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Abstract

The Satisfactory Bisection problem means to decide whether a given graph has
a partition of its vertex set into two parts of the same cardinality such that each
vertex has at least as many neighbors in its part as in the other part. A related
variant of this problem, called Co-Satisfactory Bisection, requires that each
vertex has at most as many neighbors in its part as in the other part. A vertex sat-
isfying the degree constraint above in a partition is called ‘satisfied’ or ‘co-satisfied’,
respectively. After stating the NP -completeness of both problems, we study ap-
proximation results in two directions. We prove that maximizing the number of
(co-)satisfied vertices in a bisection has no polynomial-time approximation scheme
(unless P = NP ), whereas constant approximation algorithms can be obtained in
polynomial time. Moreover, minimizing the difference of the cardinalities of ver-
tex classes in a bipartition that (co-)satisfies all vertices has no polynomial-time
approximation scheme either.
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1 Introduction

Gerber and Kobler introduced in [6,7] the problem of deciding if a given graph
has a vertex partition into two nonempty parts such that each vertex has
at least as many neighbors in its part as in the other part. This problem,
called Satisfactory Partition, is proved NP -complete in [2]. In a non-
algorithmic context and under a weaker condition, the roots of the problem
go back to the paper of Thomassen [12] where, in a graph of minimum degree
12k, each vertex is required to have at least k neighbors in its partition class.

Satisfactory Bisection is the variant of Satisfactory Partition where
the parts are required to have the same cardinality. A feasible solution of this
problem is called a satisfactory bisection. Graphs like cycles of even length
and complete bipartite graphs with both vertex classes of even size trivially
admit a satisfactory bisection. A graph of even order formed by two connected
components of unequal size, each of which has no satisfactory partition, is an
example of a graph which admits a satisfactory partition but no satisfactory
bisection. Satisfactory Bisection is proved NP -complete in [2].

We consider also the opposite problem of deciding if a given graph has a
vertex partition — that we call ‘co-satisfactory’ — into two parts such that
each vertex has at least as many neighbors in the other part as in its own part.
This problem corresponds to finding in the graph a cut which is maximal with
respect to moving a vertex from its part to the other. Therefore, a graph always
admits such a partition that can be found in polynomial time. However, the
balanced version of this problem, called Co-Satisfactory Bisection, does
not always admit a solution, e.g. for stars of even order. We prove in this paper
that Co-Satisfactory Bisection is NP -complete.

We also study the problem of minimizing the unbalance of a satisfactory and
co-satisfactory partition, corresponding to the difference between the cardinal-
ities of the two vertex classes in such a partition. We prove for both problems
that there exists no polynomial-time approximation scheme unless P = NP .
These results are motivated by the paper [11] of Sheehan who proved upper
bounds on the minimum difference in k-regular graphs on n vertices, for k ≤ 8.
Let us note at this point that if one requires that the sum of the minimum
degrees inside each part should be at least as large as the minimum degree
of the graph, then the situation changes substantially: minimum degree plus
one (or sometimes minimum degree) is a general upper bound on the mini-
mum unbalance in such partitions [9,10], and such a partition can be found in
polynomial time [1].

When a graph has no (co-)satisfactory bisection, it is natural to ask for a
bisection maximizing the number of (co-)satisfied vertices. The correspond-
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ing optimization problems are Max Satisfying Bisection and Max Co-
Satisfying Bisection. We prove in this paper that Max Satisfying Bi-
section is 1/3-approximable, Max Co-Satisfying Bisection is 1/2-appro-
ximable, and that these two problems have no polynomial-time approximation
scheme unless P=NP.

Let us note that the maximization version of Satisfactory Partition is
uninteresting, since every connected graph on n ≥ 3 vertices admits a partition
with one vertex (e.g., of minimum degree) in one part and n − 1 in the other
part, where all vertices in the part of size n − 1 are satisfied. This yields a
trivial linear-time approximation scheme.

The paper is structured as follows. Section 2 contains notation and definitions
of problems. In Section 3 we show the NP -completeness of Co-Satisfactory
Bisection. In Section 4 we prove that Max (Co-)Satisfying Bisection
has no approximation scheme, unless P=NP, and in Section 6 we give con-
stant approximation algorithms for these problems. In Section 5 the non-
approximability of minimum unbalance is proved, for both satisfactory and
co-satisfactory partitions.

