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Abstract

The best approximation algorithm for Max Cut in graphs of maximum de-
gree 3 uses semidefinite programming, has approximation ratio 0.9326, and its run-
ning time is Θ(n3.5 log n) ; but the best combinatorial algorithms have approxima-
tion ratio 4/5 only, achieved in O(n2) time [Bondy and Locke, J. Graph Theory 10

(1986), 477–504 ; and Halperin et al., J. Algorithms 53 (2004), 169–185]. Here we
present an improved combinatorial approximation, which is a 5/6-approximation
algorithm that runs in O(n2) time, perhaps improvable even to O(n). Our main
tool is a new type of vertex decomposition for graphs of maximum degree 3.
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1 Introduction

Max Cut is one of the most studied combinatorial optimization problems. Besides its
theoretical importance, it has applications in circuit layout design, statistical physics,
and many other fields ; see, e.g., [5] or Section 6 of [11]. Given a graph G = (V, E), the
search version of Max Cut consists of finding a partition (V1, V2) of the vertex set V ,
which maximizes the number of edges with one endpoint in V1 and the other in V2. Let
us denote the maximum by mc(G). For a constant c (0 < c < 1) an algorithm is said
to be a c-approximation if, for each input graph G, it finds a cut with at least c ·mc(G)
edges.

Max Cut was proved to be NP -hard, even for graphs of maximum degree 3 [12]. The
best approximation algorithm for general graphs was given by Goemans and Williamson
[7], using semidefinite programming, and has approximation ratio 0.87856. For graphs
of maximum degree 3, Halperin, Livnat and Zwick [8] adopted the same technique
and established a 0.9326-approximation. Berman and Karpinski [2] showed that no
polynomial-time algorithm can achieve the approximation ratio of 0.997 for Max Cut

in 3-regular graphs, unless P=NP.
The heavy tool of semidefinite programming, as an approach to Max Cut, not

only needs a phase of derandomization—that results in a large multiplicative constant
as the precision of approximation increases—but also its fastest known implementation
requires Θ(n3.5 log n) time [1]. For this reason, it is of interest to investigate, how strong
approximation can be achieved by faster algorithms. What is more, algorithms of a
combinatorial nature usually give more insight to the structure of the problem.

Large cuts of 3-regular graphs were studied by Hopkins and Staton [9]. Bondy and
Locke [4], and later Halperin et al. [8], too, established combinatorial 4/5-approximation
algorithms for Max Cut in graphs of maximum degree 3 . For the more restricted class
of 3-regular graphs, also a 22/27-approximation algorithm is presented in [8] (only in
the journal version). Both algorithms run in O(n2) time. More detailed comments on
those results will be given in Section 4.

In this paper, we develop a different approach to Max Cut in graphs of maximum
degree 3. Our algorithm is the first combinatorial one after more than two decades that
beats the 4/5 bound of [9] and [4] without assuming 3-regularity. In Section 3 we prove
the following result.

Theorem 1 There is an algorithm with running time O(n2) that establishes a 5/6-
approximation for Max Cut in any graph of maximum degree 3.

Our main tool is a novel type of vertex decomposition for graphs of maximum de-
gree 3, described in Corollary 2. As it will be proved at the end of Section 3, the
structural properties of those decompositions allow us to select a cut in each partition
class in such a way that all, or all but one, edges induced by the class belong to its
cut. Moreover, those cuts can be combined to a cut F of the entire graph such that F
contains the majority of edges joining distinct partition classes, and if some edge inside
a class is not in F , then an extra gain can be guaranteed for F from the edges incident
with that class. These properties, achieved for the partition classes sequentially, are
extracted in Lemmas 3 and 4.
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In this context, it is worth noting that other kinds of decompositions have already
been used for lower bounds on Max Cut, for instance vertex partitions into bipartite
induced subgraphs [10].

