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tIn this paper, we are interested in produ
ing dis
rete and tra
table representations ofthe set of non-dominated points for multi-obje
tive optimization problems, both in the
ontinuous and dis
rete 
ases. These representations must satisfy some 
onditions of
overage, i.e. providing a good approximation of the non-dominated set, spa
ing, i.e.without redundan
ies, and 
ardinality, i.e. with the smallest possible number of points.This leads us to introdu
e the new 
on
ept of (ε, ε′)-kernels, or ε-kernels when ε′ = εis possible, whi
h 
orrespond to ε-Pareto sets satisfying an additional 
ondition of ε′-stability. Among these, the kernels of small, or possibly optimal, 
ardinality are 
laimedto be good representations of the non-dominated set.We �rst establish some general properties on ε-kernels. Then, for the bi-obje
tive 
ase,we propose some generi
 algorithms 
omputing in polynomial time either an ε-kernel ofsmall size or, for a �xed size k, an ε-kernel with a nearly optimal approximation ratio
1 + ε. For more than two obje
tives, we show that ε-kernels do not ne
essarily exist butthat (ε, ε′)-kernels with ε′ ≤

√
1 + ε− 1 always exist. Nevertheless, we show that the sizeof a smallest (ε, ε′)-kernel 
an be very far from the size of a smallest ε-Pareto set.Keywords: Multiple obje
tive programming, Pareto set, non-dominated points, dis
rete rep-resentation, exa
t and approximation algorithms, kernel.1 Introdu
tionIn multi-obje
tive optimization, in opposition to single obje
tive optimization, there is typi-
ally no optimal solution i.e. one that is best for all the obje
tives. The solutions of interest,
alled e�
ient solutions, are su
h that any solution whi
h is better on one 
riterion is ne
-essarily worse on at least one other 
riterion. In other words, a solution is e�
ient if its
orresponding ve
tor of 
riterion values is not dominated by any other ve
tor of 
riterionvalues 
orresponding to a feasible solution. These ve
tors, asso
iated to e�
ient solutions,are 
alled non-dominated points. For many multi-obje
tive optimization problems, one of themain di�
ulties is the large 
ardinality of the set of non-dominated points (or Pareto set).
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For problems with 
ontinuous variables, the set of non-dominated points is usually in�nite.Even in the dis
rete 
ase, it is well-known that most 
lassi
 multi-obje
tive 
ombinatorial opti-mization problems, like shortest path, spanning tree, assignment, knapsa
k,..., are intra
table,in the sense that they admit families of instan
es for whi
h the number of non-dominatedpoints is exponential in the size of the instan
e [8℄. Therefore, in all these 
ases, it is ne
es-sary to determine a good representation of the Pareto set so as to provide de
ision makerswith a tra
table set of points des
ribing as well as possible the di�erent 
hoi
es. The no-tion of representation is understood here in a broad sense, as in [23℄, as any set of pointsbeing representative of the Pareto set. This is more general than the same notion de�ned,e.g., in [21℄ where representations are supposed to be subsets of the set to be represented.Therefore we 
an a

ept that a representation of the Pareto set might in
lude dominatedpoints. Indeed, provided that a set of points satis�es 
onditions of 
overage, spa
ing, and
ardinality presented hereafter, it fully quali�es to be a good representation. In parti
ular,adopting a broad de�nition allows us to 
onsider representations whose elements are obtainedthrough approximate optimization (in 
ases where exa
t optimization is not available or too
ostly). Clearly, when dominated points are present in a representation, they must be rathergood (so as to satisfy the 
overage property). Moreover, when possible, guaranteeing that arepresentation only 
ontains non-dominated points is a desirable property. In this paper, wepropose two algorithms for the bi-obje
tive 
ase. The �rst one, based on exa
t optimization,produ
es a representation 
onsisting of non-dominated points only. The se
ond one, based onapproximate optimization, produ
es a representation that may 
ontain dominated points. Inboth 
ases, however, a priori guarantees on the quality of the returned set are provided.Measures of the quality of a dis
rete representation of the Pareto set have been dis
ussedin [12, 21℄. As outlined in these papers three dimensions are relevant:
• 
overage whi
h ensures that any non-dominated point is represented or 
overed by atleast one point in the representation,
• spa
ing, also 
alled uniformity, whi
h ensures that any two points in the representationare su�
iently spa
ed, avoiding redundan
ies,
• 
ardinality whi
h should be minimal so as to make the representation as tra
table aspossible.Coverage is the most important dimension for the representation to be meaningful. How-ever, it must be 
ounterbalan
ed by the two other dimensions whi
h favor a uniform andsmall 
ardinality representation, respe
tively. While 
overage on the one hand and spa
ingand 
ardinality on the other hand are 
learly 
on�i
ting, the relationship between spa
ingand 
ardinality is not obvious. At �rst sight it 
ould seem that improving spa
ing will leadto a de
rease of the number of points in the representation. It must be observed, however,that imposing spa
ing is an additional 
onstraint that may impa
t negatively on the 
ardi-nality. An interesting result in our paper is that no negative impa
t is to be expe
ted in thebi-obje
tive 
ase, but it is no longer true when dealing with at least three obje
tives. Thisshows the interest of 
onsidering all three dimensions.Coverage and spa
ing may be implemented in several ways. A distan
e-oriented perspe
-tive is used in [12, 21℄. The quality of 
overage is then measured by the distan
e betweenthe points in the Pareto set and the points in the representation (to be minimized) while2



the quality of spa
ing is measured by the distan
e between the points in the representation(to be maximized). Various de�nitions of distan
es are possible leading to di�erent typesof representations, but the Eu
lidean norm is often used. Although natural, this geometri
vision is not dire
tly related to the de
ision maker's preferen
es. Consider a representation
ontaining a point y but not y′, based on the fa
t that y 
overs y′. In a distan
e-orientedperspe
tive, this is justi�ed by the fa
t that y and y′ are 
lose enough. In preferen
e-orientedperspe
tive, the justi�
ation is that y is preferred to, or at least as good as, y′. We note thatin the se
ond 
ase the 
omparison is oriented, whi
h 
annot be represented by a distan
e.As to spa
ing, points y and y′′ belong to the representation sin
e they are far enough ina distan
e-oriented perspe
tive, whereas the justi�
ation is that they are in
omparable in apreferen
e-oriented perspe
tive. In a preferen
e-oriented perspe
tive, the de�nition of a pref-eren
e relation is required. When aiming at representing the whole non-dominated set, thisrelation should generalize the standard Pareto dominan
e relation, without favoring any typeof solution. A natural 
andidate is the (1+ ε)-dominan
e relation whi
h is an extension of thePareto dominan
e relation in
luding a toleran
e threshold. Given ε > 0, whi
h represents atoleran
e on ea
h obje
tive, this relation is de�ned as follows between any two points y and y′:
y (1 + ε)-dominates y′ if y is at least as good as y′ within a fa
tor 1 + ε for all the obje
tives.This leads us to 
onsider that y 
overs y′ if y (1 + ε)-dominates y′, that is if y is at least asgood as y′ 
onsidering the toleran
e ε. Moreover, given a toleran
e ε′, y and y′′ are su�
ientlyspa
ed if neither y (1+ ε′)-dominates y′′ nor y′′ (1+ ε′)-dominates y, that is there is no reasonto dis
ard any of the points y and y′′ sin
e none of them 
an be 
onsidered at least as goodas the other one.This idea of 
overage leads to the 
on
ept of an ε-Pareto set, introdu
ed in [17℄, whi
his a set Pε of points su
h that for any non-dominated point y′, there exists a point y ∈ Pεwhi
h (1+ ε)-dominates y′. Note that there may exist many ε-Pareto sets, some of whi
h 
anin
lude redundan
ies and some of whi
h 
an have a more or less small size. An interestingproblem introdu
ed in [24℄ and further studied in [5℄ is the e�
ient 
onstru
tion of ε-Paretosets of size as small as possible.In this paper, we fo
us on the same issue but in
luding also the spa
ing dimension. There-fore, the ε-Pareto sets studied in this work, 
alled (ε, ε′)-kernels, are required to satisfy anadditional property of stability whi
h imposes that the points in an (ε, ε′)-kernel have to bepairwise independent relatively to the (1 + ε′)-dominan
e relation, thus 
ontrolling spa
ing.A variety of methods have been proposed taking 
overage, spa
ing, and/or 
ardinalityinto a

ount (see [12, 20℄ for surveys). Two broad 
lasses of methods 
an be distinguished:(i) algorithms whi
h generate a set of points satisfying some properties with respe
t to someof the quality measures, (ii) �ltering te
hniques whi
h start from an initial set of given points- possibly the whole Pareto set - and retain a subset of these so as to ensure properties withrespe
t to some of the quality measures. Among re
ent referen
es that are not 
ited in thetwo previous surveys, we mention [1, 5, 9, 11, 13, 22℄ and [25℄ as examples of methods of type(i) and type (ii), respe
tively.Methods of type (i) are often based on exa
t or approximate iterative optimizations whi
hgenerate the points forming the representation. They are either generi
 like [5, 13℄ or spe
i�
 toa 
lass of problems like [22℄, [9℄, [1℄, and [11℄ whi
h deal respe
tively with multi-obje
tive linearprogramming, multi-obje
tive nonlinear 
onvex problems, multi-obje
tive knapsa
k problems,and bi-obje
tive 
ost �ow problems. Generi
 algorithms 
an also be used as methods of type(ii), where optimizations are simply performed by s
anning an expli
it list of given points. It3



should be observed that most methods are spe
i�
 to some problems and/or restri
ted to thebi-obje
tive 
ase.Among the previously mentioned referen
es, [9, 11, 22, 25℄ are distan
e-oriented methods.They use a Eu
lidean norm to de�ne their distan
e. Referen
es [1, 5, 13℄ are preferen
e-oriented methods. All of them use the (1+ ε)-dominan
e relation. However, they only ensure
overage, and sometimes 
ardinality, but do not 
onsider spa
ing.The algorithms we are proposing are generi
 preferen
e-oriented methods of type (i). Thesealgorithms 
an be applied to dis
rete or 
ontinuous, linear or nonlinear, bi-obje
tive optimiza-tion problems, depending on the availability of some problem-dependent routines. Besidesproviding a priori guarantees on the three quality measures, we also guarantee that our generi
algorithms are polynomial when the routines are polynomial.Our paper is organized as follows. In the next se
tion, we de�ne the basi
 
on
epts, formal-ize the notion of (ε, ε′)-kernels, and re
all some results of previous related works. In se
tion 3,we study the bi-obje
tive 
ase. We show some general results and present generi
 polynomialtime algorithms to 
onstru
t small (ε, ε′)-kernels under some 
onditions. In se
tion 4, westudy the 
ase of three or more obje
tives, pointing out spe
i�
 di�
ulties. Se
tion 5 presentssome experimental results whi
h demonstrate the pra
ti
al appli
ability of our approa
h. We
on
lude with some possible extensions to this work.2 PreliminariesIn this paper, we 
onsider multi-obje
tive optimization problems where we try to minimize
p ≥ 2 
riteria, i.e. minx∈S{f1(x), . . . , fp(x)}, where f1, . . . , fp are obje
tive fun
tions and S isthe set of feasible solutions. In 
ase of some or all obje
tive fun
tions to be maximized, ourresults are dire
tly extendable.We distinguish the de
ision spa
e X whi
h 
ontains the set S of feasible solutions of theinstan
e and the 
riterion spa
e Y ⊆ R

p
+ whi
h 
ontains the 
riterion ve
tors also 
alled, moresimply, points. We denote by Z = f(S) ⊆ Y the set of the images of feasible solutions 
alledfeasible points.We denote by yi the 
oordinate on obje
tive fi of a point y ∈ Y for i = 1, . . . , p. We saythat a point y dominates another point y′ if it is at least as good in all the obje
tives, i.e.

