Discrete representation of the non-dominated set for
multi-objective optimization problems using kernels*

Cristina Bazgan' Florian Jamain Daniel Vanderpooten?

Université Paris-Dauphine, PSL Research University,
CNRS, LAMSADE, 75016 Paris, France
{cristina.bazgan,florian.jamain,daniel.vanderpooten } @lamsade.dauphine.fr

Abstract

In this paper, we are interested in producing discrete and tractable representations of
the set of non-dominated points for multi-objective optimization problems, both in the
continuous and discrete cases. These representations must satisfy some conditions of
coverage, i.e. providing a good approximation of the non-dominated set, spacing, i.e.
without redundancies, and cardinality, i.e. with the smallest possible number of points.
This leads us to introduce the new concept of (g,&’)-kernels, or e-kernels when &’ = ¢
is possible, which correspond to e-Pareto sets satisfying an additional condition of &’-
stability. Among these, the kernels of small, or possibly optimal, cardinality are claimed
to be good representations of the non-dominated set.

We first establish some general properties on e-kernels. Then, for the bi-objective case,
we propose some generic algorithms computing in polynomial time either an e-kernel of
small size or, for a fixed size k, an e-kernel with a nearly optimal approximation ratio
1 + . For more than two objectives, we show that e-kernels do not necessarily exist but
that (e,¢’)-kernels with ¢’ < /1 + ¢ — 1 always exist. Nevertheless, we show that the size
of a smallest (g,¢’)-kernel can be very far from the size of a smallest e-Pareto set.

Keywords: Multiple objective programming, Pareto set, non-dominated points, discrete rep-
resentation, exact and approximation algorithms, kernel.

1 Introduction

In multi-objective optimization, in opposition to single objective optimization, there is typi-
cally no optimal solution i.e. one that is best for all the objectives. The solutions of interest,
called efficient solutions, are such that any solution which is better on one criterion is nec-
essarily worse on at least one other criterion. In other words, a solution is efficient if its
corresponding vector of criterion values is not dominated by any other vector of criterion
values corresponding to a feasible solution. These vectors, associated to efficient solutions,
are called non-dominated points. For many multi-objective optimization problems, one of the
main difficulties is the large cardinality of the set of non-dominated points (or Pareto set).
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For problems with continuous variables, the set of non-dominated points is usually infinite.
Even in the discrete case, it is well-known that most classic multi-objective combinatorial opti-
mization problems, like shortest path, spanning tree, assignment, knapsack,..., are intractable,
in the sense that they admit families of instances for which the number of non-dominated
points is exponential in the size of the instance [8]. Therefore, in all these cases, it is neces-
sary to determine a good representation of the Pareto set so as to provide decision makers
with a tractable set of points describing as well as possible the different choices. The no-
tion of representation is understood here in a broad sense, as in [23], as any set of points
being representative of the Pareto set. This is more general than the same notion defined,
e.g., in [21] where representations are supposed to be subsets of the set to be represented.
Therefore we can accept that a representation of the Pareto set might include dominated
points. Indeed, provided that a set of points satisfies conditions of coverage, spacing, and
cardinality presented hereafter, it fully qualifies to be a good representation. In particular,
adopting a broad definition allows us to consider representations whose elements are obtained
through approximate optimization (in cases where exact optimization is not available or too
costly). Clearly, when dominated points are present in a representation, they must be rather
good (so as to satisfy the coverage property). Moreover, when possible, guaranteeing that a
representation only contains non-dominated points is a desirable property. In this paper, we
propose two algorithms for the bi-objective case. The first one, based on exact optimization,
produces a representation consisting of non-dominated points only. The second one, based on
approximate optimization, produces a representation that may contain dominated points. In
both cases, however, a priori guarantees on the quality of the returned set are provided.

Measures of the quality of a discrete representation of the Pareto set have been discussed
in [12, 21]. As outlined in these papers three dimensions are relevant:

e coverage which ensures that any non-dominated point is represented or covered by at
least one point in the representation,

e spacing, also called uniformity, which ensures that any two points in the representation
are sufficiently spaced, avoiding redundancies,

e cardinality which should be minimal so as to make the representation as tractable as
possible.

Coverage is the most important dimension for the representation to be meaningful. How-
ever, it must be counterbalanced by the two other dimensions which favor a uniform and
small cardinality representation, respectively. While coverage on the one hand and spacing
and cardinality on the other hand are clearly conflicting, the relationship between spacing
and cardinality is not obvious. At first sight it could seem that improving spacing will lead
to a decrease of the number of points in the representation. It must be observed, however,
that imposing spacing is an additional constraint that may impact negatively on the cardi-
nality. An interesting result in our paper is that no negative impact is to be expected in the
bi-objective case, but it is no longer true when dealing with at least three objectives. This
shows the interest of considering all three dimensions.

Coverage and spacing may be implemented in several ways. A distance-oriented perspec-
tive is used in [12, 21]. The quality of coverage is then measured by the distance between
the points in the Pareto set and the points in the representation (to be minimized) while



the quality of spacing is measured by the distance between the points in the representation
(to be maximized). Various definitions of distances are possible leading to different types
of representations, but the Euclidean norm is often used. Although natural, this geometric
vision is not directly related to the decision maker’s preferences. Consider a representation
containing a point y but not 3, based on the fact that y covers y’. In a distance-oriented
perspective, this is justified by the fact that y and y’ are close enough. In preference-oriented
perspective, the justification is that y is preferred to, or at least as good as, 3y'. We note that
in the second case the comparison is oriented, which cannot be represented by a distance.
As to spacing, points y and y” belong to the representation since they are far enough in
a distance-oriented perspective, whereas the justification is that they are incomparable in a
preference-oriented perspective. In a preference-oriented perspective, the definition of a pref-
erence relation is required. When aiming at representing the whole non-dominated set, this
relation should generalize the standard Pareto dominance relation, without favoring any type
of solution. A natural candidate is the (14 ¢)-dominance relation which is an extension of the
Pareto dominance relation including a tolerance threshold. Given ¢ > 0, which represents a
tolerance on each objective, this relation is defined as follows between any two points y and y':
y (1 +¢)-dominates 3 if y is at least as good as y’ within a factor 1+ ¢ for all the objectives.
This leads us to consider that y covers y' if y (1 + €)-dominates 3/, that is if y is at least as
good as 7/ considering the tolerance . Moreover, given a tolerance &', y and 3" are sufficiently
spaced if neither y (1+¢’)-dominates y” nor y” (14 ¢’)-dominates y, that is there is no reason
to discard any of the points y and y” since none of them can be considered at least as good
as the other one.

This idea of coverage leads to the concept of an e-Pareto set, introduced in [17], which
is a set P. of points such that for any non-dominated point 3/, there exists a point y € P-
which (1 + ¢)-dominates y’. Note that there may exist many e-Pareto sets, some of which can
include redundancies and some of which can have a more or less small size. An interesting
problem introduced in [24] and further studied in [5] is the efficient construction of e-Pareto
sets of size as small as possible.

In this paper, we focus on the same issue but including also the spacing dimension. There-
fore, the e-Pareto sets studied in this work, called (e,&’)-kernels, are required to satisfy an
additional property of stability which imposes that the points in an (e,¢’)-kernel have to be
pairwise independent relatively to the (1 4 ¢’)-dominance relation, thus controlling spacing.

A variety of methods have been proposed taking coverage, spacing, and/or cardinality
into account (see [12, 20| for surveys). Two broad classes of methods can be distinguished:
(i) algorithms which generate a set of points satisfying some properties with respect to some
of the quality measures, (ii) filtering techniques which start from an initial set of given points
- possibly the whole Pareto set - and retain a subset of these so as to ensure properties with
respect to some of the quality measures. Among recent references that are not cited in the
two previous surveys, we mention [1, 5, 9, 11, 13, 22| and [25] as examples of methods of type
(i) and type (ii), respectively.

Methods of type (i) are often based on exact or approximate iterative optimizations which
generate the points forming the representation. They are either generic like |5, 13| or specific to
a class of problems like [22], [9], [1], and [11] which deal respectively with multi-objective linear
programming, multi-objective nonlinear convex problems, multi-objective knapsack problems,
and bi-objective cost flow problems. Generic algorithms can also be used as methods of type
(ii), where optimizations are simply performed by scanning an explicit list of given points. It



should be observed that most methods are specific to some problems and/or restricted to the
bi-objective case.

Among the previously mentioned references, [9, 11, 22, 25| are distance-oriented methods.
They use a Euclidean norm to define their distance. References [1, 5, 13| are preference-
oriented methods. All of them use the (1 4 ¢)-dominance relation. However, they only ensure
coverage, and sometimes cardinality, but do not consider spacing.

The algorithms we are proposing are generic preference-oriented methods of type (i). These
algorithms can be applied to discrete or continuous, linear or nonlinear, bi-objective optimiza-
tion problems, depending on the availability of some problem-dependent routines. Besides
providing a priori guarantees on the three quality measures, we also guarantee that our generic
algorithms are polynomial when the routines are polynomial.

