
Approximation with a �xed number of solutions of somemultiobjetive maximization problems∗Cristina Bazgan1,2,3 Laurent Gourvès2,1 Jér�me Monnot2,11. PSL, Université Paris-Dauphine, LAMSADE,Plae du Maréhal de Lattre de Tassigny, 75775 Paris Cedex 16, Frane2. CNRS, UMR 72433. Institut Universitaire de Frane
{bazgan,laurent.gourves,monnot}�lamsade.dauphine.frAbstratWe investigate the problem of approximating the Pareto set of some multiobjetiveoptimization problems with a given number of solutions. Our purpose is to exploit generalproperties that many well studied problems satisfy. We derive existene and onstrutiveapproximation results for the biobjetive versions of Max Submodular SymmetriFuntion (and speial ases),Max Bisetion, andMax Mathing and also for the k-objetive versions ofMax Coverage, Heaviest Subgraph,Max Coloring of intervalgraphs.1 IntrodutionIn multiobjetive ombinatorial optimization a solution is evaluated onsidering severalobjetive funtions and a major hallenge in this ontext is to generate the set of e�ientsolutions or the Pareto set (see [12℄ about multiobjetive ombinatorial optimization). How-ever, it is usually di�ult to identify the e�ient set mainly due to the fat that the numberof e�ient solutions an be exponential in the size of the input and moreover the assoiateddeision problem is NP-omplete even if the underlying single-objetive problem an be solvedin polynomial time (e.g. shortest path [12℄). To handle these two di�ulties, researhers havebeen interested in developing approximation algorithms with an a priori provable guaranteesuh as polynomial time onstant approximation algorithms. Considering that all objetiveshave to be maximized, and for a positive ρ ≤ 1, a ρ-approximation of Pareto set is a set ofsolutions that inludes, for eah e�ient solution, a solution that is at least at a fator ρ on allobjetive values. Intuitively, the larger the size of the approximation set, the more aurateit an be.It has been pointed out by Papadimitriou and Yannakakis [28℄ that, under ertain generalassumptions, there always exists a (1 − ε)-approximation, with any given auray ε > 0,whose size is polynomial both in the size of the instane and in 1/ε but exponential in thenumber of riteria. In this result, the auray ε > 0 is given expliitly and a general upper
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bound on the size of the approximation set is given. When the number of solutions in theapproximation set is limited, not every level of auray is possible. So, one the number ofsolutions is �xed in the approximation set of a multiobjetive problem, the following questionsare raised: What is the auray for whih an approximation is guaranteed to exist? Whihauray an be obtained in polynomial time?In this paper we are interested in establishing for some multiobjetive maximization prob-lems the best approximation ratio of the set of e�ient solutions when the size of the ap-proximation set is given expliitly. We give three approahes that deal with biobjetive and
k-objetive problems that allow us to obtain approximations of the set of e�ient solutionswith one or several solutions. More preisely, in a �rst approah, we onsider a general max-imization problem and establish a su�ient ondition that guarantees the onstrution of aonstant approximation of the Pareto set with an expliitly given number of solutions. As aorollary, we an onstrut a (1− ε)-approximation of the Pareto set with O(1ε ) solutions. Ina seond approah, we establish a neessary and su�ient ondition for the onstrution of aonstant approximation of the Pareto set with one solution. In a third approah, we establisha su�ient ondition for the onstrution of one solution with approximation guarantee for
k-objetive seletion problems. In these three approahes, if the orresponding solutions anbe found in polynomial time then the biobjetive or k-objetive seletion problems admitspolynomial time approximation with one solution.Properties de�ned in these three approahes apply to several problems previously studiedin single-objetive approximation. Thus we derive polynomial time onstant approximationswith one solution for Biobjetive Max Bisetion, Biobjetive Max Partition, BiobjetiveMax Cut, Biobjetive Max Set Splitting, Biobjetive Max Mathing and k-objetiveHeaviest Subgraph, k-objetive Max q Colorable Subgraph and k-objetive MaxCoverage, but also for k-objetive versions of some partiular ases of Max Coverage:Max q Vertex Cover andMax q Seletion. Some instanes show that the given biobje-tive appromixation ratios are the best we an expet. In addition BiobjetiveMax Partition,Biobjetive Max Cut, Biobjetive Max Set Splitting admit a (1 − ε)-approximation ofthe Pareto set with O(1ε ) solutions.Several results exist in the literature on the approximation of multiobjetive ombinatorialoptimization problems. One an mention the existene of fully polynomial time approximationshemes for biobjetive shortest path [19, 34, 33℄, knapsak [13, 8℄, minimum spanning tree[28℄, sheduling problems [6℄, randomized fully polynomial time approximation sheme formathing [28℄, and polynomial time onstant approximation for max ut [4℄, a biobjetivesheduling problem [32℄ and the traveling salesman problem [5, 26℄. Note that [4℄, [26℄ and[32℄ are approximations with a single solution.This artile is organized as follows. In Setion 2, we introdue basi onepts aboutmultiobjetive optimization and approximation. Setion 3 is devoted to an approah forapproximating some biobjetive problems with one or several solutions. Setion 4 presentsa neessary and su�ient ondition for approximating some biobjetive problems with onesolution within a onstant fator. In Setion 5 we establish an approah for approximatingsome multiobjetive seletion problems. Conlusions are provided in a �nal setion.