yi ≤ y′i for all i = 1, . . . , p. A feasible solution x ∈ S is 
alled e�
ient if there is no otherfeasible solution x′ ∈ S su
h that f(x) 6= f(x′) and f(x′) dominates f(x). If x is e�
ient,
z = f(x) is 
alled a non-dominated point in the 
riterion spa
e. We denote by P the set ofnon-dominated points, also 
alled non-dominated set or Pareto set. A point z ∈ Z is weaklynon-dominated if there is no point z′ ∈ Z su
h that z′i < zi for all i = 1, . . . , p.Given two points y, y′ ∈ Y and any ε > 0, we say that y (1 + ε)-dominates another point
y′, denoted by y �ε y

′, if y is at least as good as y′ up to a fa
tor 1 + ε in all the obje
tives,i.e. yi ≤ (1 + ε)y′i for i = 1, . . . , p. The asymmetri
 part of relation �ε is denoted by ≺ε.Thus, we have y ≺ε y′ if yi ≤ (1 + ε)y′i for i = 1, . . . , p and there exists k ∈ {1, . . . , p} su
hthat yk < y′k/(1 + ε).For any ε > 0, an ε-Pareto set of Z, denoted by Pε, is a subset of feasible points su
h thatany point in Z, or equivalently in P , is (1+ ε)-dominated by at least one point in Pε. We usethis 
on
ept to implement the idea of 
overage.4



One way to ensure spa
ing is to impose a 
ondition of stability with respe
t to a (1 + ε′)-dominan
e relation. An ε-Pareto set satisfying this additional 
ondition will be 
alled an
(ε, ε′)-kernel and is de�ned pre
isely as follows.De�nition 1 Given a set Z of feasible points and ε, ε′ > 0, an (ε, ε′)-kernel of Z is a set ofpoints Kε,ε′ ⊂ Z satisfying the two following 
onditions:

(i) for any point z′ ∈ Z \Kε,ε′, there exists z ∈ Kε,ε′ su
h that z �ε z
′ (ε-
overage).

(ii) for any two distin
t points z, z′ ∈ Kε,ε′, we do not have z �ε′ z
′ (ε′-stability).Remark that if ε′ > ε an (ε, ε′)-kernel does not always exist. This is the 
ase for instan
efor Z = {z1, z2} su
h that neither z1 �ε z

2 nor z2 �ε z
1 but z1 �ε′ z

2 or z2 �ε′ z
1. Therefore,for a given ε, the goal is to �nd an (ε, ε′)-kernel with the largest ε′ ≤ ε. When ε′ = ε an

(ε, ε′)-kernel is 
alled an ε-kernel.In Figure 1 we present a small instan
e to illustrate the interest of this 
on
ept. Point z3,whi
h (1+ ε)-dominates all points ex
ept z6, together with point z4, whi
h (1+ ε)-dominatesall points ex
ept z1, form an ε-Pareto set of minimal 
ardinality. In spite of this, due totheir proximity, these two points do not represent well the whole set of points. Points z2and z5, whi
h also form an ε-Pareto set of minimal 
ardinality, satisfy the additional stability
ondition: none of them (1 + ε)-dominates the other one. This ε-kernel 
learly provides abetter representation of the whole set of points.
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1+εFigure 1: ε-kernels 
ompared to ε-Pareto sets.In the following, we are interested in the e�
ient 
omputation of ε-kernels or (ε, ε′)-kernels. For this purpose, we need to represent numbers des
ribing instan
es of multi-obje
tiveoptimization problems as well as parameters like ε. Therefore, we shall assume that all thesenumbers are positive rationals. The representation size of any rational number r will bedenoted by |r|. Similarly, the representation size of all the rational numbers des
ribing aninstan
e I will be denoted by |I|. Moreover, assuming that the obje
tive fun
tions takepositive rational values whose numerators and denominators have at most m bits, where
m ≤ p(|I|) for some polynomial p, any feasible point has a value between 2−m and 2m. It5



follows that (the absolute value of) the di�eren
e between the values of any two points is atleast 2−2m for any 
riterion.For a given instan
e I, there may exist several ε-Pareto sets, and these may have di�erentsizes. It is shown in [17℄ that, for every standard multi-obje
tive optimization problem, an
ε-Pareto set of size polynomial in |I|, and 1/ε always exists. Moreover, as also shown in [17℄,its 
omputation is related to the existen
e of a routine 
alled GAPδ where δ is an appropriatefun
tion of ε, sele
ted so as to ensure obtaining an ε-Pareto set. This routine is de�ned asfollows.Routine GAPδ Given an instan
e I of a given problem, a point y and a rational δ ≥ 0,GAPδ(y) either returns a feasible point that dominates y or reports that there does not existany feasible point z su
h that zi ≤ yi

1+δ
for all i = 1, . . . , p.Observe that, when 
alling GAPδ(y), if there exists a feasible point y′ dominating y butsu
h that y′k > yk

1+δ
for some k ∈ {1, . . . , p} and if there does not exist any feasible point

z su
h that zi ≤ yi
1+δ

for all i = 1, . . . , p, then GAPδ(y) may either return y′ or report thenon-existen
e of points like z.We say that routine GAPδ(y) runs in polynomial time (resp. fully polynomial time when
δ > 0) if its running time is polynomial in |I| and |y| (resp. |I|, |y|, |δ| and 1/δ). An ε-Paretoset is 
omputable in polynomial time (resp. fully polynomial time) if and only if the routineGAPδ runs in polynomial time [17℄.Sin
e an ε-Pareto set of polynomial size 
an still be quite large, Vassilvitskii and Yannakakisinvestigate in [24℄ the determination of ε-Pareto sets of minimal size. More pre
isely, theydistinguish the two following versions.Primal version: Given an instan
e of a multi-obje
tive problem and a rational ε > 0,determine an ε-Pareto set of minimal size.Dual version: Given an instan
e of a multi-obje
tive problem and an integer k > 0,determine an ε-Pareto set of size at most k with a minimal ε.These authors also propose generi
 algorithms to deal with these versions. An algorithmis 
alled generi
 if it does not depend on any parti
ular problem and makes use of generalpurpose routines for whi
h only the implementation is spe
i�
 to the problem (GAPδ is su
ha general purpose routine). In su
h algorithms it is only required to have bounds on theminimum and maximum values of the obje
tive fun
tions.In order to design generi
 algorithms, Diakonikolas and Yannakakis introdu
ed in [5℄ twoother general purpose routines 
alled Restri
tδ and DualRestri
tδ for the bi-obje
tive 
ase.Routine Restri
tδ Given an instan
e I, a rational bound b ≥ 0 and a rational δ ≥ 0,Restri
tδ(f1, f2 ≤ b) either returns a feasible point z satisfying z2 ≤ b and z1 ≤ (1 + δ) ·
min{f1(x) : x ∈ S and f2(x) ≤ b} or 
orre
tly reports that there does not exist any feasiblepoint z su
h that z2 ≤ b.Routine DualRestri
tδ Given an instan
e I, a rational bound b ≥ 0 and a rational δ ≥ 0,DualRestri
tδ(f1, f2 ≤ b) either returns a feasible point z satisfying z2 ≤ b(1 + δ) and z1 ≤
min{f1(x) : x ∈ S and f2(x) ≤ b} or 
orre
tly reports that there does not exist any feasiblepoint z su
h that z2 ≤ b. 6



We say that routine Restri
tδ(f1, f2 ≤ b) or DualRestri
tδ(f1, f2 ≤ b) runs in polynomialtime (resp. fully polynomial time when δ > 0) if its running time is polynomial in |I| and |b|(resp. |I|, |b|, |δ| and 1/δ). Routines Restri
tδ(f1, f2 ≤ b) and DualRestri
tδ(f2, f1 ≤ b′) arepolynomially equivalent as proved in [5℄.Remark that routines Restri
tδ(f1, f2 < b) and DualRestri
tδ(f1, f2 < b) with a stri
t
onstraint, 
an easily be simulated respe
tively by routines Restri
tδ(f1, f2 ≤ b′) and Dual-Restri
tδ(f1, f2 ≤ b′) using b′ = b′′ − 2−2m where b′′ is the smallest multiple of 2−2m whi
h islarger than or equal to b.In the routines 
onsidered in this paper we assume that the error δ is a rational number,otherwise it is approximated from below by a rational number. We denote by P ∗
ε a smallest

