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Abstract

We prove the conjecture of Burris and Schelp: a coloring of the edges
of a graph of order n such that a vertex is not incident with two edges
of the same color and any two vertices are incident with different sets of
colors is possible using at most n + 1 colors.

1 Introduction

In this paper we consider only undirected and simple graphs and we use the
standard notation of graph theory (see [3]). Let G = (V, E) be a graph with n
vertices with the set of vertices V' and the edge set E. We denote by V,((G) the
set of vertices of degree d in G and ny(G) = |Vi(G)).

The problem in which we are interested in this paper is a particular case of
the great variety of different ways of labeling a graph. The original motivation
of studying this problem came from irregular networks. The idea was to weight



the edges by positive integers such that the sum of the weights of edges incident
to each vertex formed a set of distinct numbers. Consider a function f : £ —
{1,...,m}. Let f(e) be the number associated to the edge e. Denote by F(v) =
{f(e) | e = uv € E'} the multi-set of numbers assigned to the set of edges incident
to v and by f(v) = X.cp(,) f(e). We call a function f admissible if the function
f gives distinct values to the vertices of (G. The minimum number m such that
an admissible function exists for a graph G (introduced in [7]) is denoted s(G)
and is called the irregularity strength of G. In [7], an upper bound and a lower
bound s((7) are given and a lower bound for the irregularity strength of trees is
found. They also computed the irregularity strength for paths and cycles and for
others special graphs (see [11] for a survey concerning this number).

The problem that we study in this paper is a refinement of the coloring prob-
lem where the numbers associated to the edges in the above function are replaced
by colors. An edge-coloring f of a graph G is an assignment of colors to the edges
of G. A coloring f is called vertex-distinguishing if F'(u) # F(v) for any two ver-
tices u # v. The minimum number of colors necessary for a vertex-distinguishing
edge-coloring of a graph G (introduced in [1]) is denoted ¢(G'). In [1] and [2] the
authors computed this number for some special graphs and respectively investi-
gated the asymptotic growth of this number for k-regular graphs.

The coloring f is proper if no two adjacent edges have the same color. In
the view of coloring, any useful constraint on a proper coloring is interesting to
study. The coloring f is vertex-distinguishing proper edge-coloring (abbreviated
VDP coloring) if it is proper and vertex-distinguishing.

The wvertex-distinguishing proper edge-coloring number \'(G) of a graph ¢
without isolated edges and with at most one isolated vertex is the minimum num-
ber of colors required to find a VDP coloring of G. The VDP coloring number was
introduced and studied by Burris and Schelp in [4] and [5] and, independently,
as "observability” of a graph, by Cerny, Horfidk and Soték in [6]. In [4], [6], [10]
and [9] the VDP coloring number is also computed for some families of graphs,
such as paths P,, cycles (), bipartite complete graphs K, ,,, complete graphs K, :

X'(P) = min{2[¥2T=1] 41, 2[ Y224 forn > 3,
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Among the graphs G for which we know the value Y/((), the largest value
X'(G) is realized when G = K, with n even.

Burris and Schelp conjectured in [4] and [5] that a graph G of order n, with-
out isolated edges and with at most one isolated vertex has {'(G) < n+ 1. It is
easy to see ([8]) that a graph G with n vertices without isolated edges and with
at most one isolated vertex, satisfies Y'(G) < n 4+ A(G) — 1. In [8] it is proved
that a graph with n vertices and minimum degree § > 5 and maximum degree
A< %, where ¢ is a constant with $ < ¢ <1 has {'(G) < [en]. The main
result of this paper is the proof of the above conjecture.

Theorem: A graph GG with n vertices, without isolated edges and with at most
one isolated vertex has Y'(G) < n + 1.

In the following we shall use some additional notation. Given a proper coloring
f, we denote by Bf(v) = {u € V(G) — {v}, F(u) = F(v)} U{v}. A vertex v is
called good if By(v) = {v} and bad otherwise. A semi-VDP coloring is a proper
coloring with |By(v)| < 2 for any vertex v of (G. Given a proper coloring f that
contains the colors o and 3 an (a, 3)-Kempe path is a maximal path formed by
the edges colored with a and (3.

