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Abstract

In the present work we are interested in the practical behavior of a new fptas to solve

the approximation version of the 0-1 multi-objective knapsack problem. The proposed

methodology makes use of very general techniques (such as dominance relations in dy-

namic programming) and thus may be applicable in the implementation of fptas for other

problems as well.

Extensive numerical experiments on various types of instances in the bi and tri-

objective cases establish that our method performs very well both in terms of CPU time

and size of solved instances. We point out some reasons for the good practical perfor-

mance of our algorithm. A comparison with an exact method and the fptas proposed

in Erlebach et al. (2002) is also performed.

Keywords: multi-objective knapsack problem, approximation, dynamic programming,

dominance relations, combinatorial optimization.



1 Introduction

In multi-objective combinatorial optimization, a major challenge is to generate either the

set of efficient solutions, that have the property that no improvement on any objective is

possible without sacrificing on at least another objective, or the set of non-dominated criterion

vectors corresponding to their image in the criterion space. The reader can refer to Ehrgott

(2005) about multi-objective combinatorial optimization. However, even for moderately-sized

problems, it is usually computationally prohibitive to identify the efficient set for two major

reasons. First, the number of efficient solutions can be very large. This occurs notably

when solving intractable instances of combinatorial multi-objective problems, for which the

number of efficient solutions is not polynomial in the size of these instances (see, e.g., Ehrgott

(2005) about the intractability of multi-objective problems). Second, for most multi-objective

problems, deciding whether a given solution is dominated is NP -hard, even if the underlying

single-objective problem can be solved in a polynomial time (see, e.g., Serafini (1986) about

the NP -hardness of multi-objective problems).

To handle these two difficulties, researchers have been interested in developing approxima-

tion algorithms with provable a priori guarantee such as fully polynomial time approximation

schemes (fptas). Indeed, an fptas computes, for a given accuracy ε > 0, in a running time

that is polynomial both in the size of the input and in 1/ε, an (1 + ε)-approximation, that is

a subset of solutions which contains, for each efficient solution, a solution that is at most at

a factor (1 + ε) on all objective values. This is made possible since it has been pointed out in

Papadimitriou and Yannakakis (2000) that, under certain general assumptions, there always

exists an (1 + ε)-approximation, with any given accuracy ε > 0, whose size is polynomial

both in the size of the instance and in 1/ε. Thus using an fptas for solving a multi-objective

problem has two main advantages: on the one hand it provides us with an efficient algorithm

to compute an approximation with a guaranteed accuracy and on the other hand it computes

an approximation of reasonable size. Nevertheless, in this stream, researchers are usually

motivated by the theoretical question of proving or disproving the existence of an fptas for a

given problem (Warburton, 1987; Erlebach et al., 2002) or for a class of problems (Safer and

Orlin, 1995a,b; Papadimitriou and Yannakakis, 2000; Angel et al., 2003). Thus, practical im-

plementations of fptas are cruelly lacking and most of the schemes proposed in the literature

are not efficient in practice.

We consider in this paper the 0–1 multi-objective knapsack problem which has been shown

to admit an fptas in Safer and Orlin (1995a,b) and in Erlebach et al. (2002). Our perspective,

however, is to propose another fptas focusing on its practical behavior. The main idea of

our approach, based on dynamic programming, relies on the use of several complementary

dominance relations to discard partial solutions. In a previous work (Bazgan et al., 2009),

such techniques have been proved to be extremely efficient to solve the exact version of this

problem. Extensive numerical experiments on various types of instances in the bi and tri-
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objective cases are reported and establish that our method performs very well both in terms of

CPU time and size of solved instances (up to 20 000 items in less than 1 hour in the bi-objective

case). We compare our approach with the exact method of Bazgan et al. (2009), which is the

most effective exact method currently known and with the fptas proposed in Erlebach et al.

(2002). In our experiments, we point out some reasons for the good practical performance of

our algorithm that may be applicable to other fptas. Indeed, since our methodology relies on

very general techniques (such as dominance relations in dynamic programming), it may be

applicable in the implementation of fptas for other problems as well.

This paper is organized as follows. In Section 2, we review basic concepts about multi-

objective optimization and approximation, and formally define the 0–1 multi-objective knap-

sack problem. Section 3 presents the dynamic programming approach using dominance re-

lations. Section 4 is devoted to the presentation of the dominance relations. Computational

experiments and results are reported in Section 5. Conclusions are provided in a final section.

2 Preliminaries

We first recall that, given %, a binary relation defined on a finite set A, B ⊆ A is a covering

( or dominating) set of A with respect to % if and only if for all a ∈ A\B there exists b ∈ B

such that b%a, and B ⊆ A is an independent ( or stable) set with respect to % if and only if

for all b, b′ ∈ B, b 6= b′, not(b%b′).

2.1 Multi-objective optimization and approximation

Consider a multi-objective optimization problem with p criteria or objectives where X denotes

the finite set of feasible solutions. Each solution x ∈ X is represented in the criterion space by

its corresponding criterion vector f(x) = (f1(x), . . . , fp(x)). We assume that each criterion

has to be maximized.

From these p criteria, the dominance relation defined on X, denoted by ∆, states that a

feasible solution x dominates a feasible solution x′, x∆x′, if and only if fi(x) ≥ fi(x
′) for i =

1, . . . , p. We denote by ∆ the asymmetric part of ∆. A solution x is efficient if and only if

there is no other feasible solution x′ ∈ X such that x′∆ x, and its corresponding criterion

vector is said to be non-dominated. The set of non-dominated criterion vectors is denoted

by ND . A set of efficient solutions is said to be reduced if it contains only one solution

corresponding to each non-dominated criterion vector. Observe that X ′ ⊆ X is a reduced

efficient set if and only if it is a covering and independent set with respect to ∆.

For any constant ε ≥ 0, the relation ∆ε, called ε-dominance, defined on X, states that

for all x, x′ ∈ X, x∆εx
′ if and only if fi(x)(1 + ε) ≥ fi(x

′) for i = 1, . . . , p. For any constant

ε ≥ 0, an (1 + ε)-approximation is a covering set of X with respect to ∆ε. Any (1 + ε)-

approximation which does not contain solutions that dominate each other, i.e. which is
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independent with respect to ∆, is a reduced (1 + ε)-approximation. In the following, NDε

denotes the image in the criterion space of a reduced (1 + ε)-approximation.

2.2 The 0–1 multi-objective knapsack problem

An instance of the 0–1 multi-objective knapsack problem consists of an integer capacity W > 0

and n items. Each item k has a positive integer weight wk and p non negative integer profits

vk
1 , . . . , vk

p (k = 1, . . . , n). A feasible solution is represented by a vector x = (x1, . . . , xn) of

binary decision variables xk, such that xk = 1 if item k is included in the solution and 0

otherwise, which satisfies the capacity constraint
∑n

k=1 wkxk ≤ W . The value of a feasible

solution x ∈ X on the ith objective is fi(x) =
∑n

k=1 vk
i xk (i = 1, . . . , p). For any instance of

this problem, we consider two versions: the exact version which aims at determining a reduced

efficient set, and the approximation version which aims at determining a reduced (1 + ε)-ap-

proximation. Several dynamic programming formulations have been proposed in Klamroth

and Wiecek (2000) for the exact version. We focus now on the approximation version.

