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Abstract

Kernelization algorithms in the context of Parameterized Complexity are of-
ten based on a combination of data reduction rules and combinatorial insights.
We will expose in this paper a similar strategy for obtaining polynomial-time
approximation algorithms. Our method features the use of approximation-
preserving reductions, akin to the notion of parameterized reductions. We ex-
emplify this method to obtain the currently best approximation algorithms for
Harmless Set, Differential and Multiple Nonblocker, all of them can
be considered in the context of securing networks or information propagation.

Keywords: Reduction rules, maximization problems, polynomial-time
approximation, domination problems

1. Introduction

It is well-known that most interesting combinatorial problems are hard from
a computational point of view. More technically speaking, they mostly turn out
to be NP-hard. As many of these combinatorial problems have some importance
for practical applications, several techniques have been developed to deal with
them. From a more mathematical angle, the two most interesting and wide-
spread approaches are (polynomial-time) approximation and fixed-parameter
algorithms. Both areas have developed their own set of tools over the years.
For instance, methods related to Linear Programming are prominent in the
area of Approximation Algorithms [4]. Conversely, data reduction rules are the
method of choice to obtain kernelization results, which is central to Parameter-
ized Algorithms [24]. Another essential ingredient to kernelization algorithms
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is a collection of combinatorial insights to the specific problem, often (already)
supplied by mathematicians working in Combinatorics. It is quite natural to try
to employ certain tools from one area to the other one. For example, the title
of the paper in [39] nicely indicates the intended use of Linear Programming
to obtain FPT algorithms. In this paper, we take the opposite approach and
show how to use data reduction rules and (constructive) combinatorial insights
to obtain approximation algorithms, in particular for maximization problems.
Notice that data reduction rules are often used in heuristic approaches, well-
established in practical implementations. So, our approach also brings the often
more theoretical findings closer to practice.

For the purpose of illustrating our method, we will mainly deal with max-
imization problems that are obtained from domination-type graph problems.
Notice that this set of problems already delivers a wealth of computationally
hard problems with interesting related combinatorial questions, as testified by
the books [31, 32]. We first describe these problems, using standard graph-
theoretic terminology.

Let G = (V,E) be an undirected graph and D ⊆ V .

1. D is called a dominating set if, for all x ∈ V \D, there is a y ∈ D∩N(x).
V \D is known as an enclaveless set [44] or as a nonblocker set [23].

2. D is called a total dominating set if, for all x ∈ V , there is a y ∈ D∩N(x).
V \D has been introduced as a harmless set or robust set (with unaminity
thresholds) in [7].

3. If D can be partitioned as D = D1 ∪ D2 such that, for all x ∈ V \ D,
there is a y ∈ D2 ∩ N(x), then (D2, D1) defines a Roman domination
function fD1,D2

: V → {0, 1, 2} such that fD1,D2
(V ) = Σw∈V fD1,D2

(w) =
2|D2| + |D1|. According to [11], |V | − fD1,D2

(V ) is also known as the
differential of a graph (as introduced in [37]) if fD1,D2

(V ) is smallest
possible.

4. If for all x ∈ V \ D, there are k elements in D ∩ N(x), then D is a
k-dominating set, see [18, 22, 28]. We will call V \D a k-nonblocker set.

The maximization problems derived from these four definitions are: Non-
blocker, Harmless Set, Differential, and k-Nonblocker. Actually,
Nonblocker has been looked into by the approximation algorithm commu-
nity quite a lot in recent years [2, 20, 40], where it is known as the Maximum
Star Forest problem. Although these problems are all better known from
the minimization perspective, there is a good reason to study them in this com-
plementary way: All of these minimization problems do not possess constant-
factor approximations under reasonable complexity assumptions (the reduction
shown in [21] for (Total) Dominating Set starts from Set Cover), while
the complementary problems can be treated in this favorable way. For Roman
Domination, observe that the reduction shown in [27] works from Set Cover,
so that again (basically) the same lower bounds follow. This move is related
to differential approximation [3]. Notice that this comes along with similar
properties from the perspective of Parameterized Complexity: While natural
parameterizations of the minimizations lead to W[2]-hard problems [24, 27], the
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natural parameterizations of the maximization counterparts are fixed-parameter
tractable. However, as this is more customary as a combinatorial entity, let us
refer (as usual) by γ(G) to the size of the smallest dominating set of G, by γt(G)
to the size of the smallest total dominating set, by γR(G) to the Roman domi-
nation number of G, i.e., the smallest value of a Roman domination function of
G, and by γk(G) to the size of the smallest k-dominating set of G.

Some graph-theoretic notations. Let G = (V,E) be a simple undirected graph.
We denote by N(x) the set of neighbors of vertex x; the cardinality of N(x) is
the degree of x. The closed neighborhood of x is the set N [x] = N(x) ∪ {x}. A
vertex of degree zero is known as an isolated vertex, and a vertex of degree one
as a leaf. The number of vertices of a graph is called its order. We say that
G′ = (V ′, E′) is a subgraph of G = (V,E) if V ′ ⊆ V and E′ ⊆ E. Given U ⊆ V ,
G[U ] denotes the subgraph of G = (V,E) induced by U with vertex set U and
edge set {xy | x, y ∈ U ∧xy ∈ E}. A subgraph G′ of G is called induced if there
is a vertex subset U such that G′ = G[U ]. A repetition-free sequence x1, . . . , xk

of vertices is a path in G (of length k−1) if xixi+1 ∈ E for i = 1, . . . , k−1. Then,
we also say that the path x1, . . . , xk connects its endpoints x1 and xk. A graph
is connected if between every pair of vertices, there is a path connecting them.
A graph that is not connected is called disconnected. A connected subgraph
G′ = (V ′, E′) of G = (V,E) with the property that a V ′′ with V ′ ⊆ V ′′ ⊆ V
that induces a connected subgraph of G satisfies V ′ = V ′′ is also known as
a (connected) component of G. The diameter of a connected graph G is the
greatest length of a shortest path in G.

We also employ some non-standard terminology on special paths that we
introduce now. A chain is an induced path whose interior vertices are of degree
two in G. A chain with one leaf endpoint is a pendant chain. A floating chain
is a chain with two leaves. In other words, this is a path component. A support
vertex is a non-leaf endpoint of a pendant chain. Support vertices may have
more than one pendant chain.

Main Results. We introduce a notion of approximation-preserving reductions
analogous to parameter-preserving reductions known in Parameterized Com-
plexity in order to obtain new approximation algorithms. We introduce a gen-
eral methodology to obtain constant-factor approximations for various problems.
For instance, along with an algorithmic version of the upper bound obtained in
[34] on the size of a total dominating set, we present a factor-two approximation
algorithm for Harmless Set, beating the previously known factor of three [7].
Moreover, we are deriving a factor- 11

3
approximation algorithm for Differen-

tial, which was set up as an open problem in [10], where this approximability
question could be only settled for bounded-degree graphs; our approach also
improves on the factor-4 approximation exhibited in [8]. However, as in [10]
APX-completeness was shown for the degree-bounded case, nothing better than
constant-factor approximations can be expected for general graphs. Finally, we
present constant-factor approximation algorithms for k-Nonblocker.
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Organization of the paper. Section 2 explains the use of reduction rules within
maximization problems. It also exhibits the general method. Section 3 shows
how to employ our general method to one specific problem in a non-trivial
way. Sections 4 and 5 show that the same method can be also applied to other
problems. We conclude with discussing further research directions.

2. Approximation preserving reductions for maximization problems

Specializing standard terminology from [4], we can express the following. A
maximization problem P can be specified by a triple (IP , SOLP ,mP), where

1. IP is the set of input instances of P ;

2. SOLP is a function that associates to x ∈ IP the set SOLP(x) of feasible
solutions of x;

3. mP provides on (x, y), where x ∈ IP and y ∈ SOLP(x), a positive integer
which is the value of the solution y.

An optimum solution y∗ to x satisfies: (i) y∗ ∈ SOLP(x), and (ii) mP(y
∗) =

max{mP(y) | y ∈ SOLP(x)}. The value mP(y
∗) is also referred to as m∗

P(x) for
brevity.

