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Abstract

The Satisfactory Partition problem asks for deciding if a given graph has a parti-
tion of its vertex set into two nonempty parts such that each vertex has at least as many
neighbors in its part as in the other part. This problem was introduced by Gerber and
Kobler [EJOR, 125 (2000), 283–291] and studied further by other authors. In this paper
we first review some applications and related problems. Then, we survey structural, com-
plexity, and approximation results obtained for Satisfactory Partition and for some
of its variants and generalizations. A list of open questions concludes this survey.
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1 Introduction

Gerber and Kobler introduced in [34, 35] the Satisfactory Partition problem of deciding
if a given graph has a vertex partition into two nonempty parts such that each vertex has at
least as many neighbors in its part as in the other part. Such a solution is called a satisfactory
partition and a graph satisfying this property is called partitionable. A subset of vertices such
that each vertex has at least as many neighbors in its part as outside is called a satisfactory
subset. In this survey we also consider several variants of Satisfactory Partition. A first
variant, referred to as Co-Satisfactory Partition, asks for deciding if a given graph has a
vertex partition into two nonempty parts such that each vertex has at least as many neighbors
in the other part as in its own part. Such a solution is called a co-satisfactory partition. A
second variant, called Satisfactory Bisection, imposes further that the partition be bal-
anced. In the same way, we consider the balanced version of Co-Satisfactory Partition,
called Co-Satisfactory Bisection. We also consider generalizations of these problems
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to k parts, for k ≥ 3, called (co-)satisfactory k-partitions or balanced (co-)satisfactory k-
partitions. Other generalizations, where conditions for vertices to be satisfied are specific to
each vertex, or part, are also reviewed. These problems are investigated from structural and
algorithmic aspects.

The paper is structured as follows. In Section 2 we give some motivations for these prob-
lems. In Section 3 we introduce formally some definitions and notation. We start Section 4
with some examples of partitionable and non-partitionable graphs, we review sufficient con-
ditions for the existence of a satisfactory partition and we finish with examples of graphs
that admit or not a (co-)satisfactory bisection. In Section 5 we study the complexity and
the approximation of (Co-)Satisfactory Partition and some balanced versions. In Sec-
tion 6, we consider generalizations of Satisfactory Partition with other constraints and
more than two parts. Particular classes of graphs that admit efficient algorithms for exact
or approximate solutions are considered in Section 7. We conclude this paper by providing a
list of open problems.

2 Applications and related problems

Detecting a satisfactory partition, or some of its variants, arises in a variety of applications
and contexts.

Identifying communities within social or biological networks, or within the web graph, is
a major and fashionable concern. In the web context, a community is defined by Flake et al.
[31] as a set of web pages that links to more web pages in the community than to pages out of
community. Interesting weighted extensions are studied in [32]. The problem of partitioning
into communities, so as to identify clusters, amounts to determining a satisfactory k-partition,
for a given or suitably chosen k.

Another stream of applications deals with alliances in graphs, originally introduced by
Kristiansen et al. [46], and further studied by Shafique [61] and other authors. The purpose
is to form coalitions of vertices able to defend each other (defensive alliances) or attack non-
allied vertices (offensive alliances). Alliances can be formed between nations in a security
context, between companies in a business context, or between people wishing to gather by
affinity. Various types of alliances were formally defined, among which the concept of strong
defensive alliance used in [46] strictly corresponds to a satisfactory subset. Trying to establish
a partition into strong defensive alliances, i.e. a satisfactory (k-)partition, is natural when
aiming at stabilizing a region by favoring alliances between neighboring countries. In the
context of persons trying to gather by affinity, Gerber and Kobler [35] suggest the problem
of conference organizers that propose a sightseeing tour on two boats and try to assign the
participants to one of the boats so that each participant is satisfied if he knows at least as
many persons on his boat as on the other. In this case, an even more appropriate assignment
would correspond to a satisfactory bisection.

A co-satisfactory partition is also known in the literature as an unfriendly partition. This
problem was studied, e.g., in [1, 11, 52]. It was readily observed that any finite graph admits
an unfriendly 2-partition or co-satisfactory partition (see section 4.4). The main research
emphasis was on infinite graphs. It was proved in [52] that all graphs admit an unfriendly
3-partition, but also that not all infinite graphs admit an unfriendly 2-partition. The coun-
terexample involves uncountably many vertices, and the question for countably infinite graphs
remains open. The emphasis in our paper is different, since we consider finite graphs but bal-
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anced versions of the Co-Satisfactory Partition problem, for which the existence is not
guaranteed.

Satisfactory Partition and Co-Satisfactory Partition are also related to a prob-
lem in Artificial Intelligence concerning the study of a connectionist model of the human brain,
known as a binary coherent system [42] or a stable configuration in neural networks in the
Hopfield model [60]. The problem can be formally stated as follows. Given an edge-weighted
undirected graph G = (V,E) and a threshold value tv for each vertex v ∈ V , find a vertex
assignment σ : V → {−1, 1} such that for each vertex v ∈ V the energy E(v) is non-negative,
where

E(v) = σ(v)tv +
∑

e=(u,v)∈E

σ(u)σ(v)w(e) .

The Happynet problem defined in [55] is a particular case of the previous problem where tv =
0 for each vertex v ∈ V . One may observe that, when every w(e) is a positive constant, the
two vertex classes in a solution of Satisfactory Partition correspond to the vertices having
σ = 1 and σ = −1, respectively. It may happen, however, that the maximum energy of the
system is attained when all signs σ(v) are the same, which is not accepted for Satisfactory
Partition as a solution.

Thus, Satisfactory Partition (resp. Co-Satisfactory Partition) corresponds to
Happynet when the weight function is a positive (resp. negative) constant, but with the
additional constraint that the assignment must be nontrivial (i.e., σ 6= (1, . . . , 1) and σ 6=
(−1, . . . ,−1)).

It is interesting to notice that Happynet always admits a solution, which entails that
it cannot be FNP -hard unless FP=FNP [51, 55] (where FP, FNP are the search classes
associated with the decision classes P, NP). On the other hand, no polynomial-time algorithm
is known for Happynet so far. The NP -completeness of Satisfactory Partition, proved
in [6], shows that the particular case of Happynet when function w is a positive constant
becomes difficult as soon as a nontrivial solution is looked for. However, when function w is a
negative constant and we search for a nontrivial solution, Happynet, which then corresponds
to Co-Satisfactory Partition, becomes polynomial.