3 Dynamic Programming for the approximation version

We first describe the sequential process used in Dynamic Programming (DP) and introduce

some basic concepts of DP (Section 3.1). Then, we present the concept of dominance relations

for solving the approximation version by a DP approach (Section 3.2).

3.1 Sequential process and basic concepts of DP

The sequential process used in DP consists of n phases. At any phase k we generate the set

of states Sk which represents all the feasible solutions made up of items belonging exclusively

to the k first items (k = 1, . . . , n). A state sk = (sk
1, . . . , s

k
p, s

k
p+1) ∈ Sk represents a feasible

solution of value sk
i on the ith objective (i = 1, . . . , p) and of weight sk

p+1. Thus, we have Sk =

Sk−1 ∪ {(sk−1
1 + vk

1 , . . . , sk−1
p + vk

p , sk−1
p+1 + wk) : sk−1

p+1 + wk ≤W, sk−1 ∈ Sk−1} for k = 1, . . . , n

where the initial set of states S0 contains only the state s0 = (0, . . . , 0) corresponding to the

empty knapsack. In the following, we identify a state and a corresponding feasible solution.

Thus, relations defined on X are also valid on Sk, and we have sk∆s̃k if and only if sk
i ≥ s̃k

i ,

i = 1, . . . , p and sk∆εs̃
k if and only if sk

i (1 + ε) ≥ s̃k
i , i = 1, . . . , p

Definition 1 (Completion, extension, restriction) For any state sk ∈ Sk (k ≤ n), a

completion of sk is any, possibly empty, subset J ⊆ {k+1, . . . , n} such that sk
p+1+

∑

j∈J wj ≤

W . We assume that any state sn ∈ Sn admits the empty set as unique completion. A state

sn ∈ Sn is an extension of sk ∈ Sk (k ≤ n) if and only if there exists a completion J of

sk such that sn
i = sk

i +
∑

j∈J vj
i for i = 1, . . . , p and sn

p+1 = sk
p+1 +

∑

j∈J wj . The set of

extensions of sk is denoted by Ext(sk) (k ≤ n). Finally, sk ∈ Sk (k ≤ n) is a restriction at

phase k of state sn ∈ Sn if and only if sn is an extension of sk.
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3.2 Families of dominance relations in Dynamic Programming

The efficiency of DP depends crucially on the possibility of reducing the set of states at each

phase. In the context of the approximation version, a family of dominance relations between

states for ∆ε is used to discard states at any phase. Each dominance relation of this family

is specific to a phase. Indeed, we share out the total error ε between the phases by the mean

of an error function and associate to each dominance relation of the family a proportion of

this error.

Definition 2 (Error function) The function e : {1, . . . , n} → R is an error function if and

only if
∑n

k=1 e(k) ≤ 1 and e(k) ≥ 0, k = 1, . . . , n.

Families of dominance relations between states for ∆ε can then be defined as follows.

Definition 3 (Families of dominance relations between states for ∆ε) For any ε ≥

0 and any error function e, a family of relations Dk on Sk, k = 1, . . . , n, is a family of

dominance relations for ∆ε if for all sk, s̃k ∈ Sk,

skDks̃k ⇒ ∀s̃n ∈ Ext(s̃k),∃sn ∈ Ext(sk), sn
i (1 + ε)e(k) ≥ s̃n

i , i = 1, . . . , p (1)

When ε = 0, Definition 3 collapses to the classical definition of dominance relations used in

the context of the exact version:

Definition 4 (Dominance relation between states for ∆) A relation Dk on Sk, k =

1, . . . , n, is a dominance relation for ∆ if for all sk, s̃k ∈ Sk,

skDks̃k ⇒ ∀s̃n ∈ Ext(s̃k),∃sn ∈ Ext(sk), sn∆s̃n (2)

Even if dominance relations can be non-transitive, in order to be efficient in the imple-

mentation, we consider only transitive dominance relations Dk, k = 1, . . . , n. We introduce

now the way of using families of transitive dominance relations for ∆ε (see Algorithm 1). At

each phase k, Algorithm 1 generates a subset of states Ck ⊆ Sk. This is achieved by first

creating from Ck−1 a temporary subset T k ⊆ Sk. Then, we apply Dk to each state of T k in

order to check if it is not dominated by any state already in Ck (in which case it is added to

Ck) and if it dominates states already in Ck (which are then removed from Ck). Observe that

due to the transitivity of Dk, a state sk ∈ T k that dominates a state of Ck (step 9) cannot

be dominated by a state already in Ck (step 8).

The following results characterize the set Ck obtained at the end of each phase k and

establish the validity of Algorithm 1.

Proposition 1 For any transitive relation Dk on Sk, the set Ck obtained at the end of phase

k in Algorithm 1 is a covering and independent set of T k with respect to Dk (k = 1, . . . , n).
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Algorithm 1: Computing a reduced (1 + ε)-approximation

C0 ← {(0, . . . , 0)};1

for k ← 1 to n do2

T k ← Ck−1 ∪ {(sk−1
1 + vk

1 , . . . , sk−1
p + vk

p , sk−1
p+1 + wk)|sk−1

p+1 + wk ≤W, sk−1 ∈ Ck−1};3

/* Assume that T k = {sk(1), . . . , sk(r)} */

Ck ← {sk(1)};4

for i← 2 to r do5

/* Assume that Ck = {s̃k(1), . . . , s̃k(ℓi)} */

dominated ← false ; dominates ← false ; j ← 1;6

while j ≤ ℓi and not(dominated) and not(dominates) do7

if s̃k(j)Dksk(i) then dominated ← true8

else if sk(i)Dks̃k(j) then Ck ← Ck\{s̃k(j)} ; dominates ← true;9

j ← j + 1;10

if not(dominated) then11

while j ≤ ℓi do12

if sk(i)Dks̃k(j) then Ck ← Ck\{s̃k(j)};13

j ← j + 1;14

Ck ← Ck ∪ {sk(i)};15

return Cn;16

Proof : Clearly, Ck is independent with respect to Dk, since we insert a state sk into Ck at

step 15 only if it is not dominated by any other state of Ck (step 8) and all states dominated

by sk have been removed from Ck (steps 9 and 13).

We show now that Ck is a covering set of T k with respect to Dk. Consider s̃k ∈ T k\Ck.

This occurs either because it did not pass the test at step 8 or was removed at step 9 or 13.

This is due respectively to a state s̄k already in Ck or to be included in Ck (at step 15) such

that s̄kDks̃k. It may happen that s̄k will be removed from Ck at a later iteration of the for

loop (at step 9 or 13) if there exists a new state ŝk ∈ T k to be included in Ck, such that

ŝkDks̄k. However, transitivity of Dk ensures the existence, at the end of phase k, of a state

sk ∈ Ck such that skDks̃k. �

Theorem 1 For any family of transitive dominance relations D1, . . . ,Dn for ∆ε, Algorithm 1

returns Cn a covering set of Sn with respect to ∆ε. Moreover, if ∆ ⊆ Dn, Cn is a reduced

(1 + ε)-approximation.