Given a maximization problem P , a factor-α approximation, α ≥ 1, asso-
ciates to each x ∈ IP some y ∈ SOLP(x) such that α · mP(x, y) ≥ m∗

P(x).
A solution y ∈ SOLP(x) satisfying α · mP(x, y) ≥ m∗

P(x) is also called an
α-approximate solution for x.

We are now going to present a first key notion for this paper.

Definition 1. Let P = (IP , SOLP ,mP) be a maximization problem. An α-
preserving reduction, with α ≥ 1, is a pair of mappings instP : IP → IP and
solP which, given y′ ∈ SOLP(instP(x)), produces some y ∈ SOLP(x) such
that there are constants a, b ≥ 0 satisfying the following inequalities:

1. a ≤ α · b,
2. m∗

P(instP(x)) + a ≥ m∗
P(x), and

3. ∀y′ ∈ SOLP(instP(x)) : mP(instP(x), y
′) + b ≤ mP(x, solP(y

′)).

When referring to this definition, we mostly explicitly specify the constants
a and b for ease of verification. An important trivial example is given by a pair
of identity mappings that are α-preserving for any α ≥ 1. Notice that a similar
notion has been introduced, or implicitly used, in the context of minimization
problems in [16, 17, 29].

Let us illustrate this notion with the following small examples.

Example 1. Isolate Reduction for Nonblocker. Delete an isolated vertex.
This rule is α-preserving for any α ≥ 1 with a = b = 0. Namely, observe that
no isolated vertex ever goes into a nonblocker set.

For the following example, recall that Independent Set refers to the prob-
lem of finding the maximum set of vertices in a graph such that no two of them
are adjacent.
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Example 2. We are going to discuss three rules.

Isolate Reduction for Independent Set. Delete an isolated vertex.
This rule is α-preserving for any α ≥ 1 with a = b = 1. Namely, observe that
an isolated vertex can always go into an independent set.

Leaf Reduction for Independent Set. If G contains some leaf u with neigh-
bor v, then reduce G to a graph G′ by deleting u and v.
This rule is α-preserving for any α ≥ 1 with a = b = 1. Namely, observe that
the edge a leaf is incident to can be covered by v, never leading to worse results
than taking u. Hence, u can go into the independent set without loss of gener-
ality.

Folding Reduction for Independent Set. If G contains some chain x−u−v
where x and v are not neighbors. Then reduce G to a graph G′ by deleting u
and merging x and v.

This rule was probably first shown (as a parameterized reduction rule for the
related Vertex Cover problem) in [25].

This rule is α-preserving for any α ≥ 1 with a = b = 1.
Let us argue first why b = 1. If solution I ′ to the graph G′ obtained from G
by applying the Folding Reduction contains the vertex w obtained by merging x
and v, then I := (I ′ \ {w}) ∪ {x, v} is an independent set in G. If w /∈ I ′, then
I := I ′ ∪ {u} is an independent set of G.
To see why a = 1, consider some optimum solution (independent set) I of G. If
{x, v} ⊆ I or {x, v} ∩ I = ∅ (and hence u ∈ I, as I is optimum), then we could
easily get an independent set I ′ with |I ′| = |I| − 1 by reversing the argument
leading to conclude that b = 1. If, without loss of generality, x ∈ I but v /∈ I,
then (I \ {x}) ∪ {u} is also an (optimum) independent set of G, and we can
continue our argument as above.

Following the idea of the previous example, we can define a more elaborate
rule for Nonblocker that can deal with certain vertices of degree two:

Example 3. Long Chain Reduction for Nonblocker. If G contains some
chain x− u− v− y connecting x and y, then reduce G to a graph G′ by deleting
u, v, y and introducing edges from x to all vertices from NG(y) (if not already
there).

This rule is α-preserving for any α ≥ 1. This is testified by the pair of numbers
(2, 2). The proof that this claim is correct is straightforward yet non-trivial,
as several cases have to be considered. Since we do not make use of this rule
in the following, we omit the proof here and refer the reader to the proof of a
similar statement for Harmless Set in Theorem 15. The proof of correctness
of the corresponding parameterized reduction can be found in [41]; in [23], this
reduction rule is only mentioned as ”The Degree Two Rule”. Furthermore, we
illustrate in Figure 1 the case when x belongs to the dominating set D that is
considered, while y does not belong to D, showing that such a solution can be
locally changed to another one D′ that is not worse than D. In this picture,
cycled nodes belong to D (or D′, resp.), while boxed nodes do not belong to the
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corresponding nonblocker set. So, we see an exchange argument that is similar
to what we explained with the Folding Reduction for Independent Set.

x u v y

becomes

x u v y

Figure 1: Dealing with x ∈ D, y /∈ D.

Theorem 4. Let P = (IP , SOLP ,mP) be some maximization problem. If the
pair (instP , solP) describes an α-preserving reduction and if, given some in-
stance x, y′ ∈ SOLP(instP(x)) is an α-approximate solution for instP (x),
then y = solP(y

′) is an α-approximate solution for x.

Proof. We have to prove that α ·mP(x, y) ≥ m∗
P(x). Now,

m∗
P(x)

mP(x, y)
≤

m∗
P(instP(x)) + a

mP(instP(x), y′) + b
≤

αmP(instP(x), y
′) + αb

mP(instP(x), y′) + b
= α

as required. �

This shows that an α-preserving reduction leads to a special AP-reduction
as defined in [4]. But there, these reductions were mainly used to prove hardness
results, as it is also the case of [29] that we already mentioned. However, we
use this notion to obtain approximation algorithms.

The notion of an α-preserving reduction was coined following the successful
example of kernelization reductions known from Parameterized Complexity [24].
One of the nice features of those is that they are usually compiled from simpler
rules that are often based on some applicability conditions. In the following,
we describe that this also works out for approximation. We need two further
notions to make this precise.

We call an α-preserving reduction (instP , solP) strict if | instP(x)| < |x|
for all x ∈ IP , and it is called polynomial-time computable if the two mappings
comprising the reduction can be computed in polynomial time.

The following lemma is relatively straightforward but technical to prove.
Yet, it contains an important message: reduction rules can be composed so that
the composition preserves certain properties.

Lemma 5. If (instP , solP ) and (inst′P , sol
′
P) are two α-preserving reduc-

tions , then the composition (i, s) := (instP ◦ inst′P , sol
′
P ◦ solP) is also an

α-preserving reduction. If both (instP , solP) and (inst′P , sol
′
P) are strict

(polynomial-time computable, resp.), then the composition (i, s) is strict (poly-
nomial-time computable, resp.).
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Proof. Consider a situation described as in the lemma, where the pair of
numbers (a, b) shows that (instP , solP) is α-preserving and the pair of num-
bers (a′, b′) shows that (inst′P , sol

′
P) is α-preserving. Clearly, if x ∈ IP , then

instP(x) ∈ IP and hence (instP ◦ inst′P)(x) = inst
′
P(instP(x)) ∈ IP , as

well. A similar observation applies to the solutions (in the reversed order). We
now prove that the composition (i, s) is α-preserving, testified by the pair of
numbers (a+ a′, b+ b′).

m∗
P((instP ◦ inst′P)(x)) + (a+ a′) = (m∗

P(inst
′
P(instP(x))) + a′) + a

≥ m∗
P(instP(x)) + a

≥ m∗
P(x)

The computation for the bounds on the solution is similar and hence omit-
ted. The claims on composability of the strictness and the polynomial-time
computability are easy to see. �

By a trivial induction argument, the previous lemma generalizes to any finite
number of reductions that we like to compose. To continue Example 1, we could
conclude that the following Generalized Isolate Reduction rule for Nonblocker,
described as Delete all isolated vertices, is a strict, polynomial-time computable
reduction which is α-preserving for any α ≥ 1. Namely, it can be implemented
by:

As long as possible, apply the Isolate Reduction for Nonblocker.

Remark 1. Let us briefly discuss the case when we consider α-preserving re-
ductions (as in our definition) with a, b < 0. Strictly speaking, such reductions
do not satisfy Definition 1. However, Theorem 4 still holds true in this case.
The reason why we excluded such reductions from our discussions in general is
that one crucial argument would fail with such a notion: namely, such reduc-
tions cannot be processed until they are no longer applicable in a general loop,
as (often) the instance will (at least potentially) expand and not shrink as it is
the case with our definition, which means that such a loop might not terminate.

