
Efficient approximation algorithms

for the Subset-Sums Equality problem ∗

Cristina Bazgan

Université Paris-Sud, LRI, bât 490

F–91405 Orsay, France,

bazgan@lri.fr

Miklos Santha

CNRS, URA 410,

Université Paris-Sud, LRI, bât 490,

F–91405 Orsay, France,

santha@lri.fr

Zsolt Tuza

Computer and Automation Institute,

Hungarian Academy of Sciences,

H–1111 Budapest, Kende u.13–17, Hungary,

tuza@sztaki.hu

Abstract

We investigate the problem of finding two nonempty disjoint sub-
sets of a set of n positive integers, with the objective that the sums of
the numbers in the two subsets be as close as possible. In two versions
of this problem, the quality of a solution is measured by the ratio and
the difference of the two partial sums, respectively.

Answering a problem of Woeginger and Yu (1992) in the affirmative,
we give a fully polynomial-time approximation scheme for the case
where the value to be optimized is the ratio between the sums of the
numbers in the two sets. On the other hand, we show that in the case
where the value of a solution is the positive difference between the

two partial sums, the problem is not 2n
k

-approximable in polynomial
time unless P=NP , for any constant k. In the positive direction, we
give a polynomial-time algorithm that finds two subsets for which the
difference of the two sums does not exceed K/nΩ(log n), where K is the
greatest number in the instance.

∗This research was supported by the ESPRIT Working Group RAND2 n
o 21726 and by

the bilateral project Balaton, grant numbers 97140 (APAPE, France) and F-36/96 (TéT
Alaṕıtvány, Hungary)

1

1 Introduction

Knapsack is a well known problem which was shown to be NP -complete
in 1972 by Karp [3]. It remains NP -complete even if the size of each
object is equal to its value. This particular case is called the Subset-

Sum problem. Ibarra and Kim [2], gave a fully polynomial-time approx-
imation scheme for the optimization problem associated with Knapsack

which, therefore, applies to Subset-Sum as well. The most efficient fully
polynomial-time approximation scheme known for the Subset-Sum prob-
lem is due to Kellerer et al. [4]. The running time of their algorithm is
O(min{n/ε, n + (1/ε)2log(1/ε)}), and the space required is O(n + 1/ε),
where n is the number of the integers and ε the accuracy.

The input to an instance of Subset-Sum is a set of n positive integers
a1, . . . , an and another positive integer b. The question is to decide if there
exists a subset of {a1, . . . , an} whose sum is equal to b. In the optimization
version the goal is to find a set of numbers whose sum is as large as possible
under the constraint that it does not exceed b.

Woeginger and Yu [7] introduced a related problem, called Subset-Sums

Equality. Given n positive integers, the question is to decide if there exist
two disjoint nonempty subsets whose sums are equal. They also defined
a related optimization problem that we call Subset-Sums Ratio; it re-
quires to find two disjoint subsets with the ratio of their sums being as close
to 1 as possible. In the same paper they proved the NP -completeness of
Subset-Sums Equality, and gave a polynomial-time 1.324-approximation
algorithm for Subset-Sums Ratio. They left as an open question to decide
whether this problem has a polynomial-time approximation scheme.

In this paper we answer their question in the affirmative, by showing the
stronger assertion that actually Subset-Sums Ratio has a fully polynomial-
time approximation scheme.

The problems defined by Woeginger and Yu have some interesting spe-
cial instances. Consider the case where the sum of the n numbers is less
than 2n − 1. It is immediately seen by the pigeonhole principle that there
always exist two disjoint nonempty subsets whose sums are equal. Nonethe-
less, no polynomial-time algorithm is known so far to find two such sub-
sets effectively. We call this latter problem Pigeonhole Subset-Sums.
This problem is a well known member of what Meggido and Papadimitriou
[5, 6] call the class TFNP of total functions. This class contains function
problems associated with languages in NP where, for every instance of the
problem, a solution is guaranteed to exist. Other examples in the class are
Factoring, Second Hamiltonian Cycle and Happynet.