ε-Pareto set and by optε its 
ardinality. It follows from [17℄ that optε is polynomial in theinput size and 1/ε.In the bi-obje
tive 
ase, the following results are known for the primal and dual versions.For the primal version, a generi
 algorithm that 
omputes an ε-Pareto set of size at most
3optε using routine GAPδ was established in [24℄. Moreover, if GAPδ runs in polynomialtime (resp. fully polynomial time) then the algorithm also runs in polynomial time (resp.fully polynomial time). Then, it is shown in [5℄ that an ε-Pareto set of size at most 2optε is
omputable in polynomial time if there exist Restri
tδ routines 
omputable in polynomial timefor both obje
tives. These approximation results are tight for the 
lass of problems admittingsu
h routines. An algorithm that 
omputes an ε-Pareto set of size at most k · optε is 
alled a
k-approximation algorithm.For the dual version, Vassilvitskii and Yannakakis [24℄ state that it is NP-hard even insimple 
ases but provide a polynomial time approximation s
heme (fully polynomial timeapproximation s
heme) when the bi-obje
tive problem admits a GAPδ routine that runs inpolynomial time (fully polynomial time).In this work, our goal is to establish some general properties on (ε, ε′)-kernels and proposesome algorithms for the primal and dual versions in the 
ase of (ε, ε′)-kernels. In the followingse
tions, primal and dual versions refer to (ε, ε′)-kernels instead of ε-Pareto sets.The proposed 
on
epts, and the resulting algorithms, are independent of the multi-obje
tiveproblem that is 
onsidered. In parti
ular, the appli
ability of our generi
 algorithms only de-pends on the availability of the involved routines (Restri
tδ and/or DualRestri
tδ) for the
onsidered problem. Therefore, provided that su
h routines are available, these generi
 algo-rithms 
an be applied to dis
rete or 
ontinuous, linear or nonlinear, multi-obje
tive optimiza-tion problems.3 Two obje
tivesWe �rst give some general results on ε-kernels in the bi-obje
tive 
ase (se
tion 3.1). Then we
onsider the 
omputation of ε-kernels when an exa
t Restri
t routine, that is Restri
tδ with
δ = 0, is available (se
tion 3.2) and when we only have an approximate Restri
t routine, thatis Restri
tδ with δ > 0 (se
tion 3.3).
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3.1 General resultsRelation �ε, as well as its asymmetri
 part ≺ε, are 
learly not transitive. Relation �ε 
aneven 
ontain 
y
les. It appears, however, that ≺ε 
annot 
ontain 
y
les as shown in the nextresult.Lemma 1 In the bi-obje
tive 
ase, relation ≺ε does not 
ontain 
y
les.Proof : Suppose that we have the 
y
le z1 ≺ε z2 . . . ≺ε zn ≺ε z1. Thus, for all i ∈
{1, . . . , n− 1} we have (i) zij ≤ (1 + ε)zi+1

j for ea
h j ∈ {1, 2} and (ii) there exists j ∈ {1, 2}su
h that zij < zi+1
j /(1 + ε). Moreover, we have (i) znj ≤ (1 + ε)z1j for ea
h j ∈ {1, 2} and (ii)there exists j ∈ {1, 2} su
h that znj < z1j /(1 + ε).Considering this 
y
le, assume that we are tj times in 
ase (ii) for ea
h j ∈ {1, 2}. Wemust have t1 + t2 ≥ n. First, remark that it is not possible that tj = 0 for ea
h j ∈ {1, 2}.Indeed, assuming without loss of generality that t1 = 0, we get t2 = n leading to (1+ ε)n < 1.Now, observe that when we are tj times in 
ase (ii) for 
riterion j, we are also n− tj times in
ase (i). Sin
e tj > 0 for ea
h j ∈ {1, 2}, we have z1j < (1 + ε)n−2tjz1j , whi
h implies tj < n/2for ea
h j ∈ {1, 2}, 
ontradi
ting t1 + t2 ≥ n. ✷The previous lemma guarantees the existen
e of ε-kernels in the bi-obje
tive 
ase.Proposition 1 In the bi-obje
tive 
ase, an ε-kernel always exists.Proof : It is a dire
t 
onsequen
e of Lemma 1 sin
e any relation that does not admit 
y
lesin its asymmetri
 part admits kernels as proved in Du
het [6℄. ✷In general ε-kernels may 
ontain dominated points. We prove the existen
e of ε-kernels
ontaining only non-dominated points.Proposition 2 In the bi-obje
tive 
ase, an ε-kernel that 
ontains only non-dominated pointsalways exists.Proof : Let Kε be an ε-kernel of the Pareto set P asso
iated to feasible set Z. Proposition 1implies that su
h an ε-kernel does exist. Kε, whi
h 
ontains only non-dominated points byde�nition, is 
learly an ε-Pareto set with respe
t to Z. ✷In the following we give some bounds on the size of any ε-kernel.Theorem 1 In the bi-obje
tive 
ase, any ε-kernel has a 
ardinality less than or equal to 3optε.Proof : The proof is by 
ontradi
tion. Let P ∗

ε be an ε-Pareto set of minimal size optε. Nowassume that there exists an ε-kernel Kε of size at least 3optε + 1. It means that at least onepoint z∗ of P ∗
ε (1 + ε)-dominates at least 4 points of Kε.Let zi for i = 1, 2, 3, 4 be 4 points of Kε su
h that z∗ �ε z

i for ea
h i = 1, 2, 3, 4. Assumewithout loss of generality that zi+1
1 < zi1 and zi+1

2 > zi2 for i = 1, 2, 3. Sin
e Kε is an ε-kernel,the 
oordinates of the points zi must satisfy the following inequalities: zi+1
1 < zi1/(1 + ε)and zi+1

2 > zi2(1 + ε). Using these inequalities and sin
e z∗ �ε zi for ea
h i = 1, 2, 3, 4, its
oordinates satisfy z∗1 ≤ z41(1 + ε) < z31 < z21/(1 + ε) < z11/(1 + ε) and z∗2 ≤ z12(1 + ε) < z22 <
z32/(1+ε) < z42/(1+ε). Thus no point zi for i = 1, . . . , 4 (1+ε)-dominates z∗. If another point
z of Kε (1 + ε)-dominates z∗ the previous inequalities give z1 ≤ z∗1(1 + ε) < z31(1 + ε) < z218



and z2 ≤ z∗2(1 + ε) < z22(1 + ε) < z32 , whi
h involves that point z (1 + ε)-dominates points z2and z3. This would 
ontradi
t ε-stability for Kε. Thus, no point of Kε (1 + ε)-dominates z∗,whi
h 
ontradi
ts ε-
overage for Kε. ✷If we 
onsider ε-kernels 
ontaining non-dominated points only, we obtain a smaller upperbound on their size. The following result is even slightly stronger sin
e it deals with ε-kernels
ontaining weakly non-dominated points only.Theorem 2 In the bi-obje
tive 
ase, any ε-kernel that 
ontains only weakly non-dominatedpoints has a 
ardinality less than or equal to 2optε.Proof : The proof is by 
ontradi
tion. Let P ∗
ε be an ε-Pareto set of minimal size optε.Now assume that there exists an ε-kernel Kε of size at least 2optε +1 
ontaining only weaklynon-dominated points. It means that at least one point z∗ of P ∗

ε (1 + ε)-dominates at least 3points of Kε.Let zi for i = 1, 2, 3 be 3 points of Kε su
h that z∗ �ε zi for ea
h i = 1, 2, 3. Assumewithout loss of generality that zi+1
1 < zi1 and zi+1

2 > zi2. Sin
eKε is an ε-kernel, the 
oordinatesof the points zi must satisfy the following inequalities: zi+1
1 < zi1/(1+ ε) and zi+1

2 > zi2(1+ ε)for i = 1, 2. Sin
e z∗ �ε zi for ea
h i = 1, 2, 3, the 
oordinates of point z∗ must satisfy
z∗1 ≤ z31(1 + ε) < z21 and z∗2 ≤ z12(1 + ε) < z22 . This 
ontradi
ts the fa
t that z2 is a weaklynon-dominated point. ✷Corollary 1 In the bi-obje
tive 
ase, there exists an ε-kernel with a 
ardinality less than orequal to 2optε.Proof : It is a dire
t 
onsequen
e of Theorem 2 and Proposition 2. ✷We are interested now on ε-kernels of minimal size. An important fa
t is that an ε-kernelof minimal size is not larger than an ε-Pareto set of minimal size optε.Theorem 3 In the bi-obje
tive 
ase, there exists an ε-kernel of size optε.A 
onstru
tive proof of Theorem 3 is given in se
tion 3.2.1, where an algorithm that
omputes an ε-kernel of size optε is provided (see Theorem 4).3.2 Algorithms for ε-kernels using exa
t Restri
t routinesIn this se
tion, we provide algorithms for the primal version (se
tion 3.2.1) and the dualversion (se
tion 3.2.2) 
onsidering that a Restri
t0 routine is available for both obje
tives.In parti
ular, su
h a polynomial routine is available for (
ontinuous) multi-obje
tive linearprogramming. Even if no polynomial Restri
t0 routine is available for most dis
rete and/ornonlinear problems, optimal (non polynomial) routines will guarantee obtaining an ε-kernelof minimal size.3.2.1 Primal versionWe propose a generi
 algorithm that produ
es an ε-kernel of minimal size that 
ontains onlynon-dominated points. This improves signi�
antly over the two generi
 algorithms proposedin [13℄. The �rst algorithm requires a more demanding exa
t Restri
t routine, where restri
-tions are imposed on both obje
tives, while the se
ond one only requires a Restri
t0 routine9
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Figure 2: Illustration of Algorithm 1for one obje
tive. Ea
h of these algorithms produ
es an ε-Pareto set whose size is only guar-anteed to be at most three times the minimal size. In 
omparison, our algorithm guaranteesto produ
e an ε-Pareto set of minimal size whi
h in addition satis�es the ε-stability 
ondition.Algorithm des
ription The algorithm pro
eeds in two phases. The �rst phase (greedyphase) 
orresponds to a slightly modi�ed version of the algorithm presented in [5℄ whi
h returnsa set {q1, . . . , qs} of non-dominated points as an ε-Pareto set of minimal size. The se
ondphase (veri�
ation phase) ensures ε-stability by 
he
king, and possibly modifying, the returnedset. We denote by fmin
1 and fmin

2 the minimum values on the �rst and se
ond obje
tivesrespe
tively. In the �rst phase, the algorithm iteratively generates points r1, q1, . . . , rs, qs inde
reasing order a

ording to f1 and in
reasing order a

ording to f2. Point r1 
orrespondsto an optimal solution on obje
tive f2. Point q1 is the non-dominated point with the bestpossible value on f1 whi
h (1 + ε)-dominates r1. Point ri is a point with the smallest valueon f2 that is not (1 + ε)-dominated by the point qi−1. Point qi is the non-dominated pointwith the smallest value on f1 that (1+ε)-dominates point ri. The �rst phase of the algorithmstops when it determines a point qs that (1 + ε)-dominates the feasible points that have a�rst 
oordinate equal to fmin
1 . At the end of the �rst phase, ε-stability is ensured on the �rstobje
tive, but not on the se
ond one. In the se
ond phase, points qi are 
he
ked, startingfrom qs, in de
reasing order a

ording to f2. If point qi (1 + ε)-dominates point qi−1, werepla
e point qi−1 by the non-dominated point with the smallest f1 value whi
h is not (1+ ε)-dominated by qi while having a stri
tly larger value on f1 than qi−1. This ensures ε-stabilityon the se
ond obje
tive, while preserving ε-stability on the �rst one.A formal des
ription of this algorithm is given in Algorithm 1.Before analyzing this algorithm, we illustrate its behavior in Figure 2 where 4 points

q1, q2, q3, q4 are sele
ted during the �rst phase. During the se
ond phase, the algorithm dete
tsthat point q3 (1 + ε)-dominates point q2, showing that ε-stability is not satis�ed. Therefore,it repla
es q2 by q′2 whi
h is not (1+ ε)-dominated by q3 but (1+ ε)-dominates all the pointsthat were (1 + ε)-dominated by q2 only. This way, ε-stability is restored, while preserving
ε-
overage. The resulting ε-kernel 
onsists of points q1, q′2, q3, q4.10