However, occasionally we will use such a reduction rule as the very last one
(in a chain of rules that we apply). Due to the validity of Theorem 4, this still
leads to a good approximation algorithm. We will call such a reduction (for
clarity) a weak α-preserving reduction.

In actual fact, this peculiarity resembles the discussions in the area of Pa-
rameterized Complexity, or better said in the subarea of Kernelization, about
the question whether a kernelization mapping should be allowed to increase the
value of the parameter or not. If such an increase is allowed, again infinite
loops are possible when arbitrarily composing kernelizations. Hence, for several
technical results, non-increasing the parameter value is required. We will make
use of the possibility of having a weak α-preserving reduction applied in the
end only once, see Observation 34. The interested reader is invited to inter-
pret the according reduction rules as data reduction rules in the parameterized
sense. One can then observe that it is exactly this weak α-preserving rule that
corresponds to a kernelization rule which increases the parameter.
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Conditional reductions. In the realm of Kernelization, reductions are often de-
scribed in some conditional form:

if condition then do action

Our previous considerations apply also for this type of conditioned reductions,
apart from the fact that an instance may not change, assuming that the reduc-
tion was not applicable, which means that the condition was not true for that
instance.

First, we have to make clear what the notions of “strictness” and “polynomial-
time computations” refer to in the context of reduction rules with conditions.
“Strictness” now means that the input will be shortened if the condition is
met, and “polynomial time” means two things: a) the condition can be checked
in polynomial time and b) the possibly triggered action can be performed in
polynomial time. Moreover, often there is a finite collection of conditioned re-
ductions. These can be combined in quite a natural way into a single conditioned
reduction. This is formally described in the following lemma.

Lemma 6. Assume that, for each 1 ≤ i ≤ n,

if conditioni then do actioni

is a conditioned α-preserving reduction. Then, these can be combined into a
single conditioned α-preserving reduction 〈combi-condition, combi-action〉 as fol-
lows:

if ∃i(conditioni) then do perform some applicable actioni

If all original conditioned reductions are strict (polynomial-time computable,
resp.), then the combined reduction is strict (polynomial-time computable, resp.).

Now, we can present a general recipe how to obtain a polynomial-time factor-
α approximation based on α-preserving reductions. The previous lemma shows
that the use of a single reduction in the formulation of the next theorem does
not lose any generality.

Theorem 7. Assume that P is some maximation problem. Suppose that

if condition(x) then do action(x)

is some conditioned α-preserving, strict, polynomial-time computable reduction.
Further assume that there is some polynomial-time computable factor-α approxi-
mation algorithm A for P, restricted to instances from {x ∈ IP | ¬condition(x)}.
Then, there is a polynomial-time computable factor-α approximation algorithm
for all instances.

Proof. The desired algorithm should work as follows. Given an instance x:

1. As long as possible, some α-preserving reductions are performed. This
yields the sequence of instances x = x0, x1, . . . , xn.
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2. Then, A is applied to the reduced instance x′ := xn.

3. As yn := y′ := A(x′) is an α-approximate solution for x′ = xn, we can
successively construct α-approximate solutions yn−1 for xn−1, . . . , y1 for
x1 and finally y := y0 for x = x0.

4. Return y as approximate solution for x.

As compositions of α-preserving reductions yield α-preserving reductions (main-
taining some desirable properties), as shown in Lemma 5, any α-approximate
solution to xn can be turned into an α-approximate solution for x. Hence, all
claimed properties directly follow by our previous considerations, apart from
the polynomial-time claim. Here, observe as the reductions are strict, n ≤ |x|,
so that the loop in Step 1 terminates after a polynomial number of steps. �

The general strategy that we follow can be sketched as follows:

1. Apply (strict, poly-time computable) α-preserving reduction rules as long
as possible.

2. Possibly modify the resulting graph so that it meets some requirements
from known combinatorial results on the graph parameter of interest.

3. Compute some solution for the modified graph that satisfies the mentioned
combinatorial bounds.

4. Construct from this solution a good approximate solution for the original
instance.

In order to illustrate the use of this strategy, let us elaborate on Non-
blocker, matching a result from [40].

Example 8. Actually, conceptually this algorithm is even simpler than the one
we present for Harmless Set in particular in the following sections. This
goes along the lines of the kernelization result by Dehne et al. [23], but ker-
nelization needs no constructive proof of the combinatorial backbone result; the
non-constructive proof of [13, 38] is hence sufficient.

1. Delete all isolated vertices.
This is just the Generalized Isolate Reduction rule for Nonblocker discussed
above. Hence, this rule is α-preserving for any α ≥ 1 (with a = b = 0).
If the resulting graph is of minimum degree at least two, we are ready to
directly apply the algorithm of Nguyen et al. [40]. Otherwise, we continue
as described in the following.

2. Merge all leaf neighbors into a single vertex.
Again, this rule is α-preserving for any α ≥ 1 (with a = b = 0 for a single
merge and hence also for a finite sequence of merges).

3. Delete all leaves but one, which is x.
Again, this rule is α-preserving for any α ≥ 1 (with a = b = 1 for a single
deletion; hence it is also α-preserving for a finite sequence of deletions).

4. Steps 1, 2 and 3 yield the graph G of order nG.
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5. Create a copy G′ of the graph G; call the vertices in the new graph by
priming the names of vertices of G. Let H be the graph union of G and
G′ plus the edge xx′. H is of minimum degree at least two by construction.

6. Take the algorithm of Nguyen et al. [40] to obtain a dominating set DH

of H satisfying |DH | ≤ 2
5
nH . Should the solution DH contain x or x′, it

is not hard to modify it to contain the leaf neighbors y or y′, instead.

7. Hence, DG = VG ∩DH is a dominating set for G with |DG| ≤
2
5
nG. Triv-

ially, NG = VG \DG is a nonblocker solution for G that is 5
3
-approximate.

8. As the merging and deletion reductions are α-preserving for each α ≥ 1,
we can safely undo them and hence obtain a 5

3
-approximate solution for

the original graph instance.

Better approximation algorithms for Nonblocker have been obtained by
Chen et al. [20] (with a factor of 1.41) and by Athanassopoulos et al. [2] (with
a factor of 1.244). It would be interesting to learn of more proper combina-
torial approaches that could improve on the factor 1.67 exhibited above. For
instance, possibly the Long Chain Reduction for Nonblocker shown in Exam-
ple 3 could be helpful, as better combinatorial bounds are known for nonblocker
sets (dominating sets) in the case of graphs of minimum degree three; see [43].
Unforunately, also Reed’s proof is non-constructive and would first have to be
turned into a polynomial-time algorithm to make use of this result.

Nguyen et al. used a slightly different way to obtain their approximation
algorithm. Let us reformulate and sketch the result from [40] within our frame-
work. As a reduction rule, they only remove isolated vertices; these would be
put into the dominating set anyways. The combinatorial result aimed at is the
one exhibited by Blank [13] and (independently) by McCuaig and Shepherd [38]
that shows that any graph (except for seven exceptional graphs) of order n with
minimum degree of at least two has a dominating set with at most 2

5
n vertices.

This result is used by first modifying the graph by deleting all leaves and then
interconnecting the leaf neighbors so that the minimum degree two requirement
is met. It is then shown that it is possible to construct a nonblocker set for G,
given a dominating set DH satisfying |DH | ≤ 2

5
nH for the modified graph H.

An essential ingredient is a new proof of the mentioned result from [38] that is
in fact a polynomial-time algorithm to compute DH within H.This result was
also used by our version of this algorithm given above.

3. Harmless Set

We are now turning towards Harmless Set as the most elaborate example
of our methodology. First, we are going to present the combinatorial backbone
of our result. Let S2(G) be the set all vertices of degree two within G. By
courtesy to the authors, let us say that G satisfies the Lam-Wei property if it
has minimum degree at least two and G[S2(G)] decomposes into K1- and K2-
components. This property is equivalent to requiring that G has no isolates, no
leaves and no three consecutive vertices of degree two.
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Theorem 9. (Lam and Wei [34]) Let G be a graph of order nG that satisfies
the Lam-Wei property. Then, γt(G) ≤ nG/2.

The proof of this theorem is non-constructive, as it uses tools from extremal
combinatorics. Now, we show how to obtain a polynomial-time algorithm that
actually computes a total dominating set (TDS) D with |D| ≤ nG/2 under the
assumptions of Theorem 9.