Proof : Consider sn ∈ Sn\Cn. Thus, all its restrictions have been removed during some

phases k ≤ n, when selecting a covering set Ck. Let k1 be the highest phase during which

the last restriction of sn, denoted by sn(k1) ∈ T k1 is removed from Ck1. Then, Proposi-

tion 1 ensures the existence of sk1 ∈ Ck1 such that sk1Dk1sn(k1). By (1), for all extensions
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of sn(k1), and in particular for sn, there exists sn1 ∈ Ext(sk1) such that sn
i ≤ (1 + ε)e(k1)sn1

i

(i = 1, . . . , p). It may happen that all restrictions of sn1 will be removed when selecting

a covering set at a later phase. In this case, there exists a phase k2 > k1, corresponding

to the highest phase during which the last restriction of sn1, denoted by sn1(k2) is removed

from Ck2. As before, we establish the existence of a state sk2 ∈ Ck2 such that sk2Dk2sn1(k2)

and of a state sn2 ∈ Ext(sk2) such that sn1
i ≤ (1 + ε)e(k2)sn2

i (i = 1, . . . , p). Thus, we have

sn
i ≤ (1 + ε)e(k1)+e(k2)sn2

i (i = 1, . . . , p). By repeating this process, we establish the exis-

tence of a state snt ∈ Cn (t ≤ n), such that sn
i ≤ (1 + ε)

∑t
j=1 e(kj)snt

i (i = 1, . . . , p). Since

e(k) ≥ 0 (k = 1, . . . , n), we have
∑t

j=1 e(kj) ≤
∑n

j=1 e(j) ≤ 1, thus we get sn
i ≤ (1 + ε)snt

i

(i = 1, . . . , p). This establishes that Cn is an (1 + ε)-approximation.

Moreover, if ∆ ⊆ Dn, Proposition 1 ensures that Cn is also independent with respect to ∆,

which establishes that Cn is a reduced (1 + ε)-approximation. �

Remark that when ε = 0, we have ∆ε = ∆, and thus Cn is a covering set of X with

respect to ∆. Moreover, in this case, if ∆ ⊆ Dn, Cn corresponds to a reduced efficient set.

4 Dominance relations

We first present a family of dominance relations for ∆ε that can provide an fptas in certain

cases (Section 4.1). Then, we present two complementary dominance relations for ∆ (Sec-

tion 4.2) and give a brief explanation of the way of applying them together with the family

of dominance relations for ∆ε (Section 4.3).

4.1 Dominance relations for ∆ε

Section 4.1.1 is devoted to the presentation of Dk
∆ε

(k = 1, . . . , n) a family of dominance

relations for ∆ε. In Section 4.1.2, we show that this family can provide an fptas in certain

cases. In Section 4.1.3 we present different error functions that can be used in relations Dk
∆ε

(k = 1, . . . , n).

4.1.1 A family of dominance relations for ∆ε

We introduced in a previous work (Bazgan et al., 2009) a powerful dominance relation for ∆,

in order to solve the exact version of the 0–1 multi-objective knapsack problem. This relation,

denoted by Dk
∆, is a generalization to the multi-objective case of the natural dominance rela-

tion, usually attributed to Weingartner and Ness (1967) and used in the classical Nemhauser

and Ullmann algorithm (Nemhauser and Ullmann, 1969). Relation Dk
∆ is defined on Sk for

k = 1, . . . , n by:

for all sk, s̃k ∈ Sk, skDk
∆s̃k ⇔

{

sk∆s̃k and

sk
p+1 ≤ s̃k

p+1 if k < n
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To solve the approximation version of the 0–1 multi-objective knapsack problem, we gen-

eralize relations Dk
∆ (k = 1, . . . , n), to obtain the family of dominance relations Dk

∆ε
(k =

1, . . . , n) for ∆ε that is based on a partition of the criterion space into hyper-rectangles. For

a constant ε > 0 and an error function e, we partition at each phase k each positive criterion

range [1, Ui], where Ui is an upper bound on the value of the feasible solutions on the ith crite-

rion (i = 1, . . . , p), into disjoint intervals of length (1+ε)e(k) (k = 1, . . . , n). When e(k) = 0, we

obtain the following degenerate intervals: [1, 1], [2, 2], . . . , [Ui, Ui] (i = 1, . . . , p) and the num-

ber of intervals in the criterion space is in O(Up
max), where Umax = max{U1, . . . , Up}. When

e(k) 6= 0, we obtain the following intervals: [1; (1 + ε)e(k)[, [(1 + ε)e(k); (1 + ε)2e(k)[, . . . , [(1 +

ε)(ℓ
k
i −1)e(k); (1 + ε)ℓ

k
i e(k)[ where ℓk

i =
⌊

log Ui

e(k) log(1+ε)

⌋

+ 1 (i = 1, . . . , p). Thus, the number of

hyper-rectangles is in O
(

( log Umax

e(k) ε

)p
)

. In both cases, we add the interval [0, 0]. The number

of the interval to which belongs the value of a state sk on the ith criterion (i = 1, . . . , p) in

this partition is then:

Bi(s
k, e(k)) =

{

sk
i , if e(k) = 0 or sk

i = 0
⌊

log sk
i

e(k) log(1+ε)

⌋

+ 1 otherwise

From these partitions, we can define for any ε > 0 and any error function e, relations Dk
∆ε

on

Sk for k = 1, . . . , n by:

for all sk, s̃k ∈ Sk, skDk
∆ε

s̃k ⇔

{

Bi(s
k, e(k)) ≥ Bi(s̃

k, e(k)) i = 1, . . . , p and

sk
p+1 ≤ s̃k

p+1 if k < n

The following proposition shows that Dk
∆ε

is indeed a family of dominance relations for ∆ε

and gives additional properties of Dk
∆ε

.

Proposition 2 For any ε > 0 and any error function e, we have:

(a) Dk
∆ε

, k = 1, . . . , n, is a family of dominance relations for ∆ε,

(b) for any k ∈ {1, . . . , n}, Dk
∆ε

is transitive,

(c) for any k ∈ {1, . . . , n}, Dk
∆ε
⊇ Dk

∆ and Dk
∆ε

= Dk
∆ if e(k) = 0,

Proof : (a) Consider two states sk and s̃k such that skDk
∆ε

s̃k. This implies that Bi(s
k, e(k))

≥ Bi(s̃
k, e(k)) (i = 1, . . . , p). If k = n, we get sn(1 + ε)e(n) ≥ s̃n, which establishes con-

dition (1) of Definition 3 for k = n. Otherwise, if k < n, since sk
p+1 ≤ s̃k

p+1, any subset

J ⊆ {k + 1, . . . , n} that is a completion for s̃k is also a completion for sk. Thus, for all

s̃n ∈ Ext(s̃k), there exists sn ∈ Ext(sk), based on the same completion as s̃n, such that

sn(1 + ε)e(k) ≥ s̃n. This establishes that Dk
∆ε

satisfies condition (1) of Definition 3.