Algorithm 1: Algorithm Greedy and Veri�
ationinput : An instan
e of a bi-obje
tive problem for whi
h routines Restri
t0(f1, f2 ≤ b)and Restri
t0(f2, f1 ≤ b) are availableoutput : An ε-kernel of size optε1 fmin
1 ← f1(Restri
t0(f1, f2 ≤ 2m)); fmin

2 ← f2(Restri
t0(f2, f1 ≤ 2m));2 r1 ← Restri
t0(f2, f1 ≤ 2m);3 f2
1 ← (1 + ε)r12 ;4 q1 ← Restri
t0(f1, f2 ≤ f2

1
);5 q1 ← Restri
t0(f2, f1 ≤ q11);6 f1

1 ← q11/(1 + ε);7 Q← {q1};8 i← 1;/* greedy phase */9 while f1
i
> fmin

1 do10 i← i+ 1;11 ri ← Restri
t0(f2, f1 < f1
i−1

);12 f2
i ← (1 + ε)ri2;13 qi ← Restri
t0(f1, f2 ≤ f2

i
);14 qi ← Restri
t0(f2, f1 ≤ qi1);15 f1

i ← qi1/(1 + ε);16 Q← Q ∪ {qi};/* verifi
ation phase */17 i← i− 1;18 while qi+1
2 /(1 + ε) > fmin

2 do19 if qi+1
2 /(1 + ε) ≤ qi2 then20 Q← Q− {qi};21 qi ← Restri
t0(f1, f2 < qi+1

2 /(1 + ε));22 qi ← Restri
t0(f2, f1 ≤ qi1);23 Q← Q ∪ {qi};24 i← i− 1;25 return Q;Algorithm analysis We show now that Algorithm 1 produ
es an ε-kernel of minimal size.Let R = {r1, . . . , rs} and Q = {q1, . . . , qs} be the set of feasible points produ
ed by thealgorithm. We �rst show some preliminary results regarding points in Q and R.Proposition 3 Set Q 
ontains only non-dominated points.Proof : Points qi ∈ Q are 
omputed in two steps, both in the greedy phase (steps 13-14) andin the veri�
ation phase (steps 21-22). The �rst step returns a point qi su
h that there existsno point z ∈ Z su
h that z1 < qi1 and z2 ≤ q2i . Thus, at this step, qi is only guaranteed tobe weakly non-dominated sin
e there may exist a point z su
h that z1 = qi1 and z2 < qi2. These
ond step rules out this possibility, ensuring that qi is non-dominated. ✷11



Observe that the algorithm proposed in [5℄, whi
h 
orresponds to the greedy phase, doesnot in
lude this se
ond step optimization. Therefore, the returned ε-Pareto set in [5℄ 
onsistsof weakly non-dominated points.Lemma 2 During the veri�
ation phase, if a point q′i repla
es a point qi in Q, we have (i)
q′i2 < qi2 and (ii) q′i1 > qi1.Proof : (i) Point q′i 
omputed at steps 21-22 satis�es q′i2 < qi+1

2 /(1 + ε) ≤ qi2.
(ii) Sin
e points in Q are non-dominated, in
luding qi and q′i, (i) implies that q′i1 > qi1. ✷Lemma 3 Any feasible point z ∈ Z (1 + ε)-dominates at most one point from R.Proof : Suppose, by 
ontradi
tion, that z (1+ ε)-dominates two points from R. Clearly, themost favorable situation is when these points are 
onse
utive. Thus, let ri and ri−1 be two
onse
utive points in R su
h that z (1 + ε)-dominates them. Assuming that z �ε ri−1, wehave z2 ≤ (1 + ε)ri−1

2 . By steps 13-14, this inequality implies that qi−1
1 ≤ z1, whi
h implies

qi−1
1 /(1 + ε) ≤ z1/(1 + ε). From step 11, we have ri1 < qi−1

1 /(1 + ε) and thus ri1 < z1/(1 + ε),
ontradi
ting z �ε r
i. ✷Lemma 4 The only point in R whi
h is (1 + ε)-dominated by qi is ri, for i = 1, . . . , s.Proof : By Lemma 3, we just need to show that qi �ε ri, for i = 1, . . . , s. We pro
eed byindu
tion. By steps 13-14, the assertion is 
lear if qi has not be modi�ed. In parti
ular, for qswhi
h is not modi�ed, the assertion is true. Assuming now that qi+1 �ε r

i+1, we prove that
qi �ε ri. The only 
ase that 
ould me problemati
 is when qi has been modi�ed during these
ond phase. By Lemma 3, we have not (qi+1 �ε ri), whi
h means that qi+1

2 > (1 + ε)ri2.Hen
e, by steps 21-22, we get qi1 ≤ ri1. Moreover, regarding the se
ond 
riterion, sin
e qi
omputed during the �rst phase (1 + ε)-dominates ri, we have qi2 ≤ (1 + ε)ri2. Consideringthat qi has been modi�ed, using Lemma 2-(i) we get qi2 < (1 + ε)ri2. Therefore, we get �nally
qi �ε r

i. ✷We 
an now prove that Q satis�es the two 
onditions required to be an ε-kernel.Proposition 4 Set Q satis�es the ε-
overage 
ondition.Proof : We show that the points in Q 
over all the feasible points by partitioning the rangeof feasible values on f1. More pre
isely, we show that:
(i) Point q1 (1+ε)-dominates all the feasible points with an f1 value greater than or equalto q11/(1 + ε).
(ii) For ea
h i = 2, . . . , s, point qi (1 + ε)-dominates all the feasible points that have their

f1 value in the interval [qi1/(1 + ε), qi−1
1 /(1 + ε)

).
(iii) There is no feasible point with a f1 value smaller than qs1/(1 + ε).

(i) Let z be a feasible point with z1 ≥ q11/(1 + ε) and, by de�nition, z2 ≥ fmin
2 . Point q1
omputed in steps 4-5 satis�es q12 ≤ (1 + ε)fmin

2 ≤ (1 + ε)z2, whi
h shows that q1 (1 + ε)-dominates z. If point q1 is modi�ed during the veri�
ation phase, using Lemma 2-(i) we alsohave q12 ≤ (1 + ε)z2.
(ii) Let z be a feasible point satisfying qi1/(1 + ε) ≤ z1 < qi−1

1 /(1 + ε). In order to prove that
z is (1 + ε)-dominated by qi, we have to show that qi2 ≤ z2(1 + ε). We 
onsider three 
ases.12



• If points qi and qi−1 have not been modi�ed during the veri�
ation phase, then qi, whi
his de�ned in steps 13-14, veri�es qi2 ≤ (1 + ε)ri2. From step 11, we have ri2 ≤ z2, whi
hleads to qi2 ≤ (1 + ε)z2.
• If point qi has been modi�ed but not point qi−1, then by Lemma 2-(i), the inequality ispreserved.
• Finally if point qi−1 has been modi�ed during the veri�
ation phase, step 21 ensuresthat there is no feasible point z′ su
h that z′2 < qi2/(1 + ε) and z′1 < qi−1

1 . Sin
e
z1 < qi−1

1 /(1 + ε), it follows that z1 < qi−1
1 and thus z2 ≥ qi2/(1 + ε).

(iii) Point qs, whi
h is not modi�ed in the veri�
ation phase, is the last point obtained in thewhile loop 9-16. By step 15 and 
ondition in step 9, we have qs1/(1 + ε) ≤ fmin
1 . ✷Proposition 5 Set Q satis�es the ε-stability 
ondition.Proof : We just need to show that ε-stability holds for 
onse
utive points in Q, that is for all

i = 2, . . . , s we have (i) not (qi−1 �ε q
i) and (ii) not (qi �ε q

i−1).
(i) From Lemma 4, we have not(qi−1 �ε r

i). This o

urs be
ause we have on the �rst 
riterion
qi−1
1 > (1 + ε)ri1. Sin
e we have ri1 ≥ qi1, we get qi−1

1 > (1 + ε)qi1, that is not(qi−1 �ε q
i).

(ii) Test 19-23 ensures that qi−1
2 < qi2/(1 + ε). ✷Combining the previous results, we obtain the main result of this se
tion.Theorem 4 For any ε > 0, Algorithm 1 
omputes an ε-kernel of minimal size optε that
ontains only non-dominated points using O(optε) routine 
alls to Restri
t0.Proof : Q is an ε-kernel 
ontaining only non-dominated points from Propositions 3, 4, and5. Moreover, set Q has minimal size optε sin
e, from Lemma 3, at least |R| points are requiredfor any ε-Pareto set, whereas Algorithm 1 returns a set Q with |Q|=|R|.Sin
e the algorithm uses at most 3 |Q| + 2 |Q| = 5 |Q| times the Restri
t0 routine, thenumber of routine 
alls is bounded by 5optε. ✷Sin
e optε is polynomially bounded in the input size and 1/ε [17℄, we have the following
orollary.Corollary 2 For any ε > 0, if Restri
t0 routines are 
omputable in polynomial time for bothobje
tives, then we 
an determine an ε-kernel of minimal size that 
ontains only non-dominatedpoints in polynomial time in the size of the input and 1/ε.3.2.2 Dual versionWe show that the minimal ratio 1 + ε∗ is approximable within any fa
tor 1 + θ in polynomialtime in the input size and 1/θ.Theorem 5 Let k be a nonnegative integer and let 1 + ε∗ be the minimal ratio for whi
h an

ε∗-kernel of size at most k exists. For any rational θ > 0, we 
an determine an ε-kernel ofsize at most k with 1 + ε ≤ (1 + ε∗)(1 + θ). This 
an be done using O(k log(m/θ)) routine
alls to Restri
t0. 13



