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tWe investigate the problem of approximating the Pareto set of some multiobje
tiveoptimization problems with a given number of solutions. Our purpose is to exploit generalproperties that many well studied problems satisfy. We derive existen
e and 
onstru
tiveapproximation results for the biobje
tive versions of Max Submodular Symmetri
Fun
tion (and spe
ial 
ases),Max Bise
tion, andMax Mat
hing and also for the k-obje
tive versions ofMax Coverage, Heaviest Subgraph,Max Coloring of intervalgraphs.1 Introdu
tionIn multiobje
tive 
ombinatorial optimization a solution is evaluated 
onsidering severalobje
tive fun
tions and a major 
hallenge in this 
ontext is to generate the set of e�
ientsolutions or the Pareto set (see [12℄ about multiobje
tive 
ombinatorial optimization). How-ever, it is usually di�
ult to identify the e�
ient set mainly due to the fa
t that the numberof e�
ient solutions 
an be exponential in the size of the input and moreover the asso
iatedde
ision problem is NP-
omplete even if the underlying single-obje
tive problem 
an be solvedin polynomial time (e.g. shortest path [12℄). To handle these two di�
ulties, resear
hers havebeen interested in developing approximation algorithms with an a priori provable guaranteesu
h as polynomial time 
onstant approximation algorithms. Considering that all obje
tiveshave to be maximized, and for a positive ρ ≤ 1, a ρ-approximation of Pareto set is a set ofsolutions that in
ludes, for ea
h e�
ient solution, a solution that is at least at a fa
tor ρ on allobje
tive values. Intuitively, the larger the size of the approximation set, the more a

urateit 
an be.It has been pointed out by Papadimitriou and Yannakakis [28℄ that, under 
ertain generalassumptions, there always exists a (1 − ε)-approximation, with any given a

ura
y ε > 0,whose size is polynomial both in the size of the instan
e and in 1/ε but exponential in thenumber of 
riteria. In this result, the a

ura
y ε > 0 is given expli
itly and a general upper

∗This resear
h has been supported by the proje
t ANR-09-BLAN-0361 GUaranteed E�
ien
y for PARetooptimal solutions Determination (GUEPARD). A preliminary version of this paper appeared in WAOA 20111



bound on the size of the approximation set is given. When the number of solutions in theapproximation set is limited, not every level of a

ura
y is possible. So, on
e the number ofsolutions is �xed in the approximation set of a multiobje
tive problem, the following questionsare raised: What is the a

ura
y for whi
h an approximation is guaranteed to exist? Whi
ha

ura
y 
an be obtained in polynomial time?In this paper we are interested in establishing for some multiobje
tive maximization prob-lems the best approximation ratio of the set of e�
ient solutions when the size of the ap-proximation set is given expli
itly. We give three approa
hes that deal with biobje
tive and
k-obje
tive problems that allow us to obtain approximations of the set of e�
ient solutionswith one or several solutions. More pre
isely, in a �rst approa
h, we 
onsider a general max-imization problem and establish a su�
ient 
ondition that guarantees the 
onstru
tion of a
onstant approximation of the Pareto set with an expli
itly given number of solutions. As a
orollary, we 
an 
onstru
t a (1− ε)-approximation of the Pareto set with O(1ε ) solutions. Ina se
ond approa
h, we establish a ne
essary and su�
ient 
ondition for the 
onstru
tion of a
onstant approximation of the Pareto set with one solution. In a third approa
h, we establisha su�
ient 
ondition for the 
onstru
tion of one solution with approximation guarantee for
k-obje
tive sele
tion problems. In these three approa
hes, if the 
orresponding solutions 
anbe found in polynomial time then the biobje
tive or k-obje
tive sele
tion problems admitspolynomial time approximation with one solution.Properties de�ned in these three approa
hes apply to several problems previously studiedin single-obje
tive approximation. Thus we derive polynomial time 
onstant approximationswith one solution for Biobje
tive Max Bise
tion, Biobje
tive Max Partition, Biobje
tiveMax Cut, Biobje
tive Max Set Splitting, Biobje
tive Max Mat
hing and k-obje
tiveHeaviest Subgraph, k-obje
tive Max q Colorable Subgraph and k-obje
tive MaxCoverage, but also for k-obje
tive versions of some parti
ular 
ases of Max Coverage:Max q Vertex Cover andMax q Sele
tion. Some instan
es show that the given biobje
-tive appromixation ratios are the best we 
an expe
t. In addition Biobje
tiveMax Partition,Biobje
tive Max Cut, Biobje
tive Max Set Splitting admit a (1 − ε)-approximation ofthe Pareto set with O(1ε ) solutions.Several results exist in the literature on the approximation of multiobje
tive 
ombinatorialoptimization problems. One 
an mention the existen
e of fully polynomial time approximations
hemes for biobje
tive shortest path [19, 34, 33℄, knapsa
k [13, 8℄, minimum spanning tree[28℄, s
heduling problems [6℄, randomized fully polynomial time approximation s
heme format
hing [28℄, and polynomial time 
onstant approximation for max 
ut [4℄, a biobje
tives
heduling problem [32℄ and the traveling salesman problem [5, 26℄. Note that [4℄, [26℄ and[32℄ are approximations with a single solution.This arti
le is organized as follows. In Se
tion 2, we introdu
e basi
 
on
epts aboutmultiobje
tive optimization and approximation. Se
tion 3 is devoted to an approa
h forapproximating some biobje
tive problems with one or several solutions. Se
tion 4 presentsa ne
essary and su�
ient 
ondition for approximating some biobje
tive problems with onesolution within a 
onstant fa
tor. In Se
tion 5 we establish an approa
h for approximatingsome multiobje
tive sele
tion problems. Con
lusions are provided in a �nal se
tion.
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2 Preliminaries on multi-obje
tive optimization and approxi-mationConsider an instan
e of a multi-obje
tive optimization problem with k 
riteria or obje
tiveswhere X denotes the �nite set of feasible solutions. Ea
h solution x ∈ X is represented in theobje
tive spa
e by its 
orresponding obje
tive ve
tor w(x) = (w1(x), . . . , wk(x)). We assumethat ea
h obje
tive has to be maximized.From these k obje
tives, the dominan
e relation de�ned on X is de�ned as follows: afeasible solution x dominates a feasible solution x′ if and only if wi(x) ≥ wi(x
′) for i = 1, . . . , kwith at least one stri
t inequality. A solution x is e�
ient if and only if there is no otherfeasible solution x′ ∈ X su
h that x′ dominates x, and its 
orresponding obje
tive ve
tor issaid to be non-dominated. Usually, we are interested in �nding a solution 
orresponding toea
h non-dominated obje
tive ve
tor. The set of all su
h solutions is 
alled Pareto set.For any 0 < ρ ≤ 1, a solution x is 
alled a ρ-approximation of a solution x′ if wi(x) ≥