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2 Preliminaries on multi-objetive optimization and approxi-mationConsider an instane of a multi-objetive optimization problem with k riteria or objetiveswhere X denotes the �nite set of feasible solutions. Eah solution x ∈ X is represented in theobjetive spae by its orresponding objetive vetor w(x) = (w1(x), . . . , wk(x)). We assumethat eah objetive has to be maximized.From these k objetives, the dominane relation de�ned on X is de�ned as follows: afeasible solution x dominates a feasible solution x′ if and only if wi(x) ≥ wi(x
′) for i = 1, . . . , kwith at least one strit inequality. A solution x is e�ient if and only if there is no otherfeasible solution x′ ∈ X suh that x′ dominates x, and its orresponding objetive vetor issaid to be non-dominated. Usually, we are interested in �nding a solution orresponding toeah non-dominated objetive vetor. The set of all suh solutions is alled Pareto set.For any 0 < ρ ≤ 1, a solution x is alled a ρ-approximation of a solution x′ if wi(x) ≥

ρ · wi(x
′) for i = 1, . . . , k. A set of feasible solutions X ′ is alled a ρ-approximation of the setof all e�ient solutions if, for every feasible solution x ∈ X, X ′ ontains a feasible solution x′that is a ρ-approximation of x. If suh a set exists, we say that the multi-objetive problemadmits a ρ-approximate Pareto set with |X ′| solutions.An algorithm that outputs a ρ-approximation of a set of e�ient solutions in polynomialtime in the size of the input is alled a ρ-approximation algorithm. In this ase we say thatthe multi-objetive problem admits a polynomial time ρ-approximate Pareto set.Consider in the following a single-objetive maximization problem P de�ned on a groundset U . Every element e ∈ U has a non negative weight w(e). The goal is to �nd a feasiblesolution (subset of U) with maximum weight. The weight of a solution S must satisfy thefollowing saling hypothesis: if opt(I) denotes the optimum value of I, then opt(I ′) = t·opt(I),where I ′ is the same instane as I exept that w′(e) = t · w(e). For example, the hypothesisholds when the weight of S is de�ned as the sum of its elements' weights, or mine∈S w(e), et.In the k-objetive version, alled k-objetive P , k ≥ 2, every element e ∈ U has k nonnegative weights w1(e), w2(e), . . . , wk(e) and the goal is to �nd a Pareto set within the set offeasible solutions. Given an instane I of k-objetive P , we denote by opti(I) (or simply opti)the optimum value of I restrited to objetive i, i = 1, . . . , k. Here, the objetive funtion onobjetive 1 is not neessarily of the same kind as on objetive 2, but both satisfy the salinghypothesis. For example, one objetive an be additive (sum of element's weight) and theother an be bottlenek (min or max of element's weights).3 Approximation with a given number of solutions for somebiobjetive problemsPapadimitriou and Yannakakis [28℄ proved the existene of a (1− ε)-approximation of sizepolynomial in the size of the instane and 1

ε . In this general result, the auray ε > 0 is givenexