

ci −
∑

i∈I(x∗

c+(x∗)
)\I(x∗)

ci

= val(x∗, c+(x∗))− val(x∗
c+(x∗), c

+(x∗))

Suppose that x∗ is not an optimal solution of P for its most favorable scenario c+(x∗). Then
the previous expression is strictly positive. Consequently, we have

val(x∗, s)− val∗s > val(x∗
c+(x∗), s)− val∗s , for all s ∈ S

thus
max
s∈S
{val(x∗, s)− val∗s} > max

s∈S
{val(x∗

c+(x∗), s)− val∗s}

This contradicts the optimality of x∗ for Interval Min-Max Regret P. 2
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The two previous propositions suggest the following direct procedure to solve exactly the
min-max regret version. First construct an optimal solution x∗

s for each extreme scenario s
and compute Rmax(x∗

s) using Proposition 7. Then, select among these solutions one having
the minimum maximum regret. This procedure is in general impracticable since the number
of extreme scenarios is up to 2n. Nevertheless, if the number u ≤ n of uncertain/imprecise
coefficients ci, corresponding to non degenerate intervals, is constant or bounded by the
logarithm of a polynomial function in the size of the input, then Interval Min-Max Regret
P has the same complexity as P, as noticed by Averbakh and Lebedev [18].

As for the discrete scenario case, we briefly investigate the quality of the solutions obtained
by solving P on a specific scenario.

A first idea, is to consider the worst scenario c = (c1, . . . , cn), that is to take an optimal
min-max solution as a candidate solution for the min-max regret version.

An optimal solution of Interval Min-Max P has, in practice, a maximum regret close
to the optimal value of the min-max regret version but, in the worst case, its performance is
very bad. Figure 5 presents a critical example for Shortest Path. The optimal solution of
the min-max version is given by path 1, n with a worst value and a maximum regret 2n. On
the other hand, the optimal solution of the min-max regret version is given by path 1, 2, . . . , n
with a worst value 2n + 1 and a maximum regret 1.

1

2 3 4 n− 1

n

[0, 2n + 1]

2n

0 0

0

Figure 5: A critical instance of Interval Min-Max Regret Shortest Path where the optimal
min-max solution is very bad

Kasperski and Zieliński [37] show that, by solving problem P on a particular scenario, we
can obtain a good upper bound of the optimal value of Interval Min-Max Regret P.

Proposition 9 ([37]) Given an instance I of Interval Min-Max Regret P, consider an
instance I ′ of P where each coefficient of the objective function is defined by c′i = 1

2 (ci + ci).
Then x′ an optimal solution of I ′ has Rmax(x′) ≤ 2opt(I) where opt(I) denotes the optimal
value of instance I.

For the class of bottleneck problems, as for the discrete scenario case (see Propositions 3
and 4), an optimal solution of Interval Min-Max Regret Bottleneck P can be obtained
by solving Bottleneck P on a carefully selected scenario. Let si denote the scenario where
ci = ci and cj = cj for j 6= i, and i = 1, . . . , n.

Proposition 10 ([10]) Given an instance I of Interval Min-Max Regret Bottleneck
P, consider an instance I ′ of Bottleneck P where each coefficient of the objective function
is defined by c′i = max{ci − val∗si

, 0}. Then x′ an optimal solution of I ′ is also an optimal
solution of I.

4 Complexity of min-max and min-max regret versions

Complexity of the min-max (regret) versions has been studied extensively during the last
decade. Clearly, the min-max version of problem P is at least as hard as P since P is a
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particular case of Discrete Min-Max P when the scenario set contains only one scenario and
P is a particular case of Interval Min-Max P when all coefficients are degenerate. Similarly,
the min-max regret version of P is at least as difficult as P since P reduces to Discrete
(Interval) Min-Max Regret P when the scenario set is reduced to one scenario. For this
reason, in the following, we consider only min-max (regret) versions of polynomial or pseudo-
polynomial time solvable problems, for which we could hope to preserve the complexity.

