
On the vertex-distinguishing properedge-colorings of graphsCristina BazganAmel Harkat-BenhamdineHao LiLaboratoire de Recherche en InformatiqueURA 410 CNRSUniversit�e Paris-Sud, bât. 49091405 Orsay Cedex, Francefbazgan,hamel,lig@lri.frMariusz Wo�zniakFaculty of Applied Mathematics A G HDepartment of Discrete MathematicsAl. Mickiewicza 30, 30� 059 Krak�ow, Polandmwozniak@uci.agh.edu.plAbstractWe prove the conjecture of Burris and Schelp: a coloring of the edgesof a graph of order n such that a vertex is not incident with two edgesof the same color and any two vertices are incident with di�erent sets ofcolors is possible using at most n+ 1 colors.1 IntroductionIn this paper we consider only undirected and simple graphs and we use thestandard notation of graph theory (see [3]). Let G = (V;E) be a graph with nvertices with the set of vertices V and the edge set E. We denote by Vd(G) theset of vertices of degree d in G and nd(G) = jVd(G)j.The problem in which we are interested in this paper is a particular case ofthe great variety of di�erent ways of labeling a graph. The original motivationof studying this problem came from irregular networks. The idea was to weight1



the edges by positive integers such that the sum of the weights of edges incidentto each vertex formed a set of distinct numbers. Consider a function f : E !f1; : : : ;mg. Let f(e) be the number associated to the edge e. Denote by F (v) =ff(e) j e = uv 2 Eg the multi-set of numbers assigned to the set of edges incidentto v and by f(v) = Pe2F (v) f(e). We call a function f admissible if the functionf gives distinct values to the vertices of G. The minimum number m such thatan admissible function exists for a graph G (introduced in [7]) is denoted s(G)and is called the irregularity strength of G. In [7], an upper bound and a lowerbound s(G) are given and a lower bound for the irregularity strength of trees isfound. They also computed the irregularity strength for paths and cycles and forothers special graphs (see [11] for a survey concerning this number).The problem that we study in this paper is a re�nement of the coloring prob-lem where the numbers associated to the edges in the above function are replacedby colors. An edge-coloring f of a graph G is an assignment of colors to the edgesof G. A coloring f is called vertex-distinguishing if F (u) 6= F (v) for any two ver-tices u 6= v. The minimum number of colors necessary for a vertex-distinguishingedge-coloring of a graph G (introduced in [1]) is denoted c(G). In [1] and [2] theauthors computed this number for some special graphs and respectively investi-gated the asymptotic growth of this number for k-regular graphs.The coloring f is proper if no two adjacent edges have the same color. Inthe view of coloring, any useful constraint on a proper coloring is interesting tostudy. The coloring f is vertex-distinguishing proper edge-coloring (abbreviatedVDP coloring) if it is proper and vertex-distinguishing.The vertex-distinguishing proper edge-coloring number ~�0(G) of a graph Gwithout isolated edges and with at most one isolated vertex is the minimumnum-ber of colors required to �nd a VDP coloring of G. The VDP coloring number wasintroduced and studied by Burris and Schelp in [4] and [5] and, independently,as "observability" of a graph, by �Cern�y, Hor�n�ak and Sot�ak in [6]. In [4], [6], [10]and [9] the VDP coloring number is also computed for some families of graphs,such as paths Pn, cycles Cn, bipartite complete graphs Km;n, complete graphs Kn:~�0(Pn) = minf2dp8n�7�14 e+ 1 ; 2dp2n�5+12 eg; for n � 3 ;~�0(Km;n) = ( n+ 1 if n > m � 2n+ 2 for m = n � 2 ;~�0(Kn) = ( n if n is oddn+ 1 if n is even :For k; n � 3, ~�0(Cn) = k if and only if either1. k is odd and n 2 h k2�4k+52 ; k2�k�62 iSn k2�k2 o or2. k is even and n 2 h k2�3k�22 ; k2�3k2 iS h k2�3k+42 ; k2�2k2 i :2