As connected components can be dealt with consecutively, we can assume
that G is connected in the following discussion.

First, we greedily remove edges, as long as the graph still satisfies the Lam-
Wei property. A TDS computed for the resulting graph is also a TDS for the
original graph. For simplicity, we can hence further assume that no edges can
be removed from G without violating the Lam-Wei property. This is a technical
condition needed for applying some of the Lemmas from [34].

We now differentiate two main cases:� If S2(G) is an independent set in G, i.e., if G[S2(G)] has no edges, then
we have to differentiate further cases when the shortest cycle in G is of
length 3, 4, 5, 6, or larger. In each of the cases, Lam and Wei show how
to construct a graph G′ smaller than G that also satisfies the Lam-Wei
property.� Otherwise, G[S2(G)] contains a K2-component. Starting out from such a
path of length one, the proof of [34, Lemma 6] shows how to construct
a set Q of vertices such that the graph G′ = G[V \ Q] also satisfies the

Lam-Wei property and, moreover, γt(G) ≤ γt(G
′) + |Q|

2
is satisfied.

As some optimum TDS can be surely easily computed for small graphs, the
sketched procedure allows to recursively compute some TDS solution for G.
Notice in particular that the proofs of Lam and Wei show how to construct a
solution for the calling instance from the one obtained for the called instance
(in the recursion). Also, it is shown (as explicitly indicated in the second case
above) that the claimed bound on the solution size easily follows by induction.

Hence, we can state the following constructive version of the combinatorial
result of Lam and Wei:

Theorem 10. For a given graph G = (V,E) of order nG that satisfies the Lam-
Wei property, one can compute a TDS D ⊆ V with |D| ≤ nG

2
in polynomial

time.

Observe that a quick analysis of the sketched algorithm indicates a bound
of O(n8

G) for the running time, as one has to actually verify that there are no
short cycles in G to match the case analysis. Supposedly, a complete re-analysis
of the combinatorial argument could reveal better algorithms, but for the proof
of concept of our methodology, this analysis is sufficient here.

Our approximation algorithm for Harmless Set is based on obtaining a
(small enough) TDS in a graph H obtained from the input G after a number
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of modifications (mainly vertex deletions). In the reduction from G to H , we
distinguish between the number of deleted vertices d (to get from G to H) and
the number of vertices a added to convert the TDS DH to DG.

Theorem 11. Let G be a graph of order nG and let H be a graph of order nH

obtained from G by deleting d vertices and possibly adding some edges. Let DG

and DH be TDS solutions of G and H, respectively, such that a = |DG|−|DH| ≤
d. If |DH | ≤ c·nH for some c < 1 and if d ≤ γt(G), then V (G)\DG is a harmless
set of G whose size nG − |DG| is within a factor of (1− c)−1 from optimum.

Proof. As nH = nG − d, |DG| = |DH |+ a ≤ c(nG − d) + a = cnG +(a− cd) ≤
cnG + d − cd = cnG + (1 − c)d ≤ cnG + (1 − c)γt(G). Hence, nG − |DG| ≥
nG − cnG − (1 − c)γt(G) = (1 − c)(nG − γt(G)). This immediately yields an
approximation factor of (1− c)−1. �

In the following section, we will present reduction rules that produce a graph
G with the property (**) that each vertex of degree bigger than one has at most
one leaf neighbor. The surgery that produces a graph H from G as indicated
in Theorem 11 includes removing all d leaves and adding edges to ensure that
H has minimum degree of two and satisfies that each component of H [S2(H)]
has diameter at most one. Notice that all leaf neighbors in G belong to some
optimum TDS of G without loss of generality. Due to (**), γt(G) ≥ d as
required. Moreover, given some TDS solution DH for H , we can produce a
valid TDS solution DG for G by adding all d leaf neighbors to DH . Notice that
Theorem 11 leads to a factor-2 approximation algorithm for Harmless Set
based on Theorem 10.

In the following part of the section, we are going to describe the reduction
rules necessary to produce a graph to which we could apply the mentioned
combinatorial results.

Reduction Rules for Harmless Set

Now, we list α-preserving reductions for Harmless Set. We start with two
very simple rules.

Isolate Reduction. If there is some isolated vertex, produce the instance
({x}, ∅) that has trivially no solution. If there is some isolated edge xy, produce
the instance G[V \ {x, y}] from G = (V,E).

Leaf Reduction. If there are two leaf vertices u, v with common neighbor w,
then delete u. (It would go into the harmless set.)

Observation 12. The two reduction rules are correct. The Isolate Reduction
(for edges) and the Leaf Reduction are α-preserving for any α ≥ 1.

Proof. For the correctness of the Isolate Reduction rule (for vertices), observe
that a graph with isolated vertices has no total dominating set at all. The
correctness of the other rules is easily seen. The Isolate Reduction (for edges)
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is α-preserving by setting a = b = 0 in the definition. In other words, endpoints
of isolated edges must belong to any TDS solution. The Leaf Reduction is α-
preserving by setting a = b = 1 in the definition. This is because leaves do not
belong to some optimum TDS solution, except when there is a K2-component
in the graph. �

Hence from now on, no vertex can have two leaf neighbors.
Actually, we could generalize the Leaf Reduction towards the following rule:

Twin Reduction. Recall that vertices u and v are said to be true twins if
N [u] = N [v] and false twin if N(u) = N(v).� If there are two vertices u and v such that N [u] = N [v], i.e., they form

true twins, then delete v.� If there are two vertices u and v such that N(u) = N(v), i.e., they form
false twins, then delete v.

In fact, vertices deleted by the Twin Reduction would go into the harmless
set, unless they are isolates. As we are not using this rule in some crucial manner
in what follows, we present the following result without proof.

Theorem 13. The Twin Reduction is α-preserving for any α ≥ 1.

We shall reduce the length of pendant chains to at most two, based on
the following reduction rules. The first one actually generalizes the Isolate
Reduction.

Floating Chain Reduction. Delete all floating chains.

Observation 14. The Floating Chain Reduction is α-preserving for any α ≥ 1.

Proof. G′ is obtained from G by deleting a floating chain. For the chain, the
numbers a = b can be computed (optimally) in linear time; they correspond to
the size of optimum solutions for the floating chain component. �

Long Chain Reduction. Assume that G is a graph that contains a path
x − u − v − w − y, where u, v, w are three consecutive vertices of degree two,
where |N(y)| ≥ 2. Then, construct the graph G′ by� deleting x, u, v, w and� connecting y to all vertices in N(x)\ {u} (without creating double edges).

This corresponds to merging x and y and deleting u, v, w. This Long Chain
Reduction resembles the folding rule known for Vertex Cover (in Parame-
terized Complexity, see [24]).

Theorem 15. The Long Chain Reduction is α-preserving for any α ≥ 1.
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Proof. Let G be the original graph and G′ the graph obtained from G by
deleting the path u, v, w and merging x and y as described by the rule. We
show in the following that a = 2 (in part (a)) and b = 2 (in part (b)) by
considering several cases.

(a) Let C be a maximum harmless set (HS) for G. Let us first briefly discuss
what happens if N(x) = {u}, i.e., if x is a leaf. Then, it is not hard to see that
an optimum solution C would contain x and w, but not u and v. Merging x
and y and deleting u, v, w is now equivalent to deleting the whole pending chain
x− u − v − w. As w ∈ C, it does not dominate y, so that C′ = C \ {x,w} is a
harmless set for G′.