4.1 Discrete scenario case

For the discrete scenario case, Kouvelis and Yu [43] give complexity results for several combi-
natorial optimization problems, including Shortest Path, Spanning Tree, Assignment,
and Knapsack. In general, these versions are shown to be harder than the classical versions.
More precisely, if the number of scenarios is non-constant (the number of scenarios is part of
the input), these problems become strongly NP -hard, even when the classical problems are
solvable in polynomial time. On the other hand, for a constant number of scenarios, it is only
partially known if these problems are strongly or weakly NP -hard. Indeed, the reductions
described in [43] to prove the NP -hardness are based on transformations from the partition
problem which is known to be weakly NP -hard [31]. These reductions give no indications on
the precise status of these problems. Most of the problems which are known to be weakly
NP -hard are those for which there exists a pseudo-polynomial algorithm based on dynamic
programming [43] (Discrete Min-Max (Regret) Shortest Path, Discrete Max-Min
Knapsack, Discrete Min-Max Regret Knapsack, Discrete Min-Max (Regret)
Spanning Tree on grid graphs, . . . )

As an example for this family of algorithms, we describe a pseudo-polynomial algorithm
to solve Discrete Max-Min Knapsack. The standard procedure to solve the classical
knapsack problem is based on dynamic programming. We give an extension to the multi-
scenario case which is very similar to the procedure presented in [30] by Erlebach et al. to
solve multi-objective knapsack problem. This procedure is easier and more efficient than the
one originally presented by Yu [64].

Consider a knapsack instance where each item i has a weight wi and profit ps
i , for i =

1, . . . , n and s = 1, . . . , k, and a capacity b.
Let Wi(v1, . . . , vk) denote the minimum weight of any subset of items among the first i

items with profit vs in each scenario s ∈ S. The initial condition of the algorithm is given by
setting W0(0, . . . , 0) = 0 and W0(v1, . . . , vk) = b + 1 for all other combinations. The recursive
relation is given by:
If vs ≥ ps

i for all s ∈ S, then

Wi(v1, . . . , vk) = min{Wi−1(v1, . . . , vk),Wi−1(v1 − p1
i , . . . , vk − pk

i ) + wi}

else Wi(v1, . . . , vk) = Wi−1(v1, . . . , vk)
for i = 1, . . . , n.

Each entry of Wn satisfying Wn(v1, . . . , vk) ≤ b corresponds to a feasible solution with
profit vs in scenario s. The set of items leading to a feasible solution can be determined
easily using standard bookkeeping techniques. The feasible solutions are collected and an
optimal solution to Discrete Max-Min Knapsack is obtained by picking a feasible solution
minimizing maxs∈S vs. Since, vs ∈ {0, . . . ,

∑n
i=1 ps

i}, the running time of this approach is given
by going through the complete profit space for every item that is O(n(maxs∈S

∑n
i=1 ps

i )
k). The

algorithm presented by Yu [64] has a running time O(nb(maxs∈S
∑n

i=1 ps
i )

k).
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Spanning Tree is not known to admit a dynamic programming scheme but can be solved,
for instance, using Kruskal’s algorithm or Prim’s algorithm. A specific pseudo-polynomial
algorithm is given in [3] for Discrete Min-Max Spanning Tree using an extension of the
matrix tree theorem to the multi-scenario case.

Aissi et al. investigate in [2] the complexity of min-max and min-max regret versions of
two closely related polynomial-time solvable problems: Min Cut and Min s− t Cut. For a
constant number of scenarios, the complexity status of these problems is widely contrasted.
More precisely, Discrete Min-Max (Regret) Min Cut are polynomial-time solvable,
whereas Discrete Min-Max (Regret) Min s− t Cut are strongly NP -hard even for two
scenarios. It is interesting to observe that Min s− t Cut is the first polynomial-time solvable
problem, whose min-max and min-max regret versions are strongly NP -hard.

We briefly mention a few representative results concerning other combinatorial optimiza-
tion problems: location, scheduling, and resource allocation problems. Observe that these
problems do not necessarily belong to class C defined in (1).