2 Preliminaries

We begin with some basic definitions concerning approximation, and then we
define the problems considered.

Approximability. Given an instance x of an optimization problem A and a
feasible solution y of x, we denote by val(x, y) the value of solution y, and
by optA(x) the value of an optimum solution of x. For a function ρ < 1,
an algorithm is a ρ-approximation for a maximization problem A if for any
instance x of the problem it returns a solution y such that val(x, y) ≥ ρ(|x|) ·
optA(x). We say that a maximization problem is constant approximable if,
for some constant ρ < 1, there exists a polynomial-time ρ-approximation for
it. A maximization problem has a polynomial-time approximation scheme (a
PTAS, for short) if, for every constant ε > 0, there exists a polynomial-time
(1 − ε)-approximation for it.

Reductions. ([8]) Let A and A′ be two maximization problems. Then A is
said to be gap-preserving reducible to A′ with parameters (c, ρ), (c′, ρ′) (where
ρ, ρ′ ≤ 1), if there is a polynomial-time algorithm that transforms any instance
x of A to an instance x′ of A′ such that the following properties hold:

(1) optA(x) ≥ c ⇒ optB(x′) ≥ c′

(2) optA(x) < ρ · c ⇒ optB(x′) < ρ′ · c′
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Gap-preserving reductions have the following property. If it is NP -hard to
decide if the optimum of an instance of A is at least c or less than ρ · c, then it
is NP -hard to decide if the optimum of an instance of A′ is at least c′ or less
than ρ′ · c′. This NP -hardness implies that A′ is hard to ρ′-approximate.

Graphs. We consider finite, undirected graphs without loops and multiple
edges. For a graph G = (V,E), a vertex v ∈ V , and a subset Y ⊆ V we denote
by dY (v) the number of vertices in Y that are adjacent to v; and, as usual,
we write d(v) for the degree dV (v) of v in V . A partition (V1, V2) of V where
|V1| = |V2| is called a bisection.

The problems we are interested in are defined as follows.

Satisfactory Bisection
Input: A graph G = (V,E) on an even number of vertices.
Question: Is there a bisection (V1, V2) of V such that for every v ∈ V , if

v ∈ Vi then dVi
(v) ≥ ⌈d(v)

2
⌉, i = 1, 2?

Given a partition (V1, V2) of V , we say that a vertex v ∈ Vi is satisfied if

dVi
(v) ≥ ⌈d(v)

2
⌉. A bisection where all vertices are satisfied is called a satisfac-

tory bisection.

Co-Satisfactory Bisection
Input: A graph G = (V,E) on an even number of vertices.
Question: Is there a bisection (V1, V2) of V such that for every v ∈ V , if

v ∈ Vi then dVi
(v) ≤ ⌈d(v)

2
⌉, i = 1, 2 ?

Given a partition (V1, V2), a vertex v ∈ Vi is co-satisfied if dVi
(v) ≤ ⌈d(v)

2
⌉. A

bisection where all vertices are co-satisfied is called a co-satisfactory bisection.

When a graph does not admit a (co-)satisfactory bisection, it is natural to ask
for a bisection that maximizes the number of vertices that are (co-)satisfied.
Therefore, we consider the following problems.

Max Satisfying Bisection
Input: A graph G = (V,E) on an even number of vertices.
Output: A bisection (V1, V2) of V that maximizes the number of satisfied
vertices.

Max Co-Satisfying Bisection
Input: A graph G = (V,E) on an even number of vertices.
Output: A bisection(V1, V2) of V that maximizes the number of co-satisfied
vertices.

It is also natural to ask for a (co-)satisfactory partition that minimizes the
difference between the cardinalities of the two parts of the partition. Therefore,
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we consider the following problems.

Min Unbalance (Co-)Satisfying Partition
Input: A graph G = (V,E) on n vertices.
Output: A (co-)satisfactory partition (V1, V2) of V that minimizes

||V1| − |V2|| + 1 − (n mod 2)

The previous function to be minimized was chosen such that it has value 1
for a (co-)satisfactory bisection or a quasi-bisection in a graph of even or odd
degree, respectively.