ρ · wi(x
′) for i = 1, . . . , k. A set of feasible solutions X ′ is 
alled a ρ-approximation of the setof all e�
ient solutions if, for every feasible solution x ∈ X, X ′ 
ontains a feasible solution x′that is a ρ-approximation of x. If su
h a set exists, we say that the multi-obje
tive problemadmits a ρ-approximate Pareto set with |X ′| solutions.An algorithm that outputs a ρ-approximation of a set of e�
ient solutions in polynomialtime in the size of the input is 
alled a ρ-approximation algorithm. In this 
ase we say thatthe multi-obje
tive problem admits a polynomial time ρ-approximate Pareto set.Consider in the following a single-obje
tive maximization problem P de�ned on a groundset U . Every element e ∈ U has a non negative weight w(e). The goal is to �nd a feasiblesolution (subset of U) with maximum weight. The weight of a solution S must satisfy thefollowing s
aling hypothesis: if opt(I) denotes the optimum value of I, then opt(I ′) = t·opt(I),where I ′ is the same instan
e as I ex
ept that w′(e) = t · w(e). For example, the hypothesisholds when the weight of S is de�ned as the sum of its elements' weights, or mine∈S w(e), et
.In the k-obje
tive version, 
alled k-obje
tive P , k ≥ 2, every element e ∈ U has k nonnegative weights w1(e), w2(e), . . . , wk(e) and the goal is to �nd a Pareto set within the set offeasible solutions. Given an instan
e I of k-obje
tive P , we denote by opti(I) (or simply opti)the optimum value of I restri
ted to obje
tive i, i = 1, . . . , k. Here, the obje
tive fun
tion onobje
tive 1 is not ne
essarily of the same kind as on obje
tive 2, but both satisfy the s
alinghypothesis. For example, one obje
tive 
an be additive (sum of element's weight) and theother 
an be bottlene
k (min or max of element's weights).3 Approximation with a given number of solutions for somebiobje
tive problemsPapadimitriou and Yannakakis [28℄ proved the existen
e of a (1− ε)-approximation of sizepolynomial in the size of the instan
e and 1

ε . In this general result, the a

ura
y ε > 0 is givenexpli
itly but the size of the approximation set is roughly bounded. In this se
tion we 
on-sider a general maximization problem Π and establish a su�
ient 
ondition that guaranteesthe 
onstru
tion of a 
onstant approximation of the Pareto set with an expli
itly given numberof solutions for Π. This result allows to 
onstru
t a (1 − ε)-approximation of the Pareto setwith O(1ε ) solutions but not ne
essarily in polynomial time. Moreover, if the single obje
tiveproblem is polynomial time 
onstant approximable and the above 
onstru
tion is done in poly-3



nomial time then the biobje
tive version is also polynomial time 
onstant approximable withone solution. Thus we obtain 
onstant approximations and polynomial time 
onstant approx-imations with one solution for Biobje
tive Submodular Symmetri
 Fun
tion and alsofor Biobje
tive Max Partition, Biobje
tive Max Cut, Biobje
tive Max Set Splittingbut also for Biobje
tive Max Mat
hing.In the following, we are interested in biobje
tive maximization problems, Biobje
tive Π,whi
h satisfy the following property.Property 1 Given any two feasible solutions S1 and S2, and any real α satisfying 0 < α ≤ 1,if w2(S1) < αw2(S2) and w1(S2) < αw1(S1) then there exists a feasible solution S3 whi
hsatis�es w1(S3) > (1− α)w1(S1) and w2(S3) > (1− α)w2(S2).We say that Biobje
tive Π satis�es Property 1 polynomially if S3 
an be 
onstru
ted inpolynomial time.Property 1 means that if S1 is not an α-approximation of S2 and S2 is not an α-approximationof S1 for both obje
tive fun
tions w1 and w2, then there exists a feasible solution S3 whi
hsimultaneously approximates S1 and S2 with performan
e guarantee 1− α.Given a positive integer ℓ, 
onsider the equations x2ℓ = 1−xℓ and x2ℓ−1 = 1−xℓ. Denote by
αℓ and βℓ their respe
tive solutions in the interval [0, 1). Note that αℓ =

(√
5−1
2

)1/ℓ. Moreover
αℓ < βℓ+1 < αℓ+1, ℓ ≥ 1. Indeed, sin
e βℓ ∈ (0, 1), we have 1−βℓ

ℓ+1 < 1−βℓ+1
ℓ+1 = β2ℓ+1

ℓ+1 < β2ℓ
ℓ+1.Sin
e the fun
tion fℓ(x) = x2ℓ+xℓ− 1 is stri
tly in
reasing when x ∈ (0, 1), for any ℓ ≥ 1 and

fℓ(βℓ+1) > 0 = fℓ(αℓ), we have βℓ+1 > αℓ.Theorem 1 If Biobje
tive Π satis�es Property 1, then it admits a βℓ-approximate Pareto set(resp. an αℓ-approximate Pareto set) 
ontaining at most p solutions, where p is a positive oddinteger su
h that p = 2ℓ− 1 (resp. a positive even integer su
h that p = 2ℓ).Proof : Let S1 (resp. S2) be a solution optimal for the �rst obje
tive (resp. se
ond one).In the following, opt denotes the optimal value on the �rst obje
tive and also on the se
ondobje
tive. This 
an be assumed without loss of generality be
ause a simple res
aling 
an makethe optimal values 
oin
ide (e.g. we 
an always assume that opt2 6= 0, thus by multiplyingea
h weight w2(e) by opt1
opt2

we are done; sin
e the result is only existential, the time 
omplexityfor the determination of opt1 and opt2 is not taken into a

ount). Then w1(S1) = w2(S2) =
opt. Consider �rst the 
ase where p is odd. Let ρ = βℓ with p = 2ℓ − 1. Subdivide thebidimensionnal value spa
e with 
oordinates {0} ∪ {ρiopt : 0 ≤ i ≤ p}. See Figure 1 for anillustration.Given i, 1 ≤ i ≤ p, the strip s(i, ·) is the part of the spa
e 
ontaining all 
ouples (w1, w2)satisfying ρiopt < w1 ≤ ρi−1opt and 0 ≤ w2 ≤ opt. The strip s(p + 1, ·) is the part of thespa
e 
ontaining all 
ouples (w1, w2) satisfying 0 ≤ w1 ≤ ρpopt and 0 ≤ w2 ≤ opt. Given
j, 1 ≤ j ≤ p, the strip s(·, j) is the part of the spa
e 
ontaining all 
ouples (w1, w2) satisfying
ρjopt < w2 ≤ ρj−1opt and 0 ≤ w1 ≤ opt. The strip s(·, p + 1) is the part of the spa
e
ontaining all 
ouples (w1, w2) satisfying 0 ≤ w2 ≤ ρpopt and 0 ≤ w1 ≤ opt.Suppose that w2(S1) < ρpopt and w1(S2) < ρpopt. In other words S1 ∈ s(1, ·) ∩ s(·, p+ 1)and S2 ∈ s(·, 1) ∩ s(p+ 1, ·). Using Property 1 there exists a solution S3 satisfying w1(S3) >
(1− ρp)opt and w2(S3) > (1− ρp)opt. Moreover, 1− ρp = 1− β2ℓ−1

ℓ = βℓ
ℓ = ρℓ. Then S3 is a

ρ-approximation of any solution S satisfying max{w1(S), w2(S)} ≤ ρℓ−1opt.4
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an 
onstru
t a ρ-approximate Pareto set P as follows: P = {S3} at the beginningand for j = ℓ− 1 down to 1, pi
k a feasible solution S with maximum weight w1 in s(·, j) (if

s(·, j) 
ontains at least one value of a feasible solution) and set P = P ∪ {S}. Afterwards, for
i = ℓ − 1 down to 1, pi
k a feasible solution S with maximum weight w2 in s(i, ·) (if s(i, ·)
ontains at least one value of a feasible solution) and set P = P ∪ {S}. For every strip thealgorithm sele
ts a solution whi
h ρ-approximates (on both obje
tive fun
tions) any othersolution in the strip. Sin
e the solutions of P approximate the whole bidimensionnal spa
e,
P is a ρ-approximate Pareto set 
ontaining at most p = 2ℓ− 1 solutions.Now suppose that w2(S1) ≥ ρpopt (the 
ase w1(S2) ≥ ρpopt is treated similarly). Solution
S1 must be in s(·, j∗) for 1 ≤ j∗ ≤ p. Sin
e w1(S1) = opt, S1 is a ρ-approximation of anysolution S in s(·, p) ∪ s(·, p + 1). One 
an build an ρ-approximate Pareto set P as follows:
P = {S1} at the beginning and for j = j∗ − 1 down to 1, pi
k a feasible solution S withmaximum weight w1 in s(·, j) (if s(·, j) 
ontains at least one value of a feasible solution) andset P = P ∪ {S}. Sin
e the strips form a partition of the spa
e, the algorithm returns an
ρ-approximate Pareto set 
ontaining at most p solutions.The proof is similar in the se
ond 
ase where p is even by 
onsidering ρ = αℓ with p = 2ℓ.