2

Many functions in TFNP (like the examples quoted above) have a chal-
lenging intermediate status between FP and FNP , the function classes
associated with P and NP . Although these problems are not NP -hard
unless NP=co-NP , no polynomial-time algorithm is known for them.

Although the polynomial-time solvability of Pigeonhole Subset-Sums

still remains open, we will show that in a sense this problem is much bet-
ter approximable in polynomial time than Subset-Sums Equality. For
this purpose, we define a further related optimization problem that we call
Subset-Sums Difference. Here the value of a solution is the positive
difference between the sums of the two sets plus 1. The same problem, with
the additional constraint that the sum of the numbers is less than 2n − 1, is
called Pigeonhole Subset-Sums Difference.

The existence of a fully polynomial-time approximation scheme for Sub-

set-Sums Ratio implies that, for any constant k, there is a polynomial-
time 2n/nk-approximation algorithm for Pigeonhole Subset-Sums Dif-

ference. We will show an even stronger result, giving a polynomial-
time 2n/nΩ(log n)-approximation for this problem. This will follow from a
more general theorem: we will show that Subset-Sums Difference has a
polynomial-time K/nΩ(log n)-approximation algorithm where K is the largest
number in the input. On the other hand, we also present a negative result
for Subset-Sums Difference, proving that it is not 2nk

-approximable in
polynomial time unless P = NP , for any constant k.

Showing that Pigeonhole Subset-Sums (a total function) is better
approximable than the corresponding NP search problem is somewhat anal-
ogous to the result we have obtained in [1]. There we have shown that there
is a polynomial-time approximation scheme for finding another Hamiltonian
cycle in cubic Hamiltonian graphs if a Hamiltonian cycle is given in the input
(again a total function). On the other hand, finding the longest cycle is not
even constant approximable in cubic Hamiltonian graphs, unless P = NP .

The paper is organized as follows. In Section 2 we give the necessary
definitions. In Section 3 we describe a fully polynomial-time approximation
scheme for Subset-Sums Ratio, and in Section 4 we prove our results on
Subset-Sums Difference.

2 Preliminaries

Let us recall a few notions concerning approximability. Given an instance I
of an optimization problem A, and a feasible solution y of I, we denote by
m(I, y) the value of the solution y, and by optA(I) the value of an optimum

3

solution of I. The performance ratio of y is

R(I, y) = max

{

m(I, y)

optA(I)
,
optA(I)

m(I, y)

}

.

For a constant c > 1, an algorithm is a c-approximation if, for any in-
stance I of the problem, it returns a solution y such that R(I, y) ≤ c. We
say that an optimization problem is constant approximable if it admits a
polynomial-time c-approximation for some c > 1. An optimization problem
has a polynomial-time approximation scheme (a ptas, for short) if, for ev-
ery constant ε > 0, there exists a polynomial-time (1 + ε)-approximation
for it. An optimization problem has a fully polynomial-time approximation
scheme (an fptas, for short) if, for every constant ε > 0, there exists an
(1 + ε)-approximation algorithm for it which is polynomial both in the size
of the input and in 1/ε. The set of problems having an fptas is denoted by
FPTAS.

An algorithm for a problem is called pseudo-polynomial if its running
time is polynomial in the size of the input and in the unary representation
of the largest number occurring in the input.

Let us now give the formal definitions of the problems to be investigated.

Subset-Sums Equality

Input: A set {a1, . . . , an} of positive integers.
Question: Are there two disjoint nonempty subsets S1, S2 ⊆ {1, . . . , n}
such that

∑

i∈S1

ai =
∑

i∈S2

ai ?

Pigeonhole Subset-Sums

Input: A set {a1, . . . , an} of positive integers such that
∑n

i=1 ai < 2n − 1.
Output: Two disjoint nonempty subsets S1, S2 ⊆ {1, . . . , n} such that

∑

i∈S1

ai =
∑

i∈S2

ai .

Subset-Sums Ratio

Input: A set {a1, . . . , an} of positive integers.
Output: Two disjoint nonempty subsets S1, S2 ⊆ {1, . . . , n} with

∑

i∈S1

ai ≥
∑

i∈S2

ai

4

such that the ratio
∑

i∈S1
ai

∑

i∈S2
ai

,

termed the value of the output, is minimized.