Among the graphs G for which we know the value ~�0(G), the largest value~�0(G) is realized when G = Kn with n even.Burris and Schelp conjectured in [4] and [5] that a graph G of order n, with-out isolated edges and with at most one isolated vertex has ~�0(G) � n+ 1. It iseasy to see ([8]) that a graph G with n vertices without isolated edges and withat most one isolated vertex, satis�es ~�0(G) � n + �(G) � 1. In [8] it is provedthat a graph with n vertices and minimum degree � � 5 and maximum degree� < (2c�1)n�43 , where c is a constant with 12 < c � 1 has ~�0(G) � dcne. The mainresult of this paper is the proof of the above conjecture.Theorem: A graph G with n vertices, without isolated edges and with at mostone isolated vertex has ~�0(G) � n+ 1.In the following we shall use some additional notation. Given a proper coloringf , we denote by Bf (v) = fu 2 V (G) � fvg; F (u) = F (v)g [ fvg. A vertex v iscalled good if Bf (v) = fvg and bad otherwise. A semi-VDP coloring is a propercoloring with jBf(v)j � 2 for any vertex v of G. Given a proper coloring f thatcontains the colors � and � an (�; �)-Kempe path is a maximal path formed bythe edges colored with � and �.For a given path P denote by �!P one of its orientations. Then the oppositeorientation is denoted by  �P . For v;w 2 V (P ) such that v precedes w (withrespect to the �xed orientation), we denote by v�!P w the path starting in v andending in w which contains all vertices of P between v and w following theorientation �!P . Similarly, for v;w 2 V (P ) such that w precedes v (with respectto the orientation), we denote by v �P w the path which contains all vertices ofP between v and w following the opposite orientation. If P is a path with agiven orientation and v a vertex of P we denote by v+ and v� the successor andthe predecessor, respectively, of the vertex v on the path P with respect to thisorientation.We will use Vizing's theorem: Any graph G has a proper coloring with �(G)or �(G)+1 colors and also K�onig's theorem: Any bipartite graph G has a propercoloring with �(G) colors. In the next section we shall prove some lemmas usedin the proof of the main result.2 LemmasLemma 1 If G satis�es the property d(k � d) � nd(G) � 2 for any d, �(G) �d � �(G) where k � �(G) + 1, then there is a semi-VDP coloring of G with kcolors.Proof: Since k � �(G) + 1 there is a proper coloring of G with k colors byVizing's theorem. Let f be a proper coloring of G with k colors and with aminimum number of bad vertices. Suppose that f is not a semi-VDP coloring3



of G. Thus there exists a vertex u 2 Vd(G) with jBf (u)j � 3. We give in thefollowing a procedure to transform f to a proper coloring f 0 where jBf 0(u)j = 2:There exist k � d colors di�erent from the color of an edge incident with u.So, there are d(k � d) possibilities to change the color of an edge incident withu with another one such that u is not incident to two edges with the same color.Since there are at least another two vertices that are incident with the sameset of colors as u, the inequality d(k � d) � nd � 2 implies that we can choosetwo colors � 2 F (u) and � =2 F (u) such that there is no vertex v in G withF (v) = F (u)� f�g [ f�g.Let P1 = u1 : : : v1 be an (�; �)-Kempe path with u = u1. We transform thecoloring f to another coloring f1 by exchanging the colors � and � on the pathP1. The vertex v1 is a bad vertex in f1 and not in f since otherwise the coloring f1would be a proper coloring of G with less bad vertices than f . If F1(v1) = F1(u),then we take f 0 = f1 since jBf1(u)j = 2: Otherwise there is another (�; �)-Kempepath P2 = u2 : : : v2 with F1(u2) = F1(v1). We exchange the colors � and � on P2and we denote by f2 this new coloring. We continue the procedure until we �ndan (�; �)-Kempe path Pt = ut : : : vt with the property