Our paper is organized as follows. In the next section, we define the basic concepts, formal-
ize the notion of (g,&’)-kernels, and recall some results of previous related works. In section 3,
we study the bi-objective case. We show some general results and present generic polynomial
time algorithms to construct small (e,&’)-kernels under some conditions. In section 4, we
study the case of three or more objectives, pointing out specific difficulties. Section 5 presents
some experimental results which demonstrate the practical applicability of our approach. We
conclude with some possible extensions to this work.

2 Preliminaries

In this paper, we consider multi-objective optimization problems where we try to minimize
p > 2 criteria, i.e. minges{fi(z),..., fp(x)}, where fi,..., f, are objective functions and S is
the set of feasible solutions. In case of some or all objective functions to be maximized, our
results are directly extendable.

We distinguish the decision space X which contains the set S of feasible solutions of the
instance and the criterion space Y C Rﬁ which contains the criterion vectors also called, more
simply, points. We denote by Z = f(S) C Y the set of the images of feasible solutions called
feasible points.

We denote by y; the coordinate on objective f; of a point y € Y for¢=1,...,p. We say
that a point y dominates another point 3/ if it is at least as good in all the objectives, i.e.
y; <wyiforalli=1,...,p. A feasible solution = € S is called efficient if there is no other
feasible solution z’ € S such that f(z) # f(z) and f(2’) dominates f(z). If x is efficient,
z = f(x) is called a non-dominated point in the criterion space. We denote by P the set of
non-dominated points, also called non-dominated set or Pareto set. A point z € Z is weakly
non-dominated if there is no point 2’ € Z such that 2} < z; foralli =1,...,p.

Given two points y,y" € Y and any ¢ > 0, we say that y (1 + ¢)-dominates another point
y', denoted by y <. o/, if y is at least as good as 3’ up to a factor 1 + ¢ in all the objectives,
le. y; < (1+4¢e)y, for i =1,...,p. The asymmetric part of relation <. is denoted by <..
Thus, we have y <. v if y; < (1 +¢)y; for i = 1,...,p and there exists k € {1,...,p} such
that y, < y,./(1+¢).

For any € > 0, an e-Pareto set of Z, denoted by P, is a subset of feasible points such that
any point in Z, or equivalently in P, is (1 + ¢)-dominated by at least one point in P.. We use
this concept to implement the idea of coverage.



One way to ensure spacing is to impose a condition of stability with respect to a (1 +&’)-
dominance relation. An e-Pareto set satisfying this additional condition will be called an
(e,€’)-kernel and is defined precisely as follows.

Definition 1 Given a set Z of feasible points and e,&' > 0, an (g,€")-kernel of Z is a set of
points K. . C Z satisfying the two following conditions:

(i) for any point 2’ € Z \ K. o, there exists z € K. o such that z <. 2’ (e-coverage).

(1) for any two distinct points z, 2" € K. o, we do not have z <o 2’ (€'-stability).

Remark that if ¢’ > ¢ an (e, ¢’)-kernel does not always exist. This is the case for instance
for Z = {zl, 22} such that neither z! <. 22 nor 22 <, 2! but 2! <o 22 or 22 <. z'. Therefore,
for a given e, the goal is to find an (g,&’)-kernel with the largest ¢/ < e. When &’ = ¢ an
(e,€’)-kernel is called an e-kernel.

In Figure 1 we present a small instance to illustrate the interest of this concept. Point 23,
which (14 ¢)-dominates all points except 2%, together with point z%, which (1 + ¢)-dominates
all points except z', form an e-Pareto set of minimal cardinality. In spite of this, due to
their proximity, these two points do not represent well the whole set of points. Points 22
and z°, which also form an e-Pareto set of minimal cardinality, satisfy the additional stability
condition: none of them (1 + ¢)-dominates the other one. This e-kernel clearly provides a
better representation of the whole set of points.
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Figure 1: e-kernels compared to e-Pareto sets.

In the following, we are interested in the efficient computation of e-kernels or (g,¢&’)-
kernels. For this purpose, we need to represent numbers describing instances of multi-objective
optimization problems as well as parameters like €. Therefore, we shall assume that all these
numbers are positive rationals. The representation size of any rational number r will be
denoted by |r|. Similarly, the representation size of all the rational numbers describing an
instance I will be denoted by |I|. Moreover, assuming that the objective functions take
positive rational values whose numerators and denominators have at most m bits, where
m < p(|I]) for some polynomial p, any feasible point has a value between 27 and 2. It



follows that (the absolute value of) the difference between the values of any two points is at
least 272™ for any criterion.

For a given instance I, there may exist several e-Pareto sets, and these may have different
sizes. It is shown in [17] that, for every standard multi-objective optimization problem, an
e-Pareto set of size polynomial in ||, and 1/¢ always exists. Moreover, as also shown in [17],
its computation is related to the existence of a routine called GAPs where ¢ is an appropriate
function of ¢, selected so as to ensure obtaining an e-Pareto set. This routine is defined as
follows.

Routine GAPs; Given an instance I of a given problem, a point y and a rational § > 0,
GAPgs(y) either returns a feasible point that dominates y or reports that there does not exist

any feasible point z such that z; < % foralli=1,...,p.

Observe that, when calling GAPg(y), if there exists a feasible point 3’ dominating y but
such that y; > % for some k € {1,...,p} and if there does not exist any feasible point

z such that z; < %5 for all i = 1,...,p, then GAPs(y) may either return y or report the

non-existence of points like z.

We say that routine GAPg(y) runs in polynomial time (resp. fully polynomial time when
0 > 0) if its running time is polynomial in |I| and |y| (resp. |I|, |y|, |0| and 1/0). An e-Pareto
set is computable in polynomial time (resp. fully polynomial time) if and only if the routine
GAPg; runs in polynomial time [17].

Since an e-Pareto set of polynomial size can still be quite large, Vassilvitskii and Yannakakis
investigate in [24] the determination of e-Pareto sets of minimal size. More precisely, they
distinguish the two following versions.

Primal version: Given an instance of a multi-objective problem and a rational € > 0,
determine an e-Pareto set of minimal size.

Dual version: Given an instance of a multi-objective problem and an integer k& > 0,
determine an e-Pareto set of size at most k with a minimal e.

These authors also propose generic algorithms to deal with these versions. An algorithm
is called generic if it does not depend on any particular problem and makes use of general
purpose routines for which only the implementation is specific to the problem (GAPjg is such
a general purpose routine). In such algorithms it is only required to have bounds on the
minimum and maximum values of the objective functions.

In order to design generic algorithms, Diakonikolas and Yannakakis introduced in [5] two
other general purpose routines called Restricts and DualRestricts for the bi-objective case.

Routine Restricts Given an instance I, a rational bound b > 0 and a rational § > 0,
Restricts(f1, fo < b) either returns a feasible point z satisfying zo < b and 23 < (1 + ) -
min{fi(x) : x € S and fa(z) < b} or correctly reports that there does not exist any feasible
point z such that zo <b.

Routine DualRestricts Given an instance I, a rational bound b > 0 and a rational § > 0,
DualRestricts(f1, fo < b) either returns a feasible point z satisfying zo < b(1 4 J) and z; <
min{f1(z) : « € S and fa(x) < b} or correctly reports that there does not exist any feasible
point z such that zo < b.



We say that routine Restricts(f1, fo < b) or DualRestricts(f1, f2 < b) runs in polynomial
time (resp. fully polynomial time when 6 > 0) if its running time is polynomial in |I| and ||
(resp. |I], |b], |6] and 1/5). Routines Restricts(f1, f2 < b) and DualRestricts(fa, f1 < b') are
polynomially equivalent as proved in [5].

Remark that routines Restricts(f1, fo < b) and DualRestricts(f1, fo < b) with a strict
constraint, can easily be simulated respectively by routines Restricts(f1, fo < b') and Dual-
Restricts(f1, fo < b') using b’ = b" — 272" where b” is the smallest multiple of 272™ which is
larger than or equal to b.

In the routines considered in this paper we assume that the error ¢ is a rational number,
otherwise it is approximated from below by a rational number. We denote by P} a smallest

e-Pareto set and by opt. its cardinality. It follows from [17]| that opt. is polynomial in the
input size and 1/e.

In the bi-objective case, the following results are known for the primal and dual versions.

For the primal version, a generic algorithm that computes an e-Pareto set of size at most
3opt. using routine GAPs was established in [24]. Moreover, if GAP;s runs in polynomial
time (resp. fully polynomial time) then the algorithm also runs in polynomial time (resp.
fully polynomial time). Then, it is shown in [5] that an e-Pareto set of size at most 20pt. is
computable in polynomial time if there exist Restricts routines computable in polynomial time
for both objectives. These approximation results are tight for the class of problems admitting
such routines. An algorithm that computes an e-Pareto set of size at most k - opt. is called a
k-approximation algorithm.

For the dual version, Vassilvitskii and Yannakakis [24] state that it is NP-hard even in
simple cases but provide a polynomial time approximation scheme (fully polynomial time
approximation scheme) when the bi-objective problem admits a GAPg routine that runs in
polynomial time (fully polynomial time).

In this work, our goal is to establish some general properties on (e, &’)-kernels and propose
some algorithms for the primal and dual versions in the case of (¢,&’)-kernels. In the following
sections, primal and dual versions refer to (e, &’)-kernels instead of e-Pareto sets.