Another interpretation comes from the area of network reliability. If we model a com-
munication network with a connected graph, edge sets whose removal still keeps the graph
connected correspond to sets of line failures under which the entire network is still capable
to transfer messages from any origin to any destination. In this way, networks without a sat-
isfactory partition remain operating even if up to half of the local connections at each node
fail down.

A lower level of fault tolerance, namely where the network remains connected when at
most one line failure occurs per node, has been studied in detail in [30]. We shall refer to this
situation as graphs without matching cutsets.

On the other hand, in the context of graph drawing, in [57] and [26] graphs with matching
cutsets are considered. It is pointed out in those papers that matching cutsets (if they
are already at hand) can be applied to make a three-dimensional orthogonal drawing more
efficiently in running time, and also more effectively in terms of volume occupation, number
of bends, and average edge length.

Actually, the first motivation for the study of graphs with/without matching cutsets ap-
pears to be some kind of optimal binary codes, as mentioned in [38].

3



A different kind of motivation comes from the engineering problem of structural pro-
cess control. The dynamic behavior of a process system can be described with a system of
differential equations

dyj

dt
= fj(y,x) (j = 1, . . . , n) , y(0) = y0

called state equation (see e.g. [44]), where y = y(t) = (y1(t), . . . , yn(t)) and x = x(t) =
(x1(t), . . . , xk(t)) is the vector of states and of the input, respectively, at any time t. The
structure of this system can be represented with the ‘equation-variable graph’ that is a directed
graph G = (X ∪ Y,E) with two types of vertices xi and yj representing the input and state
variables (i = 1, . . . , k, j = 1, . . . , n). There is an arc (xi, yj) ∈ E or (yi, yj) ∈ E if variable xi

or yi appears in the argument of fj with nonzero effect.
A standard way to modify the behavior of the system (e.g., to stabilize it) is to use

static state feedback controllers, which amounts to associating a subset Yi of state variables
with input variable xi, and manipulating the input xi according to the states in Yi at any
time t. The sets Yi are assumed to be mutually disjoint. Hence, taking k controllers in the
distributed control system structure corresponds to a vertex partition into k classes. Then
the edges between different classes occur as disturbances from one class to the other. The
primary aim usually is to design an optimal distribution of controllers. However, the degree of
coupling, defined as the total number of edges joining the distinct classes of the partition, may
also be of importance. Therefore, a satisfactory k-partition yields a locally optimal solution
for the problem of finding a stabilizing structure whose degree of coupling is kept at a low
level. Complexity results on controllers with small |Yi|, and also the description of a more
general model where the edges are weighted, can be found e.g. in [39, 40].

3 Notation and problem definitions

The following notation will be used in the rest of the paper. For a graph G = (V,E), a
vertex v ∈ V , and a subset Y ⊆ V we denote by dY (v) the number of vertices in Y that are
adjacent to v ; and, as usual, we write d(v) for the degree dV (v) of v in V . The minimum and
maximum degree of G will be denoted by δ(G) and ∆(G), respectively. For any subgraph G′

of G, V (G′) and E(G′) denote, respectively, the set of vertices and edges of G′. A partition
(V1, V2) of V is said to be nontrivial if both V1 and V2 are nonempty. For basic notions on
graphs not defined in this paper, we refer to the textbooks such as [15] and [27].

The main problem we are interested in is defined as follows.

Satisfactory Partition
Input: A graph G = (V,E).
Question: Is there a nontrivial partition (V1, V2) of V such that for every v ∈ V , if v ∈ Vi

(i = 1, 2) then dVi
(v) ≥ ⌈d(v)

2 ⌉ ?

We consider also the balanced version of the Satisfactory Partition problem, where
feasible solutions are restricted to bisections, that means vertex partitions satisfying the con-
dition |V1| = |V2|.
Satisfactory Bisection
Input: A graph G = (V,E) on an even number of vertices.
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Question: Is there a nontrivial partition (V1, V2) of V such that |V1| = |V2| and for every

v ∈ V , if v ∈ Vi (i = 1, 2) then dVi
(v) ≥ ⌈d(v)

2 ⌉ ?

We also consider the following dual version of Satisfactory Partition.

Co-Satisfactory Partition
Input: A graph G = (V,E).
Question: Is there a nontrivial partition (V1, V2) of V such that for every v ∈ V , if v ∈ Vi

(i = 1, 2) then dVi
(v) ≤ ⌊d(v)

2 ⌋ ?

The balanced version is defined formally as follows.

Co-Satisfactory Bisection
Input: A graph G = (V,E) on an even number of vertices.
Question: Is there a nontrivial partition (V1, V2) of V such that |V1| = |V2| and for every

v ∈ V , if v ∈ Vi (i = 1, 2) then dVi
(v) ≤ ⌊d(v)

2 ⌋ ?

Given a partition (V1, V2) of V , a vertex v ∈ Vi is satisfied if dVi
(v) ≥ ⌈d(v)

2 ⌉ and co-satisfied

if dVi
(v) ≤ ⌊d(v)

2 ⌋. A set A ⊂ V is a satisfactory subset if every vertex of A is satisfied
in (A,V \ A). A partition where every vertex is (co-)satisfied is called a (co-)satisfactory
partition. If a (co-)satisfactory partition (A,B) has the property |A| = |B| then it will be
called a (co-)satisfactory bisection.

4 Existence conditions

Most of the known results deal with satisfactory partitions. These results are presented in
the next three subsections. Other types of partitions are reviewed in the last subsection.

For short, we call a graph partitionable if it admits a satisfactory partition.

4.1 Necessary and sufficient conditions for general graphs

We first observe that disconnected graphs are trivially partitionable. Therefore, in the fol-
lowing, we only consider connected graphs.

We provide now simple observations which give necessary conditions for the existence of
a satisfactory partition.

Proposition 1 Let G = (V,E) a connected graph, with |V | = n. If G is partitionable then
each of the following conditions is satisfied:

(i) One of the parts is of size at least ⌈∆(G)
2 ⌉+1 and the other is of size at least ⌈ δ(G)

2 ⌉+1.

(i′) n ≥ 4.

(ii) Each vertex of degree 1 must be in the same part as its neighbor.

(iii) All vertices of degree n− 1 must belong to the same part.