that by exchanging � and� on the path Pt we obtain a coloring ft and Ft(vt) = F1(u).We will prove in the following that since f is a proper coloring with a minimumnumber of bad vertices we can always �nd such a coloring. Let P = fP1; : : : ; Ptg.We observe that each vertex u in the interior of these paths has the same set ofcolors in each coloring f1; : : : ; ft. Also the vertices vi and ui+1 exchange in fi+1their sets of colors when compared with their color sets in f . For each i, vi is abad vertex in fi since otherwise fi is a coloring of G with less bad vertices thanf . It can happen that Fi(vi) = Fi(uj) for some j < i, but this can only happenonce for any set of colors Fi(vi). But when this happens vi is a bad vertex underthe coloring fi so there exists another vertex w, not yet on any path constructed,such that Fi(w) = Fi(vi) and the constructive process continues. After a numberof steps we reach a vertex vt with Ft(vt) = F1(u).We repeat the procedure until we �nd a coloring f 00, such that jBf 00(v)j � 2for each v 2 V . 2Let P1; : : : ; Pk be a set of vertex disjoint paths. The set P = fP1; : : : ; Pkg iscalled a long path system if jV (Pi)j � 3 for any i 2 f1; : : : ; kg. If the vertices of agraph G are covered by a long path system then P is called a long path coveringof G.The following technical lemma will be used to transform a semi-VDP coloringto a VDP coloring.Lemma 2 Let P = fP1; :::; Pkg be a long path system and B a set of disjointpairs of vertices of P. There exists a coloring of the edges of P with three colors4



such that for each pair fx; x0g of B the set of colors of the edges incident with xis di�erent from the set of colors of the edges incident with x0.Proof: Fix an orientation of the paths of P and let �!P = (�!P 1; : : : ;�!P k) be along path system with a given order on the paths. We denote a pair of B by(x; x0) where x is the �rst vertex on P and x0 is the second vertex (with respectto the orientation). Let A = V (P)�D, where D is the set of vertices of B.The vertices of A and the �rst vertices of each pair of B on P form the �rstclass of vertices and the second vertices of the pairs form the second class.We use an algorithm to color P with three colors �; �; 
 in order to obtaina coloring where the vertices of the pairs of B are incident with di�erent sets ofcolors. Let us denote this coloring by f . We color the edges of P in the ordergiven by the orientation of �!P .We start with one of the colors, say �, and we assign to the successive edgesa color as follows. Suppose that the next edge to be colored is e = uv.� If the vertex u belongs to the �rst class then{ if u is the �rst vertex of a path we use for uv one of the three colors.{ if u is an interior vertex we assign to uv one of two colors not used foru�u.� If u belongs to the second class then u = x0 and the edge or the edgesincident with x have already been colored.{ If x is an endvertex of a path and u is an interior vertex of a path Pwe color uv with one of the colors not used for u�u.{ If x is an interior vertex and u is an endvertex we color uv with oneof the three colors.{ If x and u are endvertices of a path then we color uv with one of thetwo colors not used for the edge incident with x.{ If both x and u are interior vertices then we color uv in such a waythat ff(x�x); f(xx+)g 6= ff(u�u); f(uv)g.It is easy to see that such a coloring is always possible except, possibly, inthe situation where uv is the last edge on a path P where u and v belongs to thesecond class. For this case let u = x0, v = y0 and w = u�.Suppose �rst that y is the �rst vertex on P . Without loss of generalitywe can suppose that f(yy+) = 
. Since we cannot color x0y0 this implies thatF (x) = f�; �g and f(wx0) 2 f�; �g (Figure 1).Suppose �rst that x lies on another path and let f 0 be a new coloring that isthe same as f on P � fPg. To color P we start by coloring yy+ with �. There5