The proposed concepts, and the resulting algorithms, are independent of the multi-objective
problem that is considered. In particular, the applicability of our generic algorithms only de-
pends on the availability of the involved routines (Restricts and/or DualRestricts) for the
considered problem. Therefore, provided that such routines are available, these generic algo-
rithms can be applied to discrete or continuous, linear or nonlinear, multi-objective optimiza-
tion problems.

3 Two objectives

We first give some general results on e-kernels in the bi-objective case (section 3.1). Then we
consider the computation of e-kernels when an exact Restrict routine, that is Restricts with
0 = 0, is available (section 3.2) and when we only have an approximate Restrict routine, that
is Restricts with 6 > 0 (section 3.3).



3.1 General results

Relation <., as well as its asymmetric part <., are clearly not transitive. Relation <. can
even contain cycles. It appears, however, that <. cannot contain cycles as shown in the next
result.

Lemma 1 In the bi-objective case, relation <. does not contain cycles.

1 2

Proof: Suppose that we have the cycle z! <. 22... <. 2™ <. z!. Thus, for all i €
{1,...,n — 1} we have (i) zj- <(1 +5)z]i-+1 for each j € {1,2} and (i7) there exists j € {1,2}
such that z;- < zj-“/(l +¢€). Moreover, we have (i) 2] < (1+ 5)2]1- for each j € {1,2} and (i7)
there exists j € {1,2} such that 2] < 2]1/(1 +¢€).

Considering this cycle, assume that we are t; times in case (ii) for each j € {1,2}. We
must have ¢; 4 to > n. First, remark that it is not possible that t; = 0 for each j € {1,2}.
Indeed, assuming without loss of generality that t; = 0, we get to = n leading to (1+¢)" < 1.
Now, observe that when we are ¢; times in case (i7) for criterion j, we are also n —t; times in
case (i). Since t; > 0 for each j € {1,2}, we have 2]1 < (14 6)"*2159'2]1», which implies t; < n/2
for each j € {1,2}, contradicting ¢; + ta > n. O

The previous lemma guarantees the existence of e-kernels in the bi-objective case.
Proposition 1 In the bi-objective case, an e-kernel always exists.

Proof: It is a direct consequence of Lemma 1 since any relation that does not admit cycles
in its asymmetric part admits kernels as proved in Duchet [6]. O

In general e-kernels may contain dominated points. We prove the existence of e-kernels
containing only non-dominated points.

Proposition 2 In the bi-objective case, an e-kernel that contains only non-dominated points
always exists.

Proof: Let K. be an e-kernel of the Pareto set P associated to feasible set Z. Proposition 1
implies that such an e-kernel does exist. K., which contains only non-dominated points by
definition, is clearly an e-Pareto set with respect to Z. O

In the following we give some bounds on the size of any e-kernel.
Theorem 1 In the bi-objective case, any e-kernel has a cardinality less than or equal to 3opt..

Proof: The proof is by contradiction. Let P be an e-Pareto set of minimal size opt.. Now
assume that there exists an e-kernel K. of size at least 3opt. + 1. It means that at least one
point z* of P (14 ¢)-dominates at least 4 points of K.

Let 2* for i = 1,2,3,4 be 4 points of K, such that z* <. 2% for each i = 1,2, 3,4. Assume
without loss of generality that zi“ < 24 and zé“ > 24 for i = 1,2,3. Since K. is an e-kernel,
the coordinates of the points z* must satisfy the following inequalities: 2™t < 2i/(1 + ¢)
and zé“ > 24(1 + ¢). Using these inequalities and since 2* <. 2! for each i = 1,2,3,4, its
coordinates satisfy 2 < 27(1 +¢) < 25 < 22/(14+¢) <21/(1+¢)and 25 < 23(1+¢) < 22 <
23 /(14¢€) < 25 /(1+¢). Thus no point z¢ fori = 1,...,4 (1+¢)-dominates z*. If another point
z of K. (1 + ¢)-dominates z* the previous inequalities give 213 < 25(1 +¢) < 2z§(1 +¢) < 22



and 29 < 25(1 +¢) < 22(1 + ¢) < 23, which involves that point z (1 + ¢)-dominates points 22
and 23. This would contradict e-stability for K.. Thus, no point of K. (1 + ¢)-dominates z*,
which contradicts e-coverage for K. O

If we consider e-kernels containing non-dominated points only, we obtain a smaller upper
bound on their size. The following result is even slightly stronger since it deals with e-kernels
containing weakly non-dominated points only.

Theorem 2 In the bi-objective case, any e-kernel that contains only weakly non-dominated
points has a cardinality less than or equal to 2opt..

Proof: The proof is by contradiction. Let P be an e-Pareto set of minimal size opt..
Now assume that there exists an e-kernel K. of size at least 2opt. 4+ 1 containing only weakly
non-dominated points. It means that at least one point z* of P¥ (1 + ¢)-dominates at least 3
points of K.

Let 2% for i = 1,2,3 be 3 points of K, such that z* <. 2¢ for each i = 1,2,3. Assume
without loss of generality that 207! < 2% and 25"! > 24, Since K is an e-kernel, the coordinates
of the points 2’ must satisfy the following inequalities: 2 < 2t /(1 +¢) and 25T > 28(1 +¢)
for ¢ = 1,2. Since z* <. 2* for each i = 1,2,3, the coordinates of point z* must satisfy
2 < 23(14¢) < 22 and 25 < 23(1 +¢) < 23. This contradicts the fact that 22 is a weakly
non-dominated point. O

Corollary 1 In the bi-objective case, there exists an e-kernel with a cardinality less than or
equal to 2opt..

Proof: It is a direct consequence of Theorem 2 and Proposition 2. O

We are interested now on e-kernels of minimal size. An important fact is that an e-kernel
of minimal size is not larger than an e-Pareto set of minimal size opt..

Theorem 3 In the bi-objective case, there exists an e-kernel of size opt..

A constructive proof of Theorem 3 is given in section 3.2.1, where an algorithm that
computes an e-kernel of size opt. is provided (see Theorem 4).

3.2 Algorithms for c-kernels using exact Restrict routines

In this section, we provide algorithms for the primal version (section 3.2.1) and the dual
version (section 3.2.2) considering that a Restricty routine is available for both objectives.
In particular, such a polynomial routine is available for (continuous) multi-objective linear
programming. Even if no polynomial Restricty routine is available for most discrete and/or
nonlinear problems, optimal (non polynomial) routines will guarantee obtaining an e-kernel
of minimal size.

3.2.1 Primal version

We propose a generic algorithm that produces an e-kernel of minimal size that contains only
non-dominated points. This improves significantly over the two generic algorithms proposed
in [13]. The first algorithm requires a more demanding exact Restrict routine, where restric-
tions are imposed on both objectives, while the second one only requires a Restricty routine
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Figure 2: ITllustration of Algorithm 1

for one objective. Each of these algorithms produces an e-Pareto set whose size is only guar-
anteed to be at most three times the minimal size. In comparison, our algorithm guarantees
to produce an e-Pareto set of minimal size which in addition satisfies the e-stability condition.

Algorithm description The algorithm proceeds in two phases. The first phase (greedy
phase) corresponds to a slightly modified version of the algorithm presented in [5] which returns
a set {¢',...,¢°} of non-dominated points as an e-Pareto set of minimal size. The second
phase (verification phase) ensures e-stability by checking, and possibly modifying, the returned
set. We denote by f™" and fi*" the minimum values on the first and second objectives
respectively. In the first phase, the algorithm iteratively generates points r!,¢',...,r% ¢° in
decreasing order according to f; and increasing order according to fy. Point r! corresponds
to an optimal solution on objective fo. Point ¢' is the non-dominated point with the best
possible value on f; which (1 + ¢)-dominates r!. Point 7? is a point with the smallest value
on fy that is not (1 + £)-dominated by the point ¢~!. Point ¢’ is the non-dominated point
with the smallest value on fi that (1+¢)-dominates point r’. The first phase of the algorithm
stops when it determines a point ¢° that (1 + €)-dominates the feasible points that have a
first coordinate equal to fI™". At the end of the first phase, e-stability is ensured on the first
objective, but not on the second one. In the second phase, points ¢’ are checked, starting
from ¢*, in decreasing order according to fo. If point ¢* (1 + &)-dominates point ¢'~!, we
replace point ¢! by the non-dominated point with the smallest f; value which is not (1 +¢)-
dominated by ¢* while having a strictly larger value on f; than ¢*~'. This ensures e-stability
on the second objective, while preserving e-stability on the first one.

A formal description of this algorithm is given in Algorithm 1.

Before analyzing this algorithm, we illustrate its behavior in Figure 2 where 4 points
q', ¢, ¢, ¢* are selected during the first phase. During the second phase, the algorithm detects
that point ¢> (1 + £)-dominates point g2, showing that e-stability is not satisfied. Therefore,
it replaces g2 by ¢’? which is not (1 + ¢)-dominated by ¢® but (1 + £)-dominates all the points
that were (1 + ¢)-dominated by ¢? only. This way, e-stability is restored, while preserving
e-coverage. The resulting e-kernel consists of points ¢', ¢, ¢3, ¢*.

10



Algorithm 1: Algorithm Greedy and Verification

input : An instance of a bi-objective problem for which routines Restricto(f1, fo < b)
and Restricto(f2, f1 < b) are available
output : An e-kernel of size opt.