(iii′) G contains at most ⌈n2 ⌉ − 2 vertices of degree n− 1.
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Using this proposition, we can easily observe that the following graphs are not partition-
able: stars (since (ii) implies that one part of the partition is empty) and complete graphs
(since none of (i), (iii), and (iii′) is satisfied).

In the following we give two characterizations of partitionable graphs, which provide
additional insights on the Satisfactory Partition problem. The first one is a consequence
of the more general Proposition 17 .

Proposition 2 A connected graph is partitionable if and only if it contains two disjoint
satisfactory subsets.

Considering two disjoint satisfactory subsets A and B, one can check indeed that one
obtains a satisfactory partition by adding iteratively each outside vertex either to A (or B)
if it is satisfied in A (or B), and finally adding all remaining vertices either to the current
subset A or the current subset B.

The second characterization highlights relations between the connectivity of a graph and
the existence of a satisfactory partition.

Proposition 3 [62] A connected graph is partitionable if and only if it has a locally minimal
nontrivial edge cut.

Here ‘locally minimal’ means that the size of the cut cannot be decreased by moving any
single vertex to the other side of the cut. Some properties of a graph guarantee the existence
of a locally minimal nontrivial edge cut. They give rise to several sufficient conditions for the
existence of a satisfactory partition.

Proposition 4 A graph with any of the following properties is partitionable:

(i) ([34]) There is a non-pendant cut-edge,

(ii) ([35]) There is a cut that consists of mutually disjoint edges and contains at least one
non-pendant edge,

(iii) ([34]) There is a cut-vertex not incident with pendant edges.

Using this proposition, we can easily observe that the following graphs are partitionable :
trees which are not stars (since (i) is satisfied), cycles of length at least 4 (since (ii) is satisfied).

Interesting relations with vertex and edge connectivity can also be described:

Proposition 5 Any graph with one of the following properties is partitionable:

(i) ([34]) the edge connectivity is smaller than the minimum degree,

(ii) ([62]) the vertex connectivity is not larger than half of the minimum degree.

Since vertex and edge connectivity can be determined by network flow techniques and a
smallest cut can be found efficiently, under these conditions one can also find efficiently a
satisfactory partition.

We consider now the class of complete bipartite graphs Kp,q. Observing that each satis-
factory subset should contain at least ⌈p2⌉+ ⌈

q
2⌉ vertices, it appears that if p or q is odd then

these graphs are not partitionable. If both p and q are even, then taking V1 as a subset of p
2

vertices in the first part together with a subset of q
2 vertices in the second part, we obtain a

satisfactory partition (V1, V \V1). In fact, this is also a satisfactory bisection, a co-satisfactory
partition, and a co-satisfactory bisection.
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4.2 Sufficient conditions for graphs with small degrees only

In the context of satisfactory partitions, graphs of small maximum degree were studied inde-
pendently in two papers. In [62], which appeared first, the existence of a satisfactory partition
for 3- and 4-regular graphs is investigated, without addressing algorithmic issues. An efficient
algorithm was designed in [5]. On the other hand, for 3-regular graphs, the existence of a
satisfactory partition is equivalent to the existence of a ‘matching cutset’ (this is not true for
graphs of maximum degree 3). Under this formulation, part (i) below already appeared in
[54], whose proof can also be made algorithmic. The simple approach used in [5], which works
both for (i) and (ii), is to start from a shortest cycle and either find a satisfactory partition
within a few steps or conclude that the graph in question is one of the specified ones.

Theorem 6 ([54, 62, 5]) The following graphs are partitionable in polynomial time:

(i) All cubic graphs except K4 and K3,3.

(ii) All 4-regular graphs except K5.

These results cannot be extended for regular graphs with degree greater than 4 since
there are 5-regular graphs, different from K6 and K5,5 that are not partitionable, and there
are 6-regular graphs different from K7 that are not partitionable (see Figure 1).

Figure 1: Non-partitionable 5-regular and 6-regular graphs

As noted by Regen [58], known results on bisection width (i.e., minimum cut size over all
bisections) can also be applied to obtain asymptotic estimates for cubic and 4-regular graphs
of large orders. Indeed, on graphs with n vertices, any bisection whose cut size is less than
n/2 leads to a satisfactory partition because moving any non-satisfied vertex to the other part
decreases the size of the cut and hence the procedure terminates before any class becomes
empty. Even better, in a 4-regular graph, a non-satisfied vertex has at least three neighbors
in the other part, thus moving it there decreases the cut by at least 2, and consequently any
bisection with cut size smaller than n will do. The existence of such bisections were proved by
Clark and Entringer [23] (n/3 + 46 for degree 3) and by Hromkovič and Monien [43] (n/2 + 1
for degree 4), respectively. This method also gives information on the unbalance (difference
between the two vertex classes) in a possible satisfactory partition; namely, bisections with
smaller cut size yield smaller unbalance. The currently best estimates on bisection width
appear to be n/6 + o(n) for cubic and 2n/5 + o(n) for 4-regular graphs, proved in [53]. This
approach does not work for high vertex degree, however, because by the results of Bollobás
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[13] the bisection width of almost all d-regular graphs of order n is at least nd/4−n
√

d ln 2/2.
(The estimate nd/4−Θ(n

√
d) is also a universal upper bound, see Alon [2]).

Concerning graphs with maximum degree at most 4, the following result can be proved.
In its part (ii), a wheel means a graph consisting of a cycle and one further vertex which is
adjacent to all vertices of the cycle.

Theorem 7 Let G be a graph with ∆(G) ≤ 4.

(i) ([5]) One can decide in polynomial time if G is (not) partitionable, and find a satisfac-
tory partition of G if it exists.

(ii) ([62]) If δ(G) ≥ 3 holds, too, then G is partitionable if and only if |V | ≥ 6 and G is
neither a wheel nor a graph containing |V | − 3 independent vertices of degree 3.

In fact, for ∆(G) ≤ 4, the problem is reducible to finding two vertex-disjoint cycles in a
slightly extended graph [5], while under the further condition δ(G) ≥ 3 the two vertex-disjoint
cycles should occur in the graph itself [7]. In this way, the algorithmic result of Bodlaender
[12] on finding disjoint cycles can be applied to obtain a solution efficiently.

4.3 Sufficient conditions for line graphs

We recall that the line graph L(G) of a graph G is a graph whose vertex set corresponds
to the edge set of G, and whose edge set is defined by pairs of vertices whose corresponding
edges are adjacent in G.

The characterization of partitionable line graphs appears to be an open problem. Never-
theless, there are several partial results presenting sufficient conditions.

Theorem 8 The line graph L(G) of a graph G is partitionable under any of the following
conditions.

(i) ([37]) G is triangle-free, and it is neither the star nor a tree of radius 2 obtained from a
star by subdividing some, but not all, edges to paths of length 2, or subdividing all edges
of the star if its central vertex has odd degree.

(ii) ([34]) δ(G) ≥ 2, and G contains a vertex x of maximum degree such that any two
adjacent neighbors of x have degree sum at least 6.

(iii) ([62]) G contains a vertex of maximum degree, which is not adjacent to

(a) another vertex of degree ∆(G), or to

(b) any vertex of degree 2, and G is not a star.

As a matter of fact, part (i) completely characterizes the ‘triangle-free’ case, as the con-
dition described there is not only sufficient but also necessary for triangle-free graphs to be
partitionable. It implies, in particular, that the stars are the only triangle-free graphs without
vertices of degree 2 whose line graphs are not partitionable.

4.4 Other types of partitions

In this subsection, we give examples of graphs admitting or not satisfactory bisections, co-
satisfactory partitions, or co-satisfactory bisections.
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4.4.1 Satisfactory bisection

One can easily see that many graphs, e.g. cycles of even length and complete bipartite graphs
with both vertex classes of even size, trivially admit satisfactory bisections. On the other hand,
a disconnected graph of even order formed by two non-partitionable connected components
of unequal size is an example that is partitionable but not into two equal parts.

We saw that all cubic graphs except K4 and K3,3 are partitionable. However, there exist
such graphs that have no satisfactory bisection. Such examples are cubic Hamiltonian graphs
on n = 4k + 2 vertices (k ≥ 1), with a Hamiltonian cycle v1, v2, . . . , v4k+2, v1 and the chords
(vi, v2k+1+i), 1 ≤ i ≤ 2k + 1 (see Figure 2 for k = 2).

v1v10

v2

v8

v9

v7

v5v6

v3

v4

Figure 2: Cubic graph different from K4 and K3,3 that has no satisfactory bisection

4.4.2 Co-satisfactory partition

Co-Satisfactory Partition corresponds to finding a cut that is maximal with respect to
moving a vertex from its part to the other. Therefore, a graph always admits such a partition
that can be found in polynomial time. On the other hand, those locally optimal cuts can be
rather far from globally optimal ones (even when local vertex switching is allowed in a much
wider sense), as proved in [21].

4.4.3 Co-satisfactory bisection

The sequence of cubic graphs described in Subsection 4.4.1 has a co-satisfactory bisection
except for the first member K3,3. As we mentioned before, every graph is co-satisfactory
partitionable but not every graph has a co-satisfactory bisection. Actually, some of the
graphs that admit a satisfactory bisection do not admit a co-satisfactory bisection; a simple
example is the disconnected graph with two components K4 and K1,3 of order four each.
Other types of graphs admit neither a satisfactory bisection nor a co-satisfactory bisection
(stars of even order, complete bipartite graphs K2k+1,2ℓ+1 with k 6= ℓ).

5 Complexity and approximation

5.1 Complexity results

Complexity issues were already considered in the first papers [34, 35], but NP -completeness
of Satisfactory Partition remained an open problem until the works [6, 7]. Gerber and
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Kobler proved in [34] (and re-stated without proof in [35]) the strong NP -hardness of two
‘weighted’ generalizations. In the first one, the vertices are weighted and one asks for a
nontrivial vertex partition such that, for each vertex, the sum of weights of the neighbors in
the same part is at least as large as the sum of weights of the neighbors in the other part.
In another generalization, the edges are weighted and the analogous condition is required on
each vertex for the sum of weights of edges incident with it. More explicitly, the following
complexity results are known.

Theorem 9 ([34]) The following problems are NP-complete:

(i) The vertex-weighted generalization of Satisfactory Partition on chordal graphs.

(ii) The edge-weighted generalization of Satisfactory Partition on complete bipartite
graphs.

The complexity of the original (unweighted) problem was settled several years later; in
some sense it is the main negative result on the subject.

Theorem 10 ([6, 7]) Satisfactory Partition is NP-complete.

We quote here a further result though not one on complexity, which is related to the
subject along the line of hard-to-characterize classes.

Theorem 11 ([62]) Neither the partitionable graphs, nor the non-partitionable ones, admit
a characterization in terms of forbidden induced subgraphs.

We consider next the balanced version, of the Satisfactory Partition problem. Algo-
rithmically, both this problem and its dual version are intractable.

Theorem 12 ([6, 7]) Satisfactory Bisection is NP-complete.

Theorem 13 ([6, 7]) Co-Satisfactory Bisection is NP-complete.

5.2 Approximating the number of (co-)satisfied vertices

When a connected graph on at least three vertices has no satisfactory partition, then it admits
a partition where all vertices except one are satisfied: we can put a vertex of minimum degree
into the first vertex class and all the other vertices in the second class. However, such a
partition is extremely unbalanced.

When a graph admits no (co-)satisfactory bisections, it is natural to ask for a bisection
maximizing the number of (co-)satisfied vertices. The corresponding optimization problems
are called Max (Co-)Satisfying Bisection and they are defined as follows.

Max (Co-)Satisfying Bisection
Input: A graph G = (V,E) on an even number of vertices.
Output: A partition (V1, V2) of V , such that |V1| = |V2|, that maximizes the number of
(co-)satisfied vertices.

Theorem 14 ([6]) Unless P=NP, neither Max Satisfying Bisection nor Max Co-
Satisfying Bisection admit a polynomial-time approximation scheme; but
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(i) Max Satisfying Bisection is 3-approximable, and

(ii) Max Co-Satisfying Bisection is 2-approximable.

An important tool in the proof is the Gallai–Edmonds structure theorem [33, 29] concern-
ing largest matchings, which is here applied for the complements of certain subgraphs of the
input graph.

5.3 Approximating minimum unbalance

If the input graph is partitionable but does not admit a satisfactory bisection, it is an inter-
esting question to estimate the minimum unbalance in a satisfactory partition. A convenient
measure for a solution (V1, V2) is the value | |V1| − |V2| |+ 1, where the explanation for ‘+1’ is
that it makes comparisons possible even if the graph in question has a satisfactory bisection
in which case |V1| − |V2| = 0 occurs.

The problem of minimum unbalance was first studied by Sheehan [63] under an assumption
weaker than requiring all vertices to be satisfied. He proved that every graph with n vertices
and minimum degree δ admits, for some i ≤ δ/2, a vertex partition (V1, V2) such that |V1| =
⌈n/2⌉ + i, |V2| = ⌊n/2⌋ − i, dV1

(v) ≥ ⌈δ/2⌉ + i for all v ∈ V1, and dV2
(v) ≥ ⌊δ/2⌋ − i for all

v ∈ V2. That is, the unbalance is guaranteed to be quite small (with the measure introduced
above, it is never larger than 2δ + 1), but the degrees inside V2 are allowed to be quite small,
or even zero if i = ⌊δ/2⌋ happens to occur. In a subsequent paper [64] this case of zero was
in fact proved to be avoidable for every connected graph, and later Arkin and Hassin proved
in [3] that a solution satisfying the requirements can be found in polynomial time.

The minimum unbalance of partitions of connected graphs was addressed by Sheehan
[65]. Assume that G is k-regular and admits a partition (V1, V2) such that dV1

(v) ≥ ⌈k/2⌉
for all v ∈ V1, and dV2

(v) ≥ ⌊k/2⌋ for all v ∈ V2. If k is even, this corresponds exactly to
the condition for a satisfactory partition. Upper bounds of the form c′kn + c′′k were proved
on | |V1| − |V2| | in such partitions for k ≤ 7, where c′k and c′′k are absolute constants. For
example, if n ≥ 24 is even and k = 7, then the values c′7 = 17/33 and c′′7 = 356/33 describe a
valid upper bound. Moreover, as mentioned in Section 4.2, estimates on minimum unbalance
for cubic and 4-regular graphs can also be derived from results on bisection width.

Upper bounds of this kind may be tight in some cases. However, approximating minimum
unbalance for both the satisfactory and co-satisfactory partitions of the input graph turns
out to be intractable. This fact is extracted in the following result.

Theorem 15 ([10]) Unless P = NP , there is no polynomial-time approximation scheme for
min(| |V1| − |V2| |+ 1), where minimum is taken over

(i) all satisfactory partitions of the input graph that is required to be partitionable, or

(ii) all co-satisfactory partitions of the input graph.

6 Some generalizations

6.1 (a, b)-partitions

Given a graph G = (V,E) and integer-valued functions a, b on V , a nontrivial vertex partition
(A,B) of V with the property

dA(v) ≥ a(v) ∀ v ∈ A and dB(v) ≥ b(v) ∀ v ∈ B

11



is called an (a, b)-partition.
In order to avoid trivialities, it will be assumed throughout that the functions a, b : V → N

satisfy a(v) ≤ d(v) and b(v) ≤ d(v) for all vertices v ∈ V . Partitions (A,B) of V will be
assumed nontrivial (i.e., A 6= ∅ and B 6= ∅) without explicitly mentioning this condition at
each occurrence.

In this section we are interested in the following problem:

(a, b)-Partition
Input: A graph G = (V,E), and two functions a, b : V → N.
Question: Does G have an (a, b)-partition ?

General sufficient conditions can be summarized as follows.

Theorem 16 Let G be a graph, and a, b two integer-valued functions on its vertex set. Then
G admits an (a, b)-partition under any of the following conditions.

(i) ([66]) G is unrestricted, a, b : V → N, and d(v) ≥ a(v) + b(v) + 1 for every v ∈ V .

(ii) ([45]) G is triangle-free, a, b : V → N \ {0}, and d(v) ≥ a(v) + b(v) for every v ∈ V .

(iii) ([28]) G has girth at least five, a, b : V → N \ {0, 1}, and d(v) ≥ a(v) + b(v) − 1 for
every v ∈ V .

Moreover,

(iv) ([9]) in all these cases, an (a, b)-partition of G can be found in polynomial time.

Result (i) was motivated by a problem raised in [67], where it was proved that every
graph of minimum degree 12k has an (a, b)-partition for a = b = k. Parts (ii) and (iii)
were originally stated just for constants a, b instead of functions a(v), b(v) ; but in fact the
proofs work for the general case without any substantial changes. The original proofs of parts
(i)–(iii) contain nonconstructive steps, which were made constructive for the search version
of the problem as described in part (iv).

The exclusion of 0 in part (ii) and {0, 1} in part (iii) is necessary: a cycle of any length
with a(v) = 2 for all vertices v (and b(v) = 0 or b(v) ≤ 1, respectively) admits no nontrivial
(a, b)-partition, because V1 6= ∅ would imply V2 = ∅.

In order to establish Theorem 16, Stiebitz gives a necessary and sufficient condition for
the existence of an (a, b)-partition. While originally stated with the condition d(v) ≥ a(v) +
b(v)+1, its proof still works for a slightly weaker condition. Moreover, the sufficiency part of
this condition can be proved constructively using a polynomial-time algorithm, as in [9]. The
assertion refers to the concept of feasible pair , which is a pair (A,B) of disjoint, nonempty
vertex subsets A,B ⊆ V such that dA(v) ≥ a(v) for all v ∈ A and dB(v) ≥ b(v) for all v ∈ B.

Proposition 17 ([66, 9]) Let G = (V,E) be a graph and a, b : V → N integer-valued
functions such that d(v) ≥ a(v) + b(v) − 1 for every v ∈ V . G admits an (a, b)-partition if
and only if it admits a feasible pair. Moreover, if a feasible pair (A,B) is given, then an
(a, b)-partition can be found in polynomial time.
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Most of the algorithms for Theorem 16 are not simple. To give a flavor of these results, we
present the algorithm for the triangle-free case for which a concise description can be given.
Algorithm 1 (recalled from [9]) exhibits for this case a polynomial-time procedure that finds
a feasible pair. Using then Proposition 17, an efficient way of finding an (a, b)-partition is
obtained.

To formulate the algorithm in a concise way it is convenient to introduce some terminology.
Let G be a graph and f : V → N be a function. Graph G is said to be f -degenerate if

every nonempty Y ⊆ V contains some v ∈ Y with dY (v) ≤ f(v). Thus, if G is not (f − 1)-
degenerate, then there exists a subset A such that dA(v) ≥ f(v) for each vertex v ∈ A. Such
a set A will be called an f -satisfactory subset .