Subset-Sums Difference

Input: A set {a1, . . . , an} of positive integers.
Output: Two disjoint nonempty subsets S1, S2 ⊆ {1, . . . , n}, with

∑

i∈S1

ai ≥
∑

i∈S2

ai

such that the difference

∑

i∈S1

ai −
∑

i∈S2

ai + 1 ,

the value of the output, is minimized.

Remark : The reason to add 1 in the value of the solution in the above
problem is that otherwise the optimum value might be 0, and the perfor-
mance ratio could not be defined in that case.

Pigeonhole Subset-Sums Difference

Input: A set {a1, . . . , an} of positive integers such that
∑n

i=1 ai < 2n − 1.
Output: The same as for Subset-Sums Difference.

3 Subset-Sums Ratio has an fptas

In the first part of this section we give a pseudo-polynomial algorithm for
the Subset-Sums Ratio problem, that we use afterwards to construct an
fptas.

3.1 A pseudo-polynomial algorithm

We assume that the n numbers are in increasing order, a1 < · · · < an,
and we set B =

∑n
i=1 ai. We are going to give an algorithm that finds an

optimum solution in time O(nB2).
The main part of the algorithm will be a dynamic programming pro-

cedure. We will fill out (maybe partially) two tables, t[0..n, 0..B] with
values in {0, 1}, and c[0..n, 0..B] whose entries are subsets of {1, . . . , n}.

5

The completed parts of the tables will satisfy the following properties for
(i, j) 6= (0, 0):

1. t[i, j] = 1 if and only if there exists a set S ⊆ {1, . . . , n} with
∑

k∈S ak =
j, i ∈ S, and h /∈ S for all i < h ≤ n.

2. c[i, j] = S, where S ⊆ {1, . . . , n} is the subset satisfying the above
conditions, if such an S exists; and S = ∅ otherwise.

We stop this procedure if, for some j, two integers i1 6= i2 are found such
that t[i1, j] = t[i2, j] = 1. Actually, the procedure will be stopped when
the first (smallest) such j is found. Otherwise the tables will be filled out
completely. The procedure is as follows:

t[0, 0] := 1, c[0, 0] := ∅;
for i = 1 to n do t[i, 0] := 0, c[i, 0] := ∅;
for j = 1 to B do t[0, j] := 0, c[0, j] := ∅;
for j = 1 to B do

for i = 1 to n do

if (j ≥ ai and ∃ k ∈ {0, . . . , i− 1} with t[k, j − ai] = 1) then

t[i, j] := 1, c[i, j] := c[k, j − ai] ∪ {i};
else t[i, j] := 0, c[i, j] := ∅;

if (∃ i1 6= i2 with t[i1, j] = t[i2, j] = 1) then STOP.

If the optimum of the instance is 1, then the procedure is stopped when
the smallest integer is found which is the sum of two different subsets. The
minimality of the sum ensures that these subsets are in fact disjoint.

Otherwise the tables t and c will be completed and we continue the
algorithm. We call an integer j > 0 candidate if it is the sum of some
input elements; that is, if we have t[i, j] = 1 for some i. For each candidate
j, let i(j) be the (unique) integer with this property. Moreover, for every
candidate j, let kj be the greatest candidate less than j such that c[i(j), j]∩
c[i(kj), kj] = ∅, if there is any. Then the optimum solution is the couple
(c[i(j), j], c[i(kj), kj]) for which j/kj is minimized.

One can see that the above algorithm is pseudo-polynomial.

3.2 The fptas

Similarly to the previous algorithm, we start with sorting the input in in-
creasing order; that is, after this preprocessing we have a1 < a2 < · · · < an.

6

For m = 2, . . . , n, let us denote by Im the instance of Subset-Sums

Ratio which consists of the m smallest numbers a1, . . . , am. At the top
level, the algorithm executes its main procedure on the inputs Im, for m =
2, . . . , n, and takes as solution the best among the solutions obtained for
these instances.

Given any ε in the range 0 < ε < 1, we set

k(m) = ε2 · am/(2m) .