(b) Obvious.

(c) For any k ∈ {1, . . . , n}, when e(k) = 0, we have by definition Dk
∆ε

= Dk
∆. For any

k ∈ {1, . . . , n}, when e(k) 6= 0, consider two states sk and s̃k such that skDk
∆s̃k. This implies
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that sk
p+1 ≤ s̃k

p+1 if k < n. Moreover, since sk∆s̃k, we have log sk
i ≥ log s̃k

i (i = 1, . . . , p).

Thus, since 1
e(k) log(1+ε) > 0, we obtain Bi(s

k, e(k)) ≥ Bi(s̃
k, e(k)) (i = 1, . . . , p). Hence, we

get for any k ∈ {1, . . . , n} skDk
∆ε

s̃k. �

As a consequence of (c) we have ∆ ⊆ Dn
∆ε

and thus Algorithm 1 using a family of domi-

nance relations Dk
∆ε

, k = 1, . . . , n, computes a reduced (1+ε)-approximation (see Theorem 1).

Relation Dk
∆ε

is a powerful relation since a state can possibly dominate all other states of

larger weight. This relation requires at most p + 1 tests to be established between two states.

Observe that, even if Erlebach et al. (2002) do not explicitly mention the use of a family

of dominance relations for ∆ε, their approach could be restated within Algorithm 1 by using

the following family of relations Dk
E defined on Sk by:

for all sk, s̃k ∈ Sk, skDk
E s̃k ⇔

{

Bi(s
k, 1/n) = Bi(s̃

k, 1/n) i = 1, . . . , p and

sk
p+1 ≤ s̃k

p+1

Remark that Dk
E ⊆ Dk

∆ε
for e(k) = 1/n (k = 1, . . . , n). This relation, which is quite sufficient

to establish the existence of an fptas, has two main disadvantages for an efficient implemen-

tation. First, it is very poor since it compares only states lying in the same hyper-rectangle.

Therefore, even if two states sk, s̃k are such that skDk
∆s̃k, we keep both of them in Ck pro-

vided that they are not in the same hyper-rectangle. Secondly, by applying a constant error

of (1 + ε)1/n at each phase, the total error of 1 + ε is shared out equitably among all the

phases. During the first phases, since the values of the states are small, the hyper-rectangles

to which the states belong usually have a length smaller than 1 on all dimensions. In this

case, the advantage of the partition is canceled out since only states with same values could

be in relation Dk
E . Thus, the error allocated to these phases is wasted.

4.1.2 Complexity of our approach using Dk
∆ε

For a given ε > 0, the running time of Algorithm 1 using relation Dk
∆ε

depends crucially on

the error function e. In order to guarantee that Algorithm 1 is polynomial both in the size

of the instance and in 1/ε, we have to add some conditions on the error function aiming at

limiting the number of phases with an error equal to 0.

Definition 5 (Polynomial error function) The error function e is a polynomial error

function if, for k = 1, . . . , n, e(k) = 1/g(k) if k is a multiple of t, 0 otherwise, where t

is a strictly positive integer in O(log n) and where, for any k = 1, . . . , n, 0 < g(k) ≤ cnd for

some positive fixed constants c, d.

The following theorem establishes the complexity of Algorithm 1 using the family of domi-

nance relations Dk
∆ε

.
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Theorem 2 For any ε > 0 and any polynomial error function e, Algorithm 1, using the

family of dominance relations Dk
∆ε

, is polynomial both in the size of the instance and in 1/ε.

Proof : The complexity of Algorithm 1 is in O(
∑n−1

k=0 |C
k|2). We study now the cardinality

of Ck for k = 0, . . . , n− 1.

When e(k) 6= 0, i.e. when k is a multiple of t, the cardinality of Ck can be bounded by

τ(k) =
(

log Umax

e(k)ε

)p
with Umax = max{U1, . . . , Up} where Ui is an upper bound on the value

of the feasible solutions on the ith criterion (i = 1, . . . , p).

When e(k) = 0, i.e. when k is not a multiple of t, the cardinality of Ck is at most 2k−ℓ

times the cardinality of Cℓ where ℓ = ⌊k/t⌋t is the index of the last phase with an error

function different from 0. Hence, in this case, |Ck| can be bounded by 2k−⌊k/t⌋tτ(⌊k/t⌋t),

where τ(0) = |C0| = 1.

Finally, the complexity of Algorithm 1 can be bounded by:

⌊n/t⌋
∑

j=0

t−1
∑

i=0

(

2iτ(jt)
)2

=

t−1
∑

i=0

22i

⌊n/t⌋
∑

j=0

τ(jt)2 (3)

Observe that
∑t−1

i=0 22i = 22
∑t−1

i=0 2i = 22(2t − 1) = 2t+2 − 4. Hence, since t is in O(log n), we

get
∑t−1

i=0 22i ≤ ng for some fixed positive constant g. Thus the complexity of Algorithm 1,

that is bounded by (3), is in O
(

ng
∑⌊n/t⌋

j=0 τ(jt)2
)

.

Since e is a polynomial error function, we have 0 < 1/e(jt) ≤ cnd for some positive fixed

constants c and d, for any j = 0, . . . , ⌊n/t⌋. Thus, the complexity of Algorithm 1 is in:

O

(

ng+2pd+1

(

log Umax

ε

)2p
)

for some positive fixed constants d and g. This establishes that the complexity of Algorithm 1

is polynomial both in the size of the instance and in 1/ε. �

Hence, by Theorems 1 and 2 we have that, for any ε > 0 and any polynomial error function

e, Algorithm 1 using the family of dominance relations Dk
∆ε

is an fptas that produces a reduced

(1 + ε)-approximation.

4.1.3 Error functions

A crucial parameter of relation Dk
∆ε

is the error function e. The distribution of the error

throughout the phases depends on the shape of the error function and on the frequency

of phases with a non zero error (see paragraph Shape and frequency). Moreover, the error

function considered can be modified during the phases to take into account some particularities

of the instance under resolution (see paragraph Strategy of management).

10



Shape and frequency We investigate the following polynomial error functions: for k =

1, . . . , n

• e1(k) = 1/(⌊n/t⌋), if k is a multiple of t, 0, otherwise

• e2(k) = 2k/t
⌊n/t⌋(⌊n/t⌋+1) , if k is a multiple of t, 0, otherwise

• e3(k) = 6(k/t)2

⌊n/t⌋(⌊n/t⌋+1)(2⌊n/t⌋+1) , if k is a multiple of t, 0, otherwise

where e1, e2, and e3 are respectively constant, linear, and quadratic error functions. In

the definition of e1, e2, and e3, parameter t, which is a strictly positive integer in O(log n),

expresses the frequency of the application of the error. The idea of the frequency is to have

some phases with no error in order to apply larger errors to other phases. Of course, in order

to remain polynomial in the size of the instance and in 1/ε, the number of phases with no

error must be limited (see Theorem 2).

