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A proportionally dense subgraph (PDS) is an induced subgraph of a graph such that each 
vertex in the PDS is adjacent to proportionally as many vertices in the subgraph as in the 
rest of the graph. In this paper, we study a partition of a graph into two proportionally 
dense subgraphs, namely a 2-PDS partition, with and without additional constraint of 
connectivity of the subgraphs. We present two infinite classes of graphs: one with graphs 
without a 2-PDS partition, and another with graphs that only admit a disconnected 2-PDS 
partition. These results answer some questions proposed by Bazgan et al. (2018) [3].

© 2019 Elsevier B.V. All rights reserved.
1. Introduction

The problems of partitioning a graph into two parts 
have been intensively studied with various objective func-
tions and constraints. Let’s mention at least two such NP-
hard problems. The Satisfactory Partition problem [2]
asks whether a graph can be partitioned into two parts 
such that every vertex is adjacent to more vertices in its 
own part than in the other. In the Maximally Balanced 
Connected Partition problem, the task is to partition a 
graph into two connected subgraphs such that the size of 
the smallest subgraph is maximised [5].

The notion of proportionally dense subgraph is closely re-
lated to the notion of community as introduced in [10]. 
Olsen defines a community structure as a partition of the 
vertices into communities, where a part, i.e. an induced 
subgraph (with at least 2 vertices), is a community if and 
only if each vertex has proportionally as many neighbours 
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in its community than in any other community. In [3], the 
authors investigate the notion of 2-community structure as 
a community structure with exactly two parts. We use the 
same definition (up to the special case where a community 
is of size one) to define a 2-PDS partition.

So far, only few results are known about the existence 
of a 2-PDS partition in a graph, and the complexity of 
finding one. It has been proved in [6] that deciding if a 
graph contains a 2-PDS partition with both PDS’s of the 
same size is NP-complete. On trees [3,6] and graphs with 
maximum degree 3 or minimum degree n − 3, (n the or-
der of the graph) a connected 2-PDS partition always ex-
ists and can be found in polynomial time [3]. The results 
extensively use the connectivity of the PDS’s. To find a 
connected 2-PDS partition in a tree, one can prove that 
there exists an edge such that its removal yields two con-
nected PDS’s. If a graph has a maximum degree at most 
3, a greedy algorithm keeps decreasing the size of a cut 
under some constraints and the removal of the final cut 
describes two connected PDS’s.

Another problem related to the notion of PDS is the
Max PDS problem. In this problem, the goal is to determine 
the size of a maximum PDS (with regard to the number 
of vertices) in a given graph. Hence, only the vertices in-
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side the PDS must be satisfied. In [4], the authors prove 
that Max PDS is NP-hard on bipartite and split graphs, and 
propose a polynomial-time (2 − 2

�+1 )-approximation algo-
rithm, where � is the maximum degree of the graph. They 
also show that deciding if a subset of vertices can be a 
(proper) subset of the vertices of a PDS is co-NP-complete 
on bipartite graphs.

Our contributions. In Section 2, we formally define the con-
cepts of proportionally dense subgraphs and PDS parti-
tions, and outline the known results about the 2-PDS par-

tition problem. Then, we construct an infinite family of 
graphs without a 2-PDS partition in Section 3.1. As far as 
we know, these are the first negative results regarding the 
existence of a 2-PDS partition. We also give examples of 
graphs without a 2-PDS partition that do not belong to the 
family. In Section 3.2 we present another infinite family 
of graphs without a connected 2-PDS, but with a discon-
nected one.

2. Proportionally dense subgraphs

All graphs in this paper are simple. Given a graph 
G = (V , E) and a subset of vertices S ⊂ V , S refers to the 
set V \ S . For a vertex u ∈ V , N(u) represents the set of 
neighbours of u, d(u) := |N(u)| is the degree of u, and 
dS(u) := |N(u) ∩ S| denotes the degree of u in S . We say 
that a vertex u ∈ V is universal if it is connected to all 
other vertices of the graph, that is, d(u) = |V | − 1.