3 Complexity of (Co-)Satisfactory Bisection

In this section we first establish the NP -completeness of Co-Satisfactory
Bisection. Second, we present a short polynomial reduction from Co-Satis-
factory Bisection to Satisfactory Bisection, showing the NP -com-
pleteness of the latter problem. This result was established already in [2] with
a different proof, but the reduction given here is based on a construction that
will be used in the next section to state a non-approximability result.

Theorem 1 Co-Satisfactory Bisection is NP-complete.

Proof : Clearly, this problem is in NP. We construct a polynomial reduction
from a variant of Independent Set, the problem of deciding if a graph with
n vertices contains an independent set of size at least n

2
, a problem stated

to be NP -hard in [5]. Let G = (V,E) be a graph with n vertices v1, . . . , vn

and m edges, an input of this variant of Independent Set problem. We
assume that n is even, since otherwise we can add a vertex that we link with
all the vertices of the graph without changing the problem. We construct a
graph G′ = (V ′, E ′), instance of Co-Satisfactory Bisection as follows
(see Figure 1). The vertex set V ′ consists of three sets: V , the vertex set of
G, F = {f1, . . . , f2m+1} and T = {t1, . . . , t2m+1}. The subgraph of G′ induced
on V is a copy of G. The subgraph of G′ induced on F ∪ T is a complete
bipartite graph. Finally, we link each vertex v ∈ V to d(v) distinct vertices
from F \ {f1} (so that each vertex from F \ {f1} is adjacent to exactly one
vertex in V ).

This construction is accomplished in polynomial time. All that remains to
show is that G has an independent set of size at least n

2
if and only if G′

admits a co-satisfactory bisection.

Suppose first that G has an independent set S of size n
2
. Let V ′

1 = F ∪ S and
V ′

2 = T ∪ S̄, where S̄ = V \ S. Let us check in the following that (V ′
1 , V

′
2) is
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F T

V

Fig. 1. Graph G′ obtained from G

a co-satisfactory bisection. It is easy to see that all vertices of F and T are
co-satisfied. Let v ∈ S. Since S is an independent set, v is not linked to any
vertex in S. Thus, dV ′

1
(v) = dS̄(v) = dV ′

2
(v) and so the vertices of S are co-

satisfied. Given a vertex v ∈ S̄, dV ′

1
(v) = 2dS(v) + dS̄(v) while dV ′

2
(v) = dS̄(v),

thus also the vertices of S̄ are co-satisfied in G′.

Suppose now that G′ admits a co-satisfactory bisection and let (V ′
1 , V

′
2) be a

co-satisfactory bisection. Observe that F and T cannot be both included in
the same part of the partition since otherwise the vertices of F and T are not
co-satisfied. If the partition cuts only one of the two sets F or T , suppose for
example that F is cut, then the vertices of F that are in the same part of the
partition as T are not co-satisfied. If the partition cuts both F and T , denote
by F1, T1 and F2, T2 the sets of vertices of F and T that are included in V ′

1 and
V ′

2 respectively. For vertices of T1 to be co-satisfied, we first have |F1| ≤ |F2|
whereas for vertices of T2 to be co-satisfied, we must have |F2| ≤ |F1|, that
is |F1| = |F2|, which is impossible since |F | is odd. Therefore, F and T are
included in different parts of the partition and thus (V ′

1 , V
′
2) cuts the set V

into two balanced sets V1, V2, where V ′
1 = F ∪ V1 and V ′

2 = T ∪ V2. We show
that V1 is an independent set. A vertex v ∈ V1 has dV ′

1
(v) = 2dV1

(v) + dV2
(v)

and dV ′

2
(v) = dV2

(v). Since v is co-satisfied in G′ we have dV ′

1
(v) ≤ dV ′

2
(v) and

we obtain that dV1
(v) = 0. Thus V1 is an independent set of size n

2
. 2

Theorem 2 Satisfactory Bisection is NP-complete.
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Proof : Clearly, this problem is in NP. We reduce Co-Satisfactory Bi-
section to Satisfactory Bisection which shows the NP -completeness of
the latter problem by Theorem 1.