For a given path P denote by P one of its orientations. Then the opposite
orientation is denoted by P. For v,w € V(P) such that v precedes w (with
respect to the fixed orientation), we denote by v Pw the path starting in v and
ending in w which contains all vertices of P between v and w following the
orientation P. Similarly, for v,w € V(P) such that w precedes v (with respect
to the orientation), we denote by v Pw the path which contains all vertices of
P between v and w following the opposite orientation. If P is a path with a
given orientation and v a vertex of P we denote by vt and v~ the successor and
the predecessor, respectively, of the vertex v on the path P with respect to this
orientation.

We will use Vizing’s theorem: Any graph G' has a proper coloring with A(G)
or A(G)+1 colors and also Konig’s theorem: Any bipartite graph G has a proper
coloring with A(G) colors. In the next section we shall prove some lemmas used
in the proof of the main result.

2 Lemmas

Lemma 1 [f GG satisfies the property d(k — d) > ng(G) — 2 for any d, 6(G) <
d < A(G) where k > A(G) + 1, then there is a semi-VDP coloring of G with k

colors.

Proof: Since & > A(G) + 1 there is a proper coloring of G with k colors by
Vizing’s theorem. Let f be a proper coloring of G with k colors and with a
minimum number of bad vertices. Suppose that f is not a semi-VDP coloring
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of G. Thus there exists a vertex u € Vy(G) with |By(u)] > 3. We give in the
following a procedure to transform f to a proper coloring f" where |Byi(u)| = 2.

There exist k — d colors different from the color of an edge incident with .
So, there are d(k — d) possibilities to change the color of an edge incident with
u with another one such that w is not incident to two edges with the same color.
Since there are at least another two vertices that are incident with the same
set of colors as u, the inequality d(k — d) > ny — 2 implies that we can choose
two colors o € F(u) and 8 ¢ F(u) such that there is no vertex v in G with
F(v) = Pu) — fa} U {3},

Let Pi = uy...v1 be an (o, #)-Kempe path with v = uy. We transform the
coloring f to another coloring f; by exchanging the colors o and (3 on the path
Py. The vertex vy is a bad vertex in f; and not in f since otherwise the coloring f;
would be a proper coloring of ¢ with less bad vertices than f. If Fi(vy) = Fi(u),
then we take f' = fi since | By, (u)| = 2. Otherwise there is another (o, 3)-Kempe
path Py = uy ... vy with Fi(uz) = Fi(vy). We exchange the colors a and 3 on P,
and we denote by f; this new coloring. We continue the procedure until we find
an (a, #)-Kempe path P, = u;... v, with the property that by exchanging o and
(3 on the path P; we obtain a coloring f; and Fi(v:) = Fi(u).

We will prove in the following that since f is a proper coloring with a minimum
number of bad vertices we can always find such a coloring. Let P = {Fy,..., P;}.
We observe that each vertex u in the interior of these paths has the same set of
colors in each coloring fi,..., f;. Also the vertices v; and u;;; exchange in f;1q
their sets of colors when compared with their color sets in f. For each 7, v; is a
bad vertex in f; since otherwise f; is a coloring of G with less bad vertices than
f.

It can happen that F;(v;) = F;(u;) for some j < i, but this can only happen
once for any set of colors F;(v;). But when this happens v; is a bad vertex under
the coloring f; so there exists another vertex w, not yet on any path constructed,
such that Fj(w) = Fi(v;) and the constructive process continues. After a number
of steps we reach a vertex v, with Fy(v:) = Fi(u).

We repeat the procedure until we find a coloring f”, such that |Bs(v)| < 2
for each v € V. O

Let Pi,..., P be a set of vertex disjoint paths. The set P = {Py,..., Py} is
called a long path system if |V(P;)| > 3 for any ¢ € {1,...,k}. If the vertices of a
graph G are covered by a long path system then P is called a long path covering
of G.

The following technical lemma will be used to transform a semi-VDP coloring
to a VDP coloring.

Lemma 2 Let P = {Py,..., P.} be a long path system and B a set of disjoint
pairs of vertices of P. There exists a coloring of the edges of P with three colors



such that for each pair {z,z'} of B the set of colors of the edges incident with x
is different from the set of colors of the edges incident with x'.