It remains an open problem whether our decomposition lemmas (Corollaries 1 and 2
of Section 2) can be established by algorithms faster than in quadratic time. Such
improvements would yield better bounds in Theorem 1 as well, since the additional
steps finding a large cut can be executed in linear time. Some comments concerning a
way towards more efficient implementation are given in the concluding section.

Although the algorithm presented here performs better than the combinatorial ones
known so far for Max Cut in graphs of maximum degree 3, it still remains an open
problem to design a combinatorial approximation that beats the ratio obtained via
semidefinite programming.

1.1 Terminology and notation

We consider graphs without loops and multiple edges. The following notation and
terminology will be used :

V (G) and E(G) : the vertex set and edge set of graph G

G[S] : the subgraph of graph G induced by vertex subset S

e(A, B) : the number of edges with one endpoint in A and the other in B, where A and
B are disjoint vertex sets

G − H : the subgraph of graph G induced by V (G)\V (H), where H is a subgraph of G

cubic graph : 3-regular graph

subcubic graph : graph of maximum degree at most 3

unicyclic graph : graph that is connected and has precisely one cycle

2 Unicyclic decompositions

In this section we prove some lemmas concerning vertex decompositions, that will play
a central role in our Max Cut algorithm on subcubic graphs.

Lemma 1 If G = (V, E) is a connected subcubic graph with |E| > |V |, then there
exists an induced subgraph H of G with the following properties :

(i) H is unicyclic,

(ii) G − H is connected,

(iii) Each edge joining H with G − H is incident with the cycle of H.

Moreover, an induced subgraph H with these properties can be found in O(|V |) time.
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Figure 1: Construction of unicyclic subgraph H . Thick lines : tree edges ; thin lines :
non-tree edges ; solid lines : edges in E(H) ∪ E(G − H) ; dotted lines : deleted edges,
to detach H from G − H . (a) Unique edge with largest m(e). (b) Two edges with
m(e) = m(e′) = 1, the endpoints of e and e′ on the same rooted path. (c) Two edges
with m(e) = m(e′) = 1, the endpoints of e and e′ on different branches of the spanning
tree.

Proof Let us choose an arbitrary starting vertex r, and run Depth-First Search to
find a spanning tree of G, say T = (V, F ), rooted at r. We label the vertices v with the
natural numbers 1, 2, . . . , |V |, in the order they get visited during DFS. Denoting those
labels with a(v), we associate with each edge e = uv ∈ E \F the value m(e) = m(uv) =
min {a(u), a(v)}. When an edge of E \ F is discovered during DFS, we register it at
its endpoint of value max {a(u), a(v)}. Moreover, a buffer is maintained for storing the
non-tree edge with currently largest m(e). Since G has maximum degree 3, each non-leaf
vertex different from r is incident with at most one edge not in F ; hence, the content
of the buffer becomes uniquely determined, once a non-tree edge not incident with the
root has been found. The case of m(e) = m(e′) = 1 with two edges e, e′ ∈ E \ F will
require a separate analysis, that we postpone until the end of the proof.

The way we find the subgraph H satisfying the requirements is illustrated in Figure 1.
Having DFS terminated, we identify the edge e = uv in the buffer. Assume a(u) < a(v),
without loss of generality. The subgraph H to be constructed will contain the edge uv
and the u–v path Puv of T . Moreover, for each x ∈ V (Puv) we check whether x has a
child outside Puv. There can be at most one such child, because Puv ∪{e} is a cycle and
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Figure 2: Graph with maximum degree 4 that becomes disconnected after the removal
of any unicyclic induced subgraph.

G is subcubic.
If some x has a child x′ outside Puv, then we consider the subtree Tx′ rooted at x′.

If Tx′ contains a vertex incident with a non-tree edge ex ∈ E \ F , then we delete the
edge xx′ from T and select ex instead, along which the subtree will be attached to the
subgraph G − H under construction. (Just one ex is selected for each Tx′ . Recall that
m(ex) < m(e) necessarily holds, by the choice of e.)

The subtrees Tx′ not incident with any non-tree edge remain attached to Puv, and
their union together with Puv induces the subgraph H . Now, any edge e′ ∈ E\F distinct
from e has m(e′) < m(e), therefore e′ can have at most one vertex in H . For this reason,
the unique non-tree edge induced by V (H) is e = uv, and it is also clear that E(H)\{e}
is a subtree of T , implying property (i). Also, (ii) is ensured by the choice of the edges
ex, whose insertion modifies T to a spanning tree of G − H . To verify (iii), we observe
that a non-tree edge sharing a vertex with a subtree Tx′ either has been taken as ex, or
has become a non-tree edge in G − H if another ex has been chosen for Tx. Thus, each
edge from H to G−H is of the form xx′, i.e. that joins some Tx′ with a vertex x of Puv.

Finally, suppose that there are precisely two non-tree edges, say e = rv and e′ = rv′,
both incident with the root r. Assuming a(v) < a(v′), one easy way to complete the
construction is to remove e′ and the last edge, say e′′, on the path from v′ to the cycle
Prv ∪ {e}. What remains is a unicyclic graph containing e, and a tree component
containing v′. The two edges between these subgraphs clearly satisfy (iii).

As regards complexity, our algorithm finding H is linear because DFS and also the
additional operations described above can be implemented in O(|V (G)|) time. 2

Remark 1 The conclusion of Lemma 1 is not valid for graphs of higher degrees. A
small counterexample is the graph shown in Figure 2, on 8 vertices, with degree sequence
4, 4, 3, 3, 2, 2, 2, 2.

Remark 2 Although it does not lead to a simpler proof, let us note that the last case
in the proof of Lemma 1—i.e., when there are just two non-tree edges and both of them
are incident with the root—can be avoided by choosing r as a vertex of minimum degree.
Indeed, if r has degree less than 3, then it can be incident with at most one non-tree
edge ; and if G is 3-regular, then each vertex, including r as well, is disjoint from at
least one non-tree edge. The latter is true because there are n − 1 tree edges, plus at
most two non-tree edges containing r, while the number of edges is 3n/2 > n + 1 for
n ≥ 4. Alternatively, any leaf of the spanning tree is incident with two non-tree edges,
and their other endpoints must be distinct.

Repeated application of Lemma 1 yields :
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Corollary 1 Every connected subcubic graph G = (V, E) has a decomposition into
vertex-disjoint connected graphs H1, . . . , Ht for some natural number t, such that

– Hi is unicyclic for all 1 ≤ i < t,

– Ht is either unicyclic, or a tree joined to Ht−1 with at least two edges (unless
t = 1), and

– if an edge e joins some unicyclic Hi ( 1 ≤ i < t) with any Hj ( i < j ≤ t), then e
is incident with the cycle of Hi.

Moreover, such a decomposition can be found in O(|V |2) time.

As it will turn out in the proof of Theorem 1, the last subgraph Ht is critical in some
sense, and it is less favorable with respect to the computation if Ht is a tree or a unicyclic
graph whose cycle is odd. In such a situation we need to impose a further condition on
Ht−1 or on Ht. For this purpose, the next assertion will be useful. The constant 126
comes from a very rough estimate, we have not made any efforts to optimize it.

Lemma 2 Let G = (V, E) be a connected subcubic graph, and let H1, . . . , Ht be a
decomposition determined in Corollary 1. If there are more than 126 edges between
Ht−1 and Ht, then the decomposition can be modified to H1, . . . , Ht−2, H, H ′ in O(|V |)
time, such that H is unicyclic and satisfies condition (iii) of Lemma 1, H ′ is connected,
and moreover the number of disjoint cycles in H ′ is larger than that in Ht.