2Corollary 1 If Biobje
tive Π satis�es Property 1, then it admits a (1−ε)-approximate Paretoset 
ontaining O(1ε ) solutions.Proof : A

ording to Theorem 1, we need at most 2ℓ solutions where (
√
5−1
2 )1/ℓ ≥ 1 − ε inorder to obtain a (1− ε)-approximate Pareto set. Thus ℓ = O(1ε ). 2Property 1 
an be relaxed in the following way:Property 2 Given any two feasible solutions S1 and S2, and a real α satisfying 0 < α ≤ 1.If w2(S1) < αw2(S2) and w1(S2) < αw1(S1) then there exists a feasible solution S3 whi
hsatis�es w1(S3) > (c− α)w1(S1) and w2(S3) > (c− α)w2(S2), where 0 < c ≤ 1 is a 
onstant.We say that Biobje
tive Π satis�es Property 2 polynomially if S3 
an be 
onstru
ted inpolynomial time.Given a positive integer ℓ, 
onsider the equations x2ℓ = c− xℓ and x2ℓ−1 = c−xℓ. Denoteby γℓ and δℓ their respe
tive solutions in the interval [0, 1). Note that γℓ = (

√
1+4c−1

2 )1/ℓ and
γℓ < δℓ < γℓ+1, ℓ ≥ 1. 5



Theorem 2 If Biobje
tive Π satis�es Property 2, then it admits a δℓ-approximate Pareto set(resp. a γℓ-approximate Pareto set) 
ontaining at most p solutions, where p is a positive oddinteger su
h that p = 2ℓ− 1 (resp. a positive even integer su
h that p = 2ℓ).Proof : The proof is similar to the proof of Theorem 1. Suppose that w2(S1) < ρpopt and
w1(S2) < ρpopt. Using Property 2 there exists a solution S3 satisfying w1(S3) > (c−ρp)opt and
w2(S3) > (c−ρp)opt. For the 
ase ρ = δℓ and p = 2ℓ−1, we get that c−ρp = c−δ2ℓ−1

ℓ = δℓℓ = ρℓ.For the 
ase ρ = γℓ and p = 2ℓ, we get that c − ρp = c − γ2ℓℓ = γℓℓ = ρℓ. Then S3 is a ρ-approximation of any solution S satisfying max{w1(S), w2(S)} ≤ ρℓ−1opt. 2The previous results of this se
tion 
onsider the 
onstru
tion, not ne
essarily in polynomialtime, of an approximate Pareto set with a �xed number of solutions. We give in the followingsome 
onditions on the 
onstru
tion in polynomial time of an approximate Pareto set withone solution.Proposition 1 If Π is polynomial time ρ-approximable and Biobje
tive Π satis�es Property1 polynomially (resp. 2), then Biobje
tive Π is polynomial time ρ
2 -approximable (resp. cρ

2 -approximable) with one solution.Proof : Consider �rst the 
ase where Biobje
tive Π satis�es Property 2 polynomially. Let S1(resp. S2) be a polynomial time ρ-approximation solution for the �rst obje
tive (resp. se
ondone). In the following, opt1 (resp. opt2) denotes the optimal value on the �rst obje
tive (resp.se
ond one). If w2(S1) ≥
cw2(S2)

2 then w2(S1) ≥
cρ
2 opt2 and thus S1 is a cρ

2 -approximate Paretoset. If w1(S2) ≥ cw1(S1)
2 then w1(S2) ≥ cρ

2 opt1 and thus S2 is a cρ
2 -approximate Pareto set.Otherwise, w2(S1) <

cw2(S2)
2 and w1(S2) <

cw1(S1)
2 and sin
e Biobje
tive Π satis�es Property2 polynomially, we 
an 
onstru
t in polynomial time a feasible solution S3 whi
h satis�es

w1(S3) ≥
cw1(S1)

2 and w2(S3) ≥
cw2(S2)

2 , that is a cρ
2 -approximate Pareto set. The propositionalso holds in the 
ase where Biobje
tive Π satis�es Property 1 polynomially by repla
ing cby 1. 2In the following, we say that Property 1 is tight if there exist S1, S2 and α su
h that

w2(S1) < αw2(S2) and w1(S2) < αw1(S1) and there is no α′ < α and a feasible solution S4satisfying w1(S4) > (1− α′)w1(S1) and w2(S4) > (1− α′)w2(S2).We 
onsider in Se
tions 3.1 and 3.2 several examples of problems Π that satisfy the s
alinghypothesis and su
h that Biobje
tive Π satisfy Property 1 or Property 2.3.1 Max Submodular Symmetri
 Fun
tionA fun
tion f de�ned on the power set of some ground set U is 
alled
• submodular if f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ), for all X,Y ⊆ U ;
• symmetri
 if f(X) = f(U \X) for all X ⊆ U ;
• non negative if f(X) ≥ 0 for all X ⊆ U .Max Submodular Symmetri
 Fun
tion is a 
ombinatorial optimization problemwhi
h 
onsists of maximizing a non negative, symmetri
, and submodular fun
tion f 
om-putable in polynomial time. The problem is known to generalize many NP-hard problems6



[14, 24℄. Feige, Mirrokni and Vondràk [14℄ give a (12 −o(1))-approximation algorithm forMaxSubmodular Symmetri
 Fun
tion.Lemma 1 Biobje
tive Max Submodular Symmetri
 Fun
tion satis�es Property 1 poly-nomially.Proof : Let α ∈ (0, 1] and S1, S2 two solutions of an instan
e of Biobje
tive Max Submod-ular Symmetri
 Fun
tion satisfying the inequalities: w2(S1) < αw2(S2) and w1(S2) <
αw1(S1). Consider S3 = S1∆S2 = (S1 \ S2) ∪ (S2 \ S1), where ∆ is the symmetri
 di�eren
e.We have

w1(S3) + w1(S2) ≥ w1(S1 ∪ S2) + w1(S2 \ S1)

= w1(U \ (S1 ∪ S2)) + w1(S2 \ S1)

≥ w1(U \ S1) + w1(∅)

≥ w1(S1) (1)where submodularity is used on the �rst and third lines, symmetry is used on the se
ondand third lines and non negativity is used on the third line. Using w1(S2) < αw1(S1) intoInequality (1), we get that w1(S3) ≥ w1(S1)−w1(S2) ≥ (1−α)w1(S1). With similar argumentswe get that w2(S3) ≥ w2(S2)− w2(S1) ≥ (1− α)w2(S2). 2Corollary 2 Biobje
tive Max Submodular Symmetri
 Fun
tion admits a(i) βℓ-approximate Pareto set (resp. an αℓ-approximate Pareto set) 
ontaining at most psolutions, where p = 2ℓ− 1 (resp. p = 2ℓ).(ii) (1− ε)-approximate Pareto set 
ontaining O(1ε ) solutions.As indi
ated above, Corollary 2 deals with the possibility to rea
h some approximationbounds when the number of solutions in the Pareto set is �xed. We give in the following anapproximation bound that we 
an obtain in polynomial time with one solution.Corollary 3 Biobje
tive Max Submodular Symmetri
 Fun
tion admits a polynomialtime (14 − o(1))-approximate Pareto set with one solution.Proof : The results follows from Lemma 1 and Proposition 1 with ρ = 1
2 − o(1). 2Now we review some spe
ial 
ases ofMax Submodular Symmetri
 Fun
tion and useProposition 1 to derive the existen
e of an approximate Pareto set with one solution for thebiobje
tive version.Spe
ial 
ases of Max Submodular Symmetri
 Fun
tionMax Pos NAE 
onsists of a set of 
lauses C de�ned on a set U of boolean variables

x1, . . . , xn. The 
lauses are 
omposed of two or more positive variables and they are endowedwith a non negative weight. The Max Pos NAE problem 
onsists of �nding an assignmentof the variables su
h that the total weight of the 
lauses that are satis�ed is maximum, wherea positive 
lause is satis�ed by an assignment if it 
ontains at least a true variable and at leasta false variable. It is NP-hard and 0.7499-approximable [36℄. Max Pos NAE is also knownunder the name Max Set Splitting or Max Hypergraph Cut [36℄. The spe
ial 
ase in7



whi
h every 
lause 
ontains exa
tly k variables is denotedMax Pos kNAE.Max Pos 3NAEis 0.908-approximable [37℄. For k ≥ 4, Max Pos kNAE is (1 − 21−k)-approximable [3, 22℄and this is the best possible sin
e it is hard to approximate within a fa
tor of 1 − 21−k + ε,for any 
onstant ε > 0 [20℄. Another spe
ial 
ase of Max Pos NAE in whi
h every 
lause
ontains exa
tly 2 variables 
orresponds to Max Cut (given a graph G = (V,E) with nonnegative weights on its edges, �nd V ′ ⊂ V su
h that the total weight of the edges havingexa
tly one extremity in V ′ is maximum) whi
h is 0.878-approximable [16℄.The Max Partition problem 
onsists of a set J of n items 1, . . . , n where ea
h item
j has a non negative weight w(j). A solution S is a bipartition J1 ∪ J2 of the items. Thegoal is to �nd a solution S su
h that w(S) = min{

∑
j∈J1 w(j),

∑
j∈J2 w(j)} is maximized.This NP-hard problem was also studied in the 
ontext of s
heduling, where the number ofpartitions is not �xed, and 
onsists of maximizing the earliest ma
hine 
ompletion time [35℄.Max Partition is a spe
ial 
ase of the Max Subset Sum problem. An input of MaxSubset Sum is formed by a set J of n items 1, . . . , n, ea
h item j has a non negative weight

w(j), and an integer t. The problem 
onsists of �nding a subset S of J whose sum w(S)is bounded by t and maximum. Max Subset Sum has an FPTAS [10℄. We 
an obtain aFPTAS for Max Partition using the previous FPTAS for t = ∑n
i=1w(i)/2.Observe that Biobje
tiveMax Partition is not (1/2+ε)-approximable with one solution.In order to see this, 
onsider 3 items of weights w1(1) = 2, w2(1) = 1, w1(2) = 1, w2(2) =

2, w1(1) = 1, w2(3) = 1. The two e�
ient solutions Si, i = 1, 2 
onsists of pla
ing i in a partand the other items in the other part and have weights w1(S1) = 2, w2(S1) = 1, w1(S2) =
1, w2(S2) = 2. Any other solution is either dominated by one of these two or has weights equalto 1 on both 
riteria.Using Proposition 1, we obtain the following approximation ratios for the the biobje
tiveversions with one solution of spe
ial 
ases of Max Submodular Symmetri
 Fun
tion:Problem approx. ratioMax Pos NAE 0.374Max Pos 3NAE 0.454Max Pos kNAE, k ≥ 4 1/2− 1/2kMax Cut 0.439Max Partition 1/2− εNote that the result about Max Cut is the same as the one given in [4℄. Moreover,Biobje
tive Max Cut is not (1/2 + ε)-approximable with one solution [4℄, meaning that weare 
lose to the best possible approximation result.3.2 Max Mat
hingGiven a 
omplete graph G = (V,E) with non negative weights on the edges, the MaxMat
hing problem is to �nd a mat
hing of the graph of total weight maximum. MaxMat
hing is solvable in polynomial time [11℄. We study in this part the biobje
tive MaxMat
hing problem and 
onsider instan
es where the graph is a 
olle
tion of 
omplete graphsinside whi
h the weights satisfy the triangle inequality, sin
e otherwise the biobje
tive MaxMat
hing problem is not at all approximable with one solution. In order to see this, 
onsidera 
omplete graph on 3 verti
es with weights (1, 0), (0, 1), (0, 0). The optimum value on ea
h8



obje
tive is 1. Nevertheless, any solution has value 0 with respe
t to at least one obje
tive.Clearly Property 1 is not satis�ed in this 
ase.Biobje
tive Max Mat
hing problem is NP-hard [30℄. It remains NP-hard even oninstan
es where the graph is a 
olle
tion of 
omplete graphs inside whi
h the weights satisfy thetriangle inequality. In order to see this, we redu
e in polynomial time Partition (proved NP-hard in [23℄) to our problem. Given an instan
e I of Partition with 2n non negative integers
a1, . . . , a2n su
h that ∑n

i=1 ai = 2B, we 
onstru
t a graph G, instan
e of our problem asfollows: G 
ontains 6n verti
es, at ea
h integer ai we asso
iate a triangle with verti
es v1i , v2i , v3iand weights w1(v
1
i , v

2
i ) = 2ai, w2(v

1
i , v

2
i ) = ai, w1(v

2
i , v

3
i ) = ai, w2(v

2
i , v

3
i ) = ai, w1(v

1
i , v

3
i ) =

ai, w2(v
1
i , v

3
i ) = 2ai. For every edge between 2 di�erent triangles we asso
iate an weight 0on both obje
tives. Clearly, there is a partition of the 2n integers into two sets of sum B ifand only if there is a mat
hing in G of weight at least 3B on ea
h obje
tive. It remains anopen problem to de
ide if Biobje
tive Max Mat
hing remains NP-hard on 
omplete graphswhere the weights satisfy the triangle inequality.Lemma 2 Biobje
tive Max Mat
hing satis�es Property 2 polynomially with c = 1/3.Proof : Let α ∈ (0, 1] and S1, S2 two solutions of an instan
e of biobje
tive Max Mat
hingsatisfying the inequalities: w2(S1) < αw2(S2) and w1(S2) < αw1(S1). The set of edges of

S1∪S2 
onstitutes several 
onne
ted 
omponents: 
y
les of size 4ℓ, 
y
les of size 4ℓ+2, ℓ ≥ 1,and paths of length ℓ ≥ 1. In order to 
onstru
t S3 we pro
eed in two steps. Firstly, startingfrom S1∪S2, we 
onstru
t in polynomial time a 
olle
tion of vertex disjoint paths P of lengthat most 2 su
h that wi(Si ∩ P) ≥ wi(Si)
3 . Se
ondly, we 
onstru
t S3 from P.Given su
h a 
olle
tion P of paths of length at most 2, we 
onstru
t S3 as follows: forea
h path Pj = v1, v2 of length 1 from P, we add (v1, v2) to S3; for ea
h path Pj = v1, v2, v3of length 2 from P, we add (v1, v3) in S3. It is easy to see, sin
e P is vertex disjoints, that S3is a mat
hing. In this last 
ase, using triangle inequality, we have

wi(S3−i ∩ Pj) + wi(S3 ∩ Pj) ≥ wi(Si ∩ Pj) for i = 1, 2and thus making the sum over all paths Pj ∈ P, we obtain
wi(S3−i ∩ P) + wi(S3) ≥ wi(Si ∩ P) for i = 1, 2.Moreover, wi(S3−i ∩ P) < wi(S3−i) < αwi(Si). Thus

wi(S3) ≥ wi(Si ∩ Pj)− αwi(Si) ≥
wi(Si)