Let n0 ≤ n be the greatest integer such that k(n0) < 1. We now describe
the algorithm on the instance Im.

If m ≤ n0, then we apply the pseudo-polynomial algorithm of the previ-
ous subsection to Im. Since an0 ≤ 2n/ε2, this will take polynomial time.

If n0 < m ≤ n, then we transform the instance Im into another one that
contains only polynomial-size numbers. Set a′i = ⌊ai/k(m)⌋ for i = 1, . . . , m.
Observe that a′m =

⌊

2m/ǫ2
⌋

is indeed of polynomial size. Let us denote by
I ′m the instance of Subset-Sums Ratio that contains the numbers a′i such
that a′i ≥ m/ε . Suppose that I ′m contains t numbers, a′m−t+1, . . . , a

′

m. Since
ε < 1, we have a′m ≥ m/ε, and therefore t > 0. We will distinguish between
two cases according to the value of t.

Case 1: t = 1. Let j be the smallest nonnegative integer such that
aj+1 + . . . + am−1 < am. If j = 0, then the solution will be S1 = {m} and
S2 = {1, . . . , m−1}. Otherwise the solution will be S1 = {j, j+1, . . . , m−1}
and S2 = {m}.

Case 2: t > 1. We solve (exactly) I ′m, using the pseudo-polynomial
algorithm which will take only polynomial time on this instance. Then we
distinguish between two cases, depending on the value of the optimum of
I ′m.

Case 2a: opt(I ′m) = 1. The algorithm returns the solution which realizes
this optimum for I ′m.

Case 2b: opt(I ′m) > 1. In this case we generate a sufficiently rich
collection of pairs of subsets in the following way. We consider 3t−1 pairs
P (v̄, m), Q(v̄, m) of disjoint sets,

P (v̄, m), Q(v̄, m) ⊆ {m − t + 1, . . . , m} ,

parameterized by the vectors

v̄ = (v1, . . . , vt−1) ∈ {0, 1, 2}t−1.

7

The sets are defined according to the rule

m − t + i ∈ P (v̄, m) and m − t + i /∈ Q(v̄, m) if vi = 1,
m − t + i /∈ P (v̄, m) and m − t + i ∈ Q(v̄, m) if vi = 2,
m − t + i /∈ P (v̄, m) and m − t + i /∈ Q(v̄, m) if vi = 0,

for 1 ≤ i ≤ t − 1, and we put m into P (v̄, m). Define R1(v̄, m) = P (v̄, m)
if

∑

i∈P (v̄,m) ai >
∑

i∈Q(v̄,m) ai, and R1(v̄, m) = Q(v̄, m) otherwise. Let
R2(v̄, m) be the other set.

The pair S1(v̄, m), S2(v̄, m) is defined as follows. Let j be the smallest
nonnegative integer such that

∑

i∈R2(v̄,m)

ai +
m−t
∑

i=j+1

ai <
∑

i∈R1(v̄,m)

ai.

If j = 0, then S1(v̄, m) = R1(v̄, m) and S2(v̄, m) = R2(v̄, m)∪{1, . . . , m−t}.
Otherwise, if m ∈ R1(v̄, m), then S1(v̄, m) = R2(v̄, m) ∪ {j, . . . , m − t} and
S2(v̄, m) = R1(v̄, m). In the opposite case, where m ∈ R2(v̄, m), we define
S1(v̄, m) = R1(v̄, m) and S2(v̄, m) = R2(v̄, m) ∪ {j + 1, . . . , m − t}. Finally,
we choose a vector v̄ ∈ {0, 1, 2}t−1 for which the ratio

∑

i∈S1(v̄,m)

ai /
∑

i∈S2(v̄,m)

ai

is minimized. The solution given by the algorithm is then S1 = S1(v̄, m)
and S2 = S2(v̄, m).

Theorem 1 The above algorithm yields an (1 + ε)-approximation, in time
polynomial in n and 1/ε.