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+ ’ ’Figure 2: the path P 0are three possibilities to color P up to wx0 that are illustrated in Figure 2. It iseasy to see that we end up coloring x0y0 with a color di�erent from �, the colorof the edge incident with y.If x belongs to the path P then we begin to modify the coloring f with theedge xx+. We replace the color of xx+ with 
 and thus we have three cases asabove. In each of these we can color x0y0 with a di�erent color from the color ofthe edge yy+.Finally, if y is an endvertex of an another path P 0, by adding the edge yy0to the long path system we get another long path system P 0. Observe that acoloring of P 0 with three colors where the vertices of a pair of B are incident withdi�erent sets of colors induce a coloring of P with the same property. Recursively,we apply the quasi-algorithm to P 0 beginning with the path that contains y andy0 and preserving the colors of the paths that are before P 0 in P. 2Lemma 3 Let G = (X;Y ) be a bipartite graph with jXj > jY j. Then there existsa proper coloring f of G with jXj colors that is vertex-distinguishing on X, i.e.F (u) 6= F (v) for any u; v 2 X.Proof: Since G is bipartite, by K�onig's theorem there is a proper coloring of Gwith jXj colors. Let f be such a coloring with the minimum number of verticesin X having the same set of incident colors. Observe that d(jXj � d) � jXj � 1for 1 � d � jY j. Thus, for each vertex u 2 X with jBf (u) \ Xj � 2 we canchoose two colors � 2 F (u) and � =2 F (u) such that there is no vertex v in Xwith F (v) = F (u)�f�g [ f�g. Let P1 = u1 : : : v1 be an (�; �)-Kempe path with6



u = u1. We transform the coloring f to another coloring f1 by exchanging thecolors � and � on the path P1. The vertex v1 cannot be in Y since otherwise thenew coloring, f1, would be a proper coloring of G with less vertices of X havingthe same set of incident colors than the coloring f , a contradiction.
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u v1Figure 3Thus v1 2 X. By the same reasoning, this vertex cannot be the unique vertexof X incident with the set of colors F1(v1). Thus there is a vertex w 2 X,w =2 V (P1) with F1(w) = F1(v1) and another (�; �)-Kempe path P2 = u2 : : : v2with w = u2. Now, we exchange the colors � and � on P2 and we denote by f2this new coloring. The vertices v1 and u2 exchange in f2 their sets of colors whencompared with their color sets in f .We continue as above to construct (�; �)-Kempe paths and to exchange theircolors � and �. It is easy to see that these (�; �)-Kempe paths are vertex disjoint.Since X is a �nite set the procedure must �nish at a vertex z 2 X. There existsat least another vertex z0 2 X incident with the same set of colors as z in thislast coloring. So, z0 belongs to one of the (�; �)-Kempe paths constructed before.It is easy to see that z0 cannot be an interior vertex of such a path and neither aninitial extremity. So, z0 is a �nal extremity and then z was (in f) a vertex incidentwith the same set of colors as another vertex. In this last new coloring there isno vertex incident with the same set of colors as u. Thus this proper coloring hasless vertices in X having the same sets of incident colors, a contradiction withthe choice of f . 23 Proof of TheoremWe shall prove the theorem by induction. It is easy to see that the theoremholds for n � 5. Let G be a graph with n vertices, without isolated edges andwith at most one isolated vertex. Assume that every graph H of order n0, withn0 < n, without isolated edges and with at most one isolated vertex, satis�es~�0(H) � n0 + 1.Claim 1: G is a connected graph. 7