3
− αwi(Si) =

(
1

3
− α

)
wi(Si) for i = 1, 2.We show in the following how to 
onstru
t the 
olle
tion P.Consider a 
y
le of size 4ℓ, Cj = v1, v2, . . . , v4ℓ from S1 ∪ S2 and suppose S1 ∩ Cj =

{(v2i+1, v2i+2), i = 0, . . . , 2ℓ − 1}. Let S′
1 be the mat
hing of maximum weight w1 between

M={(v4i+1, v4i+2), i = 0, . . . , ℓ−1} and (S1∩Cj)\M . Thus w1(S
′
1) ≥

1
2w1(S1∩Cj). Similarlywe 
onstru
t S′

2 obtaining w2(S
′
2) ≥

1
2w2(S2∩Cj). S′

1∪S′
2 
onsists of paths of length two andwe add S′

1 ∪ S′
2 to P. Thus, w1(S

′
1 ∪ S′

2) ≥
1
2w1(S1 ∩ Cj) and w2(S

′
1 ∪ S′

2) ≥
1
2w2(S2 ∩ Cj).On a path of length ℓ ≥ 1 from S1 ∪ S2, we pro
eed as in the previous 
ase, obtaining thesame inequalities as before. 9



Consider a 
y
le Cj of size 4ℓ + 2 from S1 ∪ S2. We remove from Cj the edge with thesmallest w1 from S1 ∩ Cj and the one with the smallest w2 from S2 ∩ Cj . On the path orthe two remaining paths we pro
eed as in the previous 
ase for the 
onstru
tion of S′
1 and

S′
2. S′

1 ∪ S′
2 
onsists of paths of length at most two and we add S′

1 ∪ S′
2 to P. In this 
ase,

w1(S
′
1) ≥

1
2(1 − 1

2ℓ+1 )w1(S1 ∩ Cj) ≥
1
3w1(S1 ∩ Cj) and w2(S

′
2) ≥

1
2(1 − 1

2ℓ+1)w2(S2 ∩ Cj) ≥
1
3w2(S2 ∩ Cj).Thus, summing all these inequalities we obtain wi(Si ∩ P) ≥ wi(Si)

3 for i = 1, 2. 2Corollary 4 Biobje
tive Max Mat
hing admits a δℓ-approximate Pareto set (resp. an γℓ-approximate Pareto set) 
ontaining at most p solutions, where p = 2ℓ− 1 (resp. p = 2ℓ).Corollary 5 Biobje
tive Max Mat
hing admits a polynomial time 1
6 -approximate Paretoset with one solution.Proof : It follows from Lemma 2 and Proposition 1 
onsidering ρ = 1. 24 Approximation with one solution for biobje
tive problemsIn this se
tion, we establish a ne
essary and su�
ient 
ondition for 
onstru
ting, notne
essarily in polynomial time, a 
onstant approximation with one solution of the Paretoset for biobje
tive maximization problems. Moreover, if the 
onstru
tion 
an be done inpolynomial time and the single-obje
tive problem is polynomial time 
onstant approximable,then the biobje
tive version is polynomial time 
onstant approximable with one solution.Using this 
ondition, we establish a polynomial time 0.174-approximation with one solutionfor Biobje
tive Max Bise
tion.In the following, we are interested in biobje
tive maximization problems, Biobje
tive Π,whi
h satisfy the following property.Property 3 We 
an 
onstru
t three solutions S1, S2, S3 su
h that Si is a ρi-approximationfor problem Π on obje
tive i, i = 1, 2, and S3 is su
h that w1(S2) + w1(S3) ≥ α · w1(S1) and

w2(S1) + w2(S3) ≥ α · w2(S2) for some �xed 
onstant α ≤ 1.We say that Biobje
tive Π satis�es Property 3 polynomially if S1, S2, S3 
an be 
onstru
tedin polynomial time.The aim of solution S3 in Property 3 is to 
ompensate the potential ine�
ien
y of Si on
riterion 3− i, i = 1, 2.Theorem 3 Biobje
tive Π is 
onstant approximable with one solution if and only if it satis�esProperty 3. Moreover, if Biobje
tive Π is polynomial time 
onstant approximable with onesolution then it satis�es Property 3 polynomially. More pre
isely, if Biobje
tive Π satis�esProperty 3 polynomially su
h that Si is a polynomial time ρi-approximation for problem Π onobje
tive i, i = 1, 2, then Biobje
tive Π admits a polynomial time αmin{ρ1,ρ2}
2 -approximationalgorithm with one solution.

10



Proof : Suppose that Biobje
tive Π is ρ-approximable with one solution. Let S3 be thissolution and S1 and S2 any two solutions. Then w1(S3) ≥ ρ · opt1 ≥ ρ · w1(S1) and thus bysetting α = ρ we have w1(S2) + w1(S3) ≥ α · w1(S1). The se
ond inequality holds also.Suppose now that Biobje
tive Π satis�es Property 3. Sin
e Si is a ρi-approximation forproblem Π on obje
tive i, i = 1, 2, we have w1(S1) ≥ ρ1 · opt1 and w2(S2) ≥ ρ2 · opt2.Sin
e Property 3 is satis�ed, we 
an 
onstru
t S3 su
h that
w1(S2) + w1(S3) ≥ α · w1(S1) (2)and
w2(S1) + w2(S3) ≥ α · w2(S2) (3)Now, we study di�erent 
ases:

• If w1(S2) ≥ α
2w1(S1), then we dedu
e that S2 is a good approximation of the Paretoset. From the hypothesis, we have w1(S2) ≥

α
2w1(S1) ≥ α · min{ρ1,ρ2}

2 opt1. On the otherhand, we also have w2(S2) ≥ ρ2 · opt2 ≥ αmin{ρ1,ρ2}
2 opt2.

• If w2(S1) ≥ α
2w2(S2), then we dedu
e that S1 is a good approximation of the Paretoset. From the hypothesis, we have w2(S1) ≥

α
2w2(S2) ≥ α · min{ρ1,ρ2}

2 opt2. On the otherhand, by the 
onstru
tion of S1 we also have w1(S1) ≥ ρ1 · opt1 ≥ α · min{ρ1,ρ2}
2 opt1.

• If w1(S2) ≤ α
2w1(S1) and w2(S1) ≤ α

2w2(S2), then it is S3 whi
h is a good approxi-mation of the Pareto set. Indeed, from inequality (2), we dedu
e w1(S3) ≥
α
2w1(S1) ≥

α · min{ρ1,ρ2}
2 opt1 and on the other hand, from inequality (3), we also get w2(S3) ≥

α
2w2(S2) ≥ α · min{ρ1,ρ2}

2 opt2.In any of these three 
ases, we obtain a α · min{ρ1,ρ2}
2 -approximation with one solution.Clearly, if S1, S2, S3 are 
omputable in polynomial time, then Biobje
tive Π is approx-imable in polynomial time. 2Note that we 
an extend Theorem 3 to the 
ase where ρi are not 
onstant.The interest of Property 3 is to �nd a simple method in order to 
onstru
t a polynomialtime 
onstant approximation for Biobje
tive Π. This method does not allow us to obtain thebest polynomial time 
onstant approximation for Biobje
tive Π with one solution, but only toprove the fa
t that the problem is polynomial time 
onstant approximable with one solution.In Proposition 1 we prove that if a problem Π is (resp. polynomial time) 
onstant ap-proximable and if Biobje
tive Π satis�es (resp. polynomially) Property 1, then Biobje
tive Πis (resp. polynomial time) 
onstant approximable with one solution, and thus Biobje
tive Πsatis�es (resp. polynomially) Property 3 by Theorem 3. Thus all problems studied in Se
tion 3satisfy Property 3.There exist problems whi
h are polynomial time 
onstant approximable and thus satisfyProperty 3 and do not satisfy Property 1. One example is Biobje
tive Max TSP, whi
h ispolynomial time 7