The density of a subgraph on a vertex set S ⊆ V is usu-
ally defined as |E(S)|

|S| , where E(S) is the set of edges in the 
subgraph. The problem of finding a subgraph of maximum 
density can be solved in polynomial time [8], but it be-
comes NP-hard when at least, or exactly, k vertices must 
belong to the subgraph [1,7,9].

In this paper, we introduce the notion of proportionally 
dense subgraph (PDS), which captures both the size of the 
subset and the number of neighbours.

Definition 1. For a graph G = (V , E), a proportionally dense 
subgraph of G is an induced subgraph on a vertex set S ⊂
V such that each vertex u ∈ S is satisfied in S , that is,

|S| · dS(u) ≥ (|S| − 1) · dS(u) ,

or, equivalently, (|V | − 1) · dS(u) ≥ (|S| − 1) · d(u) .

Note that if |S| ≥ 2, then we can rewrite the inequalities 
as

dS(u)

|S| − 1
≥ dS(u)

|S| or, equivalently,
dS(u)

|S| − 1
≥ d(u)

|V | − 1
.

The proof of the equivalence can be found in [3]. Note that 
a subgraph containing a single vertex is also a PDS, but 
obviously a PDS cannot be the entire graph.

Definition 2. A 2-PDS partition of a graph G = (V , E) is a 
partition � = {S1, S2} of V such that S1 and S2 induce 
two PDS’s in G .

In this paper, we address the problem of deciding if a 
graph admits a 2-PDS partition. Notice that a PDS doesn’t 
Fig. 1. A schematic representation of a graph in G .

necessarily need to be connected. Therefore we also con-
sider the problem of deciding if a graph has a connected 
2-PDS partition, that is, a 2-PDS partition whose PDS’s are 
connected subgraphs.

If a graph is disconnected, both problems become triv-
ial, hence we assume that all graphs are connected.

3. Infinite classes of graphs

3.1. Graphs without 2-PDS partition

The question about the existence of graphs without a 
2-PDS was left open in [3]. To the best of our knowledge, 
no graphs without a 2-PDS partition were known. In this 
section we present an infinite class G (see Definition 3) 
of graphs with even number of vertices without a 2-PDS 
partition.

Definition 3. Let G be the class of graphs such that, if G =
(V , E) ∈ G , then

• V = W1 ∪ W2 ∪{w, x, y, z}, where W1, W2 are cliques 
of the same size k, k ≥ 3, and {w, x, y} is a clique of 
size 3;

• w is adjacent to all vertices in W1 ∪ W2, and z is only 
adjacent to y

• 1 ≤ dW1 (x) = dW2 (x) ≤ k − 1 and 2 ≤ dW1 (y) = dW2 (y)

≤ k − 1;
• |W i ∩ (N(x) ∪ N(y)) | > 3k

k+3 for each i ∈ {1, 2};
• there exist vertices α, β ∈ W1 ∪ W2 such that α ∈

N(y) \ N(x), and β ∈ N(x) ∩ N(y);
• there is no edge between the vertex sets W1 and W2.

Note that the smallest graphs in G have 10 vertices, and 
one of them is planar (see Fig. 2).

Theorem 1. All graphs in G do not have a 2-PDS partition.

Proof. Let G = (V , E) be a graph in G . Firstly, notice that 
there is no 2-PDS partition {A, B} in G such that |A| = 1
or |B| = 1. Without loss of generality, suppose by contra-
diction that A = {v} for some vertex v ∈ V , and notice that 
the neighbour of v in B must be a universal vertex in or-
der to be satisfied. Since G does not contain a universal 
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Fig. 2. A planar graph from G with 10 vertices without a 2-PDS partition. On the left, its schematic representation as in Fig. 1; on the right, its planar 
representation.
vertex, there is no 2-PDS partition {A, B} in G with |A| = 1
or |B| = 1. Hence, assume that |A|, |B| ≥ 2.

Observe that the vertex z is satisfied if and only if it 
belongs to the same PDS as the vertex y. Hence, without 
loss of generality, we assume that y, z ∈ B . In addition, the 
vertex w has degree |V | − 2 and is not connected to z ∈ B . 
Hence, necessarily w ∈ A.