The reduction is as follows. Let G be a graph, instance of Co-Satisfactory
Bisection on n vertices v1, . . . , vn. The graph G′, instance of Satisfactory
Bisection, has 2n vertices v1, . . . , vn, and u1, . . . , un. G′ is the complement of
graph G on vertices v1, . . . , vn, and we add pendant edges (ui, vi), i = 1, . . . , n.
If G admits a co-satisfactory bisection and (V1, V2) is such a partition, then
V ′

i = Vi ∪ {uj : vj ∈ Vi} is a satisfactory bisection for G′. Indeed, if vi ∈ V1

then dV1
(vi) ≤ dV2

(vi) in G. Thus, in G′ we have dV ′

1
(vi) = n

2
−1−dV1

(vi)+1 ≥
n
2
− dV2

(vi) = dV ′

2
(vi) and dV ′

1
(ui) = 1 > dV ′

2
(ui) = 0. Conversely, since in each

satisfactory bisection of G′, ui is in the same set as vi, such a partition of G′

gives a co-satisfactory bisection in G. 2

4 No PTAS for Max (Co-)Satisfying Bisection

In this section we prove that Max Co-Satisfying Bisection and Max
Satisfying Bisection have no polynomial-time approximation scheme un-
less P=NP.

We introduce first a problem that we will use in the reductions.

Max k-Vertex Cover-B
Input: A graph G = (V,E) with |V | ≥ k and maximum degree B.
Output: The maximum number of edges in G that can be covered by a subset
V ′ ⊆ V of cardinality k.

Theorem 3 (Petrank [8]) There exists a constant α, 0 < α < 1 with the
following property: given a graph G with n vertices and m edges, instance of
Max k-Vertex Cover-B for some k = Θ(n), it is NP-hard to distinguish,
whether it has opt(G) = m or opt(G) < (1 − α)m.

Though it is not explicitly mentioned in [8], the proof of Theorem 3 yields the
same conclusion for the restricted class of graphs with m ≥ n

2
. We prove next

that Theorem 3 holds in particular for k = n
2
.

Theorem 4 There exists a constant β, 0 < β < 1 with the following prop-
erty: given a graph G with N vertices and M edges, instance of Max N

2
-

Vertex Cover-B′, it is NP-hard to distinguish whether it has opt(G) = M
or opt(G) < (1 − β)M .

Proof : We construct a gap-preserving reduction from Max k-Vertex
Cover-B with k = cn, for some constant c < 1, to Max N

2
-Vertex Cover-
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(2B+2). Let G = (V,E) be a graph on n vertices and m ≥ n
2

edges, instance of
Max k-Vertex Cover-B. We will construct a graph G′′ with N vertices and
M edges such that if opt(G) = m then opt(G′′) = M and if opt(G) ≤ (1−α)m,
for some α > 0, then opt(G′′) ≤ (1 − β)M , for some β > 0.

First assume that c > 1/2. Let G′′ be the graph obtained from G by inserting
2k − n isolated vertices. In this case, the properties of the gap-preserving
reduction hold with β = α.

Consider now the case c < 1/2. Suppose first that n − 2k is a multiple of
B +1. Let G′′ be the graph that consists of a copy of G and n−2k

B+1
copies of the

graph TB+1 which is the complete tripartite graph whose vertex classes have
cardinality B + 1 each. Observe that TB+1 needs 2B + 2 vertices in covering
its edges (the complement of a vertex class), and if just 2B + 2 − t vertices
are taken, then at least t(B + 1) edges remain uncovered. Thus, since G has
maximum degree at most B, each subset of N

2
vertices not covering all copies

of TB+1 is trivially improvable. Suppose first that opt(G) = m and let V ′

be a vertex cover of size k in G. Then the set V ′ and the vertices of two
among the 3 independent sets of each of the n−2k

B+1
copies of TB+1 form a vertex

cover of G′′ of size N
2
, and thus opt(G′′) = M . On the other hand, suppose

opt(G) < (1 − α)m. Then since M = m + 3(B + 1)(n − 2k) and m ≥ n
2
, the

number of edges not covered in G′′ is at least αm ≥ αM
1+6(B+1)(1−2c)

that can be
viewed as βM .

Finally, if c < 1/2 and if n − 2k = ℓ mod(B + 1), 0 < ℓ ≤ B, then let G′ be
the graph G together with further B + 1 − ℓ isolated vertices. Now, we can
transform G′ to G′′ as before by inserting n−2k−ℓ

B+1
+ 1 copies of TB+1. In this

case we get a slightly different value for β, as the number m of edges is now
compared with the modified number n + B + 1 − ℓ of vertices. Nevertheless,
β > 0 is obtained. 2

From this theorem, the following two non-approximability results can be de-
duced.