27 -approximable with one solution [26℄ and does not satisfy Property 1.Proposition 2 Biobje
tive Max TSP does not satisfy Property 1.Proof : Consider the 
omplete graphK5 where a �xedK4 is de
omposable into 2 edge-disjointHamiltonian paths P1 and P2. For every edge e ∈ E(K5), set w1(e) = 1 and w2(e) = 0 if11



e ∈ P1, w1(e) = 0 and w2(e) = 1 if e ∈ P2 and w1(e) = 0 and w2(e) = 0 if e /∈ P1∪P2. We 
an
he
k that there are four non-dominated tours Ti, i = 1, . . . , 4 with w1(T1) = 3, w2(T1) = 0,
w1(T2) = 0, w2(T2) = 3, w1(T3) = 2, w2(T3) = 1 and w1(T4) = 1, w2(T4) = 2. Consider
Si = Ti, i = 1, 2 and α = 1/2. Clearly w2(S1) < αw2(S2) and w1(S2) < αw1(S1). Moreoverthere is no solution S3 su
h that w1(S3) > (1− α)w1(S1) and w2(S3) > (1− α)w2(S2). 2We 
onsider in the following a problem that satis�es Property 3 and for whi
h we are notable to prove that it satis�es Property 1.4.1 Max Bise
tionGiven a graph G = (V,E) with non negative weights on the edges, the Max Bise
tionproblem 
onsists of �nding a bipartition of the vertex set V into two sets of equal size su
hthat the total weight of the 
ut is maximum. We establish in this part a polynomial time
ρ
4 -approximation algorithm for Biobje
tive Max Bise
tion where ρ is any polynomial timeapproximation ratio given for Max Bise
tion. Max Bise
tion is NP-hard [23℄ and thebest approximation ratio known for Max Bise
tion is ρ = 0.701 [17℄.Lemma 3 Biobje
tive Max Bise
tion on graphs with 4n verti
es satis�es Property 3 poly-nomially with α = 1 and ρ1 = ρ and ρ2 = ρ

2 , where ρ is any polynomial time approximationratio given for Max Bise
tion.Proof : Formally, let S1 = (V1, V2) be a bise
tion of I = (G,w1) given by a polynomial time
ρ-approximation algorithm for Max Bise
tion. Let Gi be the subgraph of G indu
ed by Vi,
i = 1, 2 and let (A,B) (resp., (C,D)) be a bise
tion of I1 = (G1, w2) (resp., I2 = (G2, w2))given by a polynomial time ρ-approximation algorithm. We produ
e two other bise
tions S2and S3 of G des
ribed by (A∪C,B∪D) and (A∪D,B∪C). W.l.o.g., assume w2(S2) ≥ w2(S3).We show in the following that S1, S2, S3 satisfy inequalities of Property 3 with α = 1.Let S∗ = (V ∗

1 , V
∗
2 ) be an optimal bise
tion on (G,w2) using edge set E∗. Thus, w2(S

∗) =
w2(E

∗) = opt2. Let V ′
1 = V ∗

1 ∩ (A ∪ B) (resp., V ′′
1 = V ∗

1 ∩ (C ∪D)) and V ′
2 = V ∗

2 ∩ (A ∪ B)(resp., V ′′
2 = V ∗

2 ∩ (C ∪D)). Let E∗
1 (resp., E∗

2) be the edge set given the 
ut S′
1 = (V ′

1 , V
′
2)(resp., S′

2 = (V ′′
1 , V

′′
2 )). Hen
e, for i = 1, 2, E∗

i is the restri
tion of S∗ on Gi = (Vi, Ei).Finally, let E∗
3 be the remaining edges, E∗

3 = E∗ \ (E∗
1 ∪ E∗

2). Note that E∗
3 belongs to the
rossing edges between G1 and G2, i.e., are in the 
ut S1. Thus, we get:

opt2 = w2(E
∗
1) + w2(E

∗
2) + w2(E

∗
3) (4)Sin
e F1 = (A,B) (resp., F2 = (C,D)) is the solution given by a polynomial time ρ-approximation algorithm on I1 = (G1, w2) (resp., I2 = (G2, w2)), we obtain for i = 1, 2:

w2(Fi) ≥ ρ · opt2(Ii) ≥
ρ

2
w2(E

∗
i ) (5)A
tually, 
onsider the 
ut S′

1 = (V ′
1 , V

′
2) and assume |V ′

1 | ≥ |V ′
2 |. Let U = argmin{w2(U, V

′
2) :

U ⊂ V ′
1 and |U | = n − |V ′

2 |}. Sin
e |V ′
1 | + |V ′

2 | = 2n, we get 2|U | ≤ |V ′
1 |. Thus, we dedu
e

2w2(U, V
′
2) ≤ w2(V

′
1 , V

′
2) = w2(E

∗
1). Now, observe that S̃1 = (V ′

1 \ U, V ′
2 ∪ U) is a bise
tionof G1. Hen
e opt2(I1) ≥ w2(S̃1)) ≥ w2(E

∗
1 ) − w2(U, V

′
2) ≥ 1

2w2(E
∗
1). Obviously, the samearguments for the 
ut S′

2 = (V ′′
1 , V

′′
2 ) on G2 lead to a similar 
on
lusion.On the other hand, sin
e w2(S2) ≥ w2(S3), we have:12



2(w2(A,D) + w2(B,C)) ≥ w2(S1) ≥ w2(E
∗
3) (6)Finally, using w2(S2) = w2(F1)+w2(F2)+w2(A,D)+w2(B,C), equality (4), (5), (6) and

ρ ≤ 1, we obtain that S2 is a ρ/2-approximation.Due to the 
onstru
tion of S1, S2 and S3, we get w1(S1) +w1(S2) +w1(S3) = 2(w1(S1) +
w1(A,B) + w1(C,D)) and w2(S1) + w2(S2) + w2(S3) = 2(w2(S2) + w2(A,C) + w2(B,D)).Thus, we dedu
e:

w1(S2) + w1(S3) ≥ w1(S1) (7)and
w2(S1) + w2(S3) ≥ w2(S2) (8)

2Corollary 6 Biobje
tive Max Bise
tion on graphs with 4n verti
es admits a polynomialtime 0.174-approximate Pareto set with one solution.Proof : The results follows from Theorem 3 and Lemma 3 and using the polynomial time0.701-approximation algorithm for Max Bise
tion [17℄. 25 Approximation with one solution for some multiobje
tive se-le
tion problemsIn this se
tion we establish a su�
ient 
ondition for the 
onstru
tion, not ne
essarily inpolynomial time, of a solution with performan
e guarantee for k-obje
tive sele
tion problems.Moreover, if all steps of the 
onstru
tion are feasible in polynomial time, then the k-obje
tiveversion is polynomial time approximable with one solution. The general result is applied tothe k-obje
tive versions of three problems: Max Coverage (and its spe
ial 
ases Max qVertex Cover and Max q Sele
tion), Heaviest Subgraph and Max Coloring ofinterval graphs.Consider a general single-obje
tive maximization problem Π de�ned as follows: a set Uof elements, a non negative weight w(e) for every element e ∈ U , a family F of subsets of U(either F is given expli
itly or there is a fun
tion that 
an de
ide if a subset S ∈ F), a positiveinteger q, a 
overing fun
tion c su
h that c(S) ⊆ U for every subset S ⊆ F . It is assumedthat c(F) = U and S ⊆ S′ ⇒ c(S) ⊆ c(S′). A feasible solution is a set S of q subsets of F .Its weight, to be maximized, is denoted by w(S) and de�ned as ∑e∈c(S)w(e).We are interested in problems Π whi
h satisfy the following property.Property 4 For any integer t, 1 ≤ t ≤ q, there exists a fun
tion ρ(t, q) ∈ (0, 1] su
h that forany feasible solution S, one 
an always sele
t t subsets among the q subsets of S su
h that theweight of these t subsets is at least ρ(t, q)w(S).We say that Π satis�es Property 4 polynomially if the t subsets 
an be found in poly-nomial time. In the k-obje
tive version of Π, every element e has k non negative weights
w1(e), . . . , wk(e). 13