Network location models are characterized by two types of parameters (weights of nodes
and lengths of edges) and by a location site (on nodes or on edges). Kouvelis and Yu [43]
show that Discrete Min-Max (Regret) 1-Median can be solved in polynomial time for
trees with scenarios both on node weights and edge lengths. If the location sites are limited
to nodes, Discrete Min-Max (Regret) 1-Median can be solved in polynomial time using
an exhaustive search algorithm.

The complexity of the min-max (regret) versions of scheduling problems has also been
investigated. As shown in [25, 43], Discrete Min-Max (Regret) 1||

∑
Cj are NP -hard.

Discrete Min-Max (Regret) PF2||Cmax are NP -hard [42, 43]. Discrete Min-Max
1||

∑
Uj is NP -hard whereas Discrete Min-Max 1|prec|fmax is polynomial-time solvable

[6].

Kouvelis and Yu [43] show that Discrete Min-Max Resource Allocation is NP -hard
and admits a pseudo-polynomial algorithm.

4.2 Interval scenario case

As outlined in section 3.2, Interval Min-Max P has the same complexity as P. Extensive
research has been devoted for studying the complexity of min-max regret versions of various
optimization problems including Shortest Path [18], Spanning Tree [9, 18], Assignment
[1], Min Cut and Min s− t Cut [2]. Most of these problems are strongly NP -hard.

We briefly mention a few representative results concerning other combinatorial optimiza-
tion problems: location, scheduling, and resource allocation problems. Observe that these
problems do not necessarily belong to class C defined in (1).

For network location problems, if only edge lengths are uncertain/imprecise, Inter-
val Min-Max Regret 1-Median is shown to be strongly NP -hard for general graphs
[12] but polynomial-time solvable on trees [23]. However, if only vertex weights are uncer-
tain/imprecise, this problem is polynomial-time solvable [17]. For 1-Center, a closely related
problem, Interval Min-Max Regret 1-Center is shown to be strongly NP -hard for gen-
eral graphs if edge lengths are uncertain/imprecise [12]. Nevertheless, if vertex weights are
uncertain/imprecise, this problem is polynomial-time solvable [16]. Moreover, general results
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of [10] imply that if only vertex weights are uncertain, various versions of interval min-max re-
gret multicenter problems are polynomial-time solvable if the corresponding problem without
uncertainty is polynomial-time solvable, which in particular implies polynomial solvability of
interval min-max regret multicenter problems on trees.

For scheduling problems, Interval Min-Max Regret 1||
∑

Cj is NP -hard [44]. Rather
specific problems were shown to be polynomial-time solvable : Interval Min-Max Regret
1|prec|Lmax [36], Interval Min-Max Regret 1||max wjTj where uncertainty/imprecision
is on weights wj [10], and Interval Min-Max Regret PFm||Cmax with two jobs [15].

In [13], Interval Min-Max Resource Allocation is shown to admit a pseudo-
polynomial algorithm (while it admits a polynomial algorithm for the case of continuous
variables).

4.3 Summary of results

Tables 3-5 summarize the complexity of min-max (regret) versions of several classical com-
binatorial optimization problems. For all studied problems, min-max and min-max regret
versions have the same complexity in the discrete scenario case (see Tables 3 and 4). In
general, there is no reduction between the min-max and the min-max regret versions. How-
ever, in all known reductions establishing the NP -hardness of min-max versions [43, 1, 2], the
obtained instances of min-max versions have been designed so as to get an optimal value on
each scenario equal to zero. This way, these reductions also imply the NP -hardness of the
min-max regret associated versions.

Comparing now the complexity of the min-max regret version in the constant discrete
scenario case and in the interval scenario case, we observe some slight differences (either same
complexity or from weakly to strongly NP -hard - see Tables 3 and 5). For some problems,
however, the complexity may widely differ. As shown by Averbakh [11], the min-max regret
version of the problem of selecting the p most profitable items is NP -hard even for two
scenarios, whereas it is solvable in polynomial time in the interval scenario case (see [24] for
an improved algorithm). For continuous linear programming, we have the opposite relation:
polynomiality for the discrete scenario case which results from the classical transformation of
a min-max problem to a linear problem, and NP -hardness for the interval scenario case as
proved in [19].