Proof : We �rst apply Algorithm 1 with ε = θ. If the returned ε-kernel has size at most k,then the required 
ondition is satis�ed. Otherwise, the minimal ratio 1 + ε∗ belongs to therange [1 + θ, 22m], where the upper bound 
orresponds to the extreme situation with k = 1and Z = {z1 = (2m, 1/2m), z2 = (1/2m, 2m)}. Let 1 + εi = (1 + θ)i be the 
andidate ratiosfor i = 1, . . . , ⌈2m/ log(1 + θ)⌉. We perform a binary sear
h on i values. At ea
h step we 
allAlgorithm 1 in order to obtain an εi-kernel of minimal size. If this size is greater than k thenwe 
ontinue the sear
h in the right part, otherwise in the left part. Observe that, at ea
h step,the sear
h is between the indi
es iℓ and ir su
h that the size of the smallest iℓ-kernel is morethan k and the size of the smallest ir-kernel is at most k. Thus, 1 + εℓ < 1 + ε∗ ≤ 1 + εr.The sear
h is stopped when ir = iℓ + 1, i.e. when 1 + εr = (1 + εℓ)(1 + θ). Then the 
urrent
εir -kernel is of size at most k and su
h that 1 + εir = (1 + εiℓ)(1 + θ) ≤ (1 + ε∗)(1 + θ).The number of 
alls to Algorithm 1 is O(log(2m/ log(1 + θ))) ≈ O(log(m/θ)). Sin
e we
an stop ea
h 
all to Algorithm 1 when it tries to 
ompute a (k + 1)th point, ea
h su
h 
alluses O(k) 
alls to Restri
t0. Thus, the total running time is O(k log(m/θ)) Restri
t0 
alls. ✷Corollary 3 Let k be a nonnegative integer and let 1 + ε∗ be the minimal ratio for whi
h an
ε∗-kernel of size at most k exists. If Restri
t0 routines are 
omputable in polynomial time forboth obje
tives, then we 
an determine an ε-kernel of size at most k with 1+ε ≤ (1+ε∗)(1+θ)in polynomial time in the size of the input and 1/θ.3.3 Algorithms for (ε, ε′)-kernels using approximate Restri
t routinesIn this se
tion, we provide algorithms for the primal version (se
tion 3.3.1) and the dualversion (se
tion 3.3.2) 
onsidering that a Restri
tδ routine is available for both obje
tives.Su
h polynomial routines are available for various problems: fully polynomial time routinesfor shortest path [16, 10℄ and polynomial time routines for spanning tree [19℄, mat
hing andmatroid interse
tion [3℄.Assuming that fully polynomial time Restri
tδ routines, with δ > 0, are available forboth obje
tives, Diakonikolas and Yannakakis [5℄ showed that (i) there is no polynomial timegeneri
 algorithm based on these routines able to 
ompute an ε-Pareto set of size better than
2optε, but (ii) it is possible to 
ompute an ε-Pareto set of size 2optε in polynomial time. Then,from Theorem 1, it follows that, using su
h routines, we 
an only hope to 
ompute an ε-kernelof size between 2optε and 3optε in polynomial time. In fa
t, using the same routines, we evenshow that �nding an ε-kernel in polynomial time 
annot be guaranteed.Proposition 6 Consider the 
lass of bi-obje
tive problems that possess a fully polynomial timeRestri
tδ routine, with δ > 0, for both obje
tives. Then, for any ε > 0, there is no polynomialtime generi
 algorithm using Restri
tδ that 
omputes an ε-kernel.Proof : Consider the following set of feasible points Z = {z, z1, z2, z3, z4} (see Figure 3)where: z = (z1, z2), with z1, z2 ≥ 1/ε, z1 = ((z1 + 1)(1 + ε), z2/(1 + ε)2), z2 = (z1 + 1, z2),
z3 = (z1, z2 + 1) and z4 = (z1/(1 + ε)2, (z2 + 1)(1 + ε)). Then, note that ea
h point of
{z, z2, z3} (1 + ε)-dominates only these three points, and that z1 (1+ ε)-dominates z2 and z4

(1 + ε)-dominates z3. Then, there are exa
tly three minimal ε-Pareto sets: Pε = {z, z1, z4},
P ′
ε = {z2, z1, z4}, P ′′

ε = {z3, z1, z4} and only Pε is an ε-kernel.We show that a generi
 algorithm using Restri
tδ is guaranteed to return the ε-kernel onlyif 1/δ is exponential in the size of the input. Let z1 = z2 = M , where M is an integer value14
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Figure 3: No polynomial time generi
 algorithm 
an 
ompute an ε-kernel (Proposition 6).exponential in the size of the input and 1/ε. Assume that we 
all Restri
tδ(f1, f2 ≤ C) with
C ∈ [M,M+1). Then, it 
an return point z2 instead of z as long as δ ≥ 1/M . Symmetri
ally,if we 
all Restri
tδ(f2, f1 ≤ C) with C ∈ [M,M + 1) we 
an obtain z3 instead of z. But,sin
e we want a polynomial time algorithm, 1/δ has to be polynomial in logM . Therefore,a polynomial time generi
 algorithm 
annot guarantee to 
ompute the unique ε-kernel whi
h
ontains point z. ✷In spite of this negative result, if we relax the stability 
ondition using ε′ < ε, we showthat (ε, ε′)-kernel 
an be 
omputed in polynomial time. Therefore, in the following, we assumethat ε′ < ε.3.3.1 Primal versionWe propose an algorithm that produ
es an (ε, ε′)-kernel of size at most twi
e the size of aminimal ε-Pareto set.Algorithm des
ription The algorithm pro
eeds in two phases. The �rst phase (greedyphase) 
orresponds to the algorithm presented in [5℄ whi
h returns a 2-approximation algo-rithm for �nding an ε-Pareto set of minimal size. The se
ond phase (veri�
ation phase) isbasi
ally the same as Algorithm 1 but using ε′ instead of ε.The algorithm is shown to produ
e an (ε, ε′)-kernel when δ < (1+ε)/(1+ε′)−1 (Proposi-tions 7 and 8) and the size of this (ε, ε′)-kernel is proved to be at most 2optε if δ ≤ 3

√
1 + ε−1(Theorem 6). Therefore, we assume that δ < min{(1 + ε)/(1 + ε′)− 1, 3

√
1 + ε− 1}.A formal des
ription of this algorithm is given in Algorithm 2.Note that, when a Restri
tδ routine is available only for one obje
tive, we have anotherversion of this algorithm that requires δ < min{

√

(1 + ε)/(1 + ε′)−1, 3
√
1 + ε−1} by repla
ingstep 19 by qi ← DualRestri
t δ(f1, f2 < qi+1

2 /(1 + ε′)(1 + δ)2).Algorithm analysis We show now that Algorithm 2 produ
es an (ε, ε′)-kernel whose sizeis at most 2optε. Let Q = {q1, . . . , qs} be the set of feasible points produ
ed by the algorithm.15



First, observe that in steps 23-24 Algorithm 2 dis
ards points that are proved unne
essaryin the next result. The returned set may thus be of smaller 
ardinality than the ε-Pareto setobtained at the end of the greedy phase.Lemma 5 During the veri�
ation step, if a point q′i, repla
ing a point qi, is su
h that q′i1 ≥
qi−1
1 /(1 + ε′), then point q′i is unne
essary.Proof : Point q′i, with q′i1 ≥ qi−1

1 /(1 + ε′), is 
omputed in step 19 using Restri
tδ(f1, f2 <
qi+1
2 /(1 + ε)) where δ < (1 + ε)/(1 + ε′)− 1. This implies that any feasible point z satisfying
z2 < qi+1

2 /(1 + ε) is su
h that z1 ≥ q′i1 /(1 + δ) > q′i1 (1 + ε′)/(1 + ε) ≥ qi−1
1 /(1 + ε). Therefore,there is no feasible point z su
h that z1 < qi−1

1 /(1 + ε) and z2 < qi+1
2 /(1 + ε). Thus, a pointthat is (1 + ε)-dominated by point q′i is (1 + ε)-dominated by point qi−1 or qi+1. ✷In the following, for proving the 
orre
tness of our algorithm, the 
ase of points whi
h arenot in
luded (steps 23-24) 
an be ignored. Indeed, when this happens, the 
onsequen
e ofreindexing at step 23 is that points qi+1 and qi−1 be
ome respe
tively points qi+1 and qi atthe next iteration, without any impa
t on the ε-
overage 
ondition as shown by Lemma 5.Lemma 6 During the veri�
ation step, if a point q′i repla
es a point qi in Q, we have (i)

q′i2 < qi2 and (ii) q′i1 ≥ qi1.

16



Algorithm 2: Algorithm Greedy and Veri�
ation Extendedinput : An instan
e of a bi-obje
tive problem for whi
h routines Restri
tδ(f1, f2 ≤ b)and Restri
tδ(f2, f1 ≤ b) are availableoutput : An (ε, ε′)-kernel of size at most 2optε1 fmin
1 ← f1(DualRestri
t δ(f1, f2 ≤ 2m)); fmin

2 ← f2(DualRestri
t δ(f2, f1 ≤ 2m));2 r1 ← Restri
tδ(f2, f1 ≤ 2m);3 f2
1 ← 1+ε

(1+δ)2 r
1
2;4 q1 ← DualRestri
t δ(f1, f2 ≤ f2

1
);5 f1

1 ← q11/(1 + ε);6 Q← {q1};7 i← 1;/* greedy phase */8 while f1
i
> fmin

1 do9 i← i+ 1;10 ri ← Restri
tδ(f2, f1 < f1
i−1

);11 f2
i ← 1+ε

1+δ
max{f2

i−1
, ri2/(1 + δ)};12 qi ← DualRestri
t δ(f1, f2 ≤ f2

i
);13 f1

i ← qi1/(1 + ε);14 Q← Q ∪ {qi};/* verifi
ation phase */15 s← i, i← i− 1;16 while qi+1
2 /(1 + ε) > fmin

2 do17 if qi+1
2 /(1 + ε′) ≤ qi2 then18 Q← Q− {qi};19 qi ← Restri
t δ(f1, f2 < qi+1

2 /(1 + ε));20 if qi1 < qi−1
1 /(1 + ε′) then21 Q← Q ∪ {qi};22 else23 reindex {qi+1, . . . , qs} by {qi, . . . , qs−1};24 s← s− 1;25 i← i− 1;26 return Q;Proof : (i) Point q′i 
omputed at step 19 satis�es q′i2 < qi+1

2 /(1 + ε) < qi+1
2 /(1 + ε′) ≤ qi2.

(ii) Remark that point qi was 
omputed in step 12 using routine DualRestri
tδ during thegreedy phase. It follows that there is no feasible point z su
h that z1 < qi1 and z2 < qi2/(1+δ).Sin
e ε′ < (1 + ε)/(1 + δ)− 1, point q′i is 
omputed in step 19 su
h that q′i2 < qi+1
2 /(1 + ε) <

qi+1
2 /(1 + ε′)(1 + δ) ≤ qi2/(1 + δ). It follows that q′i1 ≥ qi1. ✷We 
an now prove that Q satis�es the two 
onditions required to be an (ε, ε′)-kernel.Proposition 7 Set Q satis�es the ε-
overage 
ondition.17



Proof : We show that the points in Q 
over all the feasible points by partitioning the rangeof feasible values on f1. More pre
isely, we show that:
(i) Point q1 (1+ε)-dominates all the feasible points with an f1 value greater than or equalto q11/(1 + ε).
(ii) For ea
h i = 2, . . . , s, the point qi (1 + ε)-dominates all the feasible points that havetheir f1 value in the interval [qi1/(1 + ε), qi−1

1 /(1 + ε)
).

(iii) There is no feasible point with a f1 value smaller than qs1/(1 + ε).
(i) Let z be a feasible point with z1 ≥ q11/(1 + ε) and, by de�nition, z2 ≥ fmin

2 . Point q1
omputed in step 4 satis�es q12 ≤ (1 + ε)fmin
2 ≤ (1 + ε)z2, whi
h shows that q1 (1 + ε)-dominates z. If point q1 is modi�ed during the veri�
ation phase, using Lemma 6-(i) we alsohave z2 ≥ q12/(1 + ε).

