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Abstract

We investigate the problem of approximating the Pareto set of some multiobjective
optimization problems with a given number of solutions. Our purpose is to exploit general
properties that many well studied problems satisfy. We derive existence and constructive
approximation results for the biobjective versions of MAX SUBMODULAR SYMMETRIC
FuncrioN (and special cases), MAX BISECTION, and MAX MATCHING and also for the k-
objective versions of MAX COVERAGE, HEAVIEST SUBGRAPH, MAX COLORING of interval
graphs.

1 Introduction

In multiobjective combinatorial optimization a solution is evaluated considering several
objective functions and a major challenge in this context is to generate the set of efficient
solutions or the Pareto set (see [12] about multiobjective combinatorial optimization). How-
ever, it is usually difficult to identify the efficient set mainly due to the fact that the number
of efficient solutions can be exponential in the size of the input and moreover the associated
decision problem is NP-complete even if the underlying single-objective problem can be solved
in polynomial time (e.g. shortest path [12]). To handle these two difficulties, researchers have
been interested in developing approximation algorithms with an a priori provable guarantee
such as polynomial time constant approximation algorithms. Considering that all objectives
have to be maximized, and for a positive p < 1, a p-approximation of Pareto set is a set of
solutions that includes, for each efficient solution, a solution that is at least at a factor p on all
objective values. Intuitively, the larger the size of the approximation set, the more accurate
it can be.

It has been pointed out by Papadimitriou and Yannakakis [28] that, under certain general
assumptions, there always exists a (1 — ¢)-approximation, with any given accuracy ¢ > 0,
whose size is polynomial both in the size of the instance and in 1/e but exponential in the
number of criteria. In this result, the accuracy € > 0 is given explicitly and a general upper
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bound on the size of the approximation set is given. When the number of solutions in the
approximation set is limited, not every level of accuracy is possible. So, once the number of
solutions is fixed in the approximation set of a multiobjective problem, the following questions
are raised: What is the accuracy for which an approximation is guaranteed to exist? Which
accuracy can be obtained in polynomial time?

In this paper we are interested in establishing for some multiobjective maximization prob-
lems the best approximation ratio of the set of efficient solutions when the size of the ap-
proximation set is given explicitly. We give three approaches that deal with biobjective and
k-objective problems that allow us to obtain approximations of the set of efficient solutions
with one or several solutions. More precisely, in a first approach, we consider a general max-
imization problem and establish a sufficient condition that guarantees the construction of a
constant approximation of the Pareto set with an explicitly given number of solutions. As a
corollary, we can construct a (1 — e)-approximation of the Pareto set with O( %) solutions. In
a second approach, we establish a necessary and sufficient condition for the construction of a
constant approximation of the Pareto set with one solution. In a third approach, we establish
a sufficient condition for the construction of one solution with approximation guarantee for
k-objective selection problems. In these three approaches, if the corresponding solutions can
be found in polynomial time then the biobjective or k-objective selection problems admits
polynomial time approximation with one solution.

Properties defined in these three approaches apply to several problems previously studied
in single-objective approximation. Thus we derive polynomial time constant approximations
with one solution for Biobjective MAX BISECTION, Biobjective MAX PARTITION, Biobjective
Max Cur, Biobjective MAX SET SPLITTING, Biobjective MAX MATCHING and k-objective
HEAVIEST SUBGRAPH, k-objective MAX ¢ COLORABLE SUBGRAPH and k-objective MAX
COVERAGE, but also for k-objective versions of some particular cases of MAX COVERAGE:
Max q¢ VERTEX COVER and MAX ¢ SELECTION. Some instances show that the given biobjec-
tive appromixation ratios are the best we can expect. In addition Biobjective MAX PARTITION,
Biobjective MAx CuT, Biobjective MAX SET SPLITTING admit a (1 — &)-approximation of
the Pareto set with O(1) solutions.

Several results exist in the literature on the approximation of multiobjective combinatorial
optimization problems. One can mention the existence of fully polynomial time approximation
schemes for biobjective shortest path [19, 34, 33|, knapsack [13, 8], minimum spanning tree
[28], scheduling problems [6], randomized fully polynomial time approximation scheme for
matching [28], and polynomial time constant approximation for max cut [4], a biobjective
scheduling problem [32] and the traveling salesman problem [5, 26]. Note that [4], [26] and
[32]| are approximations with a single solution.

This article is organized as follows. In Section 2, we introduce basic concepts about
multiobjective optimization and approximation. Section 3 is devoted to an approach for
approximating some biobjective problems with one or several solutions. Section 4 presents
a necessary and sufficient condition for approximating some biobjective problems with one
solution within a constant factor. In Section 5 we establish an approach for approximating
some multiobjective selection problems. Conclusions are provided in a final section.



2 Preliminaries on multi-objective optimization and approxi-
mation

Consider an instance of a multi-objective optimization problem with k criteria or objectives
where X denotes the finite set of feasible solutions. Each solution x € X is represented in the
objective space by its corresponding objective vector w(z) = (wy(z),...,wg(z)). We assume
that each objective has to be maximized.

From these k objectives, the dominance relation defined on X is defined as follows: a
feasible solution = dominates a feasible solution ' if and only if w;(z) > w;(2’) for i = 1,...,k
with at least one strict inequality. A solution z is efficient if and only if there is no other
feasible solution ' € X such that 2’ dominates x, and its corresponding objective vector is
said to be non-dominated. Usually, we are interested in finding a solution corresponding to
each non-dominated objective vector. The set of all such solutions is called Pareto set.