Table 3: Complexity of the min-max (regret) versions of classical combinatorial problems
(constant number of scenarios)

Problems Constant

Min-max Min-max regret

Shortest Path NP -hard, pseudo-poly [65] NP -hard, pseudo-poly [65]

Spanning Tree NP -hard [43], pseudo-poly [3] NP -hard [43], pseudo-poly [3]

Assignment NP -hard [43] NP -hard [43]

Knapsack NP -hard, pseudo-poly [43] NP -hard, pseudo-poly [43]

Min Cut polynomial [7] polynomial [2]

Min s− t Cut strongly NP -hard [2] strongly NP -hard [2]
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Table 4: Complexity of the min-max (regret) versions of classical combinatorial problems
(non-constant number of scenarios)

Problems Non-constant

Min-max Min-max regret

Shortest Path strongly NP -hard [43] strongly NP -hard [43]

Spanning Tree strongly NP -hard [43] strongly NP -hard [4]

Assignment strongly NP -hard [1] strongly NP -hard [1]

Knapsack strongly NP -hard [43] strongly NP -hard [4]

Min Cut strongly NP -hard [2] strongly NP -hard [2]

Min s− t Cut strongly NP -hard [2] strongly NP -hard [2]

Table 5: Complexity of min-max regret versions of classical combinatorial problems (interval
scenario case)

Problems Min-max regret

Shortest Path strongly NP -hard [18]

Spanning Tree strongly NP -hard [18]

Assignment strongly NP -hard [1]

Knapsack NP -hard

Min Cut polynomial [2]

Min s− t Cut strongly NP -hard [2]

5 Approximation of the min-max (regret) versions

The approximation of the min-max (regret) versions of classical combinatorial optimization
problems has received great attention recently. Aissi et al. initiated in [4] a systematic study
of this question in the discrete scenario case. More precisely, they investigate the relationships
between min-max, min-max regret and multi-objective versions, and show the existence, in
the case of a constant number of scenarios, of fully polynomial-time approximation schemes
(fptas) for min-max (regret) versions of several classical optimization problems. They also
study the case of a non-constant number of scenarios. In this setting, they provide non-
approximability results for min-max (regret) versions of shortest path and spanning tree. In
[3] they adopt an alternative perspective and develop a general approximation scheme, using
the scaling technique, which can be applied to min-max (regret) versions of some problems,
provided that some conditions are satisfied. The advantage of this second approach is that
the resulting fptas usually have much better running times than those derived using multi-
objective fptas for the multi-objective versions.

The interval scenario case has been much less studied. We only report two general results.
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5.1 Discrete scenario case

As a first general result, Proposition 1 gives a k-approximation algorithm for Discrete
Min-Max (Regret) P when the underlying problem P is polynomial-time solvable. In
some cases, however, we can derive fptas for some problems.

5.1.1 Relationships between min-max (regret) and multi-objective versions

Exploiting the results mentioned in section 3.1.2 concerning the relationships with the multi-
objective version, we can derive approximation algorithms, with a noticeable difference be-
tween the min-max and the min-max regret versions.

Min-max version

Proposition 11 ([4]) Given a minimization problem P, for any function f : IN→ (1,∞), if
Multi-objective P has a polynomial-time f(n)-approximation algorithm, then Discrete
Min-Max P has a polynomial-time f(n)-approximation algorithm.

Proof : Let F be an f(n)-approximation of the set of efficient solutions. Since at least
one optimal solution x∗ for Discrete Min-Max P is efficient as shown in Proposition 5,
there exists a solution y ∈ F such that val(y, s) ≤ f(n)val(x∗, s), for all s ∈ S. Consider
among set F a solution z that has a minimum maxs∈S val(z, s). Thus, maxs∈S val(z, s) ≤
maxs∈S val(y, s) ≤ f(n)maxs∈S val(x∗, s). 2

Corollary 2 ([4]) For a constant number of scenarios, Discrete Min-Max Shortest
Path, Discrete Min-Max Spanning Tree, and Discrete Max-Min Knapsack have
an fptas.

Proof : For a constant number of objectives, multi-objective versions of Shortest Path,
Spanning Tree, and Knapsack have an fptas as shown by Papadimitriou and Yannakakis
in [55]. 2

Min-max regret version

As shown in Proposition 6, at least one optimal solution x∗ for Discrete Min-Max
Regret P is efficient. Unfortunately, given F an f(n)-approximation of the set of efficient
solutions, a solution x ∈ F with a minimum Rmax(x) is not necessarily an f(n)-approximation
for the optimum value since the minimum maximum regret could be very small compared
with the error that was allowed in F .

However, it is sometimes possible to derive an approximation algorithm working directly
in the regret space instead of the criterion space. This way, an fptas is obtained in [4] for
Discrete Min-Max Regret Shortest Path using a dynamic programming algorithm
that computes at each stage the set of efficient vectors of regrets.

5.1.2 A general approximation scheme in the discrete scenario case

A standard approach for designing fptas for NP -hard problems is to use the scaling tech-
nique [58] in order to transform an input instance into an instance that is easy to solve. Then
an optimal solution for this new instance is computed using a pseudo-polynomial algorithm.
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This solution will serve as an approximate solution. This general scheme usually relies on the
determination of a lower bound that is polynomially related to the maximum value of the
original instance. However, for the min-max (regret) versions, we need to adapt this scheme
in order to obtain an fptas.

Proposition 12 ([3]) Given a problem Discrete Min-Max (Regret) P, if

1. for any instance I, a lower and an upper bound L and U of the optimal value opt can
be computed in time p(|I|), such that U ≤ q(|I|)L, where p and q are two polynomials
with q non decreasing and q(|I|) ≥ 1, and

2. there exists an algorithm that finds for any instance I an optimal solution in time
r(|I|, U) where r is a non decreasing polynomial,

then Discrete Min-Max (Regret) P has an fptas.

We discuss now the two conditions of the previous theorem. The first condition can be
satisfied easily for polynomial-time solvable problems as shown in Proposition 1 where we
exhibit bounds L and U such that U ≤ kL. Furthermore, if P is polynomially approximable,
then the first condition of Proposition 12 can also be satisfied for Discrete Min-Max P
using Proposition 1. More precisely, if P is f(n)-approximable where f(n) is a polynomial,
given an instance I of Discrete Min-Max P, let x′ be an f(|I|/k)-approximate solution in
I ′ (defined as in the proof of Proposition 1), then we have L = 1

f(|I|/k)

∑
s∈S

1
kval(x′, s) and

U = maxs∈S val(x′, s), and thus U ≤ kf(|I|/k)L.

The second condition of Proposition 12 can be weakened for Discrete Min-Max P by
requiring only a pseudo-polynomial algorithm, that is an algorithm polynomial in |I| and
max(I) = maxi,s cs

i . Indeed, knowing an upper bound U , we can eliminate any variable xi

such that cs
i > U on at least one scenario s ∈ S. Condition 2 is then satisfied by applying the

pseudo-polynomial algorithm on this modified instance.
Min-max (regret) versions of some problems, like Shortest Path, Knapsack, admit

pseudo-polynomial time algorithms based on dynamic programming [43]. For some dynamic
programming formulations, we can easily obtain algorithms satisfying condition 2, by discard-
ing partial solutions with value more than U on at least one scenario. For other problems,
like Spanning Tree, which are not known to admit pseudo-polynomial algorithms based on
dynamic programming, specific algorithms are required [3].

Corollary 3 ([3]) For a constant number of scenarios, Discrete Min-Max (Regret)
Shortest Path, Discrete Min-Max (Regret) Spanning Tree have an fptas.

The resulting fptas obtained using Corollary 3 are much more efficient than those obtained
using Corollary 2.