Theorem 4 If Π satis�es Property 4, then k-obje
tive Π admits a ρ(⌊q/k⌋, q)-approximatePareto set with one solution. Moreover, if Π satis�es Property 4 polynomially and if Π has apolynomial time r-approximation algorithm then k-obje
tive Π has a rρ(⌊q/k⌋, q)-approximatePareto set with one solution 
omputable in polynomial time.Proof : Using S ⊆ S′ ⇒ c(S) ⊆ c(S′) and the fa
t that every element e has a non negativeweight wi(e) for every i, 1 ≤ i ≤ k, we dedu
e that S ⊆ S′ ⇒ wi(S) ≤ wi(S
′). Hen
e when apartial solution 
ontaining less than q subsets is 
ompleted with additional subsets, its weight
annot de
rease.Let Si (resp. Ŝi) be an optimal (resp. r-approximate) solution with respe
t to wi. UsingProperty 4 one 
an 
hoose ⌊ qk ⌋ subsets in ea
h Si (resp. Ŝi) to build a new solution S0(resp. Ŝ0) 
ontaining at most q subsets. We 
omplete, if ne
essary, S0 (resp. Ŝ0) in order toobtain a solution with exa
tly q subsets. Thus, wi(S0) ≥ ρ(⌊q/k⌋, q)wi(Si) (resp. wi(Ŝ0) ≥

ρ(⌊q/k⌋, q)wi(Ŝi) ≥ rρ(⌊q/k⌋, q)wi(Si)) for every i, 1 ≤ i ≤ k.Clearly, if Ŝi is 
omputable in polynomial time and Π satis�es Property 4 polynomially,then Ŝ0 is a polynomial time approximation for k-obje
tive Π. 2Several examples of Π whi
h satisfy Property 4 are given in Se
tions 5.1, 5.2 and 5.3.5.1 Max Coverage and spe
ial 
asesThe input ofMax Coverage is a set U of elements, a non negative weight w(e) for everyelement e ∈ U , a family F of subsets of U and a positive integer q. The goal is to sele
t qelements of F so that the total weight of the elements of U 
overed by the union of these
q elements of F is maximum. Max Coverage is NP-hard and (1 − 1/e)-approximable inpolynomial time [1℄. Clearly, Max Coverage is a spe
ial 
ase of Π and it is not di�
ult toprove that Max Coverage satis�es Property 4 polynomially for ρ(t, q) = t

q .Max q Vertex Cover is a spe
ial 
ase of max 
overage. It 
onsists of �nding qverti
es from an undire
ted and edge-weighted graph G = (V,E), where q ≤ |V |, su
h thatthe total edge weight 
overed by the q verti
es is maximized. Max q Vertex Cover isNP-hard and 3
4 -approximable [18℄.Max q Sele
tion is another spe
ial 
ase of Max Coverage. It 
onsists of �nding qitems from a set of n weighted items of maximum weight. Max q Sele
tion is trivial but

k-obje
tive Max q Sele
tion is NP-hard even for k = 2 [7℄.Using Theorem 4, we get that k-obje
tive Max Coverage, Max q Vertex Cover andMax q Sele
tion admit a ⌊q/k⌋
q -approximate Pareto set with one solution. In addition, a

ρ ⌊q/k⌋
q -approximate Pareto set with one solution 
an be 
omputed in polynomial time where

ρ = (1− 1/e), ρ = 3/4 and ρ = 1 for Max Coverage, Max q Vertex Cover and Max qSele
tion respe
tively.5.2 Heaviest SubgraphThe input of Heaviest Subgraph is a 
omplete graph G = (V,E) with a non negativeweight w(e) for ea
h edge e ∈ E and a positive integer q ≤ |V |. The goal is to sele
t qnodes of V su
h that the total weight of the subgraph indu
ed by these q nodes is maximum.The weight of a subgraph indu
ed by V ′ ⊂ V is denoted by w(V ′) and de�ned as w(V ′) =∑
{(i,j):i∈V ′, j∈V ′, i<j}w((i, j)). Heaviest Subgraph is an NP-hard problem and it remainsNP-hard even when the weights satisfy the triangle inequality [29℄. It is also known under14



the name max edge-weighted 
lique problem and densest subgraph problem (when all theedge weights are equal to 1) [31, 15, 25, 21, 2℄ and its approximation was studied in [31, 15℄.Heaviest Subgraph is also a spe
ial 
ase of Π. The problem satis�es Property 4 for ρ(t, p) =
t(t−1)
q(q−1) [31℄. Hen
e k-obje
tive Heaviest Subgraph admits a ⌊q/k⌋(⌊q/k⌋−1)

q(q−1) -approximate Pa-reto set with one solution.5.3 Max Coloring of interval graphsThe input of the maximum 
oloring problem in interval graphs (Max Coloring for short)is a set of intervals U from the real line, ea
h interval u ∈ U has a non negative weight w(u)and q 
olors. The goal is to �nd a 
oloring of the intervals of maximum total weight su
h thattwo interse
ting intervals must re
eive distin
t 
olors. The problem is solvable in polynomialtime [9℄. Clearly, Max Coloring is a spe
ial 
ase of Π and it is not di�
ult to prove that itsatis�es Property 4 polynomially for ρ(t, q) = t
q . Then, k-obje
tive Max Coloring admitsa ⌊q/k⌋

q -approximate Pareto set with one solution whi
h 
an be 
omputed in polynomial time.6 Con
lusionIn this paper, we have established some su�
ient 
onditions that allow to 
on
lude onthe existen
e of 
onstant approximations of the Pareto set with an expli
itly given numberof solutions for several biobje
tive maximization problems. The results we obtained establisha polynomial time approximation when we ask for a single solution in the approximation setex
ept for Heaviest Subgraph. A possible future work would be to give a polynomialtime approximation for any expli
itly given number of solutions. A ne
essary and su�
ient
ondition is given for the 
onstru
tion of (polynomial time) 
onstant approximation with onesolution for biobje
tive maximization problems. It would be interesting to generalize thisresult to maximization problems with more than two obje
tives. Another interesting futurework would be to establish lower bounds for any expli
itly given number of solutions formultiobje
tive maximization problems. We also established in this paper a su�
ient 
onditionthat allows to 
on
lude on the existen
e of approximations of the Pareto set with one solutionfor multiobje
tive sele
tion problems. A possible future work would be to establish polynomialtime approximation for any expli
itly given number of solutions.Our approa
hes deal with maximization problems and they do not seem to apply to min-imization problems. A possible explanation is that, in the maximization framework, addingelements to a partial solution rarely deteriorates it. Minimization problems rarely satisfythis property. Establishing 
onstant approximation of the Pareto set with a given number ofsolutions or show that this is not possible for minimization problems is an interesting openquestion.Referen
es[1℄ A. Ageev and M. Sviridenko. Pipage Rounding: A New Method of Constru
ting Al-gorithms with Proven Performan
e Guarantee. Journal of Combinatorial Optimization8(3):307�328, 2004.
15