Theorem 5 Max Co-Satisfying Bisection has no polynomial-time ap-
proximation scheme unless P=NP.

Proof : We construct a gap-preserving reduction between Max n
2
-Vertex

Cover-B and Max Co-Satisfying Bisection. Let G be a graph instance
of Max n

2
-Vertex Cover-B on n vertices and m edges. We construct the

graph G′ as in the proof of Theorem 1. Denote by N the number of vertices
of G′. We have N = Θ(m) and m = Θ(n), by the bounded-degree condition
on G and because we may assume for Max n

2
-Vertex Cover-B that G has

fewer than n
2

isolated vertices (otherwise a vertex cover of cardinality n
2

can
be found in linear time).
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Suppose first that opt(G) = m, and let V ′ be a vertex cover of size n
2

of G.
Then in the partition (F ∪ (V \ V ′), T ∪ V ′) all vertices are co-satisfied and
thus opt(G′) = N .

Suppose next that opt(G) < (1 − β)m. It means that, for any set V ′ of n
2

vertices, at least βm edges of G remain uncovered. The number of vertices
incident to at least one non-covered edge is at least 2βm

B
. Hence, for some

constant c > 0, in any bipartition of V , either the partition classes differ by
at least cm in size, or each class contains at least cm vertices having at least
one neighbor in the same class. Let now (F1 ∪ V1 ∪ T1, F2 ∪ V2 ∪ T2) be any
bisection. Suppose for a contradiction that as many as N−o(m) vertices (that
equivalently means N − o(N)) are co-satisfied. We may assume |F1| > |F2|
without loss of generality. Then |T1| = o(m) must hold, because no vertex of
T1 is co-satisfied. Since every f ∈ F has the majority of its neighbors in T2,
we obtain |F2| = o(m) in a similar way. Consequently, ||V1| − |V2|| = o(m)
is valid, as we started with a bisection. Thus, for some constant c > 0, there
exist at least cm vertices in V1 with some neighbor in the same class, V1. To
co-satisfy all but o(m) of those vertices, we would need that all but o(m) of
them have neighbors in F2. This would require |F2| ≥ cm because each f ∈ F
has just one neighbor in V . This contradiction completes the proof. 2

Theorem 6 Max Satisfying Bisection has no polynomial-time approx-
imation scheme unless P=NP.

Proof : Consider the graph G′ with N vertices and M edges obtained in the
construction given in the proof of Theorem 5, and apply to G′ the reduction
given in Theorem 2. Let G′′ be the graph obtained. It can be shown that if
opt(G′) = N then opt(G′′) = 2N and if opt(G′) < (1 − γ)N then opt(G′′) <
2N(1 − cγ) for some constant c. 2

5 No PTAS for Min Unbalance (Co-)Satisfying Partition

In this section we prove that Min Unbalance Co-Satisfying Partition
and Min Unbalance Satisfying Partition have no polynomial-time ap-
proximation scheme unless P=NP.

Theorem 7 Min Unbalance Co-Satisfying Partition has no polynomial-
time approximation scheme unless P=NP.

Proof : We construct a gap-preserving reduction between Max n
2
-Vertex

Cover-B and Min Unbalance Co-Satisfying Partition. Let G be a
graph instance of Max n

2
-Vertex Cover-B on n vertices and m edges. We

construct the graph G′ as in the proof of Theorem 1. Denote by N the number
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of vertices of G′. We have N = Θ(m) and m = Θ(n), by the bounded-degree
condition on G and because we may assume for Max n

2
-Vertex Cover-B

that G has fewer than n
2

isolated vertices (otherwise a vertex cover of cardi-
nality n

2
can be found in linear time).

Suppose first that opt(G) = m, and let V ′ be a vertex cover of size n
2

of G.
Then in the bisection (F ∪ (V \ V ′), T ∪ V ′) all vertices are co-satisfied and
thus opt(G′) = 1.

Suppose next that opt(G) < (1 − β)m. Assume that (V1, V2) satisfies all ver-
tices. Since F (the neighbors of the vertices of G) has odd cardinality, more
than |F |/2 vertices belong to the same class; we assume |V1| > |F |/2 without
loss of generality. Since T is completely joined with F , the only way to satisfy
its vertices is to have T ⊆ V2. But then, since each vertex of F has just one (or
zero, for the specified vertex) neighbor in G, the F -vertices are satisfied only
if F ⊆ V1. Assume now that it is possible to generate a satisfactory partition
by an efficient algorithm, such that the unbalance is as small as o(n). Since
|F | and |T | are as large as cn for some constant c > 0, moving as few as o(n)
vertices from one partition class to the other keeps the satisfied status of the
F, T -vertices unchanged. Moreover, since each vertex of the large graph has
only a bounded number of neighbors in G (T -vertices have none, F -vertices
have at most 1, G-vertices have a bounded number by assumption), moving
o(n) vertices we can make only o(n) vertices unsatisfied. Thus, from a o(n)-
unbalanced partition we would derive a bisection with just o(n) non-satisfied
vertices in polynomial time, a contradiction. 2

Theorem 8 Min Unbalance Satisfying Partition has no polynomial-
time approximation scheme unless P=NP.

Proof : We construct a gap-preserving reduction between Min Unbalance
Co-Satisfying Partition and Min Unbalance Satisfying Partition.
Consider the graph G′ with N vertices and M edges obtained in the con-
struction given in the proof of Theorem 5, instance of Min Unbalance Co-
Satisfying Partition, and apply to G′ the reduction given in Theorem 2.
Let G′′ be the graph obtained. Since the two endpoints ui, vi of each pen-
dant edge belong to the same vertex class in any satisfying partition of G′′,
we obtain that if opt(G′) = 1 then opt(G′′) = 1 and if opt(G′) > c then
opt(G′′) > 2c. 2

6 Constant approximations for Max (Co-)Satisfying Bisection

We concentrate mostly on the approximation of Max Satisfying Bisec-
tion. The co-satisfying version turns out to be simpler, and will be considered
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at the end of the section.

We first consider graphs G = (V,E) with an odd number of vertices. For such
graphs, a partition (V1, V2) of V where |V1| and |V2| differ just by 1 is called a
quasi-bisection.

Proposition 9 (i) Any graph G with an odd number n of vertices has a
quasi-bisection such that each vertex in the part of size n+1

2
is satisfied.

(ii) Any graph G with an even number n of vertices has either a bisection with
all vertices satisfied, or a vertex bipartition with size distribution (n

2
+1, n

2
−1)

such that each vertex in the part of size n
2

+ 1 is satisfied.

(iii) Such a partition can be found in polynomial time for both the odd and
even case.

Proof : For n odd, let (V1, V2) be a quasi-bisection of G with |V1| > |V2|.
If V1 contains a vertex v that is not satisfied, then dV1

(v) < dV2
(v) and thus

by moving v from V1 to V2 we obtain a quasi-bisection with a smaller value
of the cut induced by (V1, V2). Re-labeling V1 and V2 to keep the inequality
|V1| > |V2| valid, the algorithm repeats this step while the largest set contains
a non-satisfied vertex. Similarly, for n even, we can maintain a vertex partition
(V1, V2) such that n

2
− 1 ≤ |V2| ≤ |V1| ≤

n
2

+ 1 ; in a bisection each part can
be viewed as V1. If some v ∈ V1 is not satisfied, then moving v into the other
class decreases the value of the cut and keeps |V1|, |V2| in the given range.
Hence, after at most |E| steps we obtain a vertex partition that satisfies the
requirements. 2

Remark: For some graphs, such as Kn with n odd, it may happen that only
the vertices in the larger part are satisfied.

We consider now graphs of even order. Given a graph on an even number n of
vertices, a vertex of degree n − 1 is never satisfied in a bisection since it has
only n

2
− 1 neighbors in its own part and n

2
neighbors in the other part.

Theorem 10 Any graph G with an even number n of vertices has a bisection
satisfying at least ⌈n−t

3
⌉ vertices, where t is the number of vertices of degree

n − 1 in G. Such a partition can be found in polynomial time.