In the computational experiments, in Section 5, we show the impact of the error function

and of the frequency in our approach.

Strategy of management During a phase k a state s̃k ∈ T k is discarded because of the

existence of a state sk ∈ Ck such that skDk
∆ε

s̃k. Nevertheless, since Dk
∆ ⊆ Dk

∆ε
, it could

happen that we also have skDk
∆s̃k. If this happens for all discarded states of T k, it means

that the error e(k) attributed to this phase is not used. It is then desirable to redistribute

the error e(k) among the remaining phases k +1, . . . , n for which the error is strictly positive.

This strategy of management of the error is particularly effective during the first phases

where states usually have small values and Dk
∆ε

does not remove more states than Dk
∆. All

experiments in this paper use this strategy of management of the error.

4.2 Complementary dominance relations with respect to ∆

Since each dominance relation focuses on specific considerations, it is then desirable to make

use of complementary dominance relations. Moreover, when deciding to use a dominance

relation, a tradeoff must be made between its potential ability of discarding many states and

the time it requires to be checked. We present now two other complementary dominance

relations for ∆. The first one, Dk
r , is very easy to establish and the second one, Dk

b , although

more difficult to establish, is considered owing to its complementarity with Dk
r and Dk

∆ε
.

Dominance relation Dk
r is based on the following observation. When the residual capacity

associated to a state sk of phase k is greater than or equal to the sum of the weights of the

remaining items (items k + 1, . . . , n), the only completion of sk that can possibly lead to an

efficient solution is the full completion J = {k + 1, . . . , n}. It is then unnecessary to generate

extensions of sk that do not contain all the remaining items. We define thus the dominance

11



relation Dk
r on Sk for k = 1, . . . , n by:

for all sk, s̃k ∈ Sk, skDk
r s̃

k ⇔











s̃k ∈ Sk−1,

sk = (s̃k
1 + vk

1 , . . . , s̃k
p + vk

p , s̃k
p+1 + wk)

s̃k
p+1 ≤W −

∑n
j=k wj

This dominance relation is quite poor, since at each phase k it can only appear between a

state that does not contain item k and its extension that contains item k. Nevertheless, it is

very easy to check since, once the residual capacity W −
∑n

j=k wj is computed, relation Dk
r

requires only one test to be established between two states.

Dominance relation Dk
b is based on the comparison between extensions of a state and

an upper bound of all the extensions of another state. In our context, a criterion vector

u = (u1, . . . , up) is an upper bound for a state sk ∈ Sk if and only if for all sn ∈ Ext(sk) we

have ui ≥ sn
i , i = 1, . . . , p.

We can derive a general type of dominance relations as follows: considering two states

sk, s̃k ∈ Sk, if there exists a completion J of sk and an upper bound ũ for s̃k such that

sk
i +

∑

j∈J vj
i ≥ ũi, i = 1, . . . , p, then sk dominates s̃k.

This type of dominance relations can be implemented only for specific completions and

upper bounds. In our experiments, we just consider two specific completions J ′ and J ′′ defined

as follows. Let Oi be an order induced by considering items according to decreasing order of

ratios vk
i /wk (i = 1, . . . , p). Let rℓ

i be the rank or position of item ℓ in order Oi. Let Omax

be an order according to increasing values of the maximum rank of items in the p orders Oi

(i = 1, . . . , p) where the maximum rank of item ℓ in the p orders Oi (i = 1, . . . , p) is computed

by maxi=1,...,p{r
ℓ
i}+ 1

pn

∑p
i=1 rℓ

i in order to discriminate items with the same maximum rank.

Let Osum be an order according to increasing values of the sum of the ranks of items in the

p orders Oi (i = 1, . . . , p). After relabeling items k + 1, . . . , n according to Omax, completion

J ′ is obtained by inserting sequentially the remaining items into the solution provided that

the capacity constraint is respected. J ′′ is defined similarly by relabeling items according to

Osum. To compute u, we use the classical upper bound presented in (Martello and Toth,

1990, Th. 2.2) computed independently for each criterion value.

Finally, we define Dk
b a particular dominance relation of this general type for k = 1, . . . , n

by:

for all sk, s̃k ∈ Sk, skDk
b s̃

k ⇔











sk
i +

∑

j∈J ′ v
j
i ≥ ũi, i = 1, . . . , p

or

sk
i +

∑

j∈J ′′ v
j
i ≥ ũi, i = 1, . . . , p

where ũ = (ũ1, . . . , ũp) is the upper bound of Martello and Toth for s̃k.

Dk
b is harder to check than relations Dk

r , Dk
∆ and Dk

∆ε
since it requires much more tests

and state-dependent information.
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4.3 Use of multiple dominance relations

In order to be efficient, we will use the dominance relations Dk
r ,D

k
∆ε

, and Dk
b at each phase. As

underlined in the previous subsection, dominance relations require more or less computational

effort to be checked. Moreover, even if they are partly complementary, it often happens that

several relations are valid for a same pair of states. It is thus natural to apply first dominance

relations which can be checked easily (such as Dk
r and Dk

∆ε
) and then test on a reduced set

of states dominance relations requiring a larger computation time (such as Dk
b ).

5 Computational experiments and results

We first present the experimental design (Section 5.1). Then, Section 5.2 is devoted to the

presentation of results in the bi-objective case and Section 5.3 to the presentation of results in

the tri-objective case. Finally a comparison with an exact method is performed in Section 5.4.

5.1 Experimental design

All experiments presented here were performed on a 3.4GHz computer with 3072Mb RAM.

All algorithms are written in C++. In the bi-objective case (p = 2), the following types of

instances were considered:

A) Random instances: vk
1 ∈R [1, 1000], vk

2 ∈R [1, 1000] and wk ∈R [1, 1000]

B) Unconflicting instances, where vk
1 is positively correlated with vk

2 : vk
1 ∈R [111, 1000] and

vk
2 ∈R [vk

1 − 100, vk
1 + 100], and wk ∈R [1, 1000]

C) Conflicting instances, where vk
1 and vk

2 are negatively correlated: vk
1 ∈R [1, 1000], vk

2 ∈R

[max{900 − vk
1 ; 1},min{1100 − vk

1 ; 1000}], and wk ∈R [1, 1000]

D) Conflicting instances with correlated weights, where vk
1 and vk

2 are negatively correlated,

and wk is positively correlated with vk
1 and vk

2 : vk
1 ∈R [1, 1000], vk

2 ∈R [max{900 −

vk
1 ; 1},min{1100 − vk

1 ; 1000}], and wk ∈R [vk
1 + vk

2 − 200; vk
1 + vk

2 + 200].

where ∈R [a, b] denotes uniformly random generated in [a, b]. For all these instances, we set

W = ⌊1/2
∑n

k=1 wk⌋.