7« fi(Restricto(fi, f2 < 2™)); f5"" < fa(Restricto(fa, fr < 2™));
r! « Restricto(fa, f1 < 2™);
fo (14 ¢e)rd;
q' < Restricto(f1, f2 < El);
q' <+ Restricto(f2, {1 < qi);
1
fi —q/(+e);
Q<+ {d'}
1+ 1
/* greedy phase */
9 while f" > f"" do
10 114+ 1;
11 rt— Restricto(f2, f1 < ﬁlil);
12 | fol « (14e)rs;
13 q' « Restricto(f1, f2 < f2);
14 | ¢ < Restricto(f2, 1 < ¢);
15 fi < d/Q +¢);
16 Q+—QU{d}k

N =

® N o ok W

/* verification phase */
17 11— 1
18 while ¢5™' /(14 ¢) > fi*" do

19 if qéﬂ (14+¢) < ¢, then

20 Q<+ Q—{d}

21 q' < Restricto(fy1, fo < qéﬂ/(l +e));
22 q' < Restricto(fa, f1 < ¢b);

23 Q+QuUidY};

24 11— 1;

25 return Q;

Algorithm analysis We show now that Algorithm 1 produces an e-kernel of minimal size.
Let R = {r',...,7*} and Q = {q¢%,...,q¢°} be the set of feasible points produced by the
algorithm. We first show some preliminary results regarding points in ) and R.

Proposition 3 Set QQ contains only non-dominated points.

Proof: Points ¢’ € Q are computed in two steps, both in the greedy phase (steps 13-14) and
in the verification phase (steps 21-22). The first step returns a point ¢’ such that there exists
no point z € Z such that z; < ¢& and 2z < qiz. Thus, at this step, ¢’ is only guaranteed to
be weakly non-dominated since there may exist a point z such that z; = ¢¢ and 29 < ¢b. The
second step rules out this possibility, ensuring that ¢’ is non-dominated. O

11



Observe that the algorithm proposed in [5], which corresponds to the greedy phase, does
not include this second step optimization. Therefore, the returned e-Pareto set in [5] consists
of weakly non-dominated points.

Lemma 2 During the verification phase, if a point ¢"* replaces a point ¢' in Q, we have (i)
g5 < g5 and (ii) g7 > qi.
Proof: (i) Point ¢ computed at steps 21-22 satisfies ¢§ < ¢5"™'/(1 4+ ¢) < ¢

(7) Since points in @) are non-dominated, including ¢" and ¢”, (¢) implies that ¢}" > ¢j. O

Lemma 3 Any feasible point z € Z (1 4 €)-dominates at most one point from R.

Proof: Suppose, by contradiction, that z (1 + ¢)-dominates two points from R. Clearly, the
most favorable situation is when these points are consecutive. Thus, let 7* and r*~! be two
consecutive points in R such that z (1 + ¢)-dominates them. Assuming that z <. ri=1
have 2o < (1 + ¢)rs !, By steps 13-14, this inequality implies that ¢i~* < z;, which implies
¢ /(1 +¢) < 2z1/(1 +¢). From step 11, we have 1} < ¢i™'/(1 +¢) and thus ri < z,/(1 +¢),
contradicting z <, . O

we

Lemma 4 The only point in R which is (1 + €)-dominated by ¢* is r', fori=1,...,s.

Proof: By Lemma 3, we just need to show that ¢° <. r?, for i = 1,...,s. We proceed by
induction. By steps 13-14, the assertion is clear if ¢’ has not be modified. In particular, for ¢°
which is not modified, the assertion is true. Assuming now that ¢'*! <, 7!, we prove that
q* <. r’. The only case that could me problematic is when ¢* has been modified during the
second phase. By Lemma 3, we have not (¢"*! <. %), which means that ¢5** > (1 + &)r}.
Hence, by steps 21-22, we get ¢¢ < ri. Moreover, regarding the second criterion, since ¢*
computed during the first phase (1 + €)-dominates r¢, we have ¢4 < (1 + &)ry. Considering
that ¢* has been modified, using Lemma 2-(i) we get g5 < (1+ €)r. Therefore, we get finally
q =1 O
We can now prove that () satisfies the two conditions required to be an e-kernel.
Proposition 4 Set Q satisfies the e-coverage condition.

Proof: We show that the points in @ cover all the feasible points by partitioning the range
of feasible values on f;. More precisely, we show that:

(i) Point ¢* (1+¢)-dominates all the feasible points with an f; value greater than or equal
to gl /(1 +2).

(ii) For each i = 2, ..., s, point ¢* (1 + ¢)-dominates all the feasible points that have their
f1 value in the interval [¢}/(1+¢),q;"" /(1 +¢)).

(73i) There is no feasible point with a f; value smaller than ¢j/(1 + ¢).
(i) Let z be a feasible point with 21 > ¢i/(1 + €) and, by definition, 2o > fi". Point ¢!
computed in steps 4-5 satisfies g3 < (1 + &) f3%" < (1 + €)22, which shows that ¢! (1 + ¢)-
dominates z. If point ¢! is modified during the verification phase, using Lemma 2-(i) we also
have g2 < (1 + ¢)2,.

(i7) Let z be a feasible point satisfying ¢} /(1 +¢) < 21 < ¢i'/(1 +¢). In order to prove that
z is (1 + ¢)-dominated by ¢, we have to show that g < zo(1 +¢). We consider three cases.

12



e If points ¢’ and ¢*~! have not been modified during the verification phase, then ¢, which
is defined in steps 13-14, verifies ¢4 < (1 4 ¢)rh. From step 11, we have r} < z9, which
leads to ¢4 < (1 + ¢)zs.

e If point ¢’ has been modified but not point ¢'~!, then by Lemma 2-(3), the inequality is
preserved.

e Finally if point ¢°~! has been modified during the verification phase, step 21 ensures
that there is no feasible point 2’ such that z5 < ¢/(1 +¢) and 2| < q{"'. Since
21 < ¢71/(1 +¢), it follows that z; < ¢'~ ' and thus 2 > ¢4 /(1 + ¢).

(73i) Point ¢°, which is not modified in the verification phase, is the last point obtained in the
while loop 9-16. By step 15 and condition in step 9, we have ¢f/(1 +¢) < f{™". O

Proposition 5 Set Q satisfies the e-stability condition.

Proof: We just need to show that e-stability holds for consecutive points in (), that is for all
i =2,...,s we have (i) not (¢'~' <. ¢') and (i5) not (¢’ <= ¢ ).

(i) From Lemma 4, we have not(qg*~! <. r?). This occurs because we have on the first criterion
qifl > (14 ¢)r}. Since we have r| > ¢}, we get qfl > (1+¢)q}, that is not(¢g"~! <. ¢%).

(i7) Test 19-23 ensures that ¢5 ' < ¢4 /(1 +¢). O

Combining the previous results, we obtain the main result of this section.

Theorem 4 For any € > 0, Algorithm 1 computes an e-kernel of minimal size opt. that
contains only non-dominated points using O(opt:) routine calls to Restricty.

Proof: (@ is an e-kernel containing only non-dominated points from Propositions 3, 4, and
5. Moreover, set ) has minimal size opt. since, from Lemma 3, at least | R| points are required
for any e-Pareto set, whereas Algorithm 1 returns a set @ with |Q|=|R)|.

Since the algorithm uses at most 3 |Q| + 2|Q| = 5|Q)| times the Restricty routine, the
number of routine calls is bounded by 5opt.. O

Since opt, is polynomially bounded in the input size and 1/¢ [17], we have the following
corollary.

Corollary 2 For any € > 0, if Restricly routines are computable in polynomial time for both
objectives, then we can determine an e-kernel of minimal size that contains only non-dominated
points in polynomial time in the size of the input and 1/c.

3.2.2 Dual version

We show that the minimal ratio 1 4 €* is approximable within any factor 1+ 6 in polynomial
time in the input size and 1/6.

Theorem 5 Let k be a nonnegative integer and let 1 + €* be the minimal ratio for which an
e*-kernel of size at most k exists. For any rational 0 > 0, we can determine an e-kernel of
size at most k with 1 +& < (1 +€*)(1 4+ 6). This can be done using O(klog(m/0)) routine
calls to Restricty.
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Proof: We first apply Algorithm 1 with ¢ = . If the returned e-kernel has size at most k,
then the required condition is satisfied. Otherwise, the minimal ratio 1 + €* belongs to the
range [1 + 6,2%™], where the upper bound corresponds to the extreme situation with k = 1
and Z = {z! = (2m,1/2™),22 = (1/2™,2™)}. Let 1+ &; = (1 + 6)° be the candidate ratios
fori=1,...,[2m/log(1 + 0)]. We perform a binary search on i values. At each step we call
Algorithm 1 in order to obtain an g;-kernel of minimal size. If this size is greater than k then
we continue the search in the right part, otherwise in the left part. Observe that, at each step,
the search is between the indices i, and i, such that the size of the smallest i,-kernel is more
than k£ and the size of the smallest i,-kernel is at most k. Thus, 1 +¢&;, < 1 +¢e* <1+ ¢,.
The search is stopped when i, =i, + 1, i.e. when 1+¢&, = (1 +¢&¢)(1 + 6). Then the current
ei,-kernel is of size at most k and such that 1 +¢;, = (1+¢;,)(1+6) < (1+e*)(1+9).