Proof We shall make use of the following results that are valid for any graph, not only
for those with maximum degree 3. Erdős and Pósa [6] proved that, for some constant
c, every graph with n′ vertices and at least n′ + c k log k edges contains k edge-disjoint
cycles. They also showed that for two disjoint cycles, n′ + 4 edges suffice. Moreover,
Bodlaender [3] described a linear-time algorithm that either finds k vertex-disjoint cycles,
or outputs a feedback vertex set (i.e., a set meeting all cycles) of cardinality at most
12k2 − 27k + 15. We shall apply these facts for k = 2 and k = 3. The number 126
(easily reducible to at most 86) comes from an estimated worst case for k = 3, as we
shall explain in Case 2 below.

Let us emphasize that in subcubic graphs, edge-disjoint cycles necessarily are vertex-
disjoint, too. In particular, this can make the formulation of the Erdős–Pósa theorem
stronger when we apply it to G.

It will be convenient to distinguish between the two types of Ht, despite the argu-
ments are fairly similar for them.

Case 1: Ht is a tree

We select a set E ′ of arbitrary five edges that join Ht−1 with Ht. By the result of [6],
the subgraph formed by E ′∪E(Ht−1)∪E(Ht) contains two vertex-disjoint cycles C, C ′.
The following simple argument shows that they can be found in linear time.

By assumption, the edges in E ′ are incident with the cycle of Ht−1, and their end-
points in Ht−1 are distinct because G is subcubic. Hence, each pair of them is connected
by two paths along the cycle of Ht−1, and by a unique path in the tree Ht. In this way,
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we obtain 20 cycles, each containing just two edges of E ′. Let G′ denote the subgraph
formed by the union of their edge sets. We claim that the two disjoint cycles C and C ′

must be among those 20 cycles. Indeed, they cannot coincide with the cycle of Ht−1,
because removing the latter we obtain a forest (since Ht is a tree). And, any other cycle
of G′ contains four edges of E ′, therefore such a cycle must share an edge with each
cycle of G′.

Given Ht−1, Ht, and the five edges of E ′, it is a trivial task to generate the 20 cycles
mentioned above in linear time, and then it is easy to check which two of them are
disjoint.

Since G′ is connected, there is a path P between C and C ′. Let us assume a vertex
labeling as follows : C = u1, u2, . . . , up ; P = v1, v2, . . . , vq ; C ′ = z1, z2, . . . , zr ; up = v1,
vq = z1. Then, the path P ∗ = u1, . . . , up/v1, . . . , vq/z1, . . . , zr (where the symbol ‘/ ’
indicates identical vertices) is a feasible start of a DFS algorithm. Observe that in
this subtree, z1zr is a non-tree edge that lies completely under C. Thus, applying the
construction of Lemma 1 in the way that the first p+q+r−3 edge-selections in DFS are
driven by P ∗, the unicyclic subgraph H determined by the subroutine has no vertices
above z1. Consequently, no matter how DFS has terminated on G′, the entire C remains
in G′ − H . This fact completes the proof of Case 1, as Ht was supposed to be a tree.

Case 2: Ht is unicyclic

Removing 42 = 12 · 9 − 27 · 3 + 15 or fewer vertices from the induced subgraph G′ :=
G[V (Ht−1)∪V (Ht)], the number of edges would decrease by at most 126, hence we would
obtain a graph that still contains more edges than vertices. Thus, the algorithm of [3]
cannot terminate with a feedback vertex set of cardinality at most 42. Consequently,
three disjoint cycles can be found in G′ in linear time. Let us denote them by C, C ′, C ′′.