Algorithm 1 Determination of a feasible pair; triangle-free, d(v) ≥ a(v) + b(v)

Require: a triangle-free graph G such that d(v) ≥ a(v) + b(v) for every v ∈ V
Ensure: a feasible pair (A,B)
1: Find A ⊆ V , a minimal a-satisfactory subset
2: B ← V \ A
3: while G[B] is (b− 1)-degenerate do
4: Let x ∈ B such that dB(x) < b(x)
5: A← A ∪ {x}; B ← B \ {x}
6: while there is y ∈ A such that dA(y) ≤ a(y) and G[A \ {y}] is not (a− 1)-degenerate

do
7: A← A \ {y}; B ← B ∪ {y}

The key point in proving that the main while loop is executable, is that after each iteration
— and also before running the loop for the first time — the partition (A,B) currently at hand
satisfies the following properties:

• the set A is a-satisfactory,

• there exists a v1 ∈ A such that dA(v1) = a(v1),

• the set A \ {v1} is (a− 1)-degenerate.

These conditions ensure the existence of a neighbor v2 ∈ A of v1 with the same properties.
Then, applying the assumption that G is triangle-free, one can select some x ∈ B for which
one of v1 and v2 is a suitable choice for y.

There is an important tool for evaluating the quality of a partition along the way towards
finding a satisfactory partition. This has been used in the proofs of all parts of Theorem 16.
As introduced by Stiebitz [66], a vertex partition (A,B) is associated with the weight

w(A,B) = |E(G[A])| + |E(G[B])| +
∑

v∈A

b(v) +
∑

v∈B

a(v)

Then, for example, the finiteness and efficiency of Algorithm 1 can be proved by showing that
w(A,B) increases after each iteration of the main while loop. This certainly ensures that
the number of iterations within this loop is at most O(|E|).

Consider now the particular case where a(v) = b(v) for all v ∈ V . In the extreme case
where a = b = d, d being the vertex degree function, a graph G contains an (a, b)-partition
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if and only if G contains at least two connected components. Thus, the (a, b)-Partition
problem is polynomial-time solvable for a = b = d.

Motivated by certain binary codes, Graham [38] introduced the decomposition problem
of 2-coloring the vertices of a graph in such a way that each vertex has at most one neighbor
with a different color. Answering one of his questions, Chvátal in [22] proved the NP -hardness
of this problem for graphs with minimum degree δ(G) = 3 and maximum degree ∆(G) = 4.
This result implies the following assertion for our problem.

Theorem 18 ([22]) (a, b)-Partition is NP-complete when a = b = d − 1, even for graphs
with δ(G) = 3 and ∆(G) = 4.

This means the NP -completeness of (a, b)-Partition for the entire range ⌊d2⌋ + 1 ≤
a = b ≤ d − 1. Putting this fact together with Theorem 10 and with the positive result of
Theorem 16 (iv), the separation between easy and hard instances of degree functions can be
summarized as follows. The situation is illustrated in Figure 3.

Theorem 19 ([5]) Consider input graphs G with ∆(G) ≥ 5. Then:

(i) The decision problem (a, b)-Partition for ⌈d2⌉ ≤ a = b ≤ d− 1 is NP-complete.

(ii) The search version of (a, b)-Partition for a = b ≤ ⌈d2⌉−1 is polynomial-time solvable.

(iii) The search version of (a, b)-Partition for a = b = d is linear-time solvable.

a = b :
⌊ d

2
⌋0 d⌈ d

2
⌉-1 ⌈ d

2
⌉ ⌊ d

2
⌋+1 d-1

total + poly. poly.NP-complete?

Figure 3: Complexity of (a, b)-Partition for a = b vs. vertex degrees

As indicated earlier, the case of ∆(G) ≤ 4 is different, due to NP -completeness for a =
b = d− 1 in Theorem 18 and polynomial-time solvability for a = b = ⌈d2⌉ in Theorem 7.

The case a = b = d − 1 has been studied independently under the name Matching
Cutset (graphs admitting a matching cutset are sometimes called decomposable). Its NP -
completeness has been re-proved in [56], and intractability remains valid on bipartite graphs
where one class contains only vertices of degree 2 [54] or one vertex class is 3-regular and
the other class is 4-regular [49], and also if the input graph is planar with maximum degree
4 or planar without cycles shorter than 5 [16]. On the other hand, the problem is solvable
in polynomial time on graphs of maximum degree 3 [22], line graphs and graphs without
induced cycles longer than 4 [54], series-parallel graphs [56], claw-free graphs and planar
graphs without cycles shorter than 7 [16], graphs satisfying d(u)+d(v) ≤ 6 for all edges (u, v)
[49], graphs of diameter 2 [20] and graphs whose line graphs are planar [48].

Theorems 18 and 19 also have consequences on the complexity of determining the so-called
3-consecutive coloring number, introduced in [59] (a 3-consecutive coloring of a graph G is a
vertex coloring such that in each path xyz of length two in G, at least one of x and z has the
same color as the middle vertex y; the goal is to maximize the number of colors).
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Weakening the inequality in the definition of co-satisfied vertex to the condition dVi
(v) ≤

⌈d(v)
2 ⌉, for vertices of odd degree there is more flexibility, and stronger results are valid.

Recently, Borowiecki et al. [19] proved that every graph of maximum degree three admits a
vertex partition (V1, V2) such that each Vi induces a subgraph of maximum degree two, and
the edge set joining V1 and V2 contains no cycle; moreover, such a partition can be found in
polynomial time. On the other hand, the analogous decision problem for 4-regular graphs,
i.e. determining if a 4-regular graph admits a co-satisfactory partition (V1, V2) such that the
edge set between V1 and V2 contains no cycle, is NP -complete. Hence there is substantial
difference between even and odd degrees.