The number of calls to Algorithm 1 is O(log(2m/log(1 + 0))) ~ O(log(m/0)). Since we
can stop each call to Algorithm 1 when it tries to compute a (k 4+ 1) point, each such call
uses O(k) calls to Restricty. Thus, the total running time is O(klog(m/6)) Restricty calls. O

Corollary 3 Let k be a nonnegative integer and let 1 + &* be the minimal ratio for which an
e*-kernel of size at most k exists. If Restricty routines are computable in polynomial time for
both objectives, then we can determine an e-kernel of size at most k with 14+¢ < (14¢*)(1+40)
in polynomial time in the size of the input and 1/6.

3.3 Algorithms for (¢,¢’)-kernels using approximate Restrict routines

In this section, we provide algorithms for the primal version (section 3.3.1) and the dual
version (section 3.3.2) considering that a Restricts routine is available for both objectives.
Such polynomial routines are available for various problems: fully polynomial time routines
for shortest path [16, 10] and polynomial time routines for spanning tree [19], matching and
matroid intersection [3].

Assuming that fully polynomial time Restricts routines, with § > 0, are available for
both objectives, Diakonikolas and Yannakakis [5] showed that (i) there is no polynomial time
generic algorithm based on these routines able to compute an e-Pareto set of size better than
20pte, but (ii) it is possible to compute an e-Pareto set of size 20pt. in polynomial time. Then,
from Theorem 1, it follows that, using such routines, we can only hope to compute an e-kernel
of size between 20pt. and 3opt. in polynomial time. In fact, using the same routines, we even
show that finding an e-kernel in polynomial time cannot be guaranteed.

Proposition 6 Consider the class of bi-objective problems that possess a fully polynomial time
Restricts routine, with § > 0, for both objectives. Then, for any & > 0, there is no polynomial
time generic algorithm using Restricts that computes an e-kernel.

Proof: Consider the following set of feas1ble points Z = {z,2',22 23, 24} (see Figure 3)
where: z = (z1,29), with 21,29 > 1/e, 2! = ((21 + 1)(1 + &), 22/(1 +€) ) 2= (21 +1,2),
23 = (21,20 + 1) and z* = (21/(1 + €)?, (22 + 1)(1 4+ €)). Then, note that each point of
{2,22,23} (1 +¢)-dominates only these three points, and that z! (1 + ¢)-dominates 22 and 24
(1 + ¢)-dominates z3. Then, there are exactly three minimal e-Pareto sets: P. = {z, 2!, 2%},
P! = {2221, 2*}, P = {23, 2", 2} and only P. is an e-kernel.

We show that a generic algorithm using Restricts is guaranteed to return the e-kernel only
if 1/9 is exponential in the size of the input. Let z; = 20 = M, where M is an integer value
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Figure 3: No polynomial time generic algorithm can compute an e-kernel (Proposition 6).

exponential in the size of the input and 1/e. Assume that we call Restricts(f1, fo < C) with
C € [M,M +1). Then, it can return point 22 instead of z as long as § > 1/M. Symmetrically,
if we call Restricts(fo, fi < C) with C € [M, M + 1) we can obtain 2 instead of 2. But,
since we want a polynomial time algorithm, 1/ has to be polynomial in log M. Therefore,
a polynomial time generic algorithm cannot guarantee to compute the unique e-kernel which
contains point z. O

In spite of this negative result, if we relax the stability condition using &’ < &, we show
that (e,&’)-kernel can be computed in polynomial time. Therefore, in the following, we assume
that &’ <e.

3.3.1 Primal version

We propose an algorithm that produces an (e,&’)-kernel of size at most twice the size of a
minimal e-Pareto set.

Algorithm description The algorithm proceeds in two phases. The first phase (greedy
phase) corresponds to the algorithm presented in [5] which returns a 2-approximation algo-
rithm for finding an e-Pareto set of minimal size. The second phase (verification phase) is
basically the same as Algorithm 1 but using ¢’ instead of e.

The algorithm is shown to produce an (g,&’)-kernel when § < (14¢)/(1+¢’)—1 (Proposi-
tions 7 and 8) and the size of this (g, &’)-kernel is proved to be at most 20pt. if § < /1 +¢e—1
(Theorem 6). Therefore, we assume that § < min{(1+¢)/(1+¢&') —1,vV1+¢e—1}.

A formal description of this algorithm is given in Algorithm 2.

Note that, when a Restricts routine is available only for one objective, we have another
version of this algorithm that requires § < min{\/(1 +¢)/(1 +¢&’)—1, /T + —1} by replacing
step 19 by ¢’ < DualRestricts(f1, fa < ¢t /(1 +€)(1 + 0)?).

Algorithm analysis We show now that Algorithm 2 produces an (e,&’)-kernel whose size
is at most 20pt.. Let Q = {q,...,¢°} be the set of feasible points produced by the algorithm.
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First, observe that in steps 23-24 Algorithm 2 discards points that are proved unnecessary
in the next result. The returned set may thus be of smaller cardinality than the e-Pareto set
obtained at the end of the greedy phase.

Lemma 5 During the verification step, if a point q", replacing a point ¢, is such that ¢} >
¢ /(1 + €, then point ¢" is unnecessary.

Proof: Point ¢, with ¢f > ¢/"'/(1 + ¢’), is computed in step 19 using Restricts(f1, fo <
¢5™ /(1 4¢)) where 6 < (1 +¢)/(1+¢') — 1. This implies that any feasible point z satisfying
2o < g5t /(1 +¢) is such that 21 > ¢{/(1+6) > ¢f(1+¢€')/(1+¢) > ¢. /(1 +¢). Therefore,
there is no feasible point z such that z; < ¢i~'/(1 +¢) and 29 < ¢5™ /(1 +¢). Thus, a point

that is (1 + ¢)-dominated by point ¢ is (1 4 ¢)-dominated by point ¢'~! or ¢**1. O

In the following, for proving the correctness of our algorithm, the case of points which are
not included (steps 23-24) can be ignored. Indeed, when this happens, the consequence of
reindexing at step 23 is that points ¢'*! and ¢*~! become respectively points ¢'*! and ¢’ at
the next iteration, without any impact on the e-coverage condition as shown by Lemma 5.

Lemma 6 During the verification step, if a point ¢'* replaces a point ¢' in Q, we have (7)
45 < g3 and (ii) qi > qj.
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Algorithm 2: Algorithm Greedy and Verification Extended
input : An instance of a bi-objective problem for which routines Restricts(f1, fo < b)
and Restricts(fa, fi < b) are available
output : An (g,&')-kernel of size at most 20pt.

1 fmm — fi(DualRestricts(f1, f2 < 2™)); f5" < fo(DualRestricts(fa, f1 < 2™));
2 rl % Restm’ct(;(fg,fl < 2™My;

3 f2 1+5 GET R
4 q' + DualRestricts(f1, f2 < El);
—1
5 fi +qi/(1+e);
6 Q< {d'};
714+ 1;
/* greedy phase */
s while f;’ > f"" do
141+ 1;
10 7 “ Restrzctg(fg,fl < f1 ),
| B e Bsmar(Rra/0+0)
12 q' + DualRestricts(fy, fo < El);
13 ﬁqui/(lﬂ—e);
14 | Q< QU{d}
/* verification phase */
15 s 1,141 — 1;
16 while ¢5™' /(14 ¢) > fi*" do

17 if ¢it1/(1+¢') < ¢} then

18 Q Q- {¢);

19 q' < Restricts(f1, fa < qlJrl (1+¢));

20 if ¢ < ¢'"'/(1+¢') then

21 | Q< Qu{d'};

22 else

23 L reindex {¢"*1,...,¢*} by {¢*,...,¢*1};
24 s s—1;

25 | 11— 1

26 return Q);

Proof: (i) Point ¢’ computed at step 19 satisfies ¢§ < ¢b™1 /(1 +¢) < st /(1 +€') < gb.
(74) Remark that point ¢* was computed in step 12 using routine DualRestricts during the
greedy phase. It follows that there is no feasible point z such that z; < ¢} and 29 < ¢/ (1+6).
Since ¢’ < (1+¢)/(1+ ) — 1, point ¢ is computed in step 19 such that < q%ﬂ (I+¢) <
@& /AN +6) < gh/(1+9). Tt follows that ¢} > gi. O

We can now prove that @) satisfies the two conditions required to be an (e, &’)-kernel.

Proposition 7 Set QQ satisfies the e-coverage condition.
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Proof: We show that the points in ) cover all the feasible points by partitioning the range
of feasible values on f;. More precisely, we show that:

(i) Point ¢! (1+¢)-dominates all the feasible points with an f; value greater than or equal
to qi /(1 + ).

(ii) For each i = 2,...,s, the point ¢* (1 + ¢)-dominates all the feasible points that have
their f; value in the interval [¢}/(1 +¢),q{" /(1 +¢)).

(797) There is no feasible point with a f; value smaller than ¢;/(1 + ¢).

(i) Let z be a feasible point with 21 > ¢i/(1 + €) and, by definition, 2o > fi". Point ¢!
computed in step 4 satisfies ¢z < (1 + &) f3¥" < (1 + €)z9, which shows that ¢' (1 + ¢)-
dominates z. If point ¢! is modified during the verification phase, using Lemma 6-(i) we also
have 29 > q3 /(1 +¢).