We may assume without loss of generality that C and C ′ are connected by a path
P that is vertex-disjoint from C ′′. We adopt the notation of Case 1 for the vertices of
C ∪ P ∪ C ′. Now again, we begin DFS with the path u1, . . . , up/v1, . . . , vq/z1, . . . , zr ;
moreover, when a vertex of C ′′ is reached for the first time, we continue DFS all around
C ′′. In this way, the last edge of C ′′ becomes a non-tree edge, lying completely under
C ∪ C ′. Thus, by an argument similar to the one given in Case 1, the algorithm of
Lemma 1 for G′ will leave the entire C ∪C ′ in G′ −H . This fact completes the proof of
Case 2, and hence also of Lemma 2. 2

Corollary 2 Every connected subcubic graph G = (V, E) has a decomposition into
vertex-disjoint connected graphs H1, . . . , Ht for some natural number t, such that

– Hi is unicyclic for all 1 ≤ i < t,

– if an edge e joins some Hi ( 1 ≤ i < t) with any Hj ( i < j ≤ t), then e is incident
with the cycle of Hi, and

– Ht has one of the following types :

(a) unicyclic, with an even cycle

(b) unicyclic, with an odd cycle, in which case also the cycle of Ht−1 is odd

(c) |V (Ht)| + 1 ≤ |E(Ht)| ≤ |V (Ht)| + 127, with at least one even cycle in Ht.
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Moreover, such a decomposition can be found in O(|V |2) time.

Proof Repeatedly applying Lemma 1, we first generate the vertex-disjoint unicyclic

graphs H1, H2, . . . , Hi−1, as long as the graph Gi = G−
(

⋃i−1

j=1
Hj

)

contains at least one

cycle. From the Erdős–Pósa theorem we know that |V (Gi)| ≤ |E(Gi)| ≤ |V (Gi)|+3, for
otherwise we can find two further vertex-disjoint cycles and a refined decomposition with
a larger value of i. Now, we first check the number, say s, of edges with one endpoint in
Hi−1 and the other in Gi. For s > 126, Hi−1 gets re-defined along the lines of Lemma 2
and the algorithm continues, while the case of 2 ≤ s ≤ 126 terminates with type (c), by
re-defining Hi−1 := G[V (Hi−1)∪V (Gi)] and setting t = i− 1 ; we shall argue at the end
of the proof why an even cycle necessarily occurs in it. Similarly, if s = 1 and Gi is not
unicyclic, we get type (c) by uniting Hi−1 with Gi. Finally, if s = 1 and Gi is unicyclic,
we set t = i, Ht := Gt, and check the parity of the unique cycle in Ht−1 and in Ht. If
the latter is even, then type (a) has been obtained, while if both are odd, then we have
reached type (b). If the cycle in Ht−1 is even and in Ht is odd, we switch Ht−1 with Ht,
also attaching their unique connecting subtree to the updated Ht. This yields type (a).

The existence of an even cycle in case (c) is implied by the facts that all the—at
least three—cycles of Ht cannot be mutually disjoint, and that the union of two cycles
sharing a nontrivial path always contains an even cycle. 2

3 Finding a large cut

In this section we prove Theorem 1. The proof is based on Corollary 2, but we shall
need some further assertions. The first one is quite simple, nevertheless we haven’t
found it published elsewhere. Allowing multiple edges in its formulation not only makes
it slightly stronger but also simplifies the proof.

Proposition 1 For every natural number k, there is a constant ck with the following
property : In each connected multigraph G = (V, E) with |E| < |V | + k, the value of
mc(G) can be determined in at most c |V |+ck steps, for some small absolute constant c.

Proof If G has a pendant vertex or triangle, it can be removed and then mc(G)
decreases by 1 or 2, and so does |V | as well, while |E| − |V | remains the same or
decreases by 1. Otherwise, if there are two adjacent vertices of degree 2 which have
distinct neighbors, then they are internal vertices of a (not necessarily induced) P4,
which can be contracted to an edge ; this decreases both |V | and mc(G) by precisely 2
(also if a multiple edge is created), and keeps |E| − |V | unchanged. These reductions
can be executed in constant time and the graph remains connected after them, hence
the proof can be completed by induction on |V |, with reference to smaller cases already
verified.