Proof : If G is disconnected, let us denote by n1, . . . , nk the numbers of
vertices in its connected components G1, . . . , Gk (k ≥ 2). In each Gi we find
a vertex bipartition on applying Proposition 9. If there are at least two odd
components, then the partitions of the components are easily combined to a
bisection of G that satisfies more than n

2
vertices. For example, if n1, n2 are odd,

n3 is even, and G3 is split unequally, then the equation n1+1
2

+ n2+1
2

+ n3

2
− 1 =

n1−1
2

+ n2−1
2

+ n3

2
+1 corresponds to such a bisection of G1∪G2∪G3. Since pairs

11



of unequally split components of the same parity can always be combined to a
bisection of their union, the only case to be considered is when all components
are even and the number of components Gi partitioned into unequal sizes
(ni

2
+ 1, ni

2
− 1) is odd.

Assume that all components are even and the first three of them are split
unequally. Say, n1 ≥ n2 ≥ n3. Then we can combine the partitions of G1 and
G2 to form a bisection of G1 ∪G2, and take an arbitrary bisection of G3. This
satisfies at least n1

2
+ n2

2
+ 2 > n1+n2+n3

3
vertices in G1 ∪ G2 ∪ G3. Then the

partitions of the remaining classes can be combined to a bisection of their
union that satisfies more than half of their vertices. Altogether, more than n

3

vertices of G get satisfied. Finally, assume that G1 is split unequally and all
the other components are bisected. Then an unequal split of G2 is obtained
by moving any one vertex to the other class of its bisection. This partition of
G2 still satisfies at least n2

2
vertices. This yields a bisection on G1 ∪ G2 with

more than n1+n2

2
satisfied vertices.

Suppose from now on that G is connected, and let H be the complement
of G. We denote by H1, . . . , Hq the connected components of H, and by ni

the number of vertices in Hi for i = 1, . . . , q. Observe that if a vertex is of
degree n−1 in G then it forms alone a connected component in H. Moreover,
any two connected components of H are completely joined in G, therefore if
H = H ′ ∪ H ′′ and no connected component Hi meets both H ′ and H ′′, then
in the union of bisections of H ′ and H ′′ the number of satisfied vertices in G
is the sum of that in the induced subgraphs G[V (H ′)] and G[V (H ′′)].

Consider now a nontrivial connected component Hi, with ni > 1. We will show
that a (quasi-)bisection (V ′

1 , V
′
2) of V (Hi) can be constructed in which at least

⌈ni

3
⌉ vertices get satisfied in any bisection of G that extends (V ′

1 , V
′
2). (In some

cases, the quasi-bisection found in Proposition 9 does not work for the present
purpose.) Since

∑
ni>1 ⌈

ni

3
⌉ ≥ ⌈n

3
⌉, the theorem will follow.

Let M = {(a1, b1), . . . , (ap, bp)} be a maximum matching in Hi. It can be found
efficiently, using e.g. Edmonds’ algorithm [3]. We distinguish two cases.

If |M | ≥ ⌈ni

3
⌉ then consider an arbitrary (quasi-)bisection (V ′′

1 , V ′′
2 ) of V (Hi)\

V (M). Let (V ′
1 , V

′
2) be the partition of V (Hi) obtained from this one by adding

vertices aj to V ′′
1 and vertices bj to V ′′

2 . While there exists a pair (aj, bj) where
both vertices are non-satisfied in G, we exchange these two vertices. Since aj

and bj are not linked in G, this exchange makes both aj and bj satisfied and

decreases the value of the cut in G by at least 2. Therefore, after at most |E|
2

exchanges, we obtain a (quasi-)bisection with at least ⌈ni

3
⌉ vertices satisfied

(at least one vertex in each pair (aj, bj) ).

If |M | < ⌈ni

3
⌉ then using Gallai’s decomposition theorem [4] we can obtain in

12



polynomial time a vertex set S such that 2|M | = ni − ℓ + |S|, where ℓ is the
number of odd connected components of Hi − S. In fact, a vertex is in S if it
is contained in every maximum matching of Hi and has at least one neighbor
x such that some maximum matching avoids x. Algorithmically, first the set
of those x can be identified and then their neighbors are found efficiently.

Let O1, . . . , Oℓ be the odd connected components of Hi − S. From the condi-
tions ni−ℓ+|S|

2
= |M | ≤ ⌈ni

3
⌉ − 1 and ℓ + |S| ≤ ni we see that ℓ − |S| ≥ ⌈ni

3
⌉,

ℓ ≥ ⌈ni

3
⌉, and |S| ≤ ⌈ni

3
⌉. Let us select a vertex vj ∈ Oj adjacent to at least

one vertex of S, for each j = 1, . . . , ℓ. Those vj are mutually adjacent in G.