(ii) Let z be a feasible point satisfying qi1/(1 + ε) ≤ z1 < qi−1
1 /(1 + ε). In order to prove that

z is (1 + ε)-dominated by qi, we have to show that qi2 ≤ (1 + ε)z2. We 
onsider three 
ases.
• If points qi and qi−1 have not been modi�ed during the veri�
ation phase, then qi, whi
his de�ned in step 12, veri�es qi2 ≤ (1 + ε) · max{f2

i−1
, ri2/(1 + δ)}. From step 10 wehave z2 ≥ ri2/(1 + δ) and from step 12 for i − 1 we have z2 ≥ f2

i−1. Thus we have
max{f2

i−1
, ri2/(1 + δ)} ≤ z2 whi
h leads to qi2 ≤ (1 + ε)z2.

• If point qi has been modi�ed but not point qi−1, then by Lemma 6-(i), the inequality ispreserved.
• Finally if point qi−1 has been modi�ed during the veri�
ation phase, step 19 ensuresthat there is no feasible point z′ su
h that z′2 < qi2/(1 + ε) and z′1 < qi−1

1 /(1 + δ). Sin
e
z1 < qi−1

1 /(1 + ε) it follows that z1 < qi−1
1 /(1 + δ) and thus z2 ≥ qi2/(1 + ε).

(iii) Point qs, whi
h is not modi�ed during the veri�
ation phase, is the last point obtainedin the while loop 8-14. By step 13 and 
ondition in step 8, we have qs1/(1 + ε) ≤ fmin
1 . ✷Proposition 8 Set Q satis�es the ε′-stability 
ondition.Proof : We just need to show that ε′-stability holds for 
onse
utive points in Q, that is forall i = 2, . . . , s we have (i) not (qi−1 �ε′ q

i) and (ii) not (qi �ε′ q
i−1).

(i) We 
onsider three 
ases.
• If points qi and qi−1 have not been modi�ed during the veri�
ation phase, then point ri,
omputed in step 10, is su
h that ri1 < qi−1

1 /(1 + ε). Moreover sin
e point qi, 
omputedin step 12, is su
h that qi1 ≤ ri1, we get qi1 < qi−1
1 /(1 + ε) < qi−1

1 /(1 + ε′), that is not(qi−1 �ε′ q
i).

• If point qi is modi�ed and point qi−1 is not modi�ed, then sin
e qi is added to Q instep 21, it satis�es qi1 < qi−1
1 /(1 + ε′), that is not (qi−1 �ε′ q

i).
• The �nal 
ase is when point qi−1 
hanges during the veri�
ation phase and is repla
edby a point q′i−1. Then, a

ording to Lemma 6-(ii) the inequality is preserved.18



(ii) Test 17-24 and the de�nition of point qi−1 at step 19 ensures that qi−1
2 < qi2/(1 + ε) <

qi2/(1 + ε′). ✷Lemma 7 Any point z ∈ Z (1 + ε)-dominates at most two points from R.Proof : Suppose, by 
ontradi
tion, that z (1+ε)-dominates three points from R. Clearly, themost favorable situation is when these points are 
onse
utive. Thus, let ri, ri−1, and ri−2 bethree 
onse
utive points in R su
h that z (1 + ε)-dominates them. Assuming that z �ε r
i−2,we have z2 ≤ (1 + ε)ri−2

2 . By step 11, for i − 2 and i − 1, we get f2
i−2 ≥ 1+ε

(1+δ)2
ri−2
2 and

f2
i−1 ≥ 1+ε

1+δ
f2

i−2 and thus f2
i−2 ≥ (1+ε)2

(1+δ)3
ri−2
2 . Sin
e (1 + δ)3 < 1 + ε, we have z2 ≤ f2

i−1.From this last inequality, by step 12, for i−1, we have qi−1
1 ≤ z1, whi
h implies qi−1

1 /(1+ε) ≤
z1/(1 + ε). From step 10, we have ri1 < qi−1

1 /(1 + ε) and thus ri1 < z1/(1 + ε), 
ontradi
ting
z �ε r

i. ✷Combining the previous results, we obtain the following result.Theorem 6 For any ε, ε′ su
h that ε > ε′ > 0, Algorithm 2 
omputes an (ε, ε′)-kernel of sizeless than or equal to 2optε using O(optε) routine 
alls to Restri
tδ or DualRestri
tδ, where
δ < min{(1 + ε)/(1 + ε′)− 1, 3

√
1 + ε− 1}.Proof : Q is an (ε, ε′)-kernel from Propositions 7 and 8. Moreover, set Q has a size less thanor equal to 2optε sin
e, from Lemma 7, at least ⌈|R|/2⌉ points are required for any ε-Paretoset, whereas Algorithm 2 returns a set Q with |Q| ≤ |R|.Sin
e the algorithm uses at most 2 |Q|+ |Q| = 3 |Q| times the routines Restri
tδ or Dual-Restri
tδ, the number of routine 
alls is bounded by 3optε. ✷Sin
e optε is polynomially bounded in the input size and 1/ε [17℄, we have the following
orollary.Corollary 4 For any ε, ε′ su
h that ε > ε′ > 0, if routines Restri
tδ and DualRestri
tδ with

δ > 0 are 
omputable in (fully) polynomial time for both obje
tives, then we 
an determine an
(ε, ε′)-kernel of size less than or equal to 2optε in (fully) polynomial time.We re
all that it is not possible to produ
e an ε-Pareto set of size optε in polynomial timeusing Restri
tδ routines [5℄. Nevertheless, Vassilvitskii and Yannakakis showed in [24℄ thatit is possible to produ
e in polynomial time an ε-Pareto set of size bounded by optε̂ for any
ε̂ < ε. In the following we present a similar result for (ε, ε′)-kernels. More pre
isely, we showthat Algorithm 2 used with δ < min{

√

(1 + ε)/(1 + ε̂)− 1, (1 + ε)/(1 + ε′)− 1} 
omputes an
(ε, ε′)-kernel of size bounded by optε̂, for any ε̂ < ε and ε′ < ε. Let Q be the set of feasiblepoints produ
ed by the algorithm.Sin
e δ < (1 + ε)/(1 + ε′)− 1, Q is an (ε, ε′)-kernel from Propositions 7 and 8. Therefore,we only need to show that set Q has a size less than or equal to optε̂.Proposition 9 When δ ≤

√

(1 + ε)/(1 + ε̂)−1, Algorithm 2 returns a set Q with |Q| ≤ optε̂.
19



Proof : Let P ∗
ε̂ = {p∗1, . . . , p∗k} be an ε̂-Pareto set of minimal size, where points p∗i for

i = 1, . . . , k are in in
reasing order of their 
oordinates on f2 and de
reasing order of their
oordinates on f1. Let Q̃ = {q̃1, . . . , q̃r} be the set of points returned by the greedy phase ofAlgorithm 2. We have |Q̃| ≥ |Q| due to the possible omission of points in steps 23-24 of theveri�
ation step. We show now that |Q̃| ≤ |P ∗
ε̂ |. For this purpose, we show by indu
tion on ithat for ea
h point q̃i in Q̃ there exists a point p∗i in P ∗

ε̂ su
h that q̃i1 ≤ p∗i1 .Initialization (i = 1). The fa
t that P ∗
ε 
ontains at least one point is trivially true. We needto show that q̃11 ≤ p∗11 . Sin
e point q̃1 is 
omputed in step 4 using DualRestri
tδ(f1, f2 ≤ f2

1
),to show the statement it su�
es to prove that f21 ≥ p∗12 . Sin
e P ∗

ε̂ is an ε̂-Pareto set where itspoints p∗j for j = 1, . . . , k are in in
reasing order of their 
oordinates on f2, it follows that point
p∗1 must (1 + ε̂)-dominates fmin

2 and so p∗12 ≤ (1 + ε̂)fmin
2 . Sin
e δ ≤

√

(1 + ε)/(1 + ε̂) − 1,it follows that p∗12 ≤ 1+ε
(1+δ)2

fmin
2 . From step 2 we have r12 ≥ fmin

2 and from step 3 we have
f2

1
= 1+ε

(1+δ)2
r12, thus it follows that f21 ≥ p∗12 .Indu
tion step. Assume the result is true until index i− 1, we prove it for index i. By thetermination 
ondition of the greedy phase of Algorithm 2 (step 8), we have q̃i−1

1 > (1+ε)fmin
1and by the indu
tion hypothesis that p∗i−1

1 ≥ q̃i−1
1 , it follows that p∗i−1

1 > (1 + ε)fmin
1 . Thus,point p∗i−1 does not (1 + ε)-dominate the feasible points that have a �rst 
oordinate equalto fmin

1 , and so P ∗
ε̂ must 
ontain another point p∗i. Sin
e point q̃i is 
omputed in step 12using DualRestri
tδ(f1, f2 ≤ f2

i
), to show the statement it su�
es to prove that f2

i ≥ p∗i2 .Sin
e P ∗
ε is an ε̂-Pareto set where its points p∗j for j = 1, . . . , k are in in
reasing order oftheir 
oordinates on f2, it follows that point p∗i must (1 + ε̂)-dominates point ri and so

p∗i2 ≤ (1 + ε̂)ri2. Sin
e δ ≤
√

(1 + ε)/(1 + ε̂)− 1, it follows that p∗i2 ≤ 1+ε
(1+δ)2

ri2. From step 11we have f2
i ≥ 1+ε

(1+δ)2
ri2, thus it follows that f2i ≥ p∗i2 . ✷The se
ond main result of this se
tion follows.Theorem 7 For any ε̂, ε, ε′ su
h that ε > ε̂ > 0 and ε > ε′ > 0, Algorithm 2 
omputesan (ε, ε′)-kernel of size less than or equal to optε̂ using O(optε̂) routine 
alls to Restri
tδ orDualRestri
tδ, with δ < min{

√

(1 + ε)/(1 + ε̂)− 1, (1 + ε)/(1 + ε′)− 1}.Proof : Set Q returned by Algorithm 2 is an (ε, ε′)-kernel sin
e Propositions 7 and 8 hold.Moreover, the size of Q is less than or equal to optε̂ by Proposition 9. Sin
e the algorithm uses
3 |Q| times the Restri
tδ or DualRestri
tδ routines, the number of routine 
alls is bounded by
3optε̂. ✷Corollary 5 For any ε̂, ε, ε′ su
h that ε > ε̂ > 0 and ε > ε′ > 0, if routines Restri
tδ andDualRestri
tδ with δ > 0 are 
omputable in (fully) polynomial time for both obje
tives, thenwe 
an determine an (ε, ε′)-kernel of size less than or equal to optε̂ in (fully) polynomial time.3.3.2 Dual versionWe show that the minimal ratio 1 + ε∗ is approximable within any fa
tor 1 + θ in polynomialtime in the input size and 1/θ.Theorem 8 Let k be a nonnegative integer and let 1 + ε∗ be the minimal ratio for whi
h an
ε∗-kernel of size at most k exists. For any rational θ > 0, we 
an determine an (ε, ε′)-kernel20



with 1+ ε ≤ (1+ ε∗)(1+ θ), for all ε′ < ε, of size at most k using O(k log(m/θ)) routine 
allsto Restri
tδ or DualRestri
tδ.Proof : We �rst apply Algorithm 2 with ε = θ, ε′ < ε, and δ < min{ 4
√
1 + θ− 1, (1+ ε)/(1+