Proof: Fix an orientation of the paths of P and let P = (ﬁl, cee ﬁk) be a
long path system with a given order on the paths. We denote a pair of B by
(x,2") where x is the first vertex on P and 2’ is the second vertex (with respect
to the orientation). Let A = V(P) — D, where D is the set of vertices of B.

The vertices of A and the first vertices of each pair of B on P form the first
class of vertices and the second vertices of the pairs form the second class.

We use an algorithm to color P with three colors «, 3,~ in order to obtain
a coloring where the vertices of the pairs of B are incident with different sets of
colors. Let us denote this coloring by f. We color the edges of P in the order
given by the orientation of P.

We start with one of the colors, say «, and we assign to the successive edges
a color as follows. Suppose that the next edge to be colored is e = uw.

o If the vertex u belongs to the first class then

— if w is the first vertex of a path we use for uv one of the three colors.

— if u is an interior vertex we assign to uv one of two colors not used for
U u.

o If u belongs to the second class then u = 2’ and the edge or the edges
incident with = have already been colored.

— If # is an endvertex of a path and u is an interior vertex of a path P
we color uv with one of the colors not used for u™u.

— If  is an interior vertex and v is an endvertex we color uv with one
of the three colors.

— If # and u are endvertices of a path then we color uv with one of the
two colors not used for the edge incident with .

— If both # and u are interior vertices then we color uv in such a way

that {f(z7x), fza™)} # {f(uu), fuv)}.

It is easy to see that such a coloring is always possible except, possibly, in
the situation where uv is the last edge on a path P where u and v belongs to the
second class. For this case let v = 2/, v =y and w = u~.

Suppose first that y is the first vertex on P. Without loss of generality
we can suppose that f(yyt) = . Since we cannot color z'y’ this implies that
F(z)={a,p} and f(wz') € {a, s} (Figure 1).

Suppose first that « lies on another path and let f’ be a new coloring that is
the same as f on P — {P}. To color P we start by coloring yy* with a. There



Yy o3

y+ w X' y,

Figure 1: the path P

.a. .a.y.
+ w

.a. .B.y.
+ w

.a. .y.B.
+ w

Figure 2: the path P’

are three possibilities to color P up to wa’ that are illustrated in Figure 2. It is
easy to see that we end up coloring 'y’ with a color different from «, the color
of the edge incident with y.

If « belongs to the path P then we begin to modify the coloring f with the
edge zxt. We replace the color of zz™ with v and thus we have three cases as
above. In each of these we can color x'y’ with a different color from the color of
the edge yy*.

Finally, if y is an endvertex of an another path P’, by adding the edge yy’
to the long path system we get another long path system P’. Observe that a
coloring of P’ with three colors where the vertices of a pair of B are incident with
different sets of colors induce a coloring of P with the same property. Recursively,
we apply the quasi-algorithm to P’ beginning with the path that contains y and

y" and preserving the colors of the paths that are before P’ in P.
O

Lemma 3 Let G = (X,Y) be a bipartite graph with | X| > |Y|. Then there exists
a proper coloring f of G with |X| colors that is vertex-distinguishing on X, i.e.
F(u) # F(v) for any u,v € X.

Proof: Since ¢ is bipartite, by Konig’s theorem there is a proper coloring of ¢
with | X| colors. Let f be such a coloring with the minimum number of vertices
in X having the same set of incident colors. Observe that d(|X|—d) > |X| -1
for 1 < d < |Y|. Thus, for each vertex v € X with |By(u) N X| > 2 we can
choose two colors o € F(u) and 8 ¢ F(u) such that there is no vertex v in X
with Fi(v) = F(u) —{a} U{B}. Let P = uy...v; be an (a, #)-Kempe path with



u = uy. We transform the coloring f to another coloring f; by exchanging the
colors o and [ on the path P;. The vertex v; cannot be in Y since otherwise the
new coloring, fi, would be a proper coloring of G with less vertices of X having
the same set of incident colors than the coloring f, a contradiction.

Figure 3

Thus v; € X. By the same reasoning, this vertex cannot be the unique vertex
of X incident with the set of colors Fi(v1). Thus there is a vertex w € X,
w ¢ V(Py) with Fi(w) = Fi(v1) and another (o, 3)-Kempe path P» = uy...vq
with w = uy. Now, we exchange the colors a and  on P, and we denote by f,
this new coloring. The vertices vy and uy exchange in f; their sets of colors when
compared with their color sets in f.