Most of the time in the literature, experiments are made on instances of type A. Some-

times, other instances such as those of type B, which were introduced in Captivo et al. (2003),

are studied. However, instances of type B should be viewed as quasi single-criterion instances

since they involve two non conflicting criteria. Nevertheless, in a bi-objective context, con-

sidering conflicting criteria is a more appropriate way of modeling real-world situations. For

this reason, we introduced instances of types C and D for which criterion values of items

are conflicting. In instances of type D, wk is positively correlated with vk
1 and vk

2 . These

instances were designed in order to verify if positively correlated weight/values instances are
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harder than uncorrelated weight/values instances as in the single-criterion context (Martello

and Toth, 1990; Kellerer et al., 2004).

For tri-objective experiments, we considered the generalization of random instances of

type A where vk
i ∈R [1, 1000] for i = 1, . . . , 3 and wk ∈R [1, 1000] and the generalization

of conflicting instances of type C where vk
1 ∈R [1, 1000], vk

2 ∈R [1, 1001 − vk
1 ], and vk

3 ∈R

[max{900 − vk
1 − vk

2 ; 1},min{1100 − vk
1 − vk

2 ; 1001 − vk
1}], and wk ∈R [1, 1000].

For each type of instance and each value of n presented in this study, 10 different instances

were generated and tested. In the following, we denote by pTn a p-objective instance of type

T with n items. For example, 2A100 denotes a bi-objective instance of type A with 100 items.

In the experiments, we also report the results obtained in Bazgan et al. (2009) by using

relations Dk
r , Dk

∆ and Dk
b aiming at solving the exact version of the 0–1 multi-objective

knapsack problem. These results are denoted by exact method. In this previous work, we

showed that the way of ordering items has a dramatic impact on the CPU time; we established

experimentally that sorting items according to Omax is much better than using simple orders

like Osum. Thus, in the following, items are sorted and labeled according to Omax.

Observe finally that all the methods experimented only compute criterion vectors. Stan-

dard bookkeeping techniques, not considered here, may be used to produce the corresponding

solutions.

5.2 Results in the bi-objective case

The goals of the experiments in the bi-objective case are:

(a) to have a better understanding of the distribution of NDε in the criterion space (see

Figure 1)

(b) to analyze the impact of the error functions (see Tables 1 and 2)

(c) to evaluate the impact of the variation of ε in our approach and evaluate the a posteriori

real error (see Table 3)

(d) to analyze the performance of our approach on large instances (see Table 4)

5.2.1 Distribution of NDε vs ND in the criterion space

In order to appreciate the quality of an (1 + ε)-approximation, we consider a small random

instance of type 2A50 and display in Figure 1 a set NDε produced by our approximation

algorithm and the set ND obtained by an exact algorithm. We can observe that the size of

NDε is much smaller than the cardinality of ND (13 points for NDε vs 52 for ND). Moreover,

all points of NDε are distributed uniformly along the efficient frontier. Remark also that

almost all points of NDε are non-dominated vectors.
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Instance 2A50 solved by our approach with ε = 0.1, error function e2, and t = 1

ND , |ND | = 52

NDε, |NDε| = 13
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Figure 1: Distribution of NDε vs ND in the criterion space

5.2.2 Impact of the error functions

First, we try to determine the best error function to use in relation Dk
∆ε

. In Table 1 we

compare the CPU time and the size of NDε obtained for the three polynomial error functions

e1, e2, and e3 (see Section 4.1.3). Table 1 shows clearly that the error function has a significant

impact on the CPU time and that error function e2 is significantly better for all types of

instances. Observe also that error function e3, although less efficient than e2 in terms of

CPU time, allows us to generate reduced (1 + ε)-approximations of smaller cardinality. In

the following, we will use only error function e2.

Table 1: Impact of different error functions in our approach (p = 2)

approximation method exact method

type avg. time in s. avg. |NDε| Bazgan et al. (2009)

e1 e2 e3 e1 e2 e3 avg t. in s. avg. |ND|

2A-400 51.775 34.347 50.022 332.1 199.8 134.3 307.093 4631.8

2B-1000 0.238 0.180 0.299 1.0 1.0 1.0 8.812 157.0

2C-300 74.308 50.265 68.974 615.3 326.4 227.5 373.097 1130.7

2D-150 65.144 47.398 67.758 703.0 384.3 263.1 265.058 3418.5

ε = 0.1, different error functions, and frequency t = 1

Second, we show the impact of the frequency t in the error function e2. Table 2 establishes

that our approach is always faster by setting the frequency t = ⌊log n⌋. Observe that the

cardinality of NDε is inversely proportional to the frequency t. For example the increase of a

factor 3 of the frequency (from t = ⌊log n⌋ to ⌊3 log n⌋) leads to a decrease of about a factor

3 of the size of NDε.
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Table 2: Impact of the frequency in the error function e2 (p = 2)

approximation method exact method

avg. time in s. avg. |NDε| Bazgan et al. (2009)

type t = 1 ⌊log n⌋ ⌊2 log n⌋ ⌊3 log n⌋ t = 1 ⌊log n⌋ ⌊2 log n⌋ ⌊3 log n⌋ avg. t. in s. avg. |ND|

2A-400 34.347 4.536 5.441 7.664 199.8 31.3 16.1 11.9 307.093 4631.8

2B-1000 0.180 0.120 0.406 1.009 1.0 1.3 1.1 1.0 8.812 157.0

2C-300 50.265 7.511 8.084 11.618 326.4 53.6 27.3 18.8 373.097 1130.7

2D-150 47.398 10.874 11.935 16.156 384.3 70.1 35.8 26.4 265.058 3418.5

ε = 0.1, error function e2, and different frequencies

5.2.3 Impact of the variation of ε

Table 3: Impact of the variation of the error ε (p = 2)

type n ε = 0.1 ε = 0.3 ε = 0.5

avg. t. |NDε| avg. error avg. t. |NDε| avg. error avg. t. |NDε| avg. error

A
100 0.042 10.1 0.0159 0.017 4.3 0.0400 0.013 2.9 0.0638

700 32.275 49.5 0.0060 10.500 18.3 0.0200 6.605 11.2 0.0337

B
1000 0.118 1.3 0.0041 0.066 1.1 0.0102 0.052 1.0 0.0149

4000 11.220 1.8 0.0023 4.482 1.4 0.0070 3.596 1.1 0.0119

C
100 0.210 25.3 0.0178 0.077 9.4 0.0443 0.050 6.4 0.0609

500 44.368 88.3 0.0064 13.268 30.8 0.0202 7.830 19.8 0.0336

D
100 2.356 52.9 0.0183 0.675 19.5 0.0458 0.379 12.6 0.0701

250 62.970 110.9 0.0098 17.793 41.2 0.0258 9.925 25.7 0.0449

Different error ε, error function e2, and frequency t = ⌊log n⌋

avg. t : average CPU time in second

The results concerning the impact of the variation of ε in our approach are reported in

Table 3. First, observe that the average CPU time is, as expected theoretically, inversely

proportional to the value of ε. For example, for instances 2C500 the average CPU time

decreases from 44.3s to 7.8s (about a factor 5.5) when increasing the error from ε = 0.1 to

0.5. Second, as also expected theoretically, we observed experimentally that |NDε| is inversely

proportional to the value of ε, for all instances except instances of type B (for which |NDε| is

already less than 2 when ε = 0.1).