In the following discussion, we can hence assume that x has at least two
neighbors. Hence, min{|N(x)|, |N(y)|} ≥ 2. We now consider cases whether or
not x ∈ C or y ∈ C.� Assume that x ∈ C and y ∈ C. Hence, u,w are not dominated neither by

x nor by y. As C is maximum, we can assume |C ∩{u, v, w}| = 1. Indeed,
suppose that it is not the case, that is all of u, v and w are in V \ C.
Since min{|N(x)|, |N(y)|} ≥ 2, we can define the new solution C ∪ {w} \
{vy} of same size where vy ∈ N(y) \ {w}. Hence, C′ = C \ {x, u, v, w} is
a HS of G′, with |C′| = |C| − 2.� Assume that x /∈ C and y /∈ C. First, let us discuss the possibility that
u /∈ C and w /∈ C. As C is maximum, the purpose of this is to dominate (i)
v and (ii) x and y. To accomplish (i), either u /∈ C or w /∈ C would suffice.
However, as C is maximum, condition (ii) means that N(x)\C = {u} and
that N(y) \ C = {w}. By our assumptions, min{|N(x)|, |N(y)|} ≥ 2.
Hence, there is a vertex z ∈ N(y), z 6= w. Now, C̃ = (C \ {z}) ∪ {w} is
also a maximum HS satisfying {v, w} ⊆ C̃. From now on, we assume that
|C ∩ {u, v, w}| = 2 and that |((N(x) ∪N(y)) \ ({u,w} ∪C)| ≥ 1 (in other
words, at least one of x and y has a neighbor in V \C other than u and w,
respectively). Hence, C′ = C \ {u, v, w} is a HS of G′ with |C′| = |C| − 2.

x u v w y

becomes

x u v w y

Figure 2: Dealing with x ∈ C, y /∈ C, with y dominated.� Assume now that x ∈ C and y /∈ C. (As min{|N(x)|, |N(y)|} ≥ 2, the
case that x /∈ C and y ∈ C is symmetric.) We argue in the following that
we can obtain another solution no worse than C that matches one of the
previously considered cases, by locally exchanging some vertices between
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x u v w y

becomes

x u v w y

Figure 3: Dealing with x ∈ C, y /∈ C, with x dominated.

C and its complement. These cases are depicted in Figures 2 and 3. There,
squared nodes refer to members of the HS, and round nodes to vertices in
the corresponding TDS.

As u is not dominated by x, either (i) {u, v} ⊆ V \C or (ii) {v, w} ⊆ V \C.
In case (i), x is dominated by u, but y must (still) be dominated by some
vertex from N(y) \ {w}. In case (ii), symmmetrically y is dominated by
w, but x must be dominated by some vertex from N(x) \ {u}. In both
cases, C̃ = (C \ {x}) ∪ {v} is another maximum harmless set of G. This
leads us back to the previous item (i.e., |C′| = |C| − 2.)

Summarizing, we have shown that from C we can construct a harmless set
C′ for G′ with |C′| = |C| − 2. Thus the maximum harmless set C′∗ for G′

satisfies |C′∗| ≥ |C′| = |C| − 2. Therefore, the inequality 1 of Definition 1 is
satisfied with a = 2.

x u v w y

or

x u v w y

Figure 4: How to regain a solution from C′ when y ∈ C′.

(b) Conversely, assume C′ is some harmless set for G′. We distinguish two cases:� Assume that y ∈ C′. Then, y is dominated by some z in its neighborhood
(in G′). We consider two cases according to the situation in G. (i) If
z ∈ N(x), then C = C′ ∪{x, u} is a HS in G. (ii) If z ∈ N(y) \N(x), then
C = C′ ∪ {x,w} is a HS in G. In both cases, |C| = |C′| + 2. We refer to
Figure 4.� If y /∈ C′, then again y is dominated by some z in its neighborhood (in
G′). We perform the same case distinction as in the previous case: (i) If
z ∈ N(x), then C = C′ ∪{u, v} is a HS in G. (ii) If z ∈ N(y) \N(x), then
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x u v w y

or

x u v w y

Figure 5: How to regain a solution from C′ when y /∈ C′.

C = C′ ∪ {v, w} is a HS in G. In both cases, |C| = |C′| + 2. We refer to
Figure 5.

Thus the inequality 2 of Definition 1 is satisfied with b = 2. �

Similarly, one sees the correctness of the following rule.

Cycle Chain Reduction. If G is a graph that contains a cycle x−u−v−w−x,
where u, v, w are three consecutive vertices of degree two, then construct the
graph G′ by deleting u.

Observation 16. The cycle chain reduction is α-preserving for any α ≥ 1.

Proof. An optimum harmless set for G will put exactly two out of the three
vertices u, v, w into the harmless set. W.l.o.g., let these be u and v. Conversely,
w and x would go into the total dominating set. Also, in the reduced graph, v
will be in the harmless set, while x and w will be in the total dominating set.
This shows the claim with constants a = b = 1. �

Hence, a graph reduced by the reduction rules mentioned so far may only
contain chains of length four, with at most two consecutive vertices of degree
two.

Finally, we deal with support vertices with multiple pendant chains. Assum-
ing the Long Chain Reduction has been applied, any pendant chain is of length
two or less. Accordingly, a support vertex where two of more pendant chains
meet does belong to some optimum solution. The following rule makes this idea
more precise.

Pendant Chain Reduction. Assume that G = (V,E) is a graph that contains
two pendant chains with common endpoint v of which at least one path is of
length two. Then, construct the graph G′ = (V ′, E′) by deleting one of the two
pendant chains, keeping one which is of length two.

Theorem 17. The Pendant Chain Reduction is α-preserving for any α ≥ 1.

Proof. Let v−x− y and (a) v− z− t (or (b) just v− t) be two pendant paths
of G. Sketches to these two cases can be found in Figure 6. Then y belongs to
some maximum harmless set C of G while x and v belong to V (G)\C. Similarly,
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t v x y

or

t z v x y

Figure 6: Sketches of the two cases in the Pendant Chain Reduction.

z (if it exists) belongs to V (G) \ C, while t belongs to C. It follows that the
definition of α-preserving reduction can be applied with a = b = 1. Notice
that, because we keep v− x− y, neither v nor x will belong to any harmless set
solution for the reduced graph. Hence, adding t to the harmless set solution of
the reduced graph is always possible, resulting in a valid harmless set for the
original graph. �

We are now in the position to apply Theorem 11.

Observation 18. Assume the graph G = (V,E) is reduced according to the
reduction rules described so far. Then, G satisfies the following properties:� G contains no chain of three vertices of degree two.� By the Leaf Reduction rule, any vertex has at most one leaf neighbor.

We can summarize our findings as follows:

Theorem 19. Harmless Set is factor-2 polynomial-time approximable.

Proof. We will first describe how the approximation algorithm works. Let us
assume that G = (V,E) is an instance of Harmless Set that is reduced ac-
cording to the previously presented α-preserving reduction rules. In particular,
G satisfies the properties listed in Observation 18. Let G′ be a graph isomor-
phic to G so that each vertex v of G corresponds to a vertex v′ of G′, under
the assumed isomorphism f : V (G) −→ V (G′). Let L be the set of leaves of
G (and correspondingly L′ the set of leaves of G′). Let N be the set of leaf
neighbors of G and N ′ be the set of leaf neighbors of G′. By our properties of
G and by construction, |N ′| = |N | = |L| = |L′|. Let G̃ := G[V (G) \ L] and
G̃′ := G′[V (G′) \ L′]. We construct a graph H obtained from the graph union
of G̃ and G̃′ simply by adding edges between each pair of corresponding leaf
neighbors v ∈ N of G and v′ = f(v) ∈ N ′.
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Due to the application of the Pendant Chain Reduction rule to G (and G′),
the addition of edges between corresponding leaf neighbors in G and G′ does not
introduce induced cycles with more than two consecutive degree-two vertices.

Observe that the resulting graph H might contain chains with more than
two vertices of degree two. This happens if G contains a pendant chain with two
vertices of degree two. Let z−y−x−v be such a path, with z being a leaf and v
having degree at least three. Connecting the two leaf neighbors y and y′ yields
the chain v− x− y− y′ − x′ − v′ in H that contains four consecutive vertices of
degree two. In actual fact, this is the only way how H could contain such long
chains. To the resulting graph H , apply the Long Chain Reduction rule as long
as possible. Notice that an application of this rule does never decrease degrees,
adds two vertices to the solution and removes four vertices of the graph. In our
little example, v − x− y − y′ − x′ − v′ would be converted into v − v′.

This results in a graph H ′ of order nH′ with minimum degree at least two
containing no chain of three vertices of degree two. Hence, we can apply the
polynomial-time algorithm stated in Theorem 10 that returns a TDS DH′ forH ′

with 2|DH′ | ≤ nH′ . Undoing a certain number of Long Chain Reductions, say,
c, that we applied, we obtain a TDS DH for H with 2|DH | = 2(|DH′ | + 2c) ≤
nH′ + 4c = nH .

Now, we are going to separateH again into G and G′. LetD := DH∪N∪N ′.
Notice that it is possible that some vertices of N ∪N ′ already belong to DH .