(i7) Let z be a feasible point satisfying ¢} /(1 +¢) < 21 < ¢i'/(1 +¢). In order to prove that
z is (1 + €)-dominated by ¢*, we have to show that ¢4 < (1 + ¢)2o. We consider three cases.

e If points ¢’ and ¢! have not been modified during the verification phase, then ¢, which
is defined in step 12, verifies ¢4 < (1 + ¢) - maX{Ei_l,ré/(l + 6)}. From step 10 we
have 2o > r4/(1 + §) and from step 12 for i — 1 we have 2y > ﬁi_l. Thus we have
max{ﬁi_l,ré/(l +6)} < 23 which leads to ¢4 < (1 + €)za.

e If point ¢* has been modified but not point ¢'~!, then by Lemma 6-(i), the inequality is
preserved.

e Finally if point ¢°~! has been modified during the verification phase, step 19 ensures
that there is no feasible point 2’ such that 2 < gb/(1+¢) and 2{ < ¢}'/(1 + §). Since
21 < ¢71/(1 +¢) it follows that z; < ¢'~ /(1 + 6) and thus 2, > ¢4 /(1 + ¢).

(7i7) Point ¢°, which is not modified during the verification phase, is the last point obtained
in the while loop 8-14. By step 13 and condition in step 8, we have ¢{/(1 +¢) < fn. 0

Proposition 8 Set Q satisfies the &'-stability condition.

Proof: We just need to show that &’-stability holds for consecutive points in @, that is for
all i = 2,...,s we have (i) not (¢'~! <. ¢*) and (i7) not (¢* <o ¢*~1).

(1) We consider three cases.

e If points ¢* and ¢*~! have not been modified during the verification phase, then point rt,
computed in step 10, is such that r] < qifl /(1 +¢). Moreover since point ¢', computed
in step 12, is such that ¢@ < 7%, we get ¢@ < ¢'"'/(1 +¢) < ¢¢"1/(1 + &), that is not
(ql_l = qz)'

e If point ¢’ is modified and point ¢! is not modified, then since ¢’ is added to Q in
step 21, it satisfies ¢} < qfl/(l + ¢}, that is not (¢! <./ ¢*).

1

e The final case is when point ¢°~! changes during the verification phase and is replaced
by a point ¢"*~!. Then, according to Lemma 6-(ii) the inequality is preserved.
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(i7) Test 17-24 and the definition of point ¢*~* at step 19 ensures that ¢4 ' < ¢b/(1 +¢) <
g3/ (1 + &), O

Lemma 7 Any point z € Z (1 + ¢)-dominates at most two points from R.

Proof: Suppose, by contradiction, that z (14 ¢)-dominates three points from R. Clearly, the
most favorable situation is when these points are consecutive. Thus, let 7%, =1, and =2 be

three consecutive points in R such that z (1 + ¢)-dominates them. Assuming that z <. =2

we have zo < (14 ¢)rb 2. By step 11, for i — 2 and i — 1, we get EPQ > —(11;55)27«@*2 and
—i—1

Eiﬂ > %Eid and thus Eiﬁ > 81;;2 r§_2. Since (1 +6)3 < 1+ ¢, we have 2o < fo

From this last inequality, by step 12, for i —1, we have qlfl < 21, which implies qlfl /(14¢€) <
21/(1 4 €). From step 10, we have r} < ¢\"'/(1 4 ¢) and thus 7§ < z;/(1 + ¢), contradicting
z =¢ e O

Combining the previous results, we obtain the following result.

Theorem 6 For any e,&’ such that e > &' > 0, Algorithm 2 computes an (g,€")-kernel of size
less than or equal to 2opt. using O(opt.) routine calls to Restricts or DualRestricts, where

d<min{(1+¢)/(1+¢&)—1,vV1+e—1}.

Proof: Q@ is an (g,&')-kernel from Propositions 7 and 8. Moreover, set ) has a size less than
or equal to 2opt. since, from Lemma 7, at least [|R|/2] points are required for any e-Pareto
set, whereas Algorithm 2 returns a set  with |Q| < |R|.

Since the algorithm uses at most 2|Q| + |Q| = 3 |Q)| times the routines Restricts or Dual-
Restricts, the number of routine calls is bounded by 3opt.. O

Since opt, is polynomially bounded in the input size and 1/¢ [17], we have the following
corollary.

Corollary 4 For any e,¢’ such that € > & > 0, if routines Restricts and DualRestricts with
0 > 0 are computable in (fully) polynomial time for both objectives, then we can determine an
(e,€")-kernel of size less than or equal to 2opt. in (fully) polynomial time.

We recall that it is not possible to produce an e-Pareto set of size opt. in polynomial time
using Restricts routines [5]. Nevertheless, Vassilvitskii and Yannakakis showed in [24] that
it is possible to produce in polynomial time an e-Pareto set of size bounded by opts for any
¢ < e. In the following we present a similar result for (e, &’)-kernels. More precisely, we show
that Algorithm 2 used with ¢ < min{\/(1+¢)/(1+¢é)—1,(1+¢)/(1+¢") — 1} computes an
(e,€’)-kernel of size bounded by optz, for any ¢ < € and ¢/ < . Let @ be the set of feasible
points produced by the algorithm.

Since § < (1 +¢)/(14+¢')—1, Q is an (e,¢’)-kernel from Propositions 7 and 8. Therefore,
we only need to show that set ) has a size less than or equal to opt..

Proposition 9 When § < \/(1+4¢)/(1 4 é)—1, Algorithm 2 returns a set Q with |Q| < opte.
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Proof: Let PI = {p*!,...,p**} be an é-Pareto set of minimal size, where points p** for
i = 1,...,k are in increasing order of their coordinates on fy and decreasing order of their
coordinates on fi. Let Q = {G',...,§"} be the set of points returned by the greedy phase of
Algorithm 2. We have |Q| > |Q| due to the possible omission of points in steps 23-24 of the
verification step. We show now that |Q| < |Pz|. For this purpose, we show by induction on ¢
that for each point ¢’ in Q there exists a point p* in PZ such that G <py

Initialization (¢ = 1). The fact that P contains at least one point is trivially true. We need
to show that ¢i < pjl. Since point G' is computed in step 4 using DualRestricts(f1, fo < fa ),
to show the statement it suffices to prove that fg > pil. Since P is an é-Pareto set where its

points p*J for j =1,...,k are in increasing order of their coordinates on fs, it follows that point
p*! must (1 + é)- dommates fain and so pit < (14 &) f. Since § < /(1 +¢)/(1+8) -1,
it follows that pi! (11:55)2 min From step 2 we have 73 > fI"" and from step 3 we have
ﬁl (11j55)2 r5, thus it follows that f2 > p3t

Induction step. Assume the result is true until index ¢ — 1, we prove it for index i. By the
termination condition of the greedy phase of Algorithm 2 (step 8), we have ql s (1+4¢)fm
and by the induction hypothesis that p}*~! > ¢!, it follows that p{*~ ' > (1 + &) f*™. Thus,
point p**~! does not (1 + ¢)-dominate the fea51ble points that have a first coordinate equal

to f"" and so PZ must contain another point p**. Since point ¢* is computed in step 12

using DualRestricts(f1, f2 < f2'), to show the statement it suffices to prove that fp' > piL.
Since PF is an é-Pareto set where its points p*/ for j = 1,...,k are in increasing order of
their coordinates on fo, it follows that point p* must (1 + &)- dominates point r* and so
i< (1+ é)ré Since § < /(1 +¢)/(1+¢&) —1, it follows that p¥’ (1+5)2 ry. From step 11

we have fy > (11+ 55)2 7%, thus it follows that f2 > p3i O
The second main result of this section follows.

Theorem 7 For any é,e,&’ such that € > € > 0 and ¢ > ¢ > 0, Algorithm 2 computes
an (g,e')-kernel of size less than or equal to opt: using O(opts) routine calls to Restricts or

DualRestricts, with 6 < min{ /(1 +¢)/(1+¢)—1,(1+¢)/(1+¢&") —1}.

Proof: Set @ returned by Algorithm 2 is an (e,&’)-kernel since Propositions 7 and 8 hold.
Moreover, the size of @) is less than or equal to opts by Proposition 9. Since the algorithm uses
3|Q)| times the Restricts or DualRestricts routines, the number of routine calls is bounded by
3optez. O

Corollary 5 For any é,e,&’ such that e > ¢ > 0 and € > & > 0, if routines Restricts and
DualRestricts with § > 0 are computable in (fully) polynomial time for both objectives, then
we can determine an (e,&’)-kernel of size less than or equal to opte in (fully) polynomial time.

3.3.2 Dual version

We show that the minimal ratio 1 4 €* is approximable within any factor 1+ 6 in polynomial
time in the input size and 1/6.

Theorem 8 Let k be a nonnegative integer and let 1 + €* be the minimal ratio for which an
e*-kernel of size at most k exists. For any rational 0 > 0, we can determine an (,&’)-kernel
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with 1+¢e < (1+&*)(1+0), for alle’ < e, of size at most k using O(klog(m/0)) routine calls
to Restricts or DualRestricts.