For any 0 < p < 1, a solution x is called a p-approximation of a solution z’ if w;(z) >
p-wi(z') for i =1,... k. A set of feasible solutions X" is called a p-approximation of the set
of all efficient solutions if, for every feasible solution x € X, X’ contains a feasible solution x’
that is a p-approximation of x. If such a set exists, we say that the multi-objective problem
admits a p-approximate Pareto set with |X’| solutions.

An algorithm that outputs a p-approximation of a set of efficient solutions in polynomial
time in the size of the input is called a p-approximation algorithm. In this case we say that
the multi-objective problem admits a polynomial time p-approximate Pareto set.

Consider in the following a single-objective maximization problem P defined on a ground
set U. Every element e € U has a non negative weight w(e). The goal is to find a feasible
solution (subset of ) with maximum weight. The weight of a solution S must satisfy the
following scaling hypothesis: if opt(I) denotes the optimum value of I, then opt(I’) = t-opt(I),
where I’ is the same instance as I except that w'(e) = ¢ - w(e). For example, the hypothesis
holds when the weight of S is defined as the sum of its elements’ weights, or min.cs w(e), etc.

In the k-objective version, called k-objective P, k > 2, every element e € U has k non
negative weights wq(e), wa(e), ..., wi(e) and the goal is to find a Pareto set within the set of
feasible solutions. Given an instance I of k-objective P, we denote by opt;(I) (or simply opt;)
the optimum value of I restricted to objective ¢, ¢ = 1,..., k. Here, the objective function on
objective 1 is not necessarily of the same kind as on objective 2, but both satisfy the scaling
hypothesis. For example, one objective can be additive (sum of element’s weight) and the
other can be bottleneck (min or max of element’s weights).

3 Approximation with a given number of solutions for some
biobjective problems

Papadimitriou and Yannakakis [28] proved the existence of a (1 — ¢)-approximation of size
polynomial in the size of the instance and % In this general result, the accuracy € > 0 is given
explicitly but the size of the approximation set is roughly bounded. In this section we con-
sider a general maximization problem II and establish a sufficient condition that guarantees
the construction of a constant approximation of the Pareto set with an explicitly given number
of solutions for II. This result allows to construct a (1 — €)-approximation of the Pareto set
with O(%) solutions but not necessarily in polynomial time. Moreover, if the single objective
problem is polynomial time constant approximable and the above construction is done in poly-



nomial time then the biobjective version is also polynomial time constant approximable with
one solution. Thus we obtain constant approximations and polynomial time constant approx-
imations with one solution for Biobjective SUBMODULAR SYMMETRIC FUNCTION and also
for Biobjective MAaX PARTITION, Biobjective MAX CuT, Biobjective MAX SET SPLITTING
but also for Biobjective MAX MATCHING.

In the following, we are interested in biobjective maximization problems, Biobjective II,
which satisfy the following property.

Property 1 Given any two feasible solutions S1 and Sz, and any real o satisfying 0 < oo < 1,
if wa(S1) < aws(S2) and wi(S2) < awi(S1) then there exists a feasible solution Ss which
satisfies w1(S3) > (1 — a)w1(S1) and wa(S3) > (1 — a)ws(Ss).

We say that Biobjective 11 satisfies Property 1 polynomially if Ss can be constructed in
polynomial time.

Property 1 means that if 57 is not an a-approximation of Sy and Ss is not an a-approximation
of S for both objective functions w; and ws, then there exists a feasible solution S3 which
simultaneously approximates S1 and Sy with performance guarantee 1 — «.

20—1

Given a positive integer ¢, consider the equations 22 = 1—zf and z = 1—z% Denote by

ay and By their respective solutions in the interval [0,1). Note that oy = (@)UZ. Moreover
ap < Bey1 < agy1, £ > 1. Indeed, since 5y € (0,1), we have 1—ﬂf+1 < 1—ﬁfill = g_ﬁl < %1-
Since the function fy(z) = 2% + 2* — 1 is strictly increasing when z € (0, 1), for any £ > 1 and

fe(Ber1) > 0 = fe(ay), we have Bry1 > ay.

Theorem 1 If Biobjective 11 satisfies Property 1, then it admits a B¢-approxzimate Pareto set
(resp. an ag-approzimate Pareto set) containing at most p solutions, where p is a positive odd
integer such that p =20 — 1 (resp. a positive even integer such that p = 2().

Proof: Let S; (resp. S2) be a solution optimal for the first objective (resp. second one).
In the following, opt denotes the optimal value on the first objective and also on the second
objective. This can be assumed without loss of generality because a simple rescaling can make
the optimal values coincide (e.g. we can always assume that opty # 0, thus by multiplying
each weight wo(e) by Zﬁg we are done; since the result is only existential, the time complexity
for the determination of opt; and opts is not taken into account). Then wi(S7) = we(S2) =
opt. Consider first the case where p is odd. Let p = Fy with p = 2¢ — 1. Subdivide the
bidimensionnal value space with coordinates {0} U {p’opt : 0 < i < p}. See Figure 1 for an
illustration.

Given i,1 < i < p, the strip s(i,-) is the part of the space containing all couples (w1, ws)
satisfying plopt < wi; < p'~lopt and 0 < wq < opt. The strip s(p + 1,-) is the part of the
space containing all couples (wy,ws) satisfying 0 < w; < pPopt and 0 < we < opt. Given
J,1 < j <p, the strip s(-,j) is the part of the space containing all couples (w1, ws) satisfying
plopt < wy < p/~lopt and 0 < wy; < opt. The strip s(-,p + 1) is the part of the space
containing all couples (wy,ws) satisfying 0 < wq < pPopt and 0 < wy < opt.