6.2 Partitions into more than two classes

6.2.1 (a, b)-partitions

Stiebitz has observed that Theorem 16 implies the following result by induction:

Corollary 20 ([66]) Let G be a graph, and f1, . . . , fk : V → N be k ≥ 2 functions. Assume
that d(v) ≥ f1(v) + . . . + fk(v) + k − 1 for every vertex v ∈ V . Then there is a partition
(V1, . . . , Vk) of V into k nonempty subsets such that

dVi
(v) ≥ fi(v) ∀ 1 ≤ i ≤ k, ∀ v ∈ Vi

A partition (V1, . . . , Vk) of V into k nonempty subsets such that dVi
(v) ≥ fi(v) for all

1 ≤ i ≤ k and all v ∈ Vi is called an (f1, . . . , fk)-partition. Using this terminology, analogues
of the results of the previous subsection can be formulated as follows:

Theorem 21 ([9]) Consider a graph G, an integer k = k(n) ≥ 2 (i.e., possibly depending
on the number n of vertices), and k functions f1, . . . , fk : V → N. An (f1, . . . , fk)-partition
of G exists and can be found in polynomial time under any of the following conditions:

(i) G is unrestricted, fi : V → N ( i = 1, . . . , k), and d(v) ≥ f1(v) + . . . + fk(v) + k − 1 for
every v ∈ V .

(ii) G is triangle-free, fi : V → N \ {0} ( i = 1, . . . , k), and d(v) ≥ f1(v) + . . . + fk(v) for
every v ∈ V .

(iii) G has girth at least five, fi : V → N \ {0, 1} ( i = 1, . . . , k), and d(v) ≥ f1(v) + . . . +
fk(v) − k + 1 for every v ∈ V .

6.2.2 (Co-)satisfactory partitions

The complexity of generalizations of Satisfactory Partition has also been studied, where
a partition into k nonempty parts is requested, for k ≥ 3. In this case, the condition for
a vertex to be satisfied can be stated in several ways. The three following conditions were
investigated, where we consider that a vertex is satisfied if :

• it has at least as many neighbors in its part as in all the other parts together,

• it has at least 1/k proportion of its neighbors in its own part,

• it has at least as many neighbors in its own part as in each of the other parts.
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For k = 2 all these conditions boil down to the unique standard condition.

Formally, these three extensions can be stated as follows.

Sum Satisfactory k-Partition
Input: A graph G = (V,E).
Question: Is there a partition (V1, . . . , Vk) of V into k nonempty parts such that, for all

v ∈ V , if v ∈ Vi (i = 1, . . . , k) then dVi
(v) ≥ ⌈d(v)

2 ⌉ ?
Average Satisfactory k-Partition
Input: A graph G = (V,E).
Question: Is there a partition (V1, . . . , Vk) of V into k nonempty parts such that, for all

v ∈ V , if v ∈ Vi (i = 1, . . . , k) then dVi
(v) ≥ ⌈d(v)

k
⌉ ?

Max Satisfactory k-Partition
Input: A graph G = (V,E).
Question: Is there a partition (V1, . . . , Vk) of V into k nonempty parts such that, for all
v ∈ V , if v ∈ Vi (i = 1, . . . , k) then dVi

(v) = max1≤j≤k dVj
(v) ?

The Sum and Max versions were introduced by Gerber and Kobler in [34]. They proved
the strong NP -hardness of generalizations of these problems where there are weights on the
vertices or edges, and they left as an open question the complexity of the unweigthed case.

The balanced versions of the three k-partition problems are obtained by imposing the
further condition that all partition classes be of the same cardinality (or any two of them
differ by at most 1 if |V | is not a multiple of k). As it could be expected, all these problems
are NP -complete for every value of k.

Proposition 22 ([7]) The following problems are NP-complete for every k ≥ 3.

• Sum Satisfactory k-Partition

• Average Satisfactory k-Partition

• Max Satisfactory k-Partition

• Balanced Sum Satisfactory k-Partition

• Balanced Average Satisfactory k-Partition

• Balanced Max Satisfactory k-Partition

For co-satisfactory k-partitions, these problems are defined in a similar way, except for
the third problem where one asks for a k-partition where each vertex is required to have at
most as many neighbors in its own part as in each of the other parts. For the first three
problems, the polynomial-time solvability is easily seen by taking any locally maximal k-cut,
that is a partition into k vertex classes such that moving any single vertex to another class
does not increase the number of edges that join distinct classes. More generally, the following
analogue of Corollary 20 is valid.
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Theorem 23 ([17, 47, 11]) Let G be a graph, k = k(n) ≥ 2 an integer, and f1, . . . , fk :
V → N be k functions. If d(v) < f1(v) + . . . + fk(v) for every vertex v ∈ V , then there exists
a vertex partition (V1, . . . , Vk) into k nonempty parts such that

dVi
(v) < fi(v) ∀ 1 ≤ i ≤ k, ∀ v ∈ Vi

The version where each fi is constant and f1 + . . . + fk > ∆(G) holds, appeared first
in [50]. Although it is not mentioned in the papers cited above, a k-partition satisfying the
conditions of Theorem 23 can be determined in polynomial time. Moreover, it was proved
in [18] that if G is a connected graph with ∆(G) = ∆ ≥ 3 and G 6= K∆+1, then for any
constants fi with f1 + . . . + fk ≥ ∆ there exists a partition (V1, . . . , Vk) with dVi

(v) ≤ fi for
all 1 ≤ i ≤ k and all v ∈ Vi, and each connected component of the subgraph induced by any
Vi contains a vertex of degree smaller than fi (the result for f1 = . . . = fk = ⌈∆(G)/k⌉ was
proved already in [14]). Also, non-constant fi were considered in [18].

Probably, the balanced versions of most of the above problems are algorithmically harder.
But this is not always the case; e.g., every 3-regular graph admits a balanced average co-
satisfactory 3-partition, which can be determined efficiently by switching iteratively vertices
from different parts that are not co-satisfied.

7 Exact or approximate solutions on particular classes of graphs

In this section we first consider two classes of graphs that behave nicely concerning many
problems that are NP -hard in general. Then, an application to planar graphs is presented.
The published results deal with satisfactory (a, b)-partition (bisection) but the methods can
be adjusted for the co-satisfactory case too.

7.1 Bounded tree-width or clique-width

Graphs of bounded tree-width or bounded clique-width are of great interest because they
admit efficient solutions for fairly large problem classes.