Proof : The algorithm clearly works in polynomial time whenever the
number 3t−1 of vectors is polynomial in Case 2b. Since opt(I ′m) > 1 in
that case, all the 2t subsets of the set {a′m−t+1, . . . , a

′

m} make up mutually
distinct sums. Since

a′m ≤ 2m/ε2,

we have
m

∑

i=m−t+1

a′i < 2m2/ε2.

Therefore
2t ≤ 2m2/ε2,

8

and thus t ≤ 2 log(m/ε) + 1.
We will prove now that the algorithm indeed yields an (1+ε)-approxima-

tion. Let m be an integer such that am is the greatest element occurring in
an optimum solution. Then, clearly, this optimum solution for In is optimum
for Im as well. We prove that the algorithm yields an (1+ ε)-approximation
on the instance Im.

If m ≤ n0, then the pseudo-polynomial algorithm yields an optimum
solution. Hence, let us suppose that m > n0.

In Case 1, if j = 0, then the given solution is optimum. If j > 0, then
a′j ≥ m/ε and

aj < (a′j + 1)k(m) <
2m

ε

ε2am

2m
= εam.

So in this case,

∑

i∈S1

ai /
∑

i∈S2

ai ≤ 1 + aj/am < 1 + ε.

In Case 2a, we have

∑

i∈S1
ai

∑

i∈S2
ai

≤

∑

i∈S1
k(m) · (1 + a′i)

∑

i∈S2
k(m) · a′i

= 1 +
|S1|

∑

i∈S2
a′i

≤ 1 +
t

m/ε
< 1 + ε .

In Case 2b, let S1 = S1(v̄, m) and S2 = S2(v̄, m) for some v̄ ∈ {0, 1, 2}t−1.
If j = 0, since we add all the other integers a1, . . . , am−t to the smallest set,
which remains the smallest one, then S1, S2 is an optimum solution among
the solutions parameterized by the vector v̄. Otherwise, we have

∑

i∈R2(v̄,m)

ai +
m−t
∑

i=j+1

ai <
∑

i∈R1(v̄,m)

ai ≤
∑

i∈R2(v̄,m)

ai +
m−t
∑

i=j

ai.

Therefore

∑

i∈S1

ai /
∑

i∈S2

ai ≤ 1 + aj /
∑

i∈S2

ai ≤ 1 + aj/am < 1 + ε.

2

4 Subset-Sums Difference

Since Subset-Sums Ratio has a fptas, from the approximation point of
view, we cannot distinguish Subset-Sums Equality from Pigeonhole

9

Subset-Sums when the value of a solution is the ratio between the sums
of the two sets. The situation changes drastically when a harder problem is
considered, where the value of a solution is the difference between the two
sums. In this section we show that Pigeonhole Subset-Sums Differ-

ence has a polynomial-time 2n/nΩ(log n)-approximation, and on the other

hand Subset-Sums Difference is not 2nk

-approximable in polynomial
time unless P = NP , for any constant k.

The fptas for Subset-Sums Ratio gives a polynomial-time 2n/nk-approxi-
mation for Pigeonhole Subset-Sums Difference when we take ε =
1/nk. But, in fact, one can do better than that.

Theorem 2 Subset-Sums Difference has a polynomial-time K/nΩ(log n)-
approximation, where K is the greatest number in the instance.

Proof : We will describe a polynomial-time algorithm that finds a solution
of value at most K/nΩ(log n). Since the optimum value of each instance is at
least 1 by definition, the assertion will follow.

Let a1 < a2 < · · · < an be an instance of Subset-Sums Difference,
and let us define a0 = 0. Consider the sequence

0 = a0 < a1 < a2 < · · · < an = K.

Notice that at most n/3 of the consecutive differences ai − ai−1 can be as
large as 3K/n; that is, at least 2n/3 differences are smaller than 3K/n.
From these differences smaller than 3K/n, we choose every second one (in
the order of their occurrence), and create the sequence

a
(1)
1 < a

(1)
2 < · · · < a

(1)

n(1) ,

to which we adjoin a
(1)
0 = 0. We also set K(1) = a

(1)

n(1) , where K(1) < 3K/n

and n(1) ≥ n/3.
We repeat this type of “difference selection” t = ⌊log3 n⌋ times, creating

the sequences

0 = a
(i)
0 < a

(i)
1 < a

(i)
2 < · · · < a

(i)

n(i) = K(i)

for i = 2, . . . , t, with K(i) < 3K(i−1)/n(i−1) and n(i) ≥ n(i−1)/3. After that,
we still have n(t) ≥ n/3t ≥ 1 numbers, from which we select the smallest

one, namely a
(t)
1 .