We continue as above to construct (a, 3)-Kempe paths and to exchange their
colors v and f3. It is easy to see that these (o, 3)-Kempe paths are vertex disjoint.
Since X is a finite set the procedure must finish at a vertex z € X. There exists
at least another vertex 2z’ € X incident with the same set of colors as z in this
last coloring. So, z’ belongs to one of the (a, 3)-Kempe paths constructed before.
It is easy to see that 2z’ cannot be an interior vertex of such a path and neither an
initial extremity. So, 2’ is a final extremity and then z was (in f) a vertex incident
with the same set of colors as another vertex. In this last new coloring there is
no vertex incident with the same set of colors as u. Thus this proper coloring has
less vertices in X having the same sets of incident colors, a contradiction with

the choice of f.
O

3 Proof of Theorem

We shall prove the theorem by induction. It is easy to see that the theorem
holds for n < 5. Let (G be a graph with n vertices, without isolated edges and
with at most one isolated vertex. Assume that every graph H of order n’, with
n’ < n, without isolated edges and with at most one isolated vertex, satisfies

X'(H) <n +1.

Claim 1: (' is a connected graph.



Proof: Suppose that GG is formed by two subgraphs (G4 and G5 with the property
that there is no edge between a vertex of (1 and a vertex of Gi5. Let ny = |V(G1)|
and ny = |V(G2)|. By the induction hypothesis there exists a VDP coloring of
(1 and of Gy with ny +1 and ny 4+ 1 colors, respectively. There is at least a color
used for Gy that is not the color of an edge with an endvertex of degree one in
(1. This color could be used in (3 instead of another color. Thus we obtain a

VDP coloring of G with ny +ny+ 1 =n 41 colors. O

Claim 2: (& has no vertex of degree one.

Proof: If G would have such a vertex u and if the graph G —{u} has no isolated
edge, by the induction hypothesis we have a VDP coloring of G — {u} with n
colors. We color the edge incident to u with a new color and thus we obtain
a VDP coloring of G with n + 1 colors. If G — {u} has an isolated edge vw
with v € Ng(u) then by the induction hypothesis we have a VDP coloring of
G —{u,v,w} with n —3 41 colors. We color uv and vw with two new colors and
thus we obtain a VDP coloring of G with n colors. O

Claim 3: (& has no two adjacent vertices of degree two.

Proof: If G has two such vertices v and v, denote by G' = G — {u,v}. G' cannot
have an isolated vertex since (¢ is connected and (G has no vertices of degree one.
Also, ' cannot contain an isolated edge since (G is connected and it has at least
six vertices. So, G’ satisfies the hypothesis of the theorem.

We apply the induction hypothesis to the graph G' and we shall use two new
colors to obtain a VDP coloring of G with n + 1 colors as below. We distinguish
two cases:

— If there is a vertex w such that ww,vw € E then we color uw and vw with
two new colors and uv with a color used in G'.

— Otherwise let @ € Ng(u) and y € Ng(v). We color ux and vy with two
new colors. If at least one of x or y has degree two in G then dg/(2) + dei(y) <
n—34+1=n—2 and thus there is a color used in GG’ that we can use to color
uv in order to have a VDP coloring of . If  and y have degree at least two in
G’ we can use any color used in GG to color uv. O

Claim 4: G has at most two vertices of degree two that are not adjacent.

Proof: If ¢ has at least three such vertices u,v,w, denote their neighbors in
G' by uy,us,vy,vs, w1, wy (not necessary different). Using the previous claims
we can suppose that wuy,us, vy, ve, w1, we have degree at least three in (. Let
G' = G —{u,v,w}. Since G is connected, G’ has at most one isolated vertex that
is adjacent with w, v and w. The graph G’ has at most one isolated edge that has
the two endvertices among the neighbors of w, v, w since G has no isolated edge
and G has no vertex of degree one. We apply the induction hypothesis to the
graph obtained from G’ by removing the isolated edge if such an edge exists and



otherwise we apply the induction hypothesis to the graph G'. We color the iso-
lated edge using a new color and we color the edges uuy, uusg, vvy, Vv, Wwy, W9
with another three new colors to obtain a VDP coloring of G. O

We distinguish two cases.