Table 6 summarizes approximation results in the discrete scenario case for several combi-
natorial optimization problems.
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Table 6: Approximation of the min-max (regret) versions in the discrete scenario case (k
scenarios)

Problems Constant Non-constant

Min-max Min-max regret Min-max Min-max regret

Shortest Path fptas [61] fptas [4, 3] not log1−ε k approx. [40] not log1−ε k approx. [40]

Spanning Tree fptas [4, 3] fptas [4, 3] not log1−ε k approx. [40] not log1−ε k approx. [40]

Knapsack fptas [4] non approx. [4] non approx. [4] non approx. [4]

5.2 Interval scenario case

In this case, most of the min-max regret versions of classical combinatorial optimization
problems become strongly NP -hard (see Table 5). Kasperski and Zieliński [39] give similar
conditions as in Proposition 12 for the existence of an fptas in the interval scenario case.
Unfortunately, unlike in the discrete scenario case, the applicability of these conditions is
very limited, due to the inexistence of pseudo-polynomial algorithms, in the interval scenario
case, except for specific classes of graphs, such as series-parallel graphs [38].

In [37], the same authors give a 2-approximation algorithm for the min-max regret versions
of polynomial-time solvable problems as a direct consequence of Proposition 9.

6 Resolution of the min-max (regret) versions

We review in this section exact procedures for solving the min-max and min-max regret
versions of classical combinatorial optimization problems.

6.1 Discrete scenario case

Kouvelis and Yu [43] implement a branch-and-bound procedure to solve the min-max (regret)
versions of several combinatorial optimization problems. A lower bound on each node of the
arborescence is calculated using surrogate relaxation as explained in the following.

Consider Discrete Min-Max Regret P which can be stated as:




min y
y ≥ val(x, s)− val∗s , ∀s ∈ S
x ∈ X, y ≥ 0

(4)

Let µ = (µ1, . . . , µk) be a multiplier vector such that µs ≥ 0, ∀s ∈ S, and
∑

s∈S µs = 1. The
surrogate relaxation of (4) is formulated as follows:

{
L(µ) = min

∑
s∈S µs(val(x, s) − val∗s)

x ∈ X
(5)

The efficiency of the relaxation procedure rests on finding a vector µ∗ providing the best lower
bound L(µ∗) ≤ opt where opt is the optimum value of the input considered. A sub-gradient
procedure is used in [43] to find the tightest one. The later is based on solving, at each
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iteration, problem (5) with a multiplier vector µ = (µ1, . . . , µk) and the result is exploited
in order to find a new multiplier vector that improves the bound given by the surrogate
relaxation. Furthermore, the optimal solution x(µ) of (5) is a feasible solution of (4) and thus
provides an upper bound U(µ) = maxs∈S(val(x(µ), s)− val∗s ) on the optimal value. The best
upper bound obtained so far during the execution of the sub-gradient procedure is saved.

The Best-Node First search strategy is adopted in the branch-and-bound procedure pre-
sented in [43]. The choice of the branching variable is guided by the surrogate relaxation.

Discrete Min-Max P can be solved in a similar way by removing val∗s in (4) and (5).

6.2 Interval scenario case

Exact resolution was initially studied by Karasan et al. [35, 63] for the min-max regret version
of Shortest Path and Spanning Tree. In particular, they present a mixed integer linear
programming formulation for these two problems. Such a formulation is also presented in [48]
for Interval Min-Max Regret 1||

∑
Cj . A generalization of these formulations to other

easily solvable problems is given in section 6.2.1.
More recently, Montemanni and Gambardella [50] propose an exact algorithm for the min-

max regret versions of Shortest Path based on path ranking. Considering the worst-case
scenario c, this algorithm generates paths by non-decreasing values until easily computable
lower and upper bounds coincide, in which case the solution with the current best maximum
regret is optimal.

Branch-and-bound algorithms were also designed for solving the min-max regret versions
of Shortest Path [53] and Spanning Tree [8, 51]. These procedures rely on the computa-
tion of a lower bound and some reduction rules based on the specificities of the problem and
some properties of the particular branching strategy adopted.

A relaxation procedure for solving the min-max regret versions of problems from C is
discussed in [5, 47, 49, 52]. According to [47, 52], this method appears to be the fastest
approach for most of the benchmarks considered for Shortest Path and Spanning Tree,
and in particular on those that were harder to solve for the methods previously known. We
provide a description of this generic approach in section 6.2.2.

Preprocessing techniques, which can be incorporated into the approaches described above,
are described in [8, 35, 59, 63] for Shortest Path and Spanning Tree. The authors prove
that any min-max regret solution only contains weak variables, i.e. variables which belong
to optimal solutions for some scenarios. Therefore, non-weak variables can be omitted. They
also prove for Spanning Tree that, if intervals are non degenerate, there exists one min-max
regret solution which contains all strong variables, where a variable is strong if it belongs to
an optimal solution for all scenarios. Weak and strong variables can be identified more or less
easily depending on the problem (e.g. in polynomial time for Spanning Tree). The authors
claim that computation times are reduced substantially when such techniques can be applied.

6.2.1 Formulation of the min-max regret versions of problems with a zero duality
gap

Consider a minimization problem P ∈ C with a zero duality gap and where the feasible
solution set is defined by X = {x : Ax ≥ b, x ∈ {0, 1}n}. The maximum regret Rmax(x) of a
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solution x is given as follows:

Rmax(x) = max
s∈S,y∈X

{csx− csy} = c−(x)x− c−(x)x∗
c−(x) = cx−min

z∈X
c−(x)z

where c = (c1, . . . , cn) and x∗
s is an optimal solution for scenario s.

Therefore, Interval Min-Max Regret P can be written as follows:

min
x∈X

Rmax(x) = min
x∈X
{cx−min

z∈X
c−(x)z} (6)

Since P has a zero duality gap, we can replace in (6) the problem minz∈X c−(x)z by its dual:

max
y∈Y

bty

where Y = {y : Aty ≤ c−(x), y ≥ 0}. Consequently, Interval Min-Max Regret P can be
formulated as follows:

min
x∈X, y∈Y

{cx− bty}

In the following, we illustrate this approach with the assignment problem. A linear pro-
gramming formulation of this problem is given as follows:





min
∑n

i,j=1 cijxij

s.t.∑n
j=1 xij = 1; i = 1, . . . , n∑n
i=1 xij = 1; j = 1, . . . , n

xij ≥ 0; i, j = 1, . . . , n

(7)

The dual of (7) is given by




max
∑n

i=1(ui + vj)
s.t.
ui + vj ≤ cij ; i, j = 1, . . . , n
ui, vj ≷ 0; i, j = 1, . . . , n

Thus, a formulation of Interval Min-Max Regret Assignment is





min
∑n

i,j=1 cijxij −
∑n

i=1(ui + vj)

s.t.∑n
j=1 xij = 1; i = 1, . . . , n∑n
i=1 xij = 1; j = 1, . . . , n

ui + vj ≤ cij + (cij − cij)xij ; i, j = 1, . . . , n

xij ∈ {0, 1}; i, j = 1, . . . , n
ui, vj ≷ 0; i, j = 1, . . . , n

6.2.2 A relaxation procedure for the min-max regret versions

A general linear formulation of min-max regret versions is given by:

MMR





min r
s.t.
r ≥ csx− csx∗

s, ∀s ∈ S
x ∈ X, r ≥ 0
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where constraint r ≥ csx− csx∗
s is referred to as a cut of type 1.

From Proposition 7, we know that, in the interval scenario case, we can restrict the scenario
set S to the set of extreme scenarios. However, since the number of extreme scenarios is up
to 2n, formulation MMR is exponential.

In order to handle this difficulty, a standard approach is to use a relaxation procedure
which starts with an initial subset of scenarios S0 and iteratively takes into account one
additional scenario, by adding a cut of type 1, until we can establish that the current solution
is optimal.

Considering the following formulation, defined at iteration h with a current subset of
scenarios Sh:

MMRh





min r
s.t.
r ≥ csx− csx∗

s, ∀s ∈ Sh

x ∈ X, r ≥ 0

we denote by rh and xh the optimal value and an optimal solution of MMRh at step h.
The details of the relaxation procedure, originally proposed in [33, 45, 46] for solving

min-max regret versions of linear programming problems, are given as follows:

Algorithm 1 Relaxation procedure

1: Initialization. LB ← 0, S0 ← ∅, h← 0, and construct x0 ∈ X.
2: Compute ĉh and Rmax(xh) by solving maxs∈S,x∈X{c

sxh − csx}.
3: if Rmax(xh) ≤ LB then
4: END: xh is an optimal solution.
5: Sh+1 ← Sh ∪ {ĉh}.
6: h← h + 1, compute rh and xh by solving MMRh, LB ← rh and go to step 2.

In the linear programming case, step 2 is the most computationally demanding part of
the algorithm since it requires solving a quadratic programming problem. On the other hand,
step 6 requires only solving a linear programming problem.

This algorithm can be extended to 0-1 linear programming problems. In this case, we do
not need to solve a quadratic programming problem at step 2 since we know, from Proposition
7, that we can take as scenario ĉh the worst case scenario for for xh, c−(xh). Hence, step 2 of
Algorithm 1 can be replaced by:

2: ĉh ← c−(xh), compute an optimal solution x∗
ĉh of minx∈X ĉhx,

Rmax(xh)← ĉhxh − ĉhx∗
ĉh .

Now step 6 becomes computationally expensive since MMRh is a mixed integer program-
ming problem whose difficulty increases with the number of added cuts. This explains why
a straightforward application of this algorithm to solve min-max regret versions of 0-1 linear
programming problems is not satisfactory. We can improve significantly the performance of
the algorithm by using alternative cuts, called cuts of type 2, which were found independently
in [5] and [47, 52]. These cuts are defined as follows:

r ≥ cx− c−(x)x∗
c−(xh)
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These cuts can be derived easily for a 0-1 linear programming problem, since Rmax(x) ≥
cx− c−(x)y for any x, y ∈ X, and in particular for y = x∗

c−(xh)
.

Proposition 13 Given a minimization problem P ∈ C, cuts of type 2 dominate cuts of type 1.

Proof : We need to prove that for any x, xh ∈ X, we have cx − c−(x)x∗
c−(xh)

≥ c−(xh)x −

c−(xh)x∗
c−(xh)

. Thus, we consider the following difference:

cx− c−(x)x∗
c−(xh) − c−(xh)x + c−(xh)x∗

c−(xh) =

m∑

i=1

(ci − ci)(xi − xix
∗
c−(xh),i − xix

h
i + xh

i x∗
c−(xh),i)

If xh
i = 1, we have (ci − ci)(x

∗
c−(xh),i

− xix
∗
c−(xh),i

) ≥ 0 for i = 1, . . . , n. If xh
i = 0, we have

(ci − ci)(xi − xix
∗
c−(xh),i

) ≥ 0 for i = 1, . . . , n. 2

7 Conclusions

We reviewed in this paper motivations, complexity, approximation, and exact resolution for
the min-max and min-max regret versions of several combinatorial optimization problems.
We conclude this survey by listing some open questions.

For all studied problems, min-max and min-max regret versions have the same complexity
in the discrete scenario case. As observed at the beginning of section 4.3, there is no general
reduction between the min-max and min-max regret versions, except for bottleneck problems.
The construction of such a reduction would be interesting since only one algorithm (or NP -
hardness proof) would be sufficient for both versions.

Almost all problems discussed in this paper have a clear complexity status, see, e.g.,
Tables 3-5. However, a few NP -hard problems still need to be precisely classified (weakly or
strongly NP -hard). As a first example, Interval Min-Max Regret Knapsack is clearly
NP -hard, but its precise status is not known. A second example is Discrete Min-Max
(Regret) Assignment for a constant number of scenarios (see [1, 27]). The original proofs
of the NP -hardness of these problems are obtained in [43] using a reduction from partition,
which has a pseudo-polynomial time algorithm [31]. Therefore, it remains an open question
whether these problems have pseudo-polynomial time algorithms or are strongly NP -hard.

Approximation results, which are quite recent, should be studied more thoroughly. In
particular, for a non-constant number of scenarios, there is a gap between the general k-
approximation result given at the beginning of section 5.1 and specific negative results indi-
cated in Table 6. In the interval scenario case, finding better approximation algorithms than
the general 2-approximation algorithm referred in section 5.2, for the min-max regret versions
of specific polynomial-time solvable problems, is also an interesting research perspective.

Finally, the efficient exact resolution of the min-max and min-max regret versions of
combinatorial optimization problems remains a computationally challenging question.
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