Proof: Suppose that G is formed by two subgraphs G1 and G2 with the propertythat there is no edge between a vertex of G1 and a vertex of G2. Let n1 = jV (G1)jand n2 = jV (G2)j. By the induction hypothesis there exists a VDP coloring ofG1 and of G2 with n1+1 and n2+1 colors, respectively. There is at least a colorused for G1 that is not the color of an edge with an endvertex of degree one inG1. This color could be used in G2 instead of another color. Thus we obtain aVDP coloring of G with n1 + n2 + 1 = n+ 1 colors. 2Claim 2: G has no vertex of degree one.Proof: If G would have such a vertex u and if the graph G�fug has no isolatededge, by the induction hypothesis we have a VDP coloring of G � fug with ncolors. We color the edge incident to u with a new color and thus we obtaina VDP coloring of G with n + 1 colors. If G � fug has an isolated edge vwwith v 2 NG(u) then by the induction hypothesis we have a VDP coloring ofG�fu; v; wg with n� 3+1 colors. We color uv and vw with two new colors andthus we obtain a VDP coloring of G with n colors. 2Claim 3: G has no two adjacent vertices of degree two.Proof: If G has two such vertices u and v, denote by G0 = G�fu; vg. G0 cannothave an isolated vertex since G is connected and G has no vertices of degree one.Also, G0 cannot contain an isolated edge since G is connected and it has at leastsix vertices. So, G0 satis�es the hypothesis of the theorem.We apply the induction hypothesis to the graph G0 and we shall use two newcolors to obtain a VDP coloring of G with n+ 1 colors as below. We distinguishtwo cases:{ If there is a vertex w such that uw; vw 2 E then we color uw and vw withtwo new colors and uv with a color used in G0.{ Otherwise let x 2 NG(u) and y 2 NG(v). We color ux and vy with twonew colors. If at least one of x or y has degree two in G then dG0(x) + dG0(y) �n � 3 + 1 = n � 2 and thus there is a color used in G0 that we can use to coloruv in order to have a VDP coloring of G. If x and y have degree at least two inG0 we can use any color used in G0 to color uv. 2Claim 4: G has at most two vertices of degree two that are not adjacent.Proof: If G has at least three such vertices u; v; w, denote their neighbors inG by u1; u2; v1; v2; w1; w2 (not necessary di�erent). Using the previous claimswe can suppose that u1; u2; v1; v2; w1; w2 have degree at least three in G. LetG0 = G�fu; v; wg. Since G is connected, G0 has at most one isolated vertex thatis adjacent with u, v and w. The graph G0 has at most one isolated edge that hasthe two endvertices among the neighbors of u; v; w since G has no isolated edgeand G has no vertex of degree one. We apply the induction hypothesis to thegraph obtained from G0 by removing the isolated edge if such an edge exists and8



otherwise we apply the induction hypothesis to the graph G0. We color the iso-lated edge using a new color and we color the edges uu1; uu2; vv1; vv2; ww1; ww2with another three new colors to obtain a VDP coloring of G. 2We distinguish two cases.Case 1 G has a long path covering.Let P = fP1; : : : ; Pkg be a long path covering of G with a minimum number ofpaths. Let G0 = G �E(P).Since G has at most two vertices of degree two, G0 has at most two isolatedvertices. We show that G0 has a semi-VDP coloring.It is easy to see that �(G0) � n� 3. A vertex that is in the interior of a pathof P has in G0 the degree at most n� 3. If an endvertex of a path Pi has degreen� 2 in G0 then it is joined with all vertices in G. Thus P contains only a pathsince otherwise there is another long path covering of G with less paths than P.If G is not a complete graph then we can change P such that vertices of degreeless than n � 1 in G become the endvertices of P as follows. Let one denote by�!P = u1 : : : un an orientation of the path of P and suppose that at least one of u1and un has the degree n� 1 in G. Since G is not complete there are two verticesui and uj, i < j such that