If ℓ ≥ ⌈ni

2
⌉ then we consider the following (quasi-)bisection (V ′

1 , V
′
2): V ′

1 con-
tains ⌈ni

2
⌉ vertices from v1, . . . , vℓ and V ′

2 contains the other vertices. Ob-
serve that at least ⌈ni

2
⌉ vertices are satisfied in G, since for vj ∈ V ′

1 we have
dV ′

1
(vj) = ⌈ni

2
⌉ − 1 and dV ′

2
(vj) ≤ ⌊ni

2
⌋ − 1.

Suppose next that ⌈ni

3
⌉ ≤ ℓ ≤ ⌈ni

2
⌉. In this case we shall find a (quasi-)bisection

(V ′
1 , V

′
2) of Hi such that all of v1, . . . , vℓ are satisfied in every bisection (V1, V2)

of G that extends (V ′
1 , V

′
2).

We begin with putting into V ′
1 the vertices v1, . . . , vℓ, and into V ′

2 the entire
S together with ℓ − |S| or ℓ − |S| − 1 further vertices of Hi, depending on
whether ni is even or odd. The number of remaining vertices of Hi is even
in either case. So far, v1, . . . , vℓ are satisfied inside the partial partition of G
because they are mutually adjacent in G and each of them has at least one
non-neighbor inside S in G.

While selecting the ℓ − |S| or ℓ − |S| − 1 additional vertices for S, we require
that from each odd component Oj an even number of vertices be taken. Hence,
the remaining part of each Oj will admit a bisection, what we shall use in
extending (V ′

1 , V
′
2) to a bisection (V1, V2) of the entire G. For this, we consider

V (Oj) \ ({vj} ∪ V ′
2) for each odd connected component Oj and put half of

these vertices into V ′
1 and half into V ′

2 in such a way that vj remains satisfied.
The partition in Oj does not influence the satisfied status of vs for any s 6= j,
therefore it can be done independently in all Oj. We complete this partition
by putting half of the remaining vertices (of the even components) into V1 and
half into V2. 2

From Theorem 10 we easily obtain constant-rate approximability as follows.

Theorem 11 Max Satisfying Bisection is 1/3-approximable.

Proof : Given a graph on n vertices, the maximum number of vertices that
are satisfied in a bisection is opt(G) ≤ n− t, where t is the number of vertices
of degree n−1. Using Theorem 10 we can obtain in polynomial time a bisection

where the number of satisfied vertices is val ≥ ⌈n−t
3
⌉ ≥ opt(G)

3
. 2
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Remark: There is an infinite sequence of graphs for which exactly n
3

vertices
can be satisfied in a bisection. Such graphs contain 6n vertices V = {ui, vi, wi :
i = 1, . . . , 2n}. Each vertex ui, vi, wi is completely linked with V \ {ui, vi, wi}.
These graphs are (6n − 3)-regular and thus a vertex in order to be satisfied
must be in the same part with at least 3n − 1 neighbors. Thus, from each
triple ui, vi, wi at most one could be satisfied in a bisection. It is easy to verify
that in the partition with V1 = {ui : i = 1, . . . , n}∪{vi, wi : i = n+1, . . . , 2n}
and V2 = V \ V1, just the vertices ui, i = 1, . . . , 2n are satisfied.

As shown by the last theorem, co-satisfying bisections are much easier to
approximate.

Theorem 12 Max Co-Satisfying Bisection is 1/2-approximable.

Proof : Let (V1, V2) be a bisection of G. While there exist v1 ∈ V1 and v2 ∈ V2

that are not co-satisfied, we exchange v1 and v2. After this exchange the value
of the cut increases by at least 2. Thus, after |E|

2
steps we obtain a bisection

where at least one of the two parts contains co-satisfied vertices only. 2

Remark: The lower bound n/2 given in the proof of Theorem 12 is nearly
tight, since the star of order n = 2t has just t + 1 co-satisfied vertices in every
bisection.

Acknowledgements: We thank the anonymous referee for his many remarks
that improved the presentation of our results, and for calling our attention to
the paper [11] that motivated the results of Section 5.
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