Suppose that we(S1) < pPopt and w1 (S2) < pPopt. In other words Sy € s(1,-) Ns(-,p+1)
and Sy € s(-,1) Ns(p+ 1,-). Using Property 1 there exists a solution Ss satisfying w1 (S3) >
(1 — pP)opt and wo(S3) > (1 — pP)opt. Moreover, 1 — pP =1 — ?Z_l = B¢ = p’. Then S is a
p-approximation of any solution S satisfying max{w;(S),w2(S)} < p*~Lopt.
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Figure 1: Illustration of Theorem 1

One can construct a p-approximate Pareto set P as follows: P = {S3} at the beginning
and for j = ¢ — 1 down to 1, pick a feasible solution S with maximum weight w; in s(-, ) (if
s(+,7) contains at least one value of a feasible solution) and set P = PU{S}. Afterwards, for
i = ¢ —1 down to 1, pick a feasible solution S with maximum weight wo in s(i,-) (if s(i,-)
contains at least one value of a feasible solution) and set P = P U {S}. For every strip the
algorithm selects a solution which p-approximates (on both objective functions) any other
solution in the strip. Since the solutions of P approximate the whole bidimensionnal space,
P is a p-approximate Pareto set containing at most p = 2¢ — 1 solutions.

Now suppose that w9 (S1) > pPopt (the case wq(S3) > pPopt is treated similarly). Solution
S1 must be in s(-,5*) for 1 < j* < p. Since wy(S1) = opt, S is a p-approximation of any
solution S in s(-,p) U s(-,p + 1). One can build an p-approximate Pareto set P as follows:
P = {51} at the beginning and for j = j* — 1 down to 1, pick a feasible solution S with
maximum weight w; in s(-,j) (if s(-,j) contains at least one value of a feasible solution) and
set P = P U{S}. Since the strips form a partition of the space, the algorithmn returns an
p-approximate Pareto set containing at most p solutions.

The proof is similar in the second case where p is even by considering p = ay with p = 2¢.

O

Corollary 1 If Biobjective 11 satisfies Property 1, then it admits a (1—¢)-approzimate Pareto
set containing O(%) solutions.

Proof: According to Theorem 1, we need at most 2¢ solutions where (\/52_1)1/ t>1—¢in

order to obtain a (1 — ¢)-approximate Pareto set. Thus £ = O(1). O
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Property 1 can be relaxed in the following way:

Property 2 Given any two feasible solutions S1 and Sz, and a real o satisfying 0 < o < 1.
If wo(S1) < aws(S2) and wi(S2) < awi(Sy) then there exists a feasible solution Ss which
satisfies w1 (S3) > (¢ — a)wi(S1) and wa(S3) > (¢ — a)wa(S2), where 0 < ¢ < 1 is a constant.

We say that Biobjective 11 satisfies Property 2 polynomially if S3 can be constructed in
polynomial time.

20 20—1
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Given a positive integer ¢, consider the equations 2% = ¢ — z¢ and z

by ¢ and J; their respective solutions in the interval [0,1). Note that v, = ( and

Yo < 0p < vYpg1,€ > 1.



Theorem 2 If Biobjective 11 satisfies Property 2, then it admits a dg-approzimate Pareto set
(resp. a ye-approximate Pareto set) containing at most p solutions, where p is a positive odd
integer such that p =20 — 1 (resp. a positive even integer such that p = 2().

Proof: The proof is similar to the proof of Theorem 1. Suppose that ws(S;) < pPopt and
w1 (S2) < pPopt. Using Property 2 there exists a solution S3 satisfying w(S3) > (c—pP)opt and
wy(S3) > (c—pP)opt. For the case p = §y and p = 2—1, we get that c—pP = c—(ﬁg_l = 5f =pt.
For the case p = vy and p = 2¢, we get that ¢ — pP = ¢ — %gz = 75 = p'. Then S5 is a p-
approximation of any solution S satisfying max{w;(S), w2(S)} < p*~Lopt. O

The previous results of this section consider the construction, not necessarily in polynomial
time, of an approximate Pareto set with a fixed number of solutions. We give in the following
some conditions on the construction in polynomial time of an approximate Pareto set with
one solution.

Proposition 1 If II is polynomial time p-approzimable and Biobjective 11 satisfies Property
1 polynomially (resp. 2), then Biobjective 11 is polynomial time g—approximable (resp. %—

approzimable) with one solution.

Proof: Consider first the case where Biobjective II satisfies Property 2 polynomially. Let S;
(resp. S2) be a polynomial time p-approximation solution for the first objective (resp. second
one). In the following, opt; (resp. opts) denotes the optimal value on the first objective (resp.

second one). If wq(S7) > cwz—z(sz)

set. If wy(S2) > cwlT(Sl) then wi(S2) > Lopty and thus Sy is a F-approximate Pareto set.

Otherwise, wy(S1) < cwz—z(sz) and w1 (S2) < CwlT(Sl) and since Biobjective II satisfies Property
2 polynomially, we can construct in polynomial time a feasible solution S5 which satisfies
wi (S3) > cwlT(Sl) and wq(S3) > Cw2—2(52), that is a %-approximate Pareto set. The proposition
also holds in the case where Biobjective II satisfies Property 1 polynomially by replacing c
by 1. O

then wy(S1) > Lopty and thus S is a L-approximate Pareto

In the following, we say that Property 1 is tight if there exist S1,S2 and « such that
wa(S1) < awy(S2) and wi(S2) < awq(S1) and there is no o/ < « and a feasible solution Sy
satisfying w1 (Sy) > (1 — & )w(S1) and wa(Sy) > (1 — @’ )we(Ss).

We counsider in Sections 3.1 and 3.2 several examples of problems II that satisfy the scaling
hypothesis and such that Biobjective II satisfy Property 1 or Property 2.
3.1 Max Submodular Symmetric Function

A function f defined on the power set of some ground set U is called

o submodularif f(X)+ f(Y)> f(XUY)+ f(XNY), forall X, Y C U,

o symmetric if f(X) = f(U\ X) for all X C U;

e non negative if f(X) >0 for all X C U.

MAX SUBMODULAR SYMMETRIC FUNCTION is a combinatorial optimization problem
which consists of maximizing a non negative, symmetric, and submodular function f com-
putable in polynomial time. The problem is known to generalize many NP-hard problems



14, 24]. Feige, Mirrokni and Vondrak [14] give a (3 — o(1))-approximation algorithm for MAX

SUBMODULAR SYMMETRIC FUNCTION.

Lemma 1 Biobjective MAX SUBMODULAR SYMMETRIC FUNCTION satisfies Property 1 poly-
nomaally.

Proof: Let a € (0,1] and Sy, Sy two solutions of an instance of Biobjective MAX SUBMOD-
ULAR SYMMETRIC FUNCTION satisfying the inequalities: wa(S1) < aws(S2) and w;(S2) <
awi(S1). Consider S3 = S1ASe = (S7\ S2) U (S2\ S1), where A is the symmetric difference.
We have

wi(S3) + wi(S2) > wi(S1USe) +wi(S2\ S1)
wl(U\ (51 U 52)) + 'LUl(SQ \ 51)
> wi(U\ S1) + w1 (0)
> wi(S1) (1)

where submodularity is used on the first and third lines, symmetry is used on the second
and third lines and non negativity is used on the third line. Using wq(S2) < awi(S1) into
Inequality (1), we get that wy(S3) > wi(S1)—wi(S2) > (1—a)w;(S1). With similar arguments
we get that we(S3) > wa(S2) — wa(S1) > (1 — a)ws(Ss). O

Corollary 2 Biobjective MAX SUBMODULAR SYMMETRIC FUNCTION admits a

(i) Be-approzimate Pareto set (resp. an oy-approzimate Pareto set) containing at most p
solutions, where p =2¢ — 1 (resp. p = 2().

(i) (1 — €)-approzimate Pareto set containing O(Z) solutions.

As indicated above, Corollary 2 deals with the possibility to reach some approximation
bounds when the number of solutions in the Pareto set is fixed. We give in the following an
approximation bound that we can obtain in polynomial time with one solution.

Corollary 3 Biobjective MAX SUBMODULAR SYMMETRIC FUNCTION admits a polynomial
time (1 — o(1))-approzimate Pareto set with one solution.

Proof: The results follows from Lemma 1 and Proposition 1 with p = % —o(1). O

Now we review some special cases of MAX SUBMODULAR SYMMETRIC FUNCTION and use
Proposition 1 to derive the existence of an approximate Pareto set with one solution for the
biobjective version.

Special cases of MAX SUBMODULAR SYMMETRIC FUNCTION

Max Pos NAE consists of a set of clauses C defined on a set U of boolean variables
Z1,...,Zn. The clauses are composed of two or more positive variables and they are endowed
with a non negative weight. The MAX Pos NAE problem consists of finding an assignment
of the variables such that the total weight of the clauses that are satisfied is maximum, where
a positive clause is satisfied by an assignment if it contains at least a true variable and at least
a false variable. It is NP-hard and 0.7499-approximable [36]. Max Pos NAE is also known
under the name MAX SET SPLITTING or MAX HYPERGRAPH CUT [36]. The special case in



which every clause contains exactly k variables is denoted Max Pos kNAE. Max Pos 3NAE
is 0.908-approximable [37]. For k > 4, MaX Pos kNAE is (1 — 2'7%)-approximable [3, 22]
and this is the best possible since it is hard to approximate within a factor of 1 — 2% 4 ¢,
for any constant € > 0 [20]. Another special case of MAX P0os NAE in which every clause
contains exactly 2 variables corresponds to MAX CuT (given a graph G = (V, E) with non
negative weights on its edges, find V/ C V such that the total weight of the edges having
exactly one extremity in V' is maximum) which is 0.878-approximable |16].

The MAX PARTITION problem consists of a set J of n items 1,...,n where each item
j has a non negative weight w(j). A solution S is a bipartition J; U Jy of the items. The
goal is to find a solution S such that w(S) = min{}_,c; w(j), > ;c;, w(j)} is maximized.
This NP-hard problem was also studied in the context of scheduling, where the number of
partitions is not fixed, and consists of maximizing the earliest machine completion time [35].
MAX PARTITION is a special case of the MAX SUBSET SUM problem. An input of MAX
SUBSET SuM is formed by a set J of n items 1,...,n, each item j has a non negative weight
w(j), and an integer t. The problem consists of finding a subset S of J whose sum w(S5)
is bounded by ¢ and maximum. MAX SUBSET SUM has an FPTAS [10]. We can obtain a
FPTAS for MAX PARTITION using the previous FPTAS for ¢ = """ | w(i)/2.

Observe that Biobjective MAX PARTITION is not (1/2+¢)-approximable with one solution.
In order to see this, consider 3 items of weights wi(1) = 2,ws2(1) = 1,w1(2) = 1,w2(2) =
2,w1(1) = 1,w2(3) = 1. The two efficient solutions S;, i = 1,2 consists of placing ¢ in a part
and the other items in the other part and have weights w;(S1) = 2,w2(S1) = 1,w1(S2) =
1,w2(S2) = 2. Any other solution is either dominated by one of these two or has weights equal
to 1 on both criteria.