ε′)− 1}, where δ < 4
√
1 + θ − 1 results from 
onsidering 1 + ε̂ =

√
1 + θ in Theorem 7. If thereturned (ε, ε′)-kernel has size at most k, then the required 
ondition is satis�ed. Otherwise,from Theorem 7, the minimal ratio 1 + ε∗ belongs to the range [
√
1 + θ, 22m]. Let 1 + εi =

(
√
1 + θ)i be the 
andidate ratios for i = 2, . . . , ⌈4m/ log(1 + θ)⌉ and let 1 + ε̂i = (1 +

εi)/
√
1 + θ. We perform a binary sear
h on i values. At ea
h step we 
all Algorithm 2with δ < min{ 4

√
1 + θ − 1, (1 + εi)/(1 + ε′i) − 1}, where ε′i is an arbitrary number su
h that

ε′i < εi, in order to obtain an (εi, ε
′
i)-kernel of size at most optε̂i (see Theorem 7). If thissize is greater than k then we 
ontinue the sear
h in the right part, otherwise in the left part.Observe that, at ea
h step, the sear
h is between the indi
es iℓ and ir su
h that the size ofthe (εiℓ , ε

′
iℓ
)-kernel is more than k and the size of the (εir , ε

′
ir
)-kernel is at most k. Thus,

(1 + εiℓ)/
√
1 + θ < 1 + ε∗ ≤ 1 + εir . The sear
h is stopped when ir = iℓ + 1, i.e. when

1 + εir = (1 + εiℓ)
√
1 + θ. Then, the 
urrent (εir , ε′ir )-kernel is of size at most optε̂ir ≤ k andsu
h that 1 + εir = (1 + εiℓ)

√
1 + θ ≤ (1 + ε∗)(1 + θ).The number of 
alls to Algorithm 2 is O(log(4m/ log(1 + θ))) ≈ O(log(m/θ)). Sin
e we
an stop ea
h 
all to Algorithm 2 when it tries to 
ompute a (k + 1)th point, ea
h su
h 
alluses O(k) 
alls to Restri
tδ or DualRestri
tδ . Thus, the total running time is O(k log(m/θ))Restri
tδ or DualRestri
tδ 
alls. ✷Corollary 6 Let k be a nonnegative integer and let 1 + ε∗ be the minimal ratio for whi
han ε∗-kernel of size at most k exists. If routines Restri
tδ and DualRestri
tδ with δ > 0are 
omputable in (fully) polynomial time for both obje
tives, for any rational θ > 0, we 
andetermine an (ε, ε′)-kernel with 1 + ε ≤ (1 + ε∗)(1 + θ), for all ε′ < ε, of size at most k in(fully) polynomial time.4 More than two obje
tivesFor more than two obje
tives, the 
on
ept of ε-kernel is not really operational sin
e an ε-kerneldoes not always exist.Proposition 10 For p ≥ 3 obje
tives, an ε-kernel may not exist.Proof : Let p = 3 and z1, z2, and z3 be three points with the following 
oordinates: z1 =

(a(1+ ε), b/(1 + ε), c), z2 = (a, b(1+ ε), c/(1 + ε)), z3 = (a/(1+ ε), b, c(1 + ε)) where a, b, and
c are three nonnegative rational numbers.Clearly z1 (1+ε)-dominates z2, z2 (1+ε)-dominates z3 and z3 (1+ε)-dominates z1. Sin
eany ε-kernel must satisfy the ε-stability 
ondition, it follows that an ε-kernel must 
ontain atmost one point. Moreover, no point (1+ε)-dominates the two others. Sin
e any ε-kernel mustsatisfy the ε-
overage 
ondition, it follows that an ε-kernel must 
ontain at least two points.This is 
learly impossible. ✷Moreover, even if an ε-kernel exists, we have no guarantee on its size like Theorems 1, 2,and 3 for the bi-obje
tive 
ase. On the opposite, we 
an show that a smallest ε-kernel mayhave a very large size 
ompared with optε. 21



Proposition 11 For p ≥ 3 obje
tives, the size of a smallest ε-kernel, when it exists, 
an begreater than k · optε for any integer k.Proof : Let p = 3 and z1, z2, and z3 be de�ned as in the proof of Proposition 10. Let
z = (z21 , z

3
2 , z

1
3) = (a, b, c). Fix any rational ε̂ > ε and 
onsider the 3k points z1j = (z11(1 +

ε̂)j , z12/(1 + ε), z13(1 + ε̂)k−j) , z2j = (z21(1 + ε̂)k−j, z22(1 + ε̂)j , z23/(1 + ε)) and z3j = (z31/(1 +
ε), z32(1 + ε̂)k−j, z33(1 + ε̂)j) for j = 1, . . . , k.For this instan
e, the only 
ases of (1 + ε)-dominan
e are: z1 �ε z2, z2 �ε z3, z3 �ε z1,
z �ε z

i and zi �ε z for i = 1, 2, 3, and zi �ε z
ij for i = 1, 2, 3 and j = 1, . . . , k.The set 
onstituted by points z1, z2, and z3 is 
learly an ε-Pareto set of minimal size.Moreover, any ε-kernel must 
ontain point z and thus points zij for i = 1, 2, 3 and j = 1, . . . , k.This is the only ε-kernel and it 
ontains 3k + 1 points. ✷However, if we 
onsider ε′ ≤ √1 + ε− 1, we 
an show that an (ε, ε′)-kernel always exists.For this purpose, we re
all the notion of quasi-kernel (also 
alled semi-kernel).De�nition 2 Given a dire
ted graph G = (V,A), a quasi-kernel is a set S ⊆ V su
h that

(i) for any v ∈ V − S, there exists v′ ∈ S su
h that (v′, v) ∈ A or there exist v′ ∈ S and
v′′ ∈ V − S su
h that (v′, v′′) ∈ A and (v′′, v) ∈ A (ii) for any u, v ∈ S, u 6= v, (u, v) /∈ A.The following result is well-known.Theorem 9 (Chvátal and Lovász [4℄) Any �nite dire
ted graph G admits a quasi-kernel.Applied in our 
ontext, this gives rise to the following result.Proposition 12 For any number of obje
tives p ≥ 3 and any �nite set Z of points an (ε, ε′)-kernel exists if and only if ε′ ≤ √1 + ε− 1.Proof : ⇐ Consider the graph G = (Z,�ε′) and apply Theorem 9.
⇒ Assuming that ε′ > √1 + ε − 1, we show the existen
e of an instan
e whi
h does notadmit an (ε, ε′)-kernel.Let Z = {z1, z2, z3} where z1, z2, and z3 are three points in the 
riterion spa
e and assumethat their 
oordinates are the following: z1 = (a(1+ ε′), b/(1+ ε′), c), z2 = (a, b(1+ ε′), c/(1+

ε′)), z3 = (a/(1 + ε′), b, c(1 + ε′)) with a, b, and c three nonnegative rational numbers.Remark that z1 (1 + ε′)-dominates z2, z2 (1 + ε′)-dominates z3 and z3 (1 + ε′)-dominates
z1. In order to satisfy the ε′-stability 
ondition an (ε, ε′)-kernel 
ontains at most one pointamong z1, z2, and z3. Moreover, sin
e ε′ >

√
1 + ε − 1, no point (1 + ε)-dominates the twoothers and thus in order to satisfy the ε-
overage 
ondition, an (ε, ε′)-kernel must 
ontain atleast two points. This is 
learly impossible. ✷Moreover, when the points Z are given expli
itly and ε′ ≤

√
1 + ε − 1 it is possible to
ompute an (ε, ε′)-kernel in polynomial time. Indeed, the problem 
an be redu
ed to �nding akernel in a dire
ted a
y
li
 graph [7℄. We brie�y des
ribe the method of Du
het et al. from [7℄.Consider the dire
ted graph G = (Z,�ε′) and any arbitrary order < on the verti
es. We �rstpartition the set of ar
s into two disjoint subsets A1 = {(i, j) ∈�ε′ : i < j}, A2 = {(i, j) ∈�ε′ :

i > j}. The two dire
ted graphs (Z,A1) and (Z,A2) 
ontain no 
y
le. Sin
e a (unique) kernel
an be easily 
omputed in polynomial time in dire
ted a
y
li
 graphs, �rst 
onstru
t the kernel22



K of (Z,A1) and then the kernel K ′ of (K,A2). The resulting subset K ′ is a quasi-kernel of
G, i.e. an (ε, ε′)-kernel.In the general 
ase, when the points of the 
riterion spa
e are not given expli
itly, we havethe following result.Proposition 13 For p ≥ 3 obje
tives and any 0 < ε′ ≤ 3

√
1 + ε − 1, an (ε, ε′)-kernel is
omputable in polynomial time when the asso
iated GAPδ routine runs in polynomial time.Proof : First we 
onstru
t a grid in the 
riterion spa
e as in the proof of the e�
ient
onstru
tability of an ε-Pareto set presented in [17℄. Consider a subdivision of the 
riterionspa
e into hyperre
tangles su
h that, in ea
h dimension, the ratio of the largest to the smallest
oordinate of ea
h hyperre
tangle is 6

√
1 + ε. In ea
h 
orner point, 
all the GAPδ routine with

δ = 6
√
1 + ε − 1 and denote by S the resulting set of points. Set S (after removing thedominated points) is 
learly an ( 3

√
1 + ε− 1)-Pareto set.On set S, we use the method of Du
het et al. [7℄ to 
onstru
t a quasi-kernel in a dire
tedgraph. Thus, we obtain a subset K ⊆ S whi
h is an (( 3

√
1 + ε)2 − 1, 3

√
1 + ε − 1)-kernel forthe points in S. Sin
e S is an ( 3

√
1 + ε − 1)-Pareto set, it implies that K is an (( 3

√
1 + ε)2 ·

3
√
1 + ε− 1, 3

√
1 + ε− 1)-kernel i.e. an (ε, ε′)-kernel. ✷Nevertheless, we 
an show a result similar to Proposition 11 for (ε, ε′)-kernels.Proposition 14 For p ≥ 3 obje
tives and any 0 < ε′ ≤