uiuj =2 E(G). If ui+1 has the degree n � 1 in G thenwe replace P by ui �P u1un �P uj+1ui+1�!P uj and if dG(ui+1) < n � 1 then the pathui �P u1un �P ui+1 covers the vertices of G and has the endvertices of degree lessthan n� 1.We shall use Lemma 1 to show that there is a semi-VDP coloring of G0 withn � 2 colors. Using the theorem of Vizing we color the graph G0 with n � 2colors. The restriction d(n � 2 � d) � n � 2 is satis�ed for 1 < d < n � 3 andn � 6. Also n1 � n � 1 and nn�3 � n � 1 since otherwise if all the vertices ofG0 have degree n � 3 then the interior vertices of P have degree n� 1 in G andthe endvertices of P have degree n � 2 in G. Thus P has only one path sinceotherwise it contradicts the choice of P as being a long path covering of G withthe minimum number of paths and the graph G is a complete graph minus oneedge. In this case a VDP coloring of the complete graph is a VDP coloring of G.Thus the hypothesis of Lemma 1 are satis�ed for k = n � 2 and then G0 has asemi-VDP coloring with n� 2 colors.Using now Lemma 2 we obtain a VDP coloring of G with n+ 1 colors.Case 2 G has no long path covering.Let P = fP1; : : : ; Pkg be a long path system that covers a maximum number ofvertices of G and let denote by X0 the set of vertices of G which do not belongto P.Claim 5: A vertex v 2 X0 is not joined with an endvertex of a path of P andit cannot have two neighbors on the same path. A path of P that contains a9



neighbor of X0 is of length at most four.Proof: Let P = v0 : : : vt, t � 2 a path of P and vj 2 NG(v); 0 � j � t. It iseasy to remark that j 6= 0 and j 6= t since otherwise if vv0 2 E(G) then the setobtained by replacing P by vv0�!P vt covers more vertices than P, a contradictionwith the choice of P. It is clear that the path v0�!P vj and vj�!P vt have length atmost two, since otherwise we can �nd another set of paths that contradicts thechoice of P. Also vvj+1 =2 E(G) and vvj�1 =2 E(G) since if vvj+1 2 E(G) byreplacing P by v0�!P vjvvj+1�!P vt the new long path system covers more vertices ofG than P. We remark that v is not joined with vj+2, otherwise j = 1 and t = 4and thus replacing P by the paths v0v1v and v2v3v4 we obtain a long path systemthat contains more vertices than P. 2We partition the vertices of some paths of P into two sets A1 and X1 in thefollowing way. Let a be a neighbor of a vertex of X0 on a path P 2 P. If P is oflength two then we put a in A1 and the endvertices of P in X1. If P is of lengththree then we put the interior vertices of P in A1 and the endvertices of P in X1.Finally, if P is of length four then we place a and one of the vertices a� or a+in A1 and the other vertices of P in X1. One observes that in the graph inducedby X1 there is no edge other than the edges between consecutive vertices on thesame path of P, since otherwise if there is an edge between two vertices in X1that are on two di�erent paths then there is a long path system of G that coversmore vertices than P. In other words X1 is a set of isolated vertices and edges.The same is true for X0 [X1. Also jX1j � jA1j.Let P0 = P and I1 be the set of indices of the paths of P0 that contain avertex of A1 and P1 = P0 � [i2I1Pi. Let I2 be the set of indices of the paths ofP1 that contain at least a neighbor of a vertex of X1.Claim 6: A path with index from the set I2 has length at most four and a vertexof X1 is not joined with an endvertex of such a path.Proof: Let P1 be a path with index in I1 and let P2 be a path with index in I2 thatcontains a neighbor vj of a vertex ui in V (P1) \X1. Denote by �!P 1 = u0u1 : : : usand �!P 2 = v0v1 : : : vt two orientations of P1 and P2. We showed in Claim 5 thats � 4. Let u` be the vertex of P1 adjacent with a vertex x 2 X0 and supposethat ui is us�1 or us. It is easy to see that vj cannot be an endvertex of P2 sinceotherwise if vj = v0 then the long path system obtained from P by replacingP1 and P2 by u0�!P 1u`x and u`+1�!P 1usv0�!P 2vt (if ui = us) or us �P 1u`+1v0�!P 2vt (ifui = us�1) covers more vertices than P. Also, remark that j � 2, since otherwiseif j � 3 then when ui = us, the set obtained from P by replacing P1 and P2by the paths u0�!P 1u`x; u`+1�!P 1usvj�!P 2vt and v0�!P 2vj�1 forms a long path systemthat covers more vertices than P. And when ui = us�1, by replacing P1 and P2in P by u0�!P 1u`x; usus�1vj�!P 2vt and v0�!P 2vj�1 we obtain a long path system that10