Case 1 (& has a long path covering.

Let P = {P,..., P;} be a long path covering of G with a minimum number of
paths. Let G' = G — E(P).

Since (& has at most two vertices of degree two, G’ has at most two isolated
vertices. We show that G’ has a semi-VDP coloring.

It is easy to see that A(G') < n —3. A vertex that is in the interior of a path
of P has in (i the degree at most n — 3. If an endvertex of a path P; has degree
n — 2 in G’ then it is joined with all vertices in (. Thus P contains only a path
since otherwise there is another long path covering of G with less paths than P.
If G is not a complete graph then we can change P such that vertices of degree
less than n — 1 in (G become the endvertices of P as follows. Let one denote by

= uy ...u, an orientation of the path of P and suppose that at least one of u4
and u, has the degree n —1 in GG. Since (G is not complete there are two vertices
u; and wuj, ¢ < j such that w,u; ¢ E(G). If u;41 has the degree n — 1 in (G then
we replace P by uiPulun$Uj+1ui+1ﬁuj and if dg(u;41) < n — 1 then the path
uiﬁulunﬁjuiﬂ covers the vertices of (¢ and has the endvertices of degree less
than n — 1.

We shall use Lemma 1 to show that there is a semi-VDP coloring of G’ with
n — 2 colors. Using the theorem of Vizing we color the graph G’ with n — 2
colors. The restriction d(n — 2 — d) > n — 2 is satisfied for | < d < n —3 and
n>6. Alson; <n—1and n,_3 < n — 1 since otherwise if all the vertices of
(' have degree n — 3 then the interior vertices of P have degree n — 1 in ¢ and
the endvertices of P have degree n — 2 in (. Thus P has only one path since
otherwise it contradicts the choice of P as being a long path covering of G with
the minimum number of paths and the graph G is a complete graph minus one
edge. In this case a VDP coloring of the complete graph is a VDP coloring of G.
Thus the hypothesis of Lemma 1 are satisfied for £ = n — 2 and then G’ has a
semi-VDP coloring with n — 2 colors.

Using now Lemma 2 we obtain a VDP coloring of G with n + 1 colors.

Case 2 (& has no long path covering.

Let P ={P1,..., P} be along path system that covers a maximum number of
vertices of (G and let denote by Xy the set of vertices of G which do not belong
to P.

Claim 5: A vertex v € Xy is not joined with an endvertex of a path of P and
it cannot have two neighbors on the same path. A path of P that contains a



neighbor of Xy is of length at most four.

Proof: Let P = vg...v;, t > 2 a path of P and v; € Ng(v),0 < j <t Itis
easy to remark that j # 0 and j # ¢ since otherwise if vvg € E(G) then the set
obtained by replacing P by vvg P v; covers more vertices than P, a contradiction
with the choice of P. It is clear that the path voﬁvj and vjﬁvt have length at
most two, since otherwise we can find another set of paths that contradicts the
choice of P. Also vv;41 ¢ E(G) and vv;_y; ¢ FE(G) since if vv;1 € E(G) by
replacing P by vg Pv;vv;41 P v, the new long path system covers more vertices of
G than P. We remark that v is not joined with v, 4,5, otherwise j =1 and { =4
and thus replacing P by the paths voviv and vyvsv, we obtain a long path system
that contains more vertices than P. O

We partition the vertices of some paths of P into two sets A; and X; in the
following way. Let a be a neighbor of a vertex of Xy on a path P € P. If P is of
length two then we put a in A; and the endvertices of P in X;. If P is of length
three then we put the interior vertices of P in A; and the endvertices of P in Xj.
Finally, if P is of length four then we place a and one of the vertices a™ or a*
in A; and the other vertices of P in X;. One observes that in the graph induced
by X; there is no edge other than the edges between consecutive vertices on the
same path of P, since otherwise if there is an edge between two vertices in X,
that are on two different paths then there is a long path system of G that covers
more vertices than P. In other words X is a set of isolated vertices and edges.