We will describe how to add further vertices to D in what follows in order
to turn D into a total dominating set DG∪G′ for the graph union G ∪G′.

Namely, the following needs to be done for each pair of vertices x, x′ where
x ∈ N and x′ ∈ N ′. It should become clear by the analysis that for each such
pair, at most two vertices are added to DH to produce the final DG∪G′ , so that
we can conclude that |DG∪G′ \DH | ≤ 2|L| = 2|N |. This is formally seen, as we
define a function f : N ∪N ′ → V ∪ V ′ such that DG∪G′ is a total dominating
set of G ∪G′ that can be described as

DG∪G′ = DH ∪ f(N ∪N ′).

Notice that the vertices in L∪L′ are the only ones that are potentially not yet
dominated in G∪G′; this is why we can restrict our attention to these vertices.
So, let x ∈ N in the following.� If x ∈ DH and x′ ∈ DH , then choose some y ∈ NG(x) and put both y and

y′ into D. Define f(x) = y and f(x′) = y′. Hence, {x, x′, y, y′} \ DH ⊆
{f(x), f(x′)}.� If x ∈ DH but x′ /∈ DH , then x is already dominated by some y in H
that belongs to G. Only x′ needs to be fixed; for simplicity, add y′ to D.
Define f(x) = x′ and f(x′) = y′. Here, {x, x′, y, y′} \DH ⊆ {f(x), f(x′)}.� If neither x nor x′ belong to DH , then x is dominated (in H) by some
y that belongs to G and x′ is dominated by some z′ from G′. Define
f(x) = x and f(x′) = x′. Now, {x, x′, y, y′, z, z′} \DH ⊆ {f(x), f(x′)}.
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Now, we want to apply Theorem 11 to the graphs G ∪ G′ and H , and to
the TDS solutions DG∪G′ and DH that we obtained for these graphs so far.
We have to check if the conditions of that theorem are met. Observe that H is
obtained from G∪G′ by deleting d = 2|L| (leaf) vertices and adding some edges,
although this is not the original description of the construction of H (from G).
Notice that d = 2|L| ≤ γt(G ∪G′) = 2γt(G). Also, for a = |DG∪G′| − |DH |, we
have shown that a = |DH ∪ f(N ∪N ′)| − |DH | = |(DH ∪ f(N ∪N ′)) \DH | ≤
|f(N ∪N ′)| ≤ 2|N | = d.

By our reduction rules and by our construction, the graph H ′ obtained from
H satisfies the Lam-Wei property. Hence, we can apply Theorem 10 and obtain
(in polynomial time) a total dominating set DH′ for H ′ and, as explained above,
from DH′ we can construct (in polynomial time) a TDS DH for H that satisfies
2|DH | ≤ nH . Theorem 11 allows us hence to conclude that V (G ∪G′) \DG∪G′

is a 2-approximate harmless set solution for G ∪ G′ that can be computed in
polynomial time.

By symmetry, we can assume that |DG∪G′∩V (G)| ≤ |DG∪G′∩V (G′)|. Hence,
DG := DG∪G′ ∩ V (G) is a TDS for G, such that V (G) \DG is a 2-approximate
harmless set solution for G. Finally, notice that the graph G we are talking
about in the last paragraphs is already reduced with respect to the reduction
rules that we presented. However, as all these reduction rules are α-preserving
for any α ≥ 1, we can also obtain a 2-approximate harmless set solution for any
graph Ĝ. Namely, if the graph G was obtained from Ĝ by exhaustively applying
our reduction rules, we also know how to construct a 2-approximate harmless
set solution HS

Ĝ
for Ĝ from V (G) \DG in polynomial time. �

4. The differential of a graph

Let us start with an alternative presentation of this notion. Let G = (V,E)
be a graph. For X ⊆ V , let

∂(X) :=

∣

∣

∣

∣

∣

(

⋃

x∈X

N(x)

)

\X

∣

∣

∣

∣

∣

− |X |.

∂(X) is called the differential of the setX , and our aim is to find a vertex set that
maximizes this quantity. This maximum quantity is known as the differential of
G, written ∂(G). We introduced above the Roman domination number γR(G)
as the smallest value of any Roman domination function on V . As was shown in
[11], the following Gallai-type equality holds: γR(G)+∂(G) = |V | for any graph
G = (V,E). This is the same type of relationship as we saw for domination
(and nonblocker) and for total domination (and harmless set).

The following combinatorial results are known:

Theorem 20. [9, 11, 19] Let G be a connected graph of order n.� If n ≥ 3, then ∂(G) ≥ n/5.
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� If G has minimum degree at least two, then ∂(G) ≥ 3n
11
, apart from five

exceptional graphs, none of them having more than seven vertices.

It is not hard to turn the first combinatorial result into a kernelization result,
yielding a kernel bound of 5k, where k is the natural parameterization of the
Differential. Along the lines of [7], we can obtain a factor-5 approximation
by first computing a spanning tree T = (V,ET ) for G and then computing an
optimum differential set DT in T by dynamic programming, and then observing
that DT is a factor-5 approximation for G. In [8], this result was improved to
a kernel whose order is bounded by 4k. Along those lines, we can also get a
factor-4 approximation. However, the second item of Theorem 20 suggests a
possible improvement to a factor of 11

3
if we employ our framework. This is

what we are going to endeavor in this section.

1. Leaf Reduction. If there are two leaves adjacent to the same vertex,
then connect these leaves by an edge.

2. Hair Reduction. If there are two hairs connected to the same vertex,
then remove the two hair leaves.

3. Hair-Leaf Reduction. If there is a leaf and a hair connected to the
same vertex, then remove the hair leaf.

4. Long Hair Reduction. If there is a long hair u − v − w − · · · , then
remove u, v, w.

5. Neighbor Hair Reduction. If there is a hair u− v − · · · connected to
a vertex w and another hair u′ − v′ − · · · connected to a neighbor w′ of
w, then remove the edge ww′.

Table 1: Reductions for Differential.

First, we show that the reduction rules presented in [8] as kernelization
rules (and exhibited in adapted form in Table 1) can be also interpreted as α-
preserving rules. We use some non-standard terminology for stating the rules.
A hair is a sequence of two vertices uv, where u is a leaf and v has degree two.
Then, u is also called a hair leaf. We use the following simple notation for a hair
uv for reasons of clarity: u−v−· · · . Notice that a hair corresponds to a pendant
chain of length two. Accordingly, a pendant chain of length three corresponds to
a long hair, referring more precisely to three vertices u−v−w−· · · , where v and
w are of degree two and u is a leaf. The first three reduction rules from Table 1
are illustrated in Figures 7 and 8. There, round nodes indicate vertices that
belong (without loss of generality) to a set X delivering the biggest differential.
Likewise, they would receive a value of two by an optimum Roman domination
function. Squared nodes denote vertices that are not in X .

In the reasoning given for the rules in [8], only for the Long Hair Reduction,
the natural parameter k upperbounding the differential of the graph changes
(decreases by one). The argument shows (for the other cases) that even if a
set of vertices is produced for the reduced graph that is not a valid solution
for the original graph, still another solution can be constructed that is not
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x

becomes
x

Figure 7: Sketch of the Leaf Reduction.

x

becomes
x

Figure 8: Sketch of the Hair and the Hair-Leaf Reductions.

worse (smaller) than the one that was obtained, so that approximation factors
are clearly preserved. Hence, all rules but the Long Hair Reduction are α-
preserving as testified by the numbers a = b = 0 in the definition. The Long
Hair Reduction can be seen to be α-preserving when setting a = b = 1. Hence,
we can summarize:

Observation 21. The five reduction rules listed in Table 1 are α-preserving for
any α ≥ 1.

Lemma 22. [8] Let G be a graph where none of the previous five reductions
applies. Then, G has the following properties:

(1) To each vertex, at most one leaf or one hair is attached, but not both
together.

(2) If we remove all leaves and all hairs from G, then the remaining graph,
henceforth called nucleus, has minimum degree of at least two.

(3) If a hair is attached to a vertex u in the nucleus, then no hair is attached
to any neighbor of u within the nucleus.