contradicts the choice of P. Thus j � 2 and t � 4. 2Now, let us de�ne X2 and A2. We consider each path P with the index inI2. If P is of length two then we put the interior vertex in A2 and the other twovertices in X2. If P is of length three then we add the interior vertices in A2and the endvertices in X2. Finally, if P has length four then we add two interiorconsecutive vertices in A2 and the other vertices in X2.It is easy to see that jX2j � jA2j and the graph induced by X2 contains onlyisolated vertices and isolated edges. The isolated edges are only between consec-utive vertices on the same path with index in I2 since if there is an edge betweentwo vertices inX2 that are on two di�erent paths then there is a long path systemof G that covers more vertices than P. Also the graph induced by X0 [X1 [X2contains no path of length greater than one.Let one suppose that Ik is and Pk = Pk�1�[i2IkPi and let Ik+1 be the set ofindices of the paths of Pk that contain at least a neighbor of a vertex of Xk.Claim 7: A path with index in Ik+1 has length at most four and a vertex of Xkis not joined with an endvertex of such a path.Proof: Let Q1; : : : ; Qk+1 be a set of paths of P where Qi is a path of P withindex in Ik+2�i and Qi contains a neighbor of a vertex of V (Qi+1) \ Xk+1�i.Thus Qk+1 contains a neighbor of a vertex v of X0. Let �!Q1 = u0 : : : us be anorientation of Q1 and suppose that u` is the vertex of Q1 with the greatest indexthat is joined with a path with the index in Ik and this path is Q2. Denote byQ(u`) = fQ1; : : : ; Qk+1g. We prove that there is a long path system that wedenote by P(u`) that contains the vertex v of X0 and all the vertices of the pathsQi, 2 � i � k + 1 and the vertices ui, 0 � i � `. The proof is by induction onk. The proof of Claim 6 justi�es the assertion for k = 1. Let �!Q2 = v0 : : : vt bean orientation of Q2 and let suppose that vj is the vertex of Q2 with the greatestindex that is joined with a path of index in Ik�1 and this path is Q3. Let ussuppose that u`vt 2 E(G). The justi�cation is similar if u`vt�1 2 E(G). Supposethe assertion is true for k. Then we add to the long path system that contains vall the vertices of the paths Qi, 3 � i � k + 1 and the vertices vi, for 0 � i � j,the path u0�!Q1u`vt �Q2vj+1. Thus we obtain a long path system that proves theassertion for k + 1.Now the proof of the Claim 7 is by induction on k.Let P be a path with index in Ik and let P 0 be a path with index in Ik+1that contains a neighbor vj of a vertex ui of V (P )\Xk . Let �!P = u0u1 : : : us and�!P 0 = v0v1 : : : vt two orientations of P and P 0.Claim 6 proves Claim 7 for k = 1. Suppose that s � 4. Let u` be the vertexof P with the greatest index that is incident with a vertex x 2 Xk�1 and supposethat ui is us�1 or us. It is easy to see that vj cannot be an endvertex of P 0 since11