Now we prove that for any partition {A, B} of V , where 
w ∈ A and y, z ∈ B , there is at least one vertex which is 
not satisfied, hence there is no 2-PDS partition in G . For 
any partition {A, B} of V , we denote by Ai and Bi the sets 
A ∩ W i and B ∩ W i , respectively, for i ∈ {1, 2}. We split the 
proof into two cases: In the first case, we suppose that B1
or B2 is empty; in the second case, we assume that B1 and 
B2 are not empty.

Case 1: B1 = ∅ or B2 = ∅
Suppose first that B1 = ∅ and B ⊆ {x, y, z} ∪ W2.

• If B2 = ∅, we have two possibilities:
– if x ∈ B , then B = {x, y, z} and β ∈ A is not satisfied 

since dA (β)
|A|−1 = k

2k < 2
3 = dB (β)

|B| ;
– if x ∈ A, then B = {y, z} and α ∈ A is not satisfied 

since dA(α)
|A|−1 = k

2k+1 < 1
2 = dB (α)

|B| .
• If B2 �= ∅ and B2 �= W2:

– Case x ∈ B .
∗ If there exists u ∈ A2 such that u ∈ N(x) ∪ N(y)

and u is satisfied, then we have:

|A2|
k + |A2| = dA(u)

|A| − 1
≥ d(u)

|V | − 1
≥ k + 1

2k + 3
,

which implies that |A2| · (k +2) ≥ k · (k +1), hence 
that |A2| > k − 1. A contradiction since |A2| ≤ k −
1.

∗ Otherwise, for all u ∈ A2, u /∈ N(x) ∪ N(y). Hence, 
for any u ∈ A2, if u is satisfied then:

|A2|
k + |A2| = dA(u)

|A| − 1
≥ d(u)

|V | − 1
= k

2k + 3
,

which implies that |A2| · (k + 3) ≥ k2, hence 
that |A2| ≥ k2

k+3 . Due to our assumptions about 
the graph, |W2 ∩ (N(x) ∪ N(y)) | > 3k

k+3 . Thus, 
k − 3k

k+3 > |W2 \ (N(x) ∪ N(y))| ≥ |A2| ≥ k2

k+3 which 
implies k > k, a contradiction.

– Case x ∈ A. Let u ∈ A2.
∗ If u ∈ N(y) ∩N(x) and u is satisfied, then we have:

|A2| + 1

k + |A2| + 1
= dA(u)

|A| − 1
≥ d(u)

|V | − 1
= k + 2

2k + 3
,

which implies that |A2| ≥ k − 1
k+1 , and then 

|A2| ≥ k, a contradiction since B2 �= ∅.
∗ If u ∈ N(y) \ N(x), then dA(u) = |A2| and d(u) =

k + 1. Therefore, similarly to the previous case, we 
obtain that |A2| ≥ k + 1

k+2 and so |A2| > k, a con-
tradiction.

∗ If u ∈ N(x) \ N(y), then:

|A2| + 1

k + |A2| + 1
= dA(u)

|A| − 1
≥ d(u)

|V | − 1
= k + 1

2k + 3
,

which implies that |A2| · (k + 2) ≥ k2 − 2, hence 
|A2| ≥ k2−2

k+2 > k − 2. Since assuming that there is 
a vertex in A2 ∩ N(y) leads to a contradiction (see 
previous cases), we can assume that A2 ∩ N(y) =
∅. Then, since dW2 (y) ≥ 2, then |W2 \ N(y)| ≤ k −
2. Thus k − 2 ≥ |A2| > k − 2, a contradiction.

∗ If u /∈ N(x) ∪ N(y), then dA(u) = |A2| and d(u) =
k + 1. Thus, we obtain |A2| > k, a contradiction 
since |B2| �= ∅.