Observe that each number in the sequence of step i represents a signed
subset-sum, some of the input elements occurring with “+” and some with

10

“−” (and some missing). The numbers with the same sign specify a subset,
and the difference between the sum of the numbers of the “+” subset and
of the “−” subset is at most K(i).

We are going to show that K(t) = K/nΩ(log n). We have

K(1) <
3K

n
,

and

K(i) <
3K(i−1)

n(i−1)

for i = 2, . . . , t. Taking the product of these inequalities, we obtain

K(t) <
3t(t+1)/2 · K

nt
= K/nΩ(log n).

Since the value of the solution is at most K(t), the statement follows. 2

Corollary 1 Pigeonhole Subset-Sums Difference has a polynomial-
time 2n/nΩ(log n)-approximation.

Finally, we show a simple non-approximability result for Subset-Sums Dif-

ference which is in strong opposition with the approximability of Pigeon-

hole Subset-Sums Difference.

Theorem 3 If P 6= NP , then, for any constant k, Subset-Sums Dif-

ference is not 2nk

-approximable in polynomial time.

Proof : We prove that if Subset-Sums Difference were 2nk

-approxima-
ble in polynomial time, then Subset-Sums Equality would admit a poly-
nomial-time algorithm. Given an instance I = {a1, a2, . . . , an} of Subset-

Sums Equality, we create (in polynomial time) an instance I ′ = {b1, b2, . . . , bn}

of Subset-Sums Difference where bi = 2nk

· ai. The size of I ′ is polyno-
mial in the size of I, and clearly I is a positive instance if and only if the
value of an optimum solution for I ′ is 1. Let q denote this optimum value,
and let s be the value of the solution for I ′ given by the 2nk

-approximation
algorithm.

We claim that q = 1 if and only if s = 1. The “if” part is trivial. For
the “only if” part, let us suppose that s > 1. We have

s ≤ 2nk

· q ,

11

because the solution was given by a 2nk

-approximation algorithm. Since
every element in I ′ is a multiple of 2nk

, the value of a solution for I ′ is either
1 or greater than 2nk

. Therefore, we also have

s > 2nk

,

and thus q > 1. 2

References

[1] C. Bazgan, M. Santha and Zs. Tuza, On the approximation of finding
a(nother) Hamiltonian cycle in cubic Hamiltonian graphs, 15th Annual
Symposium on Theoretical Aspects of Computer Science, Lecture Notes
in Computer Science, Vol. 1373 (1998), 276–286.

[2] O. H. Ibarra and C. E. Kim, Fast approximation algorithms for the
Knapsack and Sum of Subset problems, Journal of ACM 22:4 (1975),
463–468.

[3] R. M. Karp, Reducibility among combinatorial problems, in: Complex-
ity of Computer Computations (R. E. Miller and J. W. Thatcher, eds.)
(1972), 85–103.

[4] H. Kellerer, R. Mansini, U. Pferschy and M. G. Speranza, An efficient
fully polynomial approximation scheme for the Subset-Sum problem,
Technical Report 14(1997), Faculty of Economics, University of Graz,
see also Proceedings of the 8th ISAAC Symposium, Lecture Notes in
Computer Science, Vol. 1350 (1997), 394–403.

[5] N. Megiddo and C. Papadimitriou, On total functions, existence theo-
rems and computational complexity , Theoretical Computer Science 81
(1991), 317–324.

[6] C. Papadimitriou, On the complexity of the parity argument and other
inefficient proofs of existence, Journal of Computer and System Sci-
ences 48 (1994), 498–532.

[7] G. J. Woeginger and Z. Yu, On the equal-subset-sum problem, Informa-
tion Processing Letters 42 (1992), 299–302.

12