We also give in Table 3, for each series, the “average error” that refers to the a posteriori

error, which corresponds to the smallest value of ε such that the returned set is indeed a

reduced (1 + ε)-approximation. Observe that the a posteriori error is much smaller than the

fixed a priori error. For example, for instances 2D100, for an a priori error ε set to 0.5, the a

posteriori error is about 0.07 and tends to decrease with the size of the instances. This clearly

shows that, in practice, we can use our approach with large values of ε in order to obtain

very quickly approximations of good quality. The following experiments are performed with

an a priori error ε set to 0.1.
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5.2.4 Performance on large size instances

We present, in Table 4, the performance of our approach on large size instances. The largest

instances solved here are those of type B with 20000 items and the instances with the largest

reduced (1+ ε)-approximations are those of type D with 900 items. Observe that the average

maximum cardinality of Ck, which is a good indicator of the memory storage needed to solve

the instances, can be very huge. This explains why we can only solve instances of type D up

to 900 items.

Table 4: Results of our approach on large size instances (p = 2)

type n
time in s. |NDε| avg.

min avg. max min avg. max maxk{|C
k|}

A

100 0.024 0.042 0.072 6 10.1 15 2456.7

500 8.160 9.392 11.712 34 39.1 46 79334.0

1000 88.121 94.050 103.402 65 68.5 76 321327.6

1500 355.422 369.537 414.009 87 92.0 96 786580.0

2000 896.640 1030.813 1398.060 111 123.9 132 1489132.4

2500 1635.230 1917.072 2081.410 127 138.6 147 2585169.9

B

1000 0.084 0.118 0.144 1 1.3 2 5596.4

5000 19.814 26.062 35.422 1 2.1 4 252650.7

10000 245.572 269.731 318.808 2 3.3 4 1160906.4

15000 654.553 896.394 1070.930 3 4.2 5 2416609.6

20000 2424.700 2816.606 3166.580 4 5.3 7 5424849.6

C

100 0.140 0.210 0.316 21 25.3 32 9964.2

500 31.857 44.145 52.403 74 88.3 104 225211.4

1000 378.135 419.595 471.269 139 150.2 162 923939.4

1500 1358.300 1581.292 1801.710 194 204.3 216 2205211.0

2000 3679.770 4296.847 4749.160 255 272.0 285 4256900.6

D

100 1.948 2.356 2.828 50 52.9 57 93507.9

300 92.433 109.082 123.271 107 119.6 130 1059261.8

500 605.837 640.026 681.286 185 196.4 203 3034228.2

700 1861.120 1956.371 2079.540 225 241.4 251 6238134.6

900 4154.610 4689.373 5177.200 297 313.0 329 10276196.8

ε = 0.1, error function e2, and frequency t = ⌊log n⌋

5.3 Results in the tri-objective case

In Table 5, we present results of our approach concerning instances of type A and of type C

in the tri-objective case. Observe that the size of NDε increases a lot with the addition of a

third objective. This explains the variation of the CPU time which is strongly related with

the cardinality of NDε.

5.4 Comparison with an exact method

The results of a comparative study between the exact method presented in Bazgan et al.

(2009) and our approximation method using relations Dk
r , Dk

∆ε
, and Dk

b are presented in
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Table 5: Results of our approach on instances of type A and C in the tri-objective case

type n
time in s. |NDε| avg.

min avg. max min avg. max maxk{|C
k|}

A

100 0.552 5.036 10.632 36 89.0 126 44660.3

150 20.221 82.051 182.235 114 172.8 245 183115.4

200 118.151 362.632 647.872 178 267.1 404 437670.0

250 582.456 1316.778 3154.800 226 320.4 407 721599.1

C

10 <1ms <1ms <1ms 2 12.7 21 51.7

50 0.300 2.424 7.688 73 166.9 258 25324.5

100 59.239 273.363 570.383 298 450.3 621 254636.0

140 1055.520 3645.854 11071.900 552 688.0 847 777715.3

ε = 0.1, error function e2 and frequency t = ⌊log n⌋

Tables 6 and 7. We selected this method since, as shown in this previous paper, it is the most

efficient exact method currently known. Moreover, the comparison is all the more significant

than this exact method can be seen as a degenerate version of our approach where ε is set to

0.

The two methods have been compared on the same instances and the same computer.

Table 6 presents results in the bi-objective case for instances of type A, B, C, and D for

increasing size of n for instances that can be solved by the exact method. Table 7 presents

results in the tri-objective case for instances of type A for increasing size of n for instances

that can be solved by the exact method.

Considering the CPU time, the approximation method is, of course, always faster than

the exact method (up to more than 600 times faster in the bi-objective case for instances

2B4000 and up to 356 times in the tri-objective case for instances 3A110). The gap between

the CPU time needed by the exact method and the CPU time needed by the approximation

method increases with the number of objectives. For example, for instances of type A, in

the bi-objective case the decrease is up to a factor 169 (instances 2A700) whereas in the

tri-objective case the decrease is up to a factor 356 (instances 3A110).

Observe that, although the cardinality of NDε is very small with regard to the cardinality

of ND , the quality of the reduced (1 + ε)-approximation is very good since for an a priori

error ε = 0.1, the a posteriori error is always less than 0.02 in the bi-objective case, and varies

from 0.0419 to 0.0146 in the tri-objective case. Moreover, as already observed in Section 5.2.3,

the a posteriori error decreases with the size of the instance.
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Table 6: Comparison between the exact method presented in Bazgan et al. (2009) and the

approximation method in the bi-objective case (p = 2)

type n
exact method approximation method

avg. t. in s. avg. |ND| avg. t. in s. avg. |NDε| avg. error

A

100 0.328 159.3 0.042 ( ÷ 8 ) 10.1 ( ÷ 16 ) 0.0159

400 307.093 1713.3 6.084 ( ÷ 50 ) 31.3 ( ÷ 55 ) 0.0076

700 5447.921 4814.8 32.275 ( ÷ 169 ) 49.5 ( ÷ 97 ) 0.0060

B

1000 8.812 157.0 0.118 ( ÷ 75 ) 1.3 ( ÷ 121 ) 0.0041

2000 251.056 477.7 1.452 ( ÷ 173 ) 1.7 ( ÷ 281 ) 0.0028

4000 6773.264 1542.3 11.220 ( ÷ 604 ) 1.8 ( ÷ 857 ) 0.0023

C

100 2.869 558.2 0.210 ( ÷ 14 ) 25.3 ( ÷ 22 ) 0.0178

300 373.097 2893.6 10.099 ( ÷ 37 ) 53.6 ( ÷ 54 ) 0.0096

500 4547.978 7112.1 44.368 ( ÷ 103 ) 88.3 ( ÷ 81 ) 0.0064

D

100 40.866 1765.4 2.356 ( ÷ 17 ) 52.9 ( ÷ 33 ) 0.0183

200 1145.922 5464.0 36.226 ( ÷ 32 ) 89.4 ( ÷ 61 ) 0.0117

250 3383.545 8154.7 62.970 ( ÷ 54 ) 110.9 ( ÷ 74 ) 0.0098

Approximation: ε = 0.1, error function e2, and frequency t = ⌊log n⌋

The decrease factors of the avg. CPU time and of the size of the returned set, corresponding respectively to

avg. t. in s. of exact method / avg. t. in s. of approximation method and |ND|/|NDε|, are given in brackets