• If B2 = W2, then either B = {x, y, z} ∪ W2, and we 
have |A| + 2 = |B| but dA(x) = dB(x) thus x is not sat-
isfied, or B = {y, z} ∪ W2, and since |A| = |B| we have: 
dB (y)
|B|−1 <

dB (y)+1
|B| = dA(y)

|B| = dA(y)
|A| , thus y is not satisfied.

We conclude that if there is a 2-PDS partition in G , then 
B1 �= ∅. The case B2 = ∅ is similar, therefore if there is a 
2-PDS partition in G , then B2 �= ∅.

Case 2: B1, B2 �= ∅.
Without loss of generality, we suppose |B1| ≤ |B2|. Let 

u ∈ B1 and suppose that u is satisfied in the partition 
{A, B}. We prove that in all cases, if u is satisfied then it 
implies a contradiction with |B1| ≤ |B2|.

• If x ∈ A:
∗ If u ∈ N(x) ∩ N(y) is satisfied, then:

|B1|
|B1| + |B2| + 1

= dB(u)

|B| − 1
≥ d(u)

|V | − 1
= k + 2

2k + 3
,

which implies that |B1| · (k + 1) ≥ (|B2| + 1) · (k +
2), hence that |B1| > |B2|. A contradiction with the 
assumption that |B1| ≤ |B2|, hence u is not satisfied.
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Fig. 3. Four graphs with 11 vertices which do not have a 2-PDS partition.
∗ If u ∈ N(x) \ N(y), we have dB(u) = |B1| − 1 and 
d(u) = k + 1 and similarly we obtain |B1| · (k + 2) ≥
|B2| · (k + 1) + (3k + 4) ≥ |B2| · (k + 1) + (|B2| + 4) >
|B2| · (k + 2), a contradiction since |B1| ≤ |B2|.

∗ If u ∈ N(y) \ N(x), we have dB(u) = |B1| and d(u) =
k +1 and similarly we obtain |B1| ·(k +2) ≥ |B2| ·(k +
1) + (k +1) ≥ |B2| · (k +1) + (|B2| +1) > |B2| · (k +2), 
a contradiction since |B1| ≤ |B2|.

∗ If u /∈ N(x) ∪ N(y), we have dB(u) = |B1| − 1 and 
d(u) = k and similarly we obtain |B1| · (k +3) ≥ |B2| ·
k + 3(k + 1) ≥ |B2| · k + 3(|B2| + 1) > |B2| · (k + 3), a 
contradiction since |B1| ≤ |B2|.

• If x ∈ B:
∗ If u ∈ N(x) ∩ N(y) is satisfied, then:

|B1| + 1

|B1| + |B2| + 2
= dB(u)

|B| − 1
≥ d(u)

|V | − 1
= k + 2

2k + 3
,

which implies that |B1| · (k + 1) ≥ |B2| · (k + 2) + 1, 
thus that |B1| > |B2|. A contradiction with the as-
sumption that |B1| ≤ |B2|, hence u is not satisfied.

∗ If u ∈ N(x) \ N(y) or u ∈ N(y) \ N(x), we have 
dB(u) = |B1| and d(u) = k + 1 and similarly we ob-
tain |B1| · (k + 2) ≥ |B2| · (k + 1) + 2(k + 1) ≥ |B2| ·
(k + 1) + 2(|B2| + 1) > |B2| · (k + 3), a contradiction 
since |B1| ≤ |B2|.

∗ If u /∈ N(x) ∪ N(y), we have dB(u) = |B1| − 1 and 
d(u) = k and similarly we obtain |B1| · (k +3) ≥ |B2| ·
k + 4k + 3 ≥ |B2| · k

k+3 + 4 · |B2| + 3 > |B2| · (k + 4), a 
contradiction since |B1| ≤ |B2|. �

In Fig. 3, we present four graphs with 11 vertices with-
out a 2-PDS partition. These graphs have an odd number 
of vertices, hence they do not belong to G . To prove that 
they do not have a 2-PDS partition, one can notice that, 
like the graphs in G , they have a pendant vertex z con-
nected to a vertex y, and a vertex w connected to all the 
vertices except the pendant vertex. As a result, the vertex 
z is satisfied if and only if it belongs to the same PDS as y, 
and thus w must be in the other PDS. The rest of the proof 
can be done by case distinction.
Fig. 4. A schematic representation of a graph in H.