[2℄ B. Alidaee, F. Glover, G. A. Ko
henberger, and H. Wang. Solving the maximum edgeweight 
lique problem via un
onstrained quadrati
 programming. European Journal ofOperational Resear
h, 181(2):592�597, 2007.[3℄ P. Alimonti. Non-oblivious lo
al sear
h for graph and hypergraph 
oloring problems. InPro
eedings of the 21st International Workshop on Graph-Theoreti
 Con
epts in ComputerS
ien
e (WG 1995), LNCS 1017, pages 167�180, 1995.[4℄ E. Angel, E. Bampis, and L. Gourvès. Approximation algorithms for the bi-
riteriaweighted max-
ut problem. Dis
rete Applied Mathemati
s, 154(12):1685�1692, 2006.[5℄ E. Angel, E. Bampis, L. Gourvès, and J. Monnot. (Non)-approximability for the multi-
riteria TSP(1,2). In Pro
eeding of the 15th International Symposium on Fundamentalsof Computation Theory (FCT 2005), LNCS 3623, pages 329�340, 2005.[6℄ E. Angel, E. Bampis, and A. Kononov. On the approximate tradeo� for bi
riteria bat
hingand parallel ma
hine s
heduling problems. Theoreti
al Computer S
ien
e, 306(1-3):319�338, 2003.[7℄ I. Averbakh. On the 
omplexity of a 
lass of 
ombinatorial optimization problems withun
ertainty. Mathemati
al Programming A, 90(2):263�272, 2001.[8℄ C. Bazgan, H. Hugot, and D. Vanderpooten. Implementing an e�
ient fptas for the 0-1multi-obje
tive knapsa
k problem. European Journal of Operational Resear
h, 198(1):47�56, 2009.[9℄ M. Carlisle and E. Lloyd. On the k-
oloring of intervals. Dis
rete Applied Mathemati
s,59(3):225�235, 1995.[10℄ T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introdu
tion to Algorithms.The MIT Press, 3rd edition, 2009.[11℄ J. Edmonds. Paths, trees, and �owers. Canadian Journal of Mathemati
s, 17:449�467,1965.[12℄ M. Ehrgott. Multi
riteria optimization. LNEMS, Springer-Verlag, 2005.[13℄ T. Erleba
h, H. Kellerer, and U. Pfers
hy. Approximating multiobje
tive knapsa
k prob-lems. Management S
ien
e, 48(12):1603�1612, 2002.[14℄ U. Feige, V. Mirrokni, and Jan Vondràk. Maximizing non-monotone submodular fun
-tions. In Pro
eeding of the 48th Annual IEEE Symposium on Foundations of ComputerS
ien
e (FOCS 2007), pages 461�471, 2007.[15℄ U. Feige, D. Peleg, and G. Kortsarz. The dense k-subgraph problem. Algorithmi
a,29(3):410�421, 2001.[16℄ M. X. Goemans and D. P. Williamson. Improved approximation algorithms for maxi-mum 
ut and satis�ability problems using semide�nite programming. Journal of ACM,42(6):1115�1145, 1995. 16



[17℄ E. Halperin and U. Zwi
k. A uni�ed framework for obtaining improved approxima-tion algorithms for maximum graph bise
tion problems. Random Stru
ture Algorithms,20(3):382�402, 2002.[18℄ Q. Han, Y. Ye, H. Zhang, and J. Zhang. On approximation of max-vertex-
over. EuropeanJournal of Operational Resear
h, 143(2):342�355, 2002.[19℄ P. Hansen. Bi
riteria path problems. In In G. Fandel and T. Gal editors, Multiple CriteriaDe
ision Making : Theory and Appli
ations, pages 109�127, 1980.[20℄ J. Hastad. Some optimal inapproximability results. Journal of ACM, 48(4):798�859,2001.[21℄ M. Hunting, U. Faigle, and W. Kern. A lagrangian relaxation approa
h to the edge-weighted 
lique problem. European Journal of Operational Resear
h, 131(1):119�131,2001.[22℄ V. Kann, J. Lagergren, and A. Pan
onesi. Approximability of maximum splitting of k-setsand some other apx-
omplete problems. Information Pro
essing Letters, 58(3):105�110,1996.[23℄ R. M. Karp. Redu
ibility among 
ombinatorial problems. In Complexity of ComputerComputations, R. Miller and J. That
her, eds. Plenum Press, New York, pages 85�103,1972.[24℄ J. Lee, V. S. Mirrokni, V. Nagarajan and M. Sviridenko. Non-monotone submodularmaximization under matroid and knapsa
k 
onstraints. In Pro
eedings of the 41st AnnualACM Symposium on Theory of Computing (STOC 2009), pages 323�332, 2009.[25℄ E. M. Ma
ambira and C. C. de Souza. The edge-weighted 
lique problem: Valid inequal-ities, fa
ets and polyhedral 
omputations. European Journal of Operational Resear
h,123(2):346�371, 2000.[26℄ B. Manthey. On approximating multi
riteria TSP. ACM Transa
tions on Algorithms,8(2), 17, 2012.[27℄ K. Palu
h, M. Mu
ha, and A. Madry. A 7/9 - approximation algorithm for the maxi-mum traveling salesman problem. In Pro
eedings of the 12th International Workshop onApproximation, Randomization, and Combinatorial Optimization. Algorithms and Te
h-niques (APPROX-RANDOM 2009), LNCS 5687, pages 298�311, 2009.[28℄ C. H. Papadimitriou and M. Yannakakis. On the approximability of trade-o�s and optimala

ess of web sour
es. In Pro
eedings of the 41st Annual Symposium on Foundations ofComputer S
ien
e (FOCS 2000), pages 86�92, 2000.[29℄ S. S. Ravi, D. J. Rosenkrantz, and G. K. Tayi. Fa
ility dispersion problems: Heuristi
sand spe
ial 
ases. In Pro
eedings of the 2nd Workshop on Algorithms and Data Stru
tures(WADS 91), LNCS 519, pages 355�366, 1991.[30℄ P. Sera�ni. Some 
onsiderations about 
omputational 
omplexity for multi obje
tive
ombinatorial problems. In In J. Jahn and W. Krabs, editors, Re
ent advan
es and17



histori
al development of ve
tor optimization, volume 294 of Le
ture Notes in E
onomi
sand Mathemati
al Systems, pages 222�232, 1986.[31℄ A. Srivastav and K. Wolf. Finding dense subgraphs with semide�nite programming. InPro
eedings of the International Workshop Approximation Algorithms for CombinatorialOptimization (APPROX 98), LNCS 1444, pages 181�191, 1998.[32℄ C. Stein and J. Wein. On the existen
e of s
hedules that are near-optimal for bothmakespan and total weighted 
ompletion time. Operational Resear
h Letters, 21(3):115�122, 1997.[33℄ G. Tsaggouris and C. Zaroliagis. Multiobje
tive optimization: Improved fptas for shortestpaths and non-linear obje
tives with appli
ations. In Pro
eedings of the 17th InternationalSymposium on Algorithms and Computation (ISAAC 2006), LNCS 4288, pages 389�398,2006.[34℄ A. Warburton. Approximation of pareto-optima in multiple-obje
tive shortest path prob-lems. Operations Resear
h, 35(1):70�79, 1987.[35℄ G. Woeginger. A polynomial time approximation s
heme for maximizing the minimumma
hine 
ompletion time. Operations Resear
h Letters, 20(4):149�154, 1997.[36℄ J. Zhang, Y. Yea, and Q. Han. Improved approximations for max set splitting and maxNAE SAT. Dis
rete Applied Mathemati
s, 142(1-3):133�149, 2004.[37℄ U. Zwi
k. Approximation algorithms for 
onstraint satisfa
tion problems involving atmost three variables per 
onstraint. In Pro
eedings of the 9th Annual ACM-SIAM Sym-posium on Dis
rete Algorithms (SODA 1998), pages 201�210, 1998.

18