Table 7: Comparison between the exact method presented in Bazgan et al. (2009) and the

approximation method in the tri-objective case (p = 3)

type n
exact method approximation method

avg. t. in s. avg. |ND | avg. t. in s. avg. |NDε| avg. error

A

10 <1ms 8.3 <1ms – 4.8 ( ÷ 2 ) 0.0419

30 0.012 112.9 0.006 ( ÷ 2 ) 22.2 ( ÷ 5 ) 0.0246

50 0.611 540.6 0.077 ( ÷ 8 ) 39.5 ( ÷ 14 ) 0.0207

70 16.837 1384.4 0.451 ( ÷ 37 ) 45.9 ( ÷ 30 ) 0.0210

90 538.768 4020.3 3.558 ( ÷ 151 ) 92.3 ( ÷ 44 ) 0.0160

110 3326.587 6398.3 9.347 ( ÷ 356 ) 108.8 ( ÷ 59 ) 0.0146

C

10 <1ms 17.7 <1ms – 12.7 ( ÷ 1 ) 0.0323

20 0.030 300.2 0.014 ( ÷ 2 ) 70.1 ( ÷ 4 ) 0.0362

30 0.431 649.1 0.093 ( ÷ 5 ) 95.3 ( ÷ 7 ) 0.0325

40 3.684 1538.9 0.346 ( ÷ 11 ) 113.1 ( ÷ 14 ) 0.0260

50 83.594 3650.9 2.424 ( ÷ 34 ) 166.9 ( ÷ 22 ) 0.0262

60 2572.981 9647.9 15.027 ( ÷ 171 ) 287.3 ( ÷ 34 ) 0.0207

Approximation: ε = 0.1, error function e2, and frequency t = ⌊log n⌋

The decrease factors of the avg. CPU time and of the size of the returned set, corresponding respectively to

avg. t. in s. of exact method / avg. t. in s. of approximation method and |ND |/|NDε|, are given in brackets
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5.4.1 Comparison with the approximation method of Erlebach et al. (2002)

The results of a comparative study, in the bi-objective case, between the approximation

method of Erlebach et al. (2002) and our approximation method are presented in Table 8.

We also give in this table the results for the exact method presented in Bazgan et al. (2009).

The approximation method of Erlebach et al. (2002) can be restated in Algorithm 1

by using the family of dominance relations Dk
E defined in Section 4.1. Observe that, since

∆ * Dn
E , the second part of Theorem 1 does not hold. Thus the approximation method

of Erlebach et al. (2002) provides us with an (1+ ε)-approximation but not a reduced (1+ ε)-

approximation. This could be corrected easily by filtering the approximation in order to

eliminate dominated solutions.

Table 8: Comparison between the approximation method of Erlebach et al. (2002) and our

approximation method in the bi-objective case (p = 2)

type n
Erlebach et al. (2002) Our approximation method exact method

avg. t. in s. avg. |output| avg. t. in s. avg. |NDε| avg. t. in s. avg. |ND |

A

10 <1ms 503.6 <1ms – 2.3 <1ms – 3.6

50 15.825 1402686.9 0.006 ( ÷ 2826 ) 7.2 0.016 ( ÷ 965 ) 43.4

110 536.577 13161801.6 0.076 ( ÷ 7023 ) 11.6 0.628 ( ÷ 854 ) 167.6

B

10 <1ms 444.4 <1ms – 1.0 <1ms – 1.2

50 2.616 223353.8 0.001 ( ÷ 2616 ) 1.0 0.001 ( ÷ 3270 ) 3.0

110 70.466 1971772.1 0.002 ( ÷ 35233 ) 1.0 0.002 ( ÷ 29361 ) 6.3

C

10 <1ms 482.8 <1ms – 6.0 <1ms – 12.5

50 19.261 1533844.2 0.024 ( ÷ 803 ) 15.3 0.084 ( ÷ 228 ) 176.4

110 653.325 14033379.6 0.242 ( ÷ 2704 ) 25.1 3.493 ( ÷ 187 ) 578.9

D

10 <1ms 484.2 <1ms – 10.7 <1ms – 31.6

50 17.549 1454469.5 0.198 ( ÷ 89 ) 35.7 1.372 ( ÷ 13 ) 581.6

110 566.662 13333536.4 3.613 ( ÷ 157 ) 58.7 61.618 ( ÷ 9 ) 1963.3

Our approximation method: ε = 0.1, error function e2, and frequency t = ⌊log n⌋

The decrease factors of the avg. CPU time, corresponding to avg. t. in s. of Erlebach et al. (2002) / avg. t. in s.

of our approximation method and of the exact method, are given in brackets

The three methods have been compared on the same instances and the same computer.

We implemented the approximation method of Erlebach et al. (2002) in C++. Nevertheless,

we used an AVL tree to store states at each phase, since it is impossible, for memory reasons,

to store the states in an array, as suggested by the authors. This leads to increase the running

time to O(np(n log Umax/ε)
p log(n log Umax/ε)).

Considering the CPU time, we can conclude that our approach is always extremely faster

than the method of Erlebach et al. (2002) on the considered instances. More interestingly,

even our exact method performs faster than the approximation method of Erlebach et al.

(2002). Observe, however, that the approximation method of Erlebach et al. (2002) is less

sensitive to the type of instances than our method since it performs quite similarly on the

instances of types A, C, or D.
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6 Conclusions

The purpose of this work was to design a practically efficient fptas, based on a dynamic pro-

gramming algorithm, for solving the approximation version of the 0–1 multi-objective knap-

sack problem. We showed indeed that by using several complementary dominance relations,

and sharing the error appropriately among the phases, we obtain an fptas which is experi-

mentally extremely efficient. The practical use of this approach depends on the requirements

imposed by the user. If the user wants to be sure about the quality of the approximation,

he/she should set low values for ε, e.g. ε = 0.1, in order to obtain reasonably fast an excel-

lent approximation. Alternatively, he/she could overestimate the value of ε, e.g. by setting

ε = 0.5, in order to obtain extremely fast a reasonably good approximation. In the latter

case, our approach becomes competitive with metaheuristics, with the additional advantage

of a theoretical a priori guarantee and a much better practical a posteriori error.

While we focused in this paper on the approximation version of the 0–1 multi-objective

knapsack problem, we could envisage in future research to apply dominance relations based

on similar ideas to the approximation version of other multi-objective problems which admit

dynamic programming formulations, such as the multi-objective shortest path problem or

multi-objective scheduling problems.
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