√
1 + ε − 1, the size of a smallest

(ε, ε′)-kernel 
an be greater than k · optε for any integer k.Proof : Let p = 3 and z1, z2, and z3 be three points with the following 
oordinates: z =
(a, b, c), z1 = (a(1+ε′), b/(1+ε′), c), z2 = (a, b(1+ε′), c/(1+ε′)), z3 = (a/(1+ε′), b, c(1+ε′))where a, b, and c are three nonnegative rational numbers. Fix any rational ε̂ and 
onsider 6kpoints z1j = (z11(1+ ε̂)j, z12/(1+ ε), z13 (1+ ε̂)2k−j) , z2j = (z21(1+ ε̂)2k−j, z22(1+ ε̂)j , z23/(1+ ε))and z3j = (z31/(1 + ε), z32(1 + ε̂)2k−j, z33(1 + ε̂)j) for j = 1, . . . , 2k.Remark that points z, z1, z2, and z3 (1+ε)-dominates ea
h other and zi �ε z

ij for i = 1, 2, 3and j = 1, . . . , k. For this instan
e, the only 
ases of (1 + ε′)-dominan
e are: z1 �ε′ z2,
z2 �ε′ z

3, z3 �ε′ z
1, z �ε′ z

i and zi �ε′ z for i = 1, 2, 3.The set 
onstituted by points z1, z2, and z3 is 
learly an ε-Pareto set of minimal size.Moreover, a smallest (ε, ε′)-kernel 
ontains a point zi with i = 1, 2, 3 and all the points zi
′jfor i′ = 1, 2, 3 with i 6= i′ and j = 1, . . . , 2k, and it 
ontains 4k + 1 points. ✷5 ExperimentsWe show now the implementation of our exa
t algorithm in the bi-obje
tive 
ase in order togenerate an ε-kernel (Algorithm 1). We �rst illustrate this algorithm in the 
ontext of (
on-tinuous) Multi-Obje
tive Linear Programming (Se
tion 5.1). Then we report experiments ontwo standard multi-obje
tive 
ombinatorial optimization problems, the bi-obje
tive shortestpath problem (Se
tion 5.2) and the bi-obje
tive assignment problem (Se
tion 5.3). Theseexperiments are performed on a PC (i7-2600, 3.4GHz, 8GB) using CPLEX 12.6.3 with onethread. Reported 
omputation times are CPU times expressed in se
onds. We re
all fromTheorem 4 that the dis
rete representations provided by Algorithm 1 (i) guarantee both ε-
overage and ε-stability,(ii) are of minimum size among all the representations guaranteeingthese properties, and (iii) 
ontain only non-dominated points.23



5.1 Bi-obje
tive linear programmingThe use of Algorithm 1 is parti
ularly e�e
tive for bi-obje
tive linear programs sin
e polyno-mial routines Restri
t0 are available. In pra
ti
e, we just need to solve a sequen
e of linearprograms.To illustrate our algorithm, we apply it on a manpower planning problem stated in thereferen
e textbook by Williams [26℄. In a 
ontext where new ma
hinery is installed, a 
ompanymust de
ide, over a 3 years horizon, whether to re
ruit, retrain, or make redundant someemployees of di�erent 
ategories. The �rst obje
tive is to minimize the number of employeesmade redundant (f1) while the se
ond obje
tive is to minimize the total 
ost of retraining,redundan
y, hiring additional employees (f2). This gives rise to a linear program with 60(
ontinuous) variables and 24 
onstraints pre
isely des
ribed in [26℄. Williams also providesthe two extreme optimal solutions: the one minimizing redundan
y, 
orresponding to point y∗1,leads to a (rounded) number of 842 employees made redundant for a total 
ost of ¿1 438 383,and the one minimizing the total 
ost, 
orresponding to point y∗2, leads to a (rounded) numberof 1 424 employees made redundant for a total 
ost of ¿498 677. The author observes that thisse
ond solution saves ¿939 706 but results in 582 extra redundan
ies and 
on
ludes that the
ost of saving ea
h job 
ould, therefore, be regarded as ¿1 615.
ε-kernels are represented in Figure 4 for di�erent values of ε. The 
orresponding numberof points and CPU times are reported for ea
h 
ase.Considering the ε-kernel for ε = 0.001, whi
h provides a pre
ise representation of the non-dominated set, the previous 
on
lusion 
an be re�ned. Indeed, for ea
h of the optimal points,and parti
ularly for y∗1, a very small de
ay on the optimal value of the optimized 
riterionleads to a substantial improvement on the other 
riterion. Quite interestingly, the ε-kernelsfor larger values of ε tend to fo
us on the 
entral points and ignore the extreme optimal points.In parti
ular for ε = 0.05, the representation whi
h 
ontains only 6 points proposes a point

y1 = (877, 967 055) with the best evaluation on obje
tive f1 and a point y2 = (1 299, 523 611)with the best evaluation on obje
tive f2. We 
he
k that yi does indeed (1 + ε)-dominate y∗i,
i = 1, 2, whi
h means that the loss on optimality remains within the toleran
e margin. Aboveall the gain on the other 
riterion is mu
h larger than 5%: for y1, the gain on 
riterion f2 is1 438 383 - 967 055 = 471 328, representing a 32.77% gain and for y2, the gain on 
riterion f1is 1 424 - 1 299 = 125, representing a 8.37% gain.This explains why points between y∗i and yi, i = 1, 2, are not part of the representation.5.2 Bi-obje
tive shortest path problemWe 
onsider here the well known pathologi
al family of instan
es introdu
ed in Hansen [14℄,and depi
ted in Figure 5. Ea
h of the 2n feasible paths from vertex v0 to vertex vn 
orre-sponds to a non-dominated point, illustrating the intra
tability of the bi-obje
tive shortestpath problem.We tested our algorithm when n = 25, 
orresponding to 225 = 33 554 432 non-dominatedpoints. Due to the size of the non-dominated set, it is pra
ti
ally impossible to 
omputethis set. However, an appropriate representation 
an be 
omputed extremely qui
kly usingAlgorithm 1. Information on the size and time required to 
ompute ε-kernels of minimum sizeis reported in Table 1.The graphi
al representation of this instan
e is given in Figure 6. Representing about 33.5millions points with only 21 points, while guaranteeing that any other point 
an be at most24
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Figure 4: The manpower planning problem: di�erent ε-kernels
v0 v1 v2 vn−1 vn

(20, 0)

(0, 20)

(21, 0)

(0, 21)

. . .

. . .

(2n−1, 0)

(0, 2n−1)Figure 5: Intra
table instan
es for the bi-obje
tive shortest path problem5% better than one of these points, is quite remarkable. We also noti
e that, unlike in theprevious linear programming example, the points are extremely well-dispersed. This is due tothe fa
t that in these very spe
i�
 instan
es there is a 
onstant tradeo� of one unit between
onse
utive non-dominated points. 25



ε size CPU time (s.)0.01 101 5.270.05 21 1.530.1 11 0.61Table 1: Di�erent ε-kernels for the bi-obje
tive shortest path problem(Hansen instan
e, n = 25)
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Figure 6: ε-kernel for the bi-obje
tive shortest path problem(Hansen instan
e, n=25), ε = 0.055.3 Bi-obje
tive assignment problemWe 
onsider now the bi-obje
tive assignment problem, whi
h 
onsists in assigning n resour
esto n tasks taking into a

ount two total 
ost fun
tions to be minimized. A resour
e is assignedto one and only one task and a task is assigned to one and only one resour
e. Ea
h resour
e-task assignment involves two 
osts. Ea
h total 
ost of an assignment is 
omputed by addingup the 
osts of every 
hosen resour
e-task assignment.We test our algorithm using the largest and most di�
ult instan
e used in [18℄, where a spe-
i�
 two-phase algorithm is proposed for the bi-obje
tive assignment problem. This instan
e,
alled 2AP100-1A100, is available on GuepardLib, a library of multi-obje
tive 
ombinato-rial optimization instan
es (http://guepard.lip6.fr/Main/GuepardLib). For this instan
e,
n = 100 and ea
h 
ost is generated randomly, independently, uniformly in {0, . . . , 99}.We �rst used a standard e-
onstraint approa
h to generate the whole non-dominated set.Information on the size and time required to 
ompute ε-kernels of minimum size is reportedin Table 2. 26



ε size CPU time (s.)0 947 684.31(e-
onstraint)0.01 197 263.950.05 40 50.450.1 21 23.20Table 2: Di�erent ε-kernels for the bi-obje
tive assignment problem(2AP100-1A100 instan
e)The graphi
al representation of this instan
e is given in Figure 7. We observe, here again,the modulation of the dispersion of points depending on the shape of the non-dominated set.
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Figure 7: Instan
e 2AP100-1A100: non-dominated set and ε-kernel6 Con
lusionsThe purpose of this work was to produ
e dis
rete and tra
table representations of the setof non-dominated points for multi-obje
tive optimization problems. We 
onsidered that rep-resentations should satisfy some 
onditions of 
overage, spa
ing, and 
ardinality. For thispurpose, we introdu
ed the 
on
ept of (ε, ε′)-kernel whi
h is a parti
ular ε-Pareto set thatsatis�es an additional 
ondition of stability implementing spa
ing. We proposed some generi
methods to produ
e (ε, ε′)-kernels. Our algorithms run in polynomial time if and only if theroutines 
alled in the algorithms run in polynomial time.The situation for the bi-obje
tive 
ase is quite 
lear and the 
on
ept of (ε, ε′)-kernel, or even
ε-kernel, seems quite relevant to provide a good dis
rete representation of the non-dominatedset. Our experiments demonstrate the pra
ti
al appli
ability of our algorithm. For more thantwo obje
tives, we showed that imposing a 
ondition of spa
ing may impa
t negatively on the
ardinality. Sin
e a 
overage 
ondition must ne
essarily be imposed, the 
hoi
e is between27



emphasizing spa
ing or 
ardinality. If the 
ondition on spa
ing prevails, we showed that it ispossible to 
onstru
t an (ε, ε′)-kernel, with ε′ ≤ 3
√
1 + ε− 1, provided that the GAPδ routineis available, but without any guarantee on its 
ardinality. If the 
ondition on 
ardinalityprevails, known guarantees are very weak, even without any 
ondition on spa
ing. The onlyknown results deal with the 
ase where the points of the obje
tive spa
e are expli
itly given.In this 
ase, �nding an ε-Pareto set of minimal size 
an be formulated as a minimum set 
overproblem. Thus, it is log n-approximable by the greedy algorithm [15℄ and it is proved in [2℄ thatthe greedy algorithm 
annot perform better on these spe
i�
 set 
over instan
es. Moreover, forthree obje
tives, Koltun and Papadimitriou [15℄ show the existen
e of a polynomial algorithmwhi
h returns an ε-Pareto set of size at most c · optε where c is a large 
onstant. Obtaining abetter approximation of the size of a smallest ε-Pareto set for this spe
i�
 
ase, as well as formore general 
ases, are 
hallenging open questions. From a pra
ti
al point of view, designingalgorithms for more than two obje
tives, that would fo
us either on spa
ing or 
ardinality, isalso a very interesting question.Referen
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