Notice that the properties listed in Lemma 22 ensure that when obtaining
the nucleus H from the reduced graph G by deleting d vertices, d ≤ γR(G) is
verified. In order to verify that a sufficiently big solution for the nucleus can be
found in polynomial time, observe the proof strategy of [9]: there, the differential
of a graph is modeled by so-called big star packings. It is possible to start
with a greedily obtained big star packing and then further modify the solution,
using the local (and hence easy-to-check) criteria exhibited in various lemmas
of that paper, up to the point when no further improvements are possible. The
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big star packing obtained in this way corresponds to a differential set D with
∂(D) ≥ 3

11
n, where n is the order of the graph.

As the proof in [9] uses extremal combinatorial arguments, it is (at least at
first glance) non-constructive. Let us give some more details of the algorithm
that is hidden within these combinatorial arguments in the following.

The greedy selection of a big star packing. We will (from now on) work on a
mixed graph (i.e., a graph that has both directed and undirected edges; directed
edges are also called arcs) such that each vertex has at most one outgoing arc,
and no vertex with an incoming arc has an outgoing arc. We will call a vertex
incident to some directed arc marked. As we start with an undirected graph
G = (V,E), at the beginning all vertices are unmarked. We proceed as follows:

As long as possible:� Pick some unmarked vertex x with at least two unmarked neighbors.� Direct all edges connecting x to any unmarked neighbor towards x.

Now, consider the set D of vertices to which some arcs point to, and let
B(D) denote the remaining marked vertices. Clearly,

(
⋃

x∈D N(x)
)

\D = B(D).
Hence, ∂(D) = |B(D)| − |D|. Moreover, due to the directions of the edges, we
can view each x ∈ D as the center of a star to which at least two arcs (rays)
are pointing. So, we have defined a collection S(D) of stars that can be viewed
as a star packing. As each star has at least two rays, we call them big stars.
Due to our greedy approach, we hence arrive at S(D) as being a maximal big
star packing. Moreover, |B(D)| is also the number of directed edges (or rays)
in total. Let C(D) := V \ (B(D) ∪D).

By definition of the partition (D,B(D), C(D)) of V we find:

Observation 23. No edge connects vertices from D with vertices from C(D).

As we obtain a maximal big star packing, we conclude:

Observation 24. The induced graph G[C(D)] is undirected and decomposes
into K1- and K2-components.

First local improvement. We are now going to improve the solution found so
far.

As long as possible:� Pick some vertex x from B(D) that has two or more neighbors in C(D).� Let y ∈ D be such that the edge xy is directed towards y.� Replace the arc from x to y by an undirected edge again.� If there is now (only) one arc zy directed to y, remove y from D and render
zy an undirected edge again. (This will increase the number of unmarked
vertices.)
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� Direct all edges that connect x to some unmarked vertex towards x and
put x into D.

If no further improvements are possible, one might want to ensure that the
(new) big star packing S(D) is still maximal. If not, obvious further improve-
ments are possible. However, after a finite number of steps, this will end.

The new set D (and the related star packing S(D) that can be read off from
the directed edges) satisfies Observation 24 and the following one.

Observation 25. Every x ∈ B(D) has at most one neighbor in C(D).

Second local improvement. By a procedure similar to the previous case, we can
create new stars if some x ∈ B(D) is part of a star with at least three rays and
neighbor of some K2-component in G[C(D)]. Leaving out details in this case,
we can observe for the (new) differential set D:

Observation 26. If x ∈ B(D) is neighbor of some K2-component in C(D),
then it belongs to some star with at most two rays.

Some simple computations (as undertaken in [9], following Lemma 3.9) show
that the set D satisfies our desired bound, i.e., |D| ≥ 3

11
|V |, if the packing S(D)

only contains stars with at least three rays. It could well be that the (valid)
differential set D satisfies the bound and we can stop here.

Further local improvements on smaller stars K1,2. If the packing S(D) contains
smaller stars with two rays, then we have to make further local improvements
on these smaller stars, considering them in groups. The details can be found in
Lemmas 3.10 through 3.17 in [9], but this should make clear that finally we can
obtain a sufficiently big differential in polynomial time.

Having obtained such differential set for the nucleus of a graph, this solution
can be easily lifted to a solution of the reduced graph; Theorem 27 (below)
allows us to conclude with Theorem 28.
We are going to use the idea of computing a sufficiently big solution for the
nucleus, based on the following variant of Theorem 11. In order to state this
variant similar to the previous ones, we use two disjoint sets of vertices with
subscripts one and two to (implicitly) define a Roman domination function that
maps the vertices in the set with subscript i onto the number i. To further
strengthen the analogy, we call the union of these two sets a Roman dominating
set, or Roman DS for short.

Theorem 27. Let G be a graph of order nG and let H be a graph of order nH

obtained from G by deleting d vertices. Let DG = DG,1∪DG,2 and DH = DH,1∪
DH,2 be Roman DS solutions of G and H, respectively, such that DH,2 = DG,2

and a = |DG,1| − |DH,1| ≤ d. If |DH,1|+ 2|DH,2| ≤ c · nH for some c < 1 and
if d ≤ γR(G), then ∂(V (G) \DG) = nG − 2|DG,2| − |DG,1| is within a factor of
(1− c)−1 from optimum.
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Proof. As nH = nG − d, |DG,1| + 2|DG,2| = |DH,1| + a + 2|DH,2| ≤ c(nG −
d) + a = cnG + (a− cd) ≤ cnG + d− cd = cnG +(1− c)d ≤ cnG +(1− c)γR(G).
Hence, nG−2|DG,2|−|DG,1| ≥ nG−cnG−(1−c)γt(G) = (1−c)(nG−γR(G)) =
(1− c)∂(G). This immediately yields an approximation factor of (1− c)−1. �

We described that we can turn the (non-constructive) combinatorial reason-
ing of [9] into a polynomial-time algorithm. Moreover, we can lift a Roman
domination function fH : V (H) → {0, 1, 2} on the nucleus H to a Roman dom-
ination function fG : V (G) → {0, 1, 2} on the (reduced) graph G by setting
fG(x) = fH(x) for x ∈ V (H) and fG(x) = 1 for x ∈ V (G) \ V (H). Also, if G
satisfies the properties listed in Lemma 22, the number d = |V (G) \ V (H)| of
deleted vertices is upperbounded by γR(G), as it is best to assign 2 to the leaf
neighbor. Furthermore, accounting for each leaf neighbor, at most two vertices
are deleted, namely when a hair is attached to some vertex. This allows us to
conclude within our framework:

Theorem 28. Differential is factor- 11
3

polynomial-time approximable.

Notice that better combinatorial bounds for Roman Domination (and hence
for Differential) have been obtained for 2-connected graphs and for graphs of
minimum degree at least three by Liu and Chang [36, 35]. It would be interesting
to see if the corresponding proofs could be turned into better kernelization or
approximation algorithms for the computational problems.

5. Multiple Nonblocker sets

We are first going to explain why neither some nice approximation algorithm
nor some FPT algorithm (with the standard parameterization) yields useful
results. We shall assume k > 1 in this section.

Theorem 29. k-Dominating Set, k > 1, is not approximable within a fac-
tor better than c log |V | for some c > 0 unless P = NP [42]. Moreover, the
(standard) parameterized version is W[2]-hard.

Proof. We show that Dominating Set is reducible to k-Dominating Set.
Given an instance G of Dominating Set, we introduce (in total) k copies of
each vertex, say, v[1], . . . , v[k] of vertex v, and introduce a complete bipartite
graph Kk,k in {u[1], . . . , u[k]} ∪ {v[1], . . . , v[k]} whenever there is an edge uv in
G. Then, the new graph has a k-dominating set of size kt if and only if the
original graph G has a dominating set of size t. �

We consider now a combinatorial upper bound on the size of some feasible
solution of the minimization problem.

Theorem 30 ([22]). Let G be a graph of order nG and a minimum degree at
least k. Then γk(G) ≤ k

k+1
nG.
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The known non-constructive proof can be turned into a polynomial-time
algorithm obtaining the following result.

Theorem 31. For a given graph G of order nG and minimum degree at least k,
one can compute a k-dominating set D with |D| ≤ k

k+1
nG in polynomial time.

Proof. First, we greedily remove edges between vertices of degree greater than
k obtaining a graph G′ of minimum degree (exactly) k. Let S = {v ∈ V :
|N(v)| > k}. By construction, S is an independent set in G′. We build a
maximal independent set T that contains S. Then V \ T is a k-dominating set.