Proof: We first apply Algorithm 2 with e =6, ¢’ < ¢, and § < min{v1+60—1,(1+¢)/(1+
') — 1}, where § < +/1 + 6 — 1 results from considering 1 + ¢ = /1 + 6 in Theorem 7. If the
returned (e, &’)-kernel has size at most k, then the required condition is satisfied. Otherwise,
from Theorem 7, the minimal ratio 1 + ¢* belongs to the range [v/1+6,2>™]. Let 1 +¢; =
(V/1+0)" be the candidate ratios for i = 2,...,[4m/log(1 + )] and let 1 + & = (1 +
£i)/V1+6. We perform a binary search on i values. At each step we call Algorithm 2
with § < min{v1+6 —1,(1 +¢;)/(1 +&;) — 1}, where &, is an arbitrary number such that
gl < &;, in order to obtain an (g;,¢c})-kernel of size at most opts;, (see Theorem 7). If this
size is greater than k then we continue the search in the right part, otherwise in the left part.
Observe that, at each step, the search is between the indices iy and ¢, such that the size of
the (e;,,¢;,)-kernel is more than k and the size of the (e;,, €] )-kernel is at most k. Thus,
(1+e¢;,)/vV1+60 < 14" < 1+4¢;. The search is stopped when i, = iy + 1, i.e. when
1+¢;, = (1+¢,)V1+0. Then, the current (g;,,¢; )-kernel is of size at most opts, < k and
such that 1+¢;, = (14+¢;,)V1+6 < (14+¢e*)(1+0).

The number of calls to Algorithm 2 is O(log(4m/log(1 + 0))) ~ O(log(m/0)). Since we
can stop each call to Algorithm 2 when it tries to compute a (k 4+ 1) point, each such call
uses O(k) calls to Restricts or DualRestricts. Thus, the total running time is O(klog(m/9))
Restricts or DualRestricts calls. O

Corollary 6 Let k be a nonnegative integer and let 1 4+ * be the minimal ratio for which
an e*-kernel of size at most k exists. If routines Restricty and DualRestricty with 6 > 0
are computable in (fully) polynomial time for both objectives, for any rational > 0, we can
determine an (e,€’)-kernel with 1 +¢ < (1 +&*)(1 +0), for all &' < e, of size at most k in
(fully) polynomial time.

4 More than two objectives

For more than two objectives, the concept of e-kernel is not really operational since an e-kernel
does not always exist.

Proposition 10 For p > 3 objectives, an e-kernel may not exist.

Proof: Let p =3 and 2!, 22, and 23 be three points with the following coordinates: 2! =

(a(1+¢€),b/(14¢),¢), 22 = (a,b(1+¢),¢/(1+¢)), 22 = (a/(1+¢),b,c(1 +¢)) where a, b, and
c are three nonnegative rational numbers.

Clearly z! (1+¢)-dominates 22, 22 (1+¢)-dominates 22 and 23 (1+¢)-dominates z!'. Since
any e-kernel must satisfy the e-stability condition, it follows that an e-kernel must contain at
most one point. Moreover, no point (1+¢)-dominates the two others. Since any e-kernel must
satisfy the e-coverage condition, it follows that an e-kernel must contain at least two points.
This is clearly impossible. o

Moreover, even if an e-kernel exists, we have no guarantee on its size like Theorems 1, 2,
and 3 for the bi-objective case. On the opposite, we can show that a smallest e-kernel may
have a very large size compared with opt..
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Proposition 11 For p > 3 objectives, the size of a smallest e-kernel, when it exists, can be
greater than k - opt. for any integer k.

Proof: Let p = 3 and z', 22, and 23 be defined as in the proof of Proposition 10. Let
z = (22,23,23) = (a,b,c). Fix any rational £ > ¢ and consider the 3k points 217 = (2{(1 +
£, 28/ (14 €), 2 (1 + EYF9) | 221 = (3(1+ &)F9, 231 + 2, 23/(1 + 2)) and 2% — (3/(1 +
€),25(1+ &)k 23(1+¢&)) for j=1,...,k.

For this instance, the only cases of (1 4 ¢)-dominance are: z! <. 22, 22 <. 23, 23 < 2!,
z=.7z and 2' <, zfori=1,2,3, and 2* <. 2% fori =1,2,3 and j = 1,..., k.

The set constituted by points z', 22, and 23 is clearly an e-Pareto set of minimal size.
Moreover, any e-kernel must contain point z and thus points 2% fori =1,2,3and j =1,...,k.
This is the only e-kernel and it contains 3k + 1 points. O

However, if we consider ¢’ < /1 + ¢ — 1, we can show that an (e, &’)-kernel always exists.
For this purpose, we recall the notion of quasi-kernel (also called semi-kernel).

Definition 2 Given a directed graph G = (V, A), a quasi-kernel is a set S C V such that
(i) for any v € V — S, there exists v' € S such that (v',v) € A or there exist v € S and
V" €V — S such that (v',v") € A and (v",v) € A (i) for any u,v € S, u # v, (u,v) ¢ A.

The following result is well-known.
Theorem 9 (Chuvdtal and Lovdsz [4]) Any finite directed graph G admits a quasi-kernel.
Applied in our context, this gives rise to the following result.

Proposition 12 For any number of objectives p > 3 and any finite set Z of points an (e,€’)-
kernel exists if and only if & < /1+¢—1.

Proof: <« Consider the graph G = (Z,=./) and apply Theorem 9.

= Assuming that ¢/ > /1 + & — 1, we show the existence of an instance which does not
admit an (g, ’)-kernel.

Let Z = {z!, 22, 23} where 2!, 22, and 23 are three points in the criterion space and assume
that their coordinates are the following: 2! = (a(1+¢'),b/(1+¢€'),c), 22 = (a,b(1+¢€'),c/(1+
), 22 = (a/(1 +¢&'),b,e(1 +€')) with a, b, and ¢ three nonnegative rational numbers.

Remark that 2! (1 + ¢’)-dominates 22, 22 (1 +¢’)-dominates 23 and 2® (1 + &’)-dominates
z!. In order to satisfy the &'-stability condition an (g, &’)-kernel contains at most one point
among z', 22, and 2z3. Moreover, since &’ > /1 + ¢ — 1, no point (1 + £)-dominates the two
others and thus in order to satisfy the e-coverage condition, an (g,&’)-kernel must contain at
least two points. This is clearly impossible. O

Moreover, when the points Z are given explicitly and ¢ < /1 +¢ — 1 it is possible to
compute an (e,’)-kernel in polynomial time. Indeed, the problem can be reduced to finding a
kernel in a directed acyclic graph [7]. We briefly describe the method of Duchet et al. from [7].
Consider the directed graph G = (Z,<./) and any arbitrary order < on the vertices. We first
partition the set of arcs into two disjoint subsets Ay = {(i,7) €314 < j}, As = {(i,]) €=t
i > j}. The two directed graphs (Z, A1) and (Z, A3) contain no cycle. Since a (unique) kernel
can be easily computed in polynomial time in directed acyclic graphs, first construct the kernel
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K of (Z, A1) and then the kernel K’ of (K, A3). The resulting subset K’ is a quasi-kernel of
G, i.e. an (g,&')-kernel.

In the general case, when the points of the criterion space are not given explicitly, we have
the following result.

Proposition 13 For p > 3 objectives and any 0 < ¢’ < /14+¢e — 1, an (g,&')-kernel is
computable in polynomial time when the associated GAPjs routine runs in polynomial time.

Proof: First we construct a grid in the criterion space as in the proof of the efficient
constructability of an e-Pareto set presented in [17]. Consider a subdivision of the criterion
space into hyperrectangles such that, in each dimension, the ratio of the largest to the smallest
coordinate of each hyperrectangle is v/1 + €. In each corner point, call the GAPg routine with
d = v/1+e —1 and denote by S the resulting set of points. Set S (after removing the
dominated points) is clearly an (v/1 4+ ¢ — 1)-Pareto set.

On set S, we use the method of Duchet et al. [7] to construct a quasi-kernel in a directed
graph. Thus, we obtain a subset K C S which is an ((¢/1+¢)? — 1, ¥/1 + & — 1)-kernel for
the points in S. Since S is an (/T + ¢ — 1)-Pareto set, it implies that K is an ((/1+¢)? -
V1+e—1,v/1+e—1)-kernel i.e. an (g,&’)-kernel. 0

Nevertheless, we can show a result similar to Proposition 11 for (e,&’)-kernels.

Proposition 14 For p > 3 objectives and any 0 < & < /1+e — 1, the size of a smallest
g, &' )-kernel can be greater than k - opt: for any integer k.
-k ) b ter than k - opt int k

Proof: Let p = 3 and z', 22, and 23 be three points with the following coordinates: z =
(a,b,c), 2t = (a(1+¢"),b/(1+¢€"),¢), 22 = (a,b(1+¢€"),c/(1+€")), 22 = (a/(1+¢"),b,c(1+¢))
where a, b, and ¢ are three nonnegative rational numbers. Fix any rational £ and consider 6k
points 219 = (2} (1+ &)1, 23 /(1+e), 23 (1 + &)%), 22 = (23(1+8)277,22(1+2)9,22 /(1 +¢))
and 2% = (23/(1 +¢),23(1 +&)%77,23(1 + é)7) for j = 1,...,2k.