The same is true for Xo U Xi. Also | X1| > |A4].

Let Py = P and [; be the set of indices of the paths of Py that contain a
vertex of Ay and Py = Py — User, Pi. Let I3 be the set of indices of the paths of
‘P1 that contain at least a neighbor of a vertex of Xj.

Claim 6: A path with index from the set [5 has length at most four and a vertex
of X7 is not joined with an endvertex of such a path.

Proof: Let P, be a path with index in [; and let P, be a path with index in /5 that
contains a neighbor v; of a vertex u; in V(P;) N Xy. Denote by P = uguy ... us
and ﬁg = vgvy ... v; two orientations of P, and . We showed in Claim 5 that
s < 4. Let uy be the vertex of P; adjacent with a vertex @ € Xy and suppose
that u; is us_y or us. It is easy to see that v; cannot be an endvertex of P, since
otherwise if v; = vy then the long path system obtained from P by replacing
Py and P, by uoﬁluzx and u@_lﬁlusvoﬁgvt (if u; = us) or u5$1UZ+1voﬁ2vt (if
u; = us—1) covers more vertices than P. Also, remark that j < 2, since otherwise
if 3 > 3 then when u; = u,, the set obtained from P by replacing P, and P,
by the paths uoﬁluw, u@_lﬁlusvjﬁzvt and vg P ov;_q forms a long path system
that covers more vertices than P. And when u; = u,_;, by replacing P, and P,
in P by ug Piupz, usus_yv; Pov, and vy P yv;_; we obtain a long path system that
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contradicts the choice of P. Thus 7 <2 and ¢ < 4. O

Now, let us define Xy and A;. We consider each path P with the index in
I,. 1If P is of length two then we put the interior vertex in Ay and the other two
vertices in Xy. If P is of length three then we add the interior vertices in A,
and the endvertices in X,. Finally, if P has length four then we add two interior
consecutive vertices in A, and the other vertices in X,.

It is easy to see that | X3| > |Az| and the graph induced by X; contains only
isolated vertices and isolated edges. The isolated edges are only between consec-
utive vertices on the same path with index in [, since if there is an edge between
two vertices in X5 that are on two different paths then there is a long path system
of (G that covers more vertices than P. Also the graph induced by XoU X; U X,
contains no path of length greater than one.

Let one suppose that I is and P = Py_1 — Uier, P and let I 4y be the set of
indices of the paths of P, that contain at least a neighbor of a vertex of Xj.

Claim 7: A path with index in [y has length at most four and a vertex of Xj
is not joined with an endvertex of such a path.

Proof: Let Q)q,...,Qr11 be a set of paths of P where ); is a path of P with
index in [y12-; and @Q; contains a neighbor of a vertex of V(Q;y1) N Xgy1-:.
Thus @Qgy1 contains a neighbor of a vertex v of Xy. Let () = ug...us be an
orientation of ()1 and suppose that wuy is the vertex of ()1 with the greatest index
that is joined with a path with the index in [; and this path is ();. Denote by
Q(ue) = {Q1,...,Qrs1}. We prove that there is a long path system that we
denote by P(u,) that contains the vertex v of Xy and all the vertices of the paths
Qi, 2 <1 < k+ 1 and the vertices u;, 0 <1 < . The proof is by induction on
k. The proof of Claim 6 justifies the assertion for £ = 1. Let ¢}, = vgy...v; be
an orientation of (), and let suppose that v; is the vertex of (), with the greatest
index that is joined with a path of index in [;_; and this path is @)5. Let us
suppose that wwv, € F(G). The justification is similar if wv,—q € E(G). Suppose
the assertion is true for k. Then we add to the long path system that contains v
all the vertices of tge paths @);, 3 < ¢ < k+ 1 and the vertices v;, for 0 <1 < 5,
the path uoaluthzvﬁl. Thus we obtain a long path system that proves the
assertion for k& + 1.

Now the proof of the Claim 7 is by induction on k.

Let P be a path with index in [ and let P’ be a path with index in [
that contains a neighbor v; of a vertex u; of V(P)N Xj. Let = uguy ... u, and

ﬁ/ = vgv1 . .. v two orientations of P and P'.