If |V \ T | ≤ knG/(k + 1), then D := V \ T is also a k-dominating set in
the supergraph G of G′. Otherwise, while |V \ T | > knG/(k + 1), construct
a maximal independent set T ′ of G[V \ T ] and set T = T ′. We show in the
following that the algorithm terminates.

Let r = |T |. When |V \ T | > knG/(k + 1), we get nG = r + |V \ T | >
r + knG/(k + 1) = r + k(r + |V \ T |)/(k + 1), thus |V \ T | > kr. Since T is
a maximal independent set (and hence a dominating set) and every element of
V \ T is of degree k in G′, every vertex of V \ T has degree at most k − 1 in
G′[V \ T ]. It follows that any maximal independent set of G′[V \ T ] contains
at least r + 1 vertices (otherwise, |V \ T | ≤ r + r(k − 1) = rk). Compute any
maximal independent set T ′ of G′[V \ T ]. Now |T ′| > r = |T | and V \ T ′ is
a k-dominating set that is smaller than V \ T ; namely, because the minimum
degree is at least k, all elements of any independent set are k-dominated by its
complement. �

Our approximation algorithm is based on obtaining a k-dominating set in
a graph H obtained from the input G after a number of modifications (mainly
vertex deletions and insertions).

Theorem 32. Let G be a graph of order nG and let H be a graph of order
nH obtained from G by deleting d vertices and adding 2k new vertices, with
d > k. Let DG and DH be k-dominating set solutions of G and H such that
a = |DG| − |DH | = d− k. If |DH | ≤ c · nH for some c < 1 and d ≤ γk(G), then
V (G) \DG is a k-nonblocker of G whose size nG − |DG| is within a factor of
(1− c)−1 from optimum (modulo an additive constant less than k).

Proof. As nH = nG − d + 2k, |DG| = |DH | + a ≤ c(nG − d + 2k) + d − k =
cnG +(1− c)d+2ck− k ≤ cnG +(1− c)γk(G) + k(2c− 1). Hence, nG − |DG| ≥
nG − cnG − (1 − c)γk(G) − k(2c− 1) = (1 − c)(nG − γk(G)) − k(2c− 1). This
immediately yields an approximation factor of (1 − c)−1 (modulo the additive
constant k(2c− 1) < k). �

In the rest of this section, we present reduction rules that produce a graph G
with minimum degree at least k. Our reduction rules mainly deal with vertices
of degree k − 1 or less. Each such vertex must be in any k-dominating set. We
shall refer to such vertices by low-degree vertices in the sequel.
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Low-Degree Vertex Deletion Reduction. If a low-degree vertex v has only
low-degree neighbors, then delete v. If there is a vertex u with at least k+1 low-
degree neighbors, then delete the edge between u and one low-degree neighbor
of u.

Observation 33. The Low-Degree Vertex Deletion Reduction is α-preserving
for any α ≥ 1.

Proof. The soundness of Low-Degree Vertex Deletion is rather straightfor-
ward. A low-degree vertex that is not a neighbor of a high-degree vertex can
be placed (safely) in any k-dominating set. If the number of low-degree neigh-
bors of a vertex u is t > k, then u is dominated by any k of these neighbors.
Therefore we can safely delete t−k edges connecting u to low-degree neighbors.
We keep k neighbors to make sure that u remains dominated in any subsequent
solution. This reduction is α-preserving with constants a = b = 0. �

Low-Degree Merging Reduction. Let G = (V,E) be an instance of k-
Nonblocker that has been subject to the Low-Degree Vertex Deletion Re-
duction rule. Then we add a complete bipartite graph Kk,k with new vertices
u1, . . . , uk, v1, . . . , vk. For every vertex v ∈ V of degree at least k, having q low-
degree neighbors w1, . . . , wq, with q ≤ k, merge wi with vi for every i = 1, . . . , q.

Observation 34. The Low-Degree Merging Reduction rule is weakly α-preserv-
ing for any α ≥ 1.

Proof. For the soundness of this rule, observe that, as low-degree vertices
will end up in the dominating set, the only purpose of these could be to help
dominate other vertices. As every vertex has no more than k low-degree vertices,
we can mimick their effect by the Kk,k gadget that we insert instead.

We are going to verify the definition of α-preserving reductions; to this end,
we show that a = b = −k works out in our case. In fact, we must refer to the
variant sketched in Remark 1 to understand this concept.

Let G be the original graph and G′ the graph obtained from G after applying
the reduction rule.

(a) Let C be a maximum k-nonblocker for G. Observe that C does not contain
any low-degree vertices since they are part of any k-dominating set. Consider
C′ = C ∪ {u1, . . . , uk}. Then C′ is a maximum k-nonblocker set for G′ of size
|C′| = |C|+ k.

(b) Consider now the converse. Let C′ be some k-nonblocker set for G′. We
can suppose that C′ contains u1, . . . , uk, otherwise we remove v1, . . . , vk and
add u1, . . . , uk. Thus C = C′ \ {u1, . . . , uk} is a k-nonblocker set for G of size
|C| = |C′| − k. �

The reductions above take polynomial time, so that Theorem 32 allows us to
conclude:

Theorem 35. k-Nonblocker is factor-(k+1) polynomial-time approximable
(modulo an additive constant less than k).
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Combinations with the previous section as indicated in the definitions of [30]
should be possible. We leave this for future research, similar to variants like
Liar’s Domination; see [12] and the literature quoted therein.

6. Conclusions

We presented a framework for obtaining approximation algorithms for max-
imization problems, inspired by similar reasonings for obtaining kernelization
results. We see five major directions from this approach:� Paraphrasing [26], we might say that not only FPT, but also polynomial-

time maximization is P-time extremal structure. This should inspire math-
ematicians working in graph theory (and other areas of combinatorics) to
work out useful combinatorial bounds on different graph parameters. We
started on domination-type parameters, and this might be a first venue of
continuation, for example, along the lines sketched in [14, 15, 33].� Conversely, approximation algorithms that stay within the combinatorial
grounds of their problem tend to reveal (combinatorial) insights into the
problem that might get lost when moving, for instance, into the area of
Mathematical Programming.� The notion of α-preserving reduction is similar to the local ratio tech-
niques [5] that allowed to re-interpret many (e.g., primal-dual) approxi-
mation algorithms (for minimization problems) in a purely combinatorial
fashion; see [6]. We see some hope for similar developments using α-
preserving reduction for maximization problems.� The fact that α-preserving reductions are inspired by FPT techniques
should allow to adapt these notions for obtaining new and faster parame-
terized approximation algorithms.� Reductions are often close to practical heuristics and hence allow for fast
implementations.

Acknowledgements. We are grateful for having had the chance of discussing
this paper at the Bertinoro Workshop on Parameterized Approximation in May
2014. This work was supported by the bilateral research cooperation CEDRE
between France and Lebanon (grant number 30885TM). Further support of this
research by visiting professorships granted to the first and the last of the authors
by the University of Paris-Dauphine is gratefully acknowledged, which helped us
meet in Paris for preparing this manuscript together. A major part of this work
was done when the third author was affiliated with the Institut für Optimierung

und Operations Research, Universität Ulm, Germany. An extended abstract of
this paper has been presented at ISAAC 2014, see [1].

27



Note added in proof. Recently, we became aware of a new framework for approx-
imative kernelizations contained in a manuscript entitled Lossy-Kernelization,
written by Daniel Lokshtanov, Fahad Panolan, M. S. Ramanujan, and Saket
Saurabh. The notions developed there are partly similar to the ones that we
present in this paper. However, the focus of that manuscript is on developing
a notion of kernelization (and hence of reduction rules) that is tailored towards
parameterized approximation, while we are deliberately focussing on making use
of reduction rules for obtaining (classical) polynomial-time approximations.

References

[1] F. N. Abu-Khzam, C. Bazgan, M. Chopin, and H. Fernau. Approximation algo-
rithms inspired by kernelization methods. In H.-K. Ahn and C.-S. Shin, editors,
Algorithms and Computation — 25th International Symposium, ISAAC 2014,
volume 8889 of LNCS, pages 479–490. Springer, 2014.

[2] S. Athanassopoulos, I. Caragiannis, C. Kaklamanis, and M. Kyropoulou. An
improved approximation bound for spanning star forest and color saving. In
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