If these transformations do not apply, then G is a connected multigraph of minimum
degree at least 2, such that each edge is incident with a vertex of degree at least 3. Let
us denote by x and y the numbers of vertices whose degree is greater than 2 and is equal
to 2, respectively. The 2-edge stars on the y vertices are edge-disjoint, therefore

y ≤
1

2
|E| .
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Summing up the degrees, we obtain

3x + 2y ≤ 2|E| ,

and so

3|V | = 3x + 3y ≤ 2|E| + y ≤
5

2
|E| <

5

2
(|V | + k) ,

from what we see |V | < 5k.
Consequently, mc(G) can be determined by brute force in constant time whenever k

is fixed. 2

Remark 3 The formulation of Proposition 1—instead of writing simply O(|V |)—is
intended to express the substantial difference between the two constants involved. While
ck may depend exponentially on k, the value of c is obtained from just what is needed
for recognizing small-degree vertices and performing the local reductions above.

The next lemma is crucial for the proof of our main result.

Lemma 3 Let G = (V, E) be a connected subcubic graph, V ′ ∪ V ′′ = V a vertex
partition, and A′ ∪ B′ = V ′ a partition inside V ′. Let us assume :

(1) G[V ′′] is unicyclic, and its cycle is odd.

(2) All edges joining V ′ with V ′′ are incident with the cycle of G[V ′′].

Then a partition A′′ ∪ B′′ = V ′′ can be found in O(|V ′′| + e(V ′, V ′′)) time, such that

(3) E(G[A′′]) ∪ E(G[B′′]) consists of just one edge, and

(4) e(A′, B′′) + e(B′, A′′) > e(A′, A′′) + e(B′, B′′).

We note that it will be essential to have strict inequality ‘>’ instead of ‘≥’ in
property (4).

Proof Let C be the cycle of G[V ′′]. For each edge e of C, the graph Ge = G[V ′′] \ {e}
is a tree, therefore it has a unique partition into two independent sets apart from their
order ; we denote them by Ae and Be. Then both ordered partitions (Ae, Be) and (Be, Ae)
satisfy property (3).

If there is an odd number of edges between V ′ and V ′′, then one of (Ae, Be) and
(Be, Ae) is a proper choice for (A′′, B′′) satisfying property (4) as well, for any e.

Suppose that e(V ′, V ′′) is even. The proof will be done if we can identify an edge
e ∈ E(C) such that

e(Ae, B
′) + e(Be, A

′) 6= e(Ae, A
′) + e(Be, B

′) . (⋆)

Since G is connected, there is a V ′–V ′′ edge f incident with some vertex v ∈ V ′′. We
denote by e and e′ the two edges of the cycle in V ′′ that are incident with v. Note
that e, e′, f are all the edges on v, as G is subcubic. Since C is an odd cycle, we have
(Ae′, Be′) = (Ae \ {v}, Be ∪ {v}). Consequently, f is the only one edge of G that is
counted for e and e′ on different sides of (⋆). Thus, non-equality must hold for at least
one of e and e′. 2

For a cycle of even length, the conclusion is slightly different :
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Lemma 4 Let G = (V, E) be a connected subcubic graph, V ′ ∪ V ′′ = V a vertex
partition, and A′ ∪B′ = V ′ a partition inside V ′. If G[V ′′] is unicyclic, and its cycle is
even, then a bipartition A′′ ∪ B′′ = V ′′ into independent sets can be found in O(|V ′′| +
e(V ′, V ′′)) time, such that e(A′, B′′) + e(B′, A′′) ≥ e(A′, A′′) + e(B′, B′′).

Proof The bipartite connected graph G[V ′′] has a unique partition into two indepen-
dent sets, apart from their order. At least one of the two possible orders satisfies the
requirement. 2

Now we are in a position to prove 5/6-approximability.