Claim 6 proves Claim 7 for £ = 1. Suppose that s < 4. Let u; be the vertex
of P with the greatest index that is incident with a vertex z € Xj;_; and suppose
that u; is us—y or u,. It is easy to see that v; cannot be an endvertex of P’ since

11



otherwise if v; = vy then the long path system obtained from P by replacing
Q(ue) and P' by P(us) and quﬁusvoﬁ/vt (if u; = us) or US$UZ+1U()?/U¢ (if
u; = us—1) covers more vertices than P. Also, let observe that 7 < 2. If j > 3
then if u; = us, the set obtained from P by replacing Q(u,) and P’ by P(u,) and
{u@_lﬁusvjﬁ/vt, voﬁ/vj_l} forms a long path system that covers more vertices
than P and if u; = us_; then the set obtained from P by replacing Q(u,) and
P’ by P(ug) and {usus_lvjﬁ/vt, voﬁ/vj_l} is a long path system that contradicts
the choice of P. Thus 5 <2 and t < 4. O

The sets Xjy1 and Ajyq are defined as X, and A,. By definition, |X;4q| >
| Apyal- '

We repeat the construction until a step ¢ when Np,(X;) = (. Let X = U=} X,
and A = U'Z1A;. Tt is easy to see that |X| > |A].

Claim 8: For any k, the graph induced by X} has no edges others than the edges
between two consecutive vertices on the same path of P. So, the graph induced
by X has only isolated vertices and edges, these edges are only edges between
two consecutive vertices on the same path of P.

Proof: Suppose that there exists a path P = wg...u,; with the index in [} and
two adjacent vertices from V(P)N Xy non consecutive on P. Let u, be the vertex
of P with the greatest index that is incident with a vertex in X;_;. We proved in
Claim 7 that there is a long path system R that contains a vertex of Xy ar&i the
paths of P — P and the vertices uy, ..., us. By adding to R the path uou,; Pusyq
(if uous € E(G)) or the path wous—_1us (if uous—1 € E(G)) we obtain a long path
system that covers more vertices than P, a contradiction.

Suppose now that there exist two paths P = ug...u; and P’ = vg...v; with
the indices in [, with the property that a vertex u; € V(P)N X}, is adjacent with
a vertex v; € V(P')N Xj. Let uy be the vertex of P with the greatest index that
is incident with a vertex in Xj_;. Also, as we proved in Claim 7, there is a long
path system R that contains a vertex of Xy and the paths of P — {P, P’} and the
vertices ug, . .., us. Suppose that v; = u,. If v; = v, then by adding to R the path
Uptq ﬁusvt$/v0 we obtain a long path system that covers more vertices than P,
a contradiction. If v; = vy_; then by adding to R the paths quﬁusvt_lvt and
voﬁ/vt_z we obtain a long path system that contradicts the choice of P. O

Using Lemma 3 we color the bipartite graph (X, A) with |X| colors in such a
way that this coloring is vertex-distinguishing on X.

Let G' = G — X.

Denote by T = {ujvy,...,uvy} and S = {wy,...,w} the sets of isolated
edges and vertices of GG’ (it is possible that these sets are empty). The graph
G" = G' — (S UT) has no isolated vertices and edges.
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By the hypothesis, G has no vertices of degree one. So, for any ¢ € {1,...,t},
u; and v; have at least a neighbor in X. We color each edge of T with a new
color and also we change the color of one of the edges incident with u; or v; with
another new one. Since (G has no vertices of degree one, w; has at least two
neighbors o and y in X. Since the coloring is vertex-distinguishing on X, we can
change the color of one of the edge w;z or w;y with a new color such that there
are no two vertices incident with the same set of colors. Thus we used at most
s + 2t colors.

If the graph G = ' —(SUT) has at least a vertex then we apply the induction
hypothesis to the graph G”, thus finding a VDP coloring with n— | X|—2t—s+1
colors. Since we color " with n—|X|—2t—s+1 colors and G has n—| X |—2t—s
vertices there is a color # that is not the color of an edge incident with a vertex
of degree one in G. Finally, we choose such a color 6 to color the edges in the
graph induced by X.

If G" has no vertex then since we use only n = s+ 2t 4+ | X| colors we can use
another color to color the edges in the graph induced by X. O
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