Remark that points z, 2!, 22, and 23 (1+¢)-dominates each other and 2% <. z¥ fori = 1,2,3
and j = 1,...,k. For this instance, the only cases of (1 + ¢’)-dominance are: z! 2,
22 <023, 23 <02l 2 < 2 and 28 < 2 fori=1,2,3.

The set constituted by points z', 22, and 23 is clearly an e-Pareto set of minimal size.
Moreover, a smallest (g,&’)-kernel contains a point 2! with i = 1,2,3 and all the points P
for i =1,2,3 with ¢ #4 and j = 1,...,2k, and it contains 4k + 1 points. O

e Z

5 Experiments

We show now the implementation of our exact algorithm in the bi-objective case in order to
generate an e-kernel (Algorithm 1). We first illustrate this algorithm in the context of (con-
tinuous) Multi-Objective Linear Programming (Section 5.1). Then we report experiments on
two standard multi-objective combinatorial optimization problems, the bi-objective shortest
path problem (Section 5.2) and the bi-objective assignment problem (Section 5.3). These
experiments are performed on a PC (i7-2600, 3.4GHz, 8GB) using CPLEX 12.6.3 with one
thread. Reported computation times are CPU times expressed in seconds. We recall from
Theorem 4 that the discrete representations provided by Algorithm 1 (i) guarantee both e-
coverage and e-stability,(ii) are of minimum size among all the representations guaranteeing
these properties, and (iii) contain only non-dominated points.
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5.1 Bi-objective linear programming

The use of Algorithm 1 is particularly effective for bi-objective linear programs since polyno-
mial routines Restricty are available. In practice, we just need to solve a sequence of linear
programs.

To illustrate our algorithm, we apply it on a manpower planning problem stated in the
reference textbook by Williams [26]. In a context where new machinery is installed, a company
must decide, over a 3 years horizon, whether to recruit, retrain, or make redundant some
employees of different categories. The first objective is to minimize the number of employees
made redundant (f1) while the second objective is to minimize the total cost of retraining,
redundancy, hiring additional employees (f3). This gives rise to a linear program with 60
(continuous) variables and 24 constraints precisely described in [26]. Williams also provides
the two extreme optimal solutions: the one minimizing redundancy, corresponding to point y*!,
leads to a (rounded) number of 842 employees made redundant for a total cost of £1 438 383,
and the one minimizing the total cost, corresponding to point y*2, leads to a (rounded) number
of 1424 employees made redundant for a total cost of £498677. The author observes that this
second solution saves £939 706 but results in 582 extra redundancies and concludes that the
cost of saving each job could, therefore, be regarded as £1615.

e-kernels are represented in Figure 4 for different values of . The corresponding number
of points and CPU times are reported for each case.

Considering the e-kernel for € = 0.001, which provides a precise representation of the non-
dominated set, the previous conclusion can be refined. Indeed, for each of the optimal points,
and particularly for y*!, a very small decay on the optimal value of the optimized criterion
leads to a substantial improvement on the other criterion. Quite interestingly, the e-kernels
for larger values of € tend to focus on the central points and ignore the extreme optimal points.
In particular for € = 0.05, the representation which contains only 6 points proposes a point
y' = (877,967 055) with the best evaluation on objective f; and a point y? = (1299, 523611)
with the best evaluation on objective fo. We check that y* does indeed (1 + €)-dominate y*?,
i = 1,2, which means that the loss on optimality remains within the tolerance margin. Above
all the gain on the other criterion is much larger than 5%: for 3!, the gain on criterion f5 is
1438383 - 967055 — 471 328, representing a 32.77% gain and for y2, the gain on criterion f;
is 1424 - 1299 = 125, representing a 8.37% gain.

This explains why points between y** and y*, i = 1,2, are not part of the representation.

5.2 Bi-objective shortest path problem

We consider here the well known pathological family of instances introduced in Hansen [14],
and depicted in Figure 5. Fach of the 2" feasible paths from vertex vy to vertex v, corre-
sponds to a non-dominated point, illustrating the intractability of the bi-objective shortest
path problem.

We tested our algorithm when n = 25, corresponding to 22° = 33554432 non-dominated
points. Due to the size of the non-dominated set, it is practically impossible to compute
this set. However, an appropriate representation can be computed extremely quickly using
Algorithm 1. Information on the size and time required to compute e-kernels of minimum size
is reported in Table 1.

The graphical representation of this instance is given in Figure 6. Representing about 33.5
millions points with only 21 points, while guaranteeing that any other point can be at most
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Figure 4: The manpower planning problem: different e-kernels
(2%,0) 2',0 (2"~1,0)

0@@'@@

(0,29 (0,2%) (0,27~ 1)

Figure 5: Intractable instances for the bi-objective shortest path problem

5% better than one of these points, is quite remarkable

. We also notice that, unlike in the
previous linear programming example, the points are extremely well-dispersed. This is due to

the fact that in these very specific instances there is a constant tradeoff of one unit between
consecutive non-dominated points
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e size CPU time (s.)

0.01 101 2.27
0.06 21 1.53
0.1 11 0.61

Table 1: Different e-kernels for the bi-objective shortest path problem
(Hansen instance, n = 25)

35x108 +
30x108 .

25%x106 .

20x108 .

15x106 + .

10x10% + .

5x106 + .

. 3

0x10° % % % % % % %
0x10% 5x10% 10x10% 15x10% 20x10% 25%x108 30x10® 35x106

Figure 6: e-kernel for the bi-objective shortest path problem
(Hansen instance, n=25), ¢ = 0.05

5.3 Bi-objective assignment problem

We consider now the bi-objective assignment problem, which consists in assigning n resources
to n tasks taking into account two total cost functions to be minimized. A resource is assigned
to one and only one task and a task is assigned to one and only one resource. Each resource-
task assignment involves two costs. Each total cost of an assignment is computed by adding
up the costs of every chosen resource-task assignment.

We test our algorithm using the largest and most difficult instance used in [18], where a spe-
cific two-phase algorithm is proposed for the bi-objective assignment problem. This instance,
called 2AP100-1A100, is available on GuepardLib, a library of multi-objective combinato-
rial optimization instances (http://guepard.lip6.fr/Main/GuepardLib). For this instance,
n = 100 and each cost is generated randomly, independently, uniformly in {0,...,99}.

We first used a standard e-constraint approach to generate the whole non-dominated set.
Information on the size and time required to compute e-kernels of minimum size is reported
in Table 2.
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€ size  CPU time (s.)
0 947 684.31
(e-constraint)
0.01 197 263.95
0.05 40 50.45
0.1 21 23.20

Table 2: Different e-kernels for the bi-objective assignment problem
(2AP100-1A100 instance)

The graphical representation of this instance is given in Figure 7. We observe, here again,
the modulation of the dispersion of points depending on the shape of the non-dominated set.

f2 f2
5000 43 5000 4
4000 + 4000 +
3000 3000 +
2000 4 2000 + .
1000 + 1000 +

f e L, .. fi
0 % i i ; % 0 % i i —t

0 1000 2000 3000 4000 5000
Non-dominated set — 947 points

0 1000 2000 3000 4000 5000
e-kernel — e = 0.1 - 21 points

Figure 7: Instance 2AP100-1A100: non-dominated set and e-kernel

6 Conclusions

The purpose of this work was to produce discrete and tractable representations of the set
of non-dominated points for multi-objective optimization problems. We considered that rep-
resentations should satisfy some conditions of coverage, spacing, and cardinality. For this
purpose, we introduced the concept of (e,&’)-kernel which is a particular e-Pareto set that
satisfies an additional condition of stability implementing spacing. We proposed some generic
methods to produce (g,&’)-kernels. Our algorithms run in polynomial time if and only if the
routines called in the algorithms run in polynomial time.

The situation for the bi-objective case is quite clear and the concept of (g, &’)-kernel, or even
e-kernel, seems quite relevant to provide a good discrete representation of the non-dominated
set. Our experiments demonstrate the practical applicability of our algorithm. For more than
two objectives, we showed that imposing a condition of spacing may impact negatively on the
cardinality. Since a coverage condition must necessarily be imposed, the choice is between
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emphasizing spacing or cardinality. If the condition on spacing prevails, we showed that it is
possible to construct an (g,&’)-kernel, with ¢’ < /1 + e — 1, provided that the GAPj; routine
is available, but without any guarantee on its cardinality. If the condition on cardinality
prevails, known guarantees are very weak, even without any condition on spacing. The only
known results deal with the case where the points of the objective space are explicitly given.
In this case, finding an e-Pareto set of minimal size can be formulated as a minimum set cover
problem. Thus, it is log n-approximable by the greedy algorithm [15] and it is proved in [2] that
the greedy algorithm cannot perform better on these specific set cover instances. Moreover, for
three objectives, Koltun and Papadimitriou [15] show the existence of a polynomial algorithm
which returns an e-Pareto set of size at most ¢ - opt. where c is a large constant. Obtaining a
better approximation of the size of a smallest e-Pareto set for this specific case, as well as for
more general cases, are challenging open questions. From a practical point of view, designing
algorithms for more than two objectives, that would focus either on spacing or cardinality, is
also a very interesting question.
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