Proof of Theorem 1 Let H1, H2, . . . , Ht be a decomposition of G guaranteed by Corol-
lary 2. We are going to determine a vertex bipartition in reverse order for Ht, Ht−1, . . . , H1

as follows. For Ht, we find a cut that is maximum, on applying Proposition 1 if Ht is
of type (c), or putting all of its edges into the cut if it is unicyclic with an even cycle
(type (a)). For type (b), an arbitrary edge is deleted from the cycle of Ht ; in this case,
the computation will be slightly different—and simpler—but the construction for the Hi

(t > i ≥ 1) will be the same.
Assume that Hi+1 has already been processed, for some i > 1. To generate a vertex

bipartition of Hi, we set

V ′ =

t
⋃

j=i+1

V (Hj) , V ′′ = V (Hi) .

A partition on V ′ has been determined in the previous steps. We now apply Lemma 3
or 4, according as the cycle of Hi is odd or even, respectively. In this way, eventually a
cut (A, B) of G is obtained ; we will prove that it is a 5/6-approximation.

Let us denote by mi the number of edges in Hi (1 ≤ i ≤ t), by ℓ the number of
unicyclic Hi (1 ≤ i ≤ t− 1) whose cycle is odd, and by nt the number of vertices in Ht.
Moreover, we write the value of maximum cut in Ht in the form mt − s.

Case 1: Ht is of type (a) or (c)

In this case we have
mt − s − nt ≥ 0

since Ht contains an even cycle that can be extended to a bipartite, connected, spanning
subgraph of Ht.

Let m denote the number of edges in G. Since the Hi are vertex-disjoint, and every
cut omits at least one edge from each odd cycle, we surely have

mc(G) ≤ m − ℓ − s .

On the other hand, according to Lemma 4 and condition (4) of Lemma 3, the algorithm
produces a cut F of size at least

[(n − nt − ℓ) + (mt − s)] +
1

2
[m − (m1 + · · · + mt) + ℓ ] ,
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the first term counting the edges of F within the Hi and the second term estimating
∣

∣F \ (
⋃t

i=1
E(Hi))

∣

∣ from below. Here

m1 + · · · + mt = n − nt + mt ,

therefore the solution generated by the algorithm has value at least

1

2
(n − nt − ℓ + mt + m − 2s) .

Thus, the performance of the algorithm is at least as good as

1

2

m − ℓ − s + n − nt + mt − s

m − ℓ − s
=

1

2
+

1

2

n + mt − nt − s

m − ℓ − s
≥

1

2
+

n

2m
≥

5

6

since both mt−nt−s and ℓ+s are nonnegative, and m ≤ 3n/2 in every subcubic graph.

Case 2: Ht is of type (b)

Assuming now that ℓ of the subgraphs Hi (1 ≤ i ≤ t) have odd cycles, we see that the
largest cut cannot exceed m − ℓ, while the algorithm finds a cut of size at least

(n − ℓ) +
1

2
(m − n + ℓ − 1) .

The ‘loss’ of −1 in the last term may occur because we cannot benefit from Lemma 3
for the last subgraph Ht. Nevertheless, since the inequalities ℓ ≥ 2 and n ≥ 2m/3 are
valid, we obtain that the performance of the algorithm is at least as good as

1

2

m + n − ℓ − 1

m − ℓ
=

1

2
+

1

2

n − 1

m − ℓ
≥

1

2
+

1

2

2

3
m − 1

m − 2
>

5

6
.

The decomposition in Corollary 2 can be found in O(|V |2) time. Then, the repeated
application of Lemmas 3 and 4 takes

∑

1≤i≤t−1

O(|Vi|) +
∑

1≤i<j≤t

O(e(Vi, Vj)) = O(|V |) + O(|E|) = O(|Vi|)

steps. Thus, the algorithm can be implemented in O(|V |2) time. 2

4 Comparison with earlier algorithms

In this concluding section we compare our results with those in [9], [4], and [8]—only the
second one contains a time analysis among those three—and we also indicate how the
time bound O(n2) may perhaps be improved in our case. In order to simplify notation,
in the discussion below we assume throughout that G = (V, E) is a subcubic graph with
n vertices and m ≤ 3n/2 edges.