3.2. Disconnected 2-PDS partition

Now, we present an infinite family of graphs where 
each graph admits a disconnected 2-PDS partition, but not 
a connected one. The existence of such graphs was left as 
an open problem in [3].

Definition 4. We define the infinite class of graphs H such 
that, if G = (V , E) ∈H, then

• V := W ∪ {α1, β1, α2, β2}, where W is a clique of size 
2k + 1, k ≥ 3;

• ∃x, y ∈ W such that {x, α1}, {x, β1}, {x, β2}, {y, α2},
{y, β2}, {y, β1} ∈ E;

• {α1, β1}, {α2, β2} ∈ E .

See Fig. 4 for a schematic representation of a graph in 
H. Compared to the graphs in G , each graph in H has an 
odd number of vertices (the smallest one has 11 vertices).

Theorem 2. All graphs in H do not have a connected 2-PDS par-
tition, but have a disconnected one.

Proof. Let G = (V , E) ∈ H. Suppose that G has a con-
nected 2-PDS partition {A, B}. If A ⊆ W , then we have 
two cases: either A = W but then G[B] is disconnected, 
or A ⊂ W but then a vertex in W \ A is not satisfied in 
B . Hence, A � W and similarly B � W . Consequently, to 
guarantee the connectivity of G[A] and G[B], the vertices 
x and y must be in different parts of the partition. There-
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fore, we assume without loss of generality that x ∈ A and 
y ∈ B .

If α1 ∈ B , then y is not satisfied since it is connected 
to each vertex in A. Similarly, α2 cannot belong to A since 
otherwise x is not satisfied. As a result, we only have to 
consider the possible cases for β1 and β2, knowing that 
x, α1 ∈ A and y, α2 ∈ B .

If β1 ∈ A and β2 ∈ B , then consider two vertices a ∈
(W \{x}) ∩ A and b ∈ (W \{y}) ∩ B . The vertex a is satisfied 
in A if and only if

dA(a)

|A| − 1
= |A| − 3

|A| − 1
≥ |B| − 2

|B| = dB(a)

|B| ,

which implies that |A| ≥ |B| + 1. Similarly, the vertex b
is satisfied in B if and only if |A| ≤ |B| − 1, which is a 
contradiction.

If β1, β2 ∈ A, then the vertex β2 is satisfied in A if and 
only if

dA(β2)

|A| − 1
= 1

|A| − 1
≥ 2

|B| = dB(β2)

|B| ,

which implies that |A| ≤ |B|
2 + 1. Moreover, the vertex α2

is satisfied in B if and only if

dB(α2)

|B| − 1
= 1

|B| − 1
≥ 1

|A| = dA(α2)

|A| ,

which implies that |A| ≥ |B| − 1. We then obtain |B| − 1 ≤
|A| ≤ |B|

2 + 1, and therefore |B| ≤ 4. Thus, |A| ≤ 3, which is 
not possible since |V | ≥ 11. Similar arguments can be used 
to prove that β1 and β2 cannot both belong to B .

We conclude that G does not have a connected 2-PDS 
partition. However, it is easy to see that, if A := {α1, β1,

α2, β2} and B := V \ A, then {A, B} is a disconnected 2-PDS 
partition of G . �
4. Conclusion and further work

The definition of a proportionally dense subgraph is 
based on a combination of local and global properties, 
where each vertex has to satisfy a condition depending not 
only on its degree but also on the size of the subgraph. 
This property makes the problem complex from an algo-
rithmic point of view and requires a novel approach.
Our infinite families of graphs bring a new insight into 
the existence of 2-PDS partitions in graphs, with and with-
out constraint of connectivity. Further research may inves-
tigate the structural characterisations of graphs with or 
without a (connected) 2-PDS partition. These results can 
help to answer the following important question: what is 
the complexity of deciding whether a graph admits a (con-
nected) 2-PDS partition?
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