Using Proposition 1, we obtain the following approximation ratios for the the biobjective
versions with one solution of special cases of MAX SUBMODULAR SYMMETRIC FUNCTION:

Problem approx. ratio
Max Pos NAE 0.374

Max Pos 3NAE 0.454

Max Pos kENAE, k>4 | 1/2 —1/2F
Max Cut 0.439

MAX PARTITION 1/2 —¢

Note that the result about Max Cur is the same as the one given in [4]. Moreover,
Biobjective MAX CUT is not (1/2 + ¢)-approximable with one solution [4], meaning that we
are close to the best possible approximation result.

3.2 Max Matching

Given a complete graph G = (V, E) with non negative weights on the edges, the MAX
MATCHING problem is to find a matching of the graph of total weight maximum. MAX
MATCHING is solvable in polynomial time [11]. We study in this part the biobjective MAX
MATCHING problem and consider instances where the graph is a collection of complete graphs
inside which the weights satisfy the triangle inequality, since otherwise the biobjective MAX
MATCHING problem is not at all approximable with one solution. In order to see this, consider
a complete graph on 3 vertices with weights (1,0), (0,1),(0,0). The optimum value on each



objective is 1. Nevertheless, any solution has value 0 with respect to at least one objective.
Clearly Property 1 is not satisfied in this case.

Biobjective MAX MATCHING problem is NP-hard [30]. It remains NP-hard even on
instances where the graph is a collection of complete graphs inside which the weights satisfy the
triangle inequality. In order to see this, we reduce in polynomial time PARTITION (proved NP-
hard in [23]) to our problem. Given an instance I of PARTITION with 2n non negative integers
ai,...,ao, such that Z? 1a; = 2B, we construct a graph G, instance of our problem as

follows G contains 6n vertices, at each integer a; we associate a triangle with vertices v}, v2, v3

1771 e
and weights wq (v}, v?) = 2a;, we (v}, v?) = a;, w1 (v, 03) = a;, we(vZ,v3 L) =

i Y i Y5 i Y )_auwl(vzavz =

ai,w2(v},v3) = 2a;. For every edge between 2 different triangles we associate an weight 0
on both objectives. Clearly, there is a partition of the 2n integers into two sets of sum B if
and only if there is a matching in G of weight at least 3B on each objective. It remains an
open problem to decide if Biobjective MAX MATCHING remains NP-hard on complete graphs

where the weights satisfy the triangle inequality.
Lemma 2 Biobjective MAX MATCHING satisfies Property 2 polynomially with ¢ = 1/3.

Proof: Let a € (0,1] and S1, S2 two solutions of an instance of biobjective MAX MATCHING
satisfying the inequalities: w2(S1) < aws(S2) and wq(S2) < awi(S1). The set of edges of
S1USy constitutes several connected components: cycles of size 4¢, cycles of size 40+2, £ > 1,
and paths of length £ > 1. In order to construct S3 we proceed in two steps. Firstly, starting
from 57 U Sy, we construct in polynomial time a collection of vertex disjoint paths P of length
at most 2 such that w;(S; N P) > % Secondly, we construct S from P.

Given such a collection P of paths of length at most 2, we construct S3 as follows: for
each path P; = vy, vy of length 1 from P, we add (v, v2) to Ss; for each path P; = vy, va,v3
of length 2 from P, we add (v1,v3) in S3. It is easy to see, since P is vertex disjoints, that S3
is a matching. In this last case, using triangle inequality, we have

’LUZ'(Sg_Z' N P]) + wi(53 N Pj) > wZ(SZ N P]) fori=1,2
and thus making the sum over all paths P; € P, we obtain
w;i(S3—; N 'P) + w;(S3) > wi(Si NP) fori=12.
Moreover, w;(S3_; NP) < w;(S3—;) < aw;(S;). Thus
1

—aw;(S;) = <§ - a> w;i(S;) fori=1,2.

wi(53) > wZ(Sl N P]) — ozwz-(SZ-) >

We show in the following how to construct the collection P.

Consider a cycle of size 4¢, C; = v1,v2,...,v4 from S; U S2 and suppose S1 N C; =
{(v2it+1,v2i42),7 = 0,...,2¢ — 1}. Let S| be the matching of maximum weight w; between
M:{(U4Z’+1,’U4i+2),i =0,...,0— 1} and (SlﬂC )\M Thus wl(Sl) le(SlﬂC ) Similarly
we construct S obtaining wg(SQ) > 2wy (S2NCy). S}US) consists of paths of length two and
we add S} U S} to P. Thus, wi(S] US)) > 2w1(51 N C;) and wa(S] U SY) > 2w (S2 N Cy).

On a path of length £ > 1 from S; U .Ss, we proceed as in the previous case, obtaining the
same inequalities as before.



Consider a cycle C; of size 4¢ 4 2 from S; U S3. We remove from C; the edge with the
smallest wq from S7 N C; and the one with the smallest wy from So N C;. On the path or
the two remaining paths we proceed as in the previous case for the construction of S} and
S4. S1USY consists of paths of length at most two and we add S] U S5 to P. In this case,
wi(Sh) > %(1 - T}H)’wl(sl nec;) > %wl(Sl N C;) and wa(Sh) > %(1 — ﬁ)MQ(SQ necy) >
%'UJQ(SQ N C])

Thus, summing all these inequalities we obtain w;(S; NP) > wiési) for i =1,2. O

Corollary 4 Biobjective MAX MATCHING admits a dg-approzimate Pareto set (resp. an -
approzimate Pareto set) containing at most p solutions, where p =20 — 1 (resp. p = 2().

Corollary 5 Biobjective MAX MATCHING admits a polynomial time %—approximate Pareto
set with one solution.