otherwise if vj = v0 then the long path system obtained from P by replacingQ(u`) and P 0 by P(u`) and u`+1�!P usv0�!P 0vt (if ui = us) or us �P u`+1v0�!P 0vt (ifui = us�1) covers more vertices than P. Also, let observe that j � 2. If j � 3then if ui = us, the set obtained from P by replacing Q(u`) and P 0 by P(u`) andfu`+1�!P usvj�!P 0vt; v0�!P 0vj�1g forms a long path system that covers more verticesthan P and if ui = us�1 then the set obtained from P by replacing Q(u`) andP 0 by P(u`) and fusus�1vj�!P 0vt; v0�!P 0vj�1g is a long path system that contradictsthe choice of P. Thus j � 2 and t � 4. 2The sets Xk+1 and Ak+1 are de�ned as X2 and A2. By de�nition, jXk+1j �jAk+1j.We repeat the construction until a step t when NPt(Xt) = ;. Let X = [i=ti=0Xiand A = [i=ti=1Ai. It is easy to see that jXj > jAj.Claim 8: For any k, the graph induced by Xk has no edges others than the edgesbetween two consecutive vertices on the same path of P. So, the graph inducedby X has only isolated vertices and edges, these edges are only edges betweentwo consecutive vertices on the same path of P.Proof: Suppose that there exists a path P = u0 : : : us with the index in Ik andtwo adjacent vertices from V (P )\Xk non consecutive on P . Let u` be the vertexof P with the greatest index that is incident with a vertex in Xk�1. We proved inClaim 7 that there is a long path system R that contains a vertex of X0 and thepaths of P � P and the vertices u0; : : : ; u`. By adding to R the path u0us �P u`+1(if u0us 2 E(G)) or the path u0us�1us (if u0us�1 2 E(G)) we obtain a long pathsystem that covers more vertices than P, a contradiction.Suppose now that there exist two paths P = u0 : : : us and P 0 = v0 : : : vt withthe indices in Ik with the property that a vertex ui 2 V (P )\Xk is adjacent witha vertex vj 2 V (P 0)\Xk. Let u` be the vertex of P with the greatest index thatis incident with a vertex in Xk�1. Also, as we proved in Claim 7, there is a longpath systemR that contains a vertex of X0 and the paths of P�fP;P 0g and thevertices u0; : : : ; u`. Suppose that ui = us. If vj = vt then by adding to R the pathu`+1�!P usvt �P 0v0 we obtain a long path system that covers more vertices than P,a contradiction. If vj = vt�1 then by adding to R the paths u`+1�!P usvt�1vt andv0�!P 0vt�2 we obtain a long path system that contradicts the choice of P. 2Using Lemma 3 we color the bipartite graph (X;A) with jXj colors in such away that this coloring is vertex-distinguishing on X.Let G0 = G �X.Denote by T = fu1v1; : : : ; utvtg and S = fw1; : : : ; wsg the sets of isolatededges and vertices of G0 (it is possible that these sets are empty). The graphG00 = G0 � (S [ T ) has no isolated vertices and edges.12
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G’Figure 4By the hypothesis, G has no vertices of degree one. So, for any i 2 f1; : : : ; tg,ui and vi have at least a neighbor in X. We color each edge of T with a newcolor and also we change the color of one of the edges incident with ui or vi withanother new one. Since G has no vertices of degree one, wi has at least twoneighbors x and y in X. Since the coloring is vertex-distinguishing on X, we canchange the color of one of the edge wix or wiy with a new color such that thereare no two vertices incident with the same set of colors. Thus we used at mosts+ 2t colors.If the graph G00 = G0�(S[T ) has at least a vertex then we apply the inductionhypothesis to the graph G00, thus �nding a VDP coloring with n�jXj�2t�s+1colors. Since we color G00 with n�jXj�2t�s+1 colors and G00 has n�jXj�2t�svertices there is a color � that is not the color of an edge incident with a vertexof degree one in G00. Finally, we choose such a color � to color the edges in thegraph induced by X.If G00 has no vertex then since we use only n = s+2t+ jXj colors we can useanother color to color the edges in the graph induced by X. 2References[1] M. Aigner, E. Triesch, Irregular assignments of trees and forests, SIAM Jour-nal on Discrete Mathematics 3(1990), 439{449.[2] M. Aigner, E. Triesch, Z. Tuza, Irregular assignments and vertex-distinguishing edge-colorings of graphs, Combinatorics'90, Annals of DiscreteMathematics 52, 1{9. 13
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