The simplest definition for graphs of tree-width less than k is that they are subgraphs
of chordal graphs with clique number at most k. For algorithmic purposes, however, an
equivalent but more technical definition using the concept of ‘tree decomposition’ is usually
more convenient. A tree decomposition of a graph G = (V,E) is a tree T = (X,F ) with vertex
set X and edge set F , together with subsets Hx ⊆ V indexed with the vertices x ∈ X of T .
It is required that every edge (u, v) ∈ E be contained in some Hx, and that for every v ∈ V ,
the vertices x with v ∈ Hx induce a connected subgraph (i.e., subtree) in T . The host tree
T is then a powerful tool to organize computation for various problems concerning G. The
width of a tree decomposition is the largest |Hx| minus 1, and G has tree-width at most k if
and only if it admits a tree decomposition of width at most k.

On the other hand, graphs of clique-width at most k have a less transparent structure.
These graphs are generated recursively in terms of three operations. For this purpose, vertex
labels {1, . . . , k} are used. The one-vertex graph with any label between 1 and k has clique-
width at most k. Then, by definition, a graph has clique-width at most k if it can be
constructed from these singletons by vertex-disjoint union, the complete join of all vertices
with label i to all vertices with label j (for an arbitrarily chosen pair of labels 1 ≤ i 6= j ≤ k),
and re-labeling all vertices of label i to label j.

The following important facts were proved by Courcelle et al. in [24] and [25], respectively:
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• Every problem expressible in monadic second-order logic with quantifiers on vertex and
edge subsets is solvable in linear time on graphs of bounded tree-width.

• Every problem expressible in monadic second-order logic with quantifiers on vertex
subsets is solvable in linear time on graphs of bounded clique-width.

These results do not immediately apply to vertex partitions with general degree con-
straints, because an unrestricted type of functions a, b on V may need a monadic expression
whose length increases with the order of the input graph. Nevertheless, the following results
can be proved by applying methods different from those in monadic logic.

Theorem 24 ([8]) (a, b)-Partition and (a, b)-Bisection are solvable in polynomial time
on graphs G of bounded tree-width, for any integer-valued functions a, b : V → N.

Theorem 25 ([36]) Satisfactory Partition is solvable in polynomial time on graphs of
bounded clique-width.

In fact, the result of [36] is much more general than cited above. Although it cannot
solve (a, b)-Partition for arbitrary a and b, it is applicable to a number of other important
problems, including Independent Set, Graph k-Coloring for k fixed, Independent
Dominating Set, and many more. Also, Theorem 24 is a particular case of a more general
result of [8] that involves a condition on the cardinalities of partition classes.

7.2 Planar graphs

The polynomial-time solvability of (a, b)-Bisection on graphs of bounded tree-width can be
applied to designing an approximation scheme on planar graphs for maximizing the number
of satisfied vertices in bisections [8]. The idea is to decompose, for an increasing value of k,
any planar input graph into subgraphs of tree-width less than k in several different ways, in
order to maximize the number of satisfied vertices in bisections of each decomposition, and
to show that the largest among these solutions is not very far from the optimum on the entire
input graph.

This method dates back to the paper of Baker [4] and was further applied by many
authors. A more general setting — applicable not only for PTAS but also for approximations
of guaranteed performance ratio — is presented in [8].

8 Open problems

In this concluding section we list some of the problems that remain open.

(1) Characterize interesting subclasses of partitionable graphs.

(2) Suppose that a graph (or a class of graphs) F is given as ‘forbidden’ subgraph(s). How
does the complexity of Satisfactory Partition and the other problems introduced
above depend on F when the input is restricted to graphs not containing (any member
of) F as a subgraph, or as an induced subgraph?

(3) Prove or disprove: For every k there is an n = n(k) such that every graph with at least
n vertices and maximum degree at most k is partitionable.

(It is known that n(2) = 4, n(3) ≤ 9, and n(4) ≤ 13.)
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(4) If n = n(k) in the previous question does not exist for k large, then determine the
complexity of Satisfactory Partition on graphs of bounded degree.

(5) Can an (a, b)-partition be found in linear time if:

• d(v) = a(v) + b(v) + 1 for all v ∈ V , or

• d(v) = a(v) + b(v) for all v ∈ V and G is triangle-free, or

• d(v) = a(v) + b(v)− 1 for all v ∈ V and G has girth at least 5 ?

(6) Are there some stronger versions of the existence theorems of Stiebitz, Kaneko, or Diwan
valid if a(v) is much smaller than b(v) for every vertex v ?

(7) Determine the complexity of the (a, b)-Partition problem for

(i) (a, b) = (⌊d2⌋, ⌊d2⌋)
(ii) (a, b) = (⌊d2⌋, ⌈d2⌉)

(iii) (a, b) = (⌈d2⌉ − 1, ⌈d2⌉)

(From the results presented above, we know that the problem for (a, b) = (⌈d2⌉− 1, ⌊d2⌋)
is solvable in polynomial time, while for (a, b) = (⌈d2⌉, ⌈d2⌉) it is NP -complete.)

(8) Determine the complexity of Co-Satisfactory (a, b)-Partition for 1 ≤ a = b ≤
⌊d2⌋ − 1.

(9) For d ≥ 2, determine the largest integer k = k(d) such that every graph with minimum
degree at least d and vertex connectivity at most k is partitionable.

(10) Design a polynomial-time (3 − c)-approximation for the maximum number of satisfied
vertices in a bisection (for as large c > 0 as possible).

(11) Design a polynomial-time (2−c)-approximation for the maximum number of co-satisfied
vertices in a bisection (for as large c > 0 as possible).

(12) For every natural number k, determine the smallest (or infimum) constant c′k for which
there exists a constant c′′k such that every k-regular partitionable connected graph admits
a satisfactory partition (V1, V2) with | |V1| − |V2| | ≤ c′kn + c′′k.

(13) Determine stronger (in)approximability results for the problems on minimum unbalance.

(14) Determine the threshold probability p(n) such that the random graph Gn,p of order
n and edge probability p is almost surely partitionable if p is under p(n), and is al-
most surely non-partitionable if p is above p(n) ; and estimate the concentration of the
probability of being (non-)partitionable around p(n).

(It was claimed without proof in [35], just based on simulation results, that graphs
of small resp. large edge density are partitionable resp. non-partitionable with high
probability.)

(15) Determine the complexity of Balanced Sum / Average / Min Co-Satisfactory
k-Partition for k ≥ 3.
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[19] M. Borowiecki, A. Fiedorowicz, K. Jesse-Józefczyk and E. Sidorowicz, On acyclic colour-
ings of graphs with bounded degree, manuscript, February 2008.
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