Proof: It follows from Lemma 2 and Proposition 1 considering p = 1. O

4 Approximation with one solution for biobjective problems

In this section, we establish a necessary and sufficient condition for constructing, not
necessarily in polynomial time, a constant approximation with one solution of the Pareto
set for biobjective maximization problems. Moreover, if the construction can be done in
polynomial time and the single-objective problem is polynomial time constant approximable,
then the biobjective version is polynomial time constant approximable with one solution.
Using this condition, we establish a polynomial time 0.174-approximation with one solution
for Biobjective MAX BISECTION.

In the following, we are interested in biobjective maximization problems, Biobjective II,
which satisfy the following property.

Property 3 We can construct three solutions Sy, Sa, Ss such that S; is a p;-approzimation
for problem 11 on objective i, i = 1,2, and Ss is such that wi(S2) + w1(S3) > a - w1(S1) and
wa(S1) + w2(S3) > - wa(S2) for some fized constant o < 1.

We say that Biobjective 11 satisfies Property 3 polynomially if S1, S2, S3 can be constructed
in polynomial time.

The aim of solution Ss in Property 3 is to compensate the potential inefficiency of S; on
criterion 3 —4, 1 =1, 2.

Theorem 3 Biobjective 11 is constant approzimable with one solution if and only if it satisfies
Property 3. Moreover, if Biobjective 11 is polynomial time constant approzimable with one
solution then it satisfies Property 8 polynomaially. More precisely, if Biobjective 11 satisfies
Property 8 polynomially such that S; is a polynomial time p;-approzimation for problem 11 on
objective v, © = 1,2, then Biobjective 11 admits a polynomial time a%—appmm’mation
algorithm with one solution.
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Proof: Suppose that Biobjective II is p-approximable with one solution. Let Ss be this
solution and S7 and So any two solutions. Then wy(S3) > p - opty > p-wi(S7) and thus by
setting oo = p we have w; (S2) + w1(S3) > a - w1(S1). The second inequality holds also.
Suppose now that Biobjective II satisfies Property 3. Since S; is a p;-approximation for
problem IT on objective 4, ¢ = 1,2, we have w1 (S1) > p1 - opt; and wo(S2) > pa - opts.
Since Property 3 is satisfied, we can construct S3 such that

wl(Sg) =+ w1 (Sg) > - wl(Sl) (2)

and
wg(Sl) + ’wg(Sg) > - 'LUQ(SQ) (3)

Now, we study different cases:

o If wi(S2) > Gwi(S1), then we deduce that Sz is a good approximation of the Pareto

set. From the hypothesis, we have w(S2) > Swi(51) > a- Moptl. On the other

min{p1,p2}
2

hand, we also have wy(S2) > po - opta > « opts.

o If wy(Sy) > %wg(Sg), then we deduce that Sp is a good approximation of the Pareto

set. From the hypothesis, we have wy(S1) > Fwa(S2) > o - %optg On the other

hand, by the construction of S; we also have wy(S1) > p1 - opt1 > « - %0}#1.

o If wi(S2) < Swi(S1) and wy(S1) < Swa(S2), then it is S3 which is a good approxi-
mation of the Pareto set. Indeed, from inequality (2), we deduce w1(S3) > Swi(S1) >

min{p1,p2}
2

a- opt; and on the other hand, from inequality (3), we also get wo(S3) >

Swa(S2) > a- %O}Dt}
In any of these three cases, we obtain a « - M—approximation with one solution.
Clearly, if S1,.52,53 are computable in polynomial time, then Biobjective II is approx-
imable in polynomial time. o

Note that we can extend Theorem 3 to the case where p; are not constant.

The interest of Property 3 is to find a simple method in order to construct a polynomial
time constant approximation for Biobjective II. This method does not allow us to obtain the
best polynomial time constant approximation for Biobjective II with one solution, but only to
prove the fact that the problem is polynomial time constant approximable with one solution.

In Proposition 1 we prove that if a problem II is (resp. polynomial time) constant ap-
proximable and if Biobjective II satisfies (resp. polynomially) Property 1, then Biobjective II
is (resp. polynomial time) constant approximable with one solution, and thus Biobjective II
satisfies (resp. polynomially) Property 3 by Theorem 3. Thus all problems studied in Section 3
satisfy Property 3.

There exist problems which are polynomial time constant approximable and thus satisfy
Property 3 and do not satisfy Property 1. One example is Biobjective Max TSP, which is
polynomial time 2—77—approximable with one solution [26] and does not satisfy Property 1.

Proposition 2 Biobjective Max TSP does not satisfy Property 1.

Proof: Consider the complete graph K5 where a fixed Ky is decomposable into 2 edge-disjoint
Hamiltonian paths P, and P». For every edge e € E(K5), set wi(e) = 1 and wa(e) = 0 if
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e € P, wi(e) =0and wy(e) =1ife € Py and wy(e) =0 and wa(e) =0if e ¢ PLUP,. We can
check that there are four non-dominated tours 7;, i = 1,...,4 with wy(71) = 3, we(T}) = 0,
wl(Tg) = 0, ’wg(Tg) = 3, ’wl(Tg) = 2, wg(Tg) =1 and wl(T4) = 1, wg(T4) = 2. Consider
Si =T;,i=1,2 and a = 1/2. Clearly ws(S1) < aws(S3) and wi(S2) < awi(S1). Moreover
there is no solution S3 such that wq(S3) > (1 — a)w;(S1) and wa(S3) > (1 — a)wa(S2). O

We consider in the following a problem that satisfies Property 3 and for which we are not
able to prove that it satisfies Property 1.