Generally speaking, all the algorithms cited here apply the technique of local switch-
ing . It means that an initial (possibly partial) vertex partition is iteratively improved
by changing the position of one or more vertices with respect to the cut.
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• [9] : Hopkins and Staton only consider 3-regular triangle-free graphs. Their argu-
ment for mc(G) ≥ 4m/5 is presented as a proof by contradiction. Nevertheless,
it can be converted to a linear-time algorithm. The obvious way of implementing
the algorithm in [9] would be of order O(n2), and the price of going down to O(n)
is a more complicated book-keeping that not only registers vertex types—there are
six of them—but also keeps track of the second neighborhood of each vertex.

• [4] : Bondy and Locke extend the inequality mc(G) ≥ 4m/5 to subcubic triangle-
free graphs, and also describe an efficient algorithm achieving this bound. As
stated explicitly at the end of their Section 6 ([4, p. 490]), the time bound is
O(n2). Although it is not impossible that a stronger worst-case bound might be
proved, the difficulty is that in some situations it already takes Θ(n) steps just to
find an improving switch, and in principle as many as Θ(n) of such iterations may
occur.

Of course, the algorithmic proof of the lower bound mc(G) ≥ 4m/5 immediately
implies a 4/5-approximation on triangle-free subcubic graphs. Moreover, perhaps
a slightly stronger result might be obtained for regular graphs, since it is shown in
[4] that the only two 3-regular connected triangle-free graphs attaining 4m/5 are
the Petersen and the dodecahedron graphs. Nevertheless, this fact would probably
not lead to a substantial improvement.

• [8] : Halperin et al. present two combinatorial algorithms, which we have to discuss
one by one.

Concerning subcubic graphs, it is observed in [8] that removing all triangles and
their incident edges, then running the 4/5-approximation algorithm on the triangle-
free subgraph obtained, and finally putting back the triangles one by one, can
preserve the lower bound 4 mc(G)/5 for the size of the edge cut found. Although
the steps handling triangles at the beginning and at the end can easily be organized
in linear time, this approach uses the O(n2) algorithm of [4] as a subroutine, and
hence in the worst case it cannot be faster than the one in [4] on triangle-free input
graphs.

On the other hand, the 22/27-approximation algorithm on 3-regular graphs is
self-contained, and it may be the case that it runs in O(n) worst-case time. The
difficulty in deciding this question lies in the fact that one of the seven local
improvement steps applied in the algorithm consists of finding a cycle in an induced
subgraph and switching some (about half) of its vertices ; and in some situations
it clearly may take Θ(n) time to find a cycle with as few as O(1) vertices. So, to
go down from O(n2) to O(n)—if this is possible at all—would require a careful
way of organizing iterated improvements.

Summarizing, the algorithm designed in this paper not only beats all the previous ones
with its 5/6-approximation ratio, but also it runs in O(n2) time, which is not worse than
any of the time bounds proved for subcubic graphs in [4] and [8].

We do not know whether our decomposition lemmas (Corollaries 1 and 2) can be
established by algorithms in fewer than O(n2) steps. Although the first unicyclic graph
H1 is found in linear time, and we do not need to search a spanning tree again from the
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very beginning, the removal of H1 may leave some branches of the remaining spanning
tree in a non-DFS position. It is not clear how efficiently the rearrangement of those
branches and the book-keeping of incident non-tree edges can be organized, and whether
the total time of those additional steps becomes o(n2), or even as small as O(n).

Assuming that a time bound f(n) gets proved for Corollaries 1 and 2, the upper
bound f(n)+O(n) = O(f(n)) would follow for Theorem 1 as well, since all the additional
steps to construct a large edge cut from a unicyclic decomposition can be executed in
linear time.
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