4.1 Max Bisection

Given a graph G = (V, E) with non negative weights on the edges, the MAX BISECTION
problem consists of finding a bipartition of the vertex set V into two sets of equal size such
that the total weight of the cut is maximum. We establish in this part a polynomial time
f-approximation algorithm for Biobjective MAX BISECTION where p is any polynomial time
approximation ratio given for MAX BISECTION. MAX BISECTION is NP-hard |23] and the

best approximation ratio known for MAX BISECTION is p = 0.701 [17].

Lemma 3 Biobjective MAX BISECTION on graphs with 4n vertices satisfies Property 3 poly-
nomially with o = 1 and p1 = p and ps = §, where p is any polynomial time approzimation
ratio given for MAX BISECTION.

Proof: Formally, let S; = (V1,V3) be a bisection of I = (G, w;) given by a polynomial time
p-approximation algorithm for MAX BISECTION. Let G; be the subgraph of G induced by V;,
i =1,2 and let (A4, B) (resp., (C,D)) be a bisection of I} = (G1,ws) (resp., I = (G2, w2))
given by a polynomial time p-approximation algorithm. We produce two other bisections S
and Sz of G described by (AUC, BUD) and (AUD, BUC'). W.l.o.g., assume ws(S2) > wa(S3).
We show in the following that S7,.S2, .55 satisfy inequalities of Property 3 with o = 1.

Let S* = (Vi*, V") be an optimal bisection on (G, w2) using edge set E*. Thus, wa(S*) =
wo(E*) = opte. Let V/ = Vi*N (AU B) (resp., V{ = V"N (CUD)) and V§ = V5N (AU B)
(resp., Vi = V¥ N (C' U D)). Let Ef (resp., E5) be the edge set given the cut S| = (V{,V5)
(resp., S5 = (V{",V3')). Hence, for i = 1,2, Ef is the restriction of S* on G; = (V;, E;).
Finally, let E5 be the remaining edges, E5 = E* \ (Ef U E3). Note that E3 belongs to the
crossing edges between G; and Gy, i.e., are in the cut S;. Thus, we get:

opty = wa(EY) + w2 (E3) + wa(E3) (4)

Since Fy = (A, B) (resp., Fo = (C, D)) is the solution given by a polynomial time p-
approximation algorithm on I = (G1,ws) (resp., Io = (G2, ws)), we obtain for i = 1,2:

wa(F) > p- opta(I5) > Gun(E) ()

Actually, consider the cut S = (V{, V5) and assume |V{| > |V3]. Let U = argmin{wy(U, V) :
U c V] and |U| = n — |VJ|}. Since |V{|+ |V5| = 2n, we get 2|U| < |V{|. Thus, we deduce
2wy (U, V§) < wy(V{,V4) = wa(E?F). Now, observe that Sy = (V{\ U,VJ UU) is a bisection
of G1. Hence opta(I1) > wa(S1)) > wa(EF) — we(U,V§) > Swy(EY). Obviously, the same

arguments for the cut S, = (V{", V') on Gz lead to a similar conclusion.
On the other hand, since wa(S2) > wa(S3), we have:
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2(wa(A, D) + w2(B, ) = w(51) = wa(E3) (6)

Finally, using wo(S2) = wa(F1) +wa(Fy) +wa(A, D) +we (B, C), equality (4), (5), (6) and
p < 1, we obtain that Ss is a p/2-approximation.

Due to the construction of Sy, Se and S3, we get wq(S1) + w1 (S2) + w1(S3) = 2(w1(S1) +
wl(A,B) + ’wl(C,D)) and w2(51) + wg(Sz) + w2(53) = 2(w2(52) + ’LUQ(A, C) + wg(B,D)).
Thus, we deduce:

w1(S2) +wi(S3) > wy(S1) (7)

and
wa(S1) + wa(S3) > wa(S2) (8)
O

Corollary 6 Biobjective MAX BISECTION on graphs with 4n vertices admits a polynomial
time 0.174-approximate Pareto set with one solution.

Proof: The results follows from Theorem 3 and Lemma 3 and using the polynomial time
0.701-approximation algorithm for MAX BISECTION [17]. O

5 Approximation with one solution for some multiobjective se-
lection problems

In this section we establish a sufficient condition for the construction, not necessarily in
polynomial time, of a solution with performance guarantee for k-objective selection problems.
Moreover, if all steps of the construction are feasible in polynomial time, then the k-objective
version is polynomial time approximable with one solution. The general result is applied to
the k-objective versions of three problems: MAx COVERAGE (and its special cases MAX ¢
VERTEX COVER and MAX ¢ SELECTION), HEAVIEST SUBGRAPH and MAX COLORING of
interval graphs.

Consider a general single-objective maximization problem II defined as follows: a set U
of elements, a non negative weight w(e) for every element e € U, a family F of subsets of U
(either F is given explicitly or there is a function that can decide if a subset S € F), a positive
integer ¢, a covering function ¢ such that ¢(S) C U for every subset S C F. It is assumed
that ¢(F) =U and S C S’ = ¢(S5) C ¢(S’). A feasible solution is a set S of g subsets of F.
Its weight, to be maximized, is denoted by w(S) and defined as 3. ..g) w(e).

We are interested in problems II which satisfy the following property.

Property 4 For any integer t, 1 <t < q, there exists a function p(t,q) € (0,1] such that for
any feasible solution S, one can always select t subsets among the q subsets of S such that the
weight of these t subsets is at least p(t, q)w(S).

We say that II satisfies Property 4 polynomially if the t subsets can be found in poly-
nomial time. In the k-objective version of II, every element e has k£ non negative weights
wi(e), .., wile).
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Theorem 4 If 1T satisfies Property 4, then k-objective 11 admits a p(|q/k], q)-approzimate
Pareto set with one solution. Moreover, if 11 satisfies Property 4 polynomially and if I1 has a
polynomial time r-approzimation algorithm then k-objective 11 has a rp(|q/k]|, q)-approzimate
Pareto set with one solution computable in polynomaial time.

Proof: Using S C 5" = ¢(5) C ¢(5’) and the fact that every element e has a non negative
weight w;(e) for every ¢, 1 <14 < k, we deduce that S C S = w;(S) < w;(S’). Hence when a
partial solution containing less than g subsets is completed with additional subsets, its weight
cannot decrease.

Let S; (resp. S;) be an optimal (resp. r-approximate) solution with respect to w;. Using
Property 4 one can choose |#] subsets in each S; (resp. 5‘,) to build a new solution Sy
(resp. 5‘0) containing at most ¢ subsets. We complete, if necessary, Sy (resp. 5‘0) in order to
obtain a solution with exactly ¢ subsets. Thus, w;(So) > p(|q/k], @)wi(S;) (resp. w;(Sy) >
p(la/k], @wi(S;i) > rp(la/k], @)wi(S;)) for every i, 1 <i < k.

Clearly, if \S; is computable in polynomial time and II satisfies Property 4 polynomially,
then S is a polynomial time approximation for k-objective II. O

Several examples of II which satisfy Property 4 are given in Sections 5.1, 5.2 and 5.3.

5.1 Max Coverage and special cases

The input of MAX COVERAGE is a set U of elements, a non negative weight w(e) for every
element e € U, a family F of subsets of U and a positive integer ¢q. The goal is to select ¢
elements of F so that the total weight of the elements of U covered by the union of these
q elements of F is maximum. MAX COVERAGE is NP-hard and (1 — 1/e)-approximable in
polynomial time [1|. Clearly, MAX COVERAGE is a special case of IT and it is not difficult to
prove that MAX COVERAGE satisfies Property 4 polynomially for p(t,q) = %.

MaX q VERTEX COVER is a special case of MAX COVERAGE. It consists of finding ¢
vertices from an undirected and edge-weighted graph G = (V, E), where ¢ < |V, such that
the total edge weight covered by the ¢ vertices is maximized. MAX ¢ VERIEX COVER is
NP-hard and %—approximable [18].

MAX g SELECTION is another special case of MAX COVERAGE. It consists of finding ¢
items from a set of n weighted items of maximum weight. MAX ¢ SELECTION is trivial but
k-objective MAX ¢ SELECTION is NP-hard even for k = 2 [7].

Using Theorem 4, we get that k-objective MAX COVERAGE, MAX ¢ VERTEX COVER and
MAX ¢ SELECTION admit a M—approximate Pareto set with one solution. In addition, a

q
pM—approximate Pareto set with one solution can be computed in polynomial time where

p=(1-1/e), p=3/4 and p =1 for MAX COVERAGE, MAX ¢ VERTEX COVER and MAX ¢
SELECTION respectively.

5.2 Heaviest Subgraph

The input of HEAVIEST SUBGRAPH is a complete graph G = (V, E) with a non negative
weight w(e) for each edge e € E and a positive integer ¢ < |[V|. The goal is to select ¢
nodes of V such that the total weight of the subgraph induced by these ¢ nodes is maximum.
The weight of a subgraph induced by V' C V is denoted by w(V') and defined as w(V') =
Y o{Gg)iev, jevr, i<jy W((6, 7). HEAVIEST SUBGRAPH is an NP-hard problem and it remains
NP-hard even when the weights satisfy the triangle inequality [29]. It is also known under
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the name max edge-weighted clique problem and densest subgraph problem (when all the
edge weights are equal to 1) [31, 15, 25, 21, 2] and its approximation was studied in [31, 15].
HEAVIEST SUBGRAPH is also a special case of II. The problem satisfies Property 4 for p(t,p) =

;EZ__% [31]. Hence k-objective HEAVIEST SUBGRAPH admits a %—appmxima‘ue Pa-

reto set with one solution.

5.3 Max Coloring of interval graphs

The input of the maximum coloring problem in interval graphs (MAX COLORING for short)
is a set of intervals U from the real line, each interval u € U has a non negative weight w(u)
and q colors. The goal is to find a coloring of the intervals of maximum total weight such that
two intersecting intervals must receive distinct colors. The problem is solvable in polynomial
time |9]. Clearly, MAX COLORING is a special case of II and it is not difficult to prove that it
satisfies Property 4 polynomially for p(t,q) = %. Then, k-objective MAX COLORING admits

a Lqm—approximate Pareto set with one solution which can be computed in polynomial time.

6 Conclusion

In this paper, we have established some sufficient conditions that allow to conclude on
the existence of constant approximations of the Pareto set with an explicitly given number
of solutions for several biobjective maximization problems. The results we obtained establish
a polynomial time approximation when we ask for a single solution in the approximation set
except for HEAVIEST SUBGRAPH. A possible future work would be to give a polynomial
time approximation for any explicitly given number of solutions. A necessary and sufficient
condition is given for the construction of (polynomial time) constant approximation with one
solution for biobjective maximization problems. It would be interesting to generalize this
result to maximization problems with more than two objectives. Another interesting future
work would be to establish lower bounds for any explicitly given number of solutions for
multiobjective maximization problems. We also established in this paper a sufficient condition
that allows to conclude on the existence of approximations of the Pareto set with one solution
for multiobjective selection problems. A possible future work would be to establish polynomial
time approximation for any explicitly given number of solutions.

Our approaches deal with maximization problems and they do not seem to apply to min-
imization problems. A possible explanation is that, in the maximization framework, adding
elements to a partial solution rarely deteriorates it. Minimization problems rarely satisfy
this property. Establishing constant approximation of the Pareto set with a given number of
solutions or show that this is not possible for minimization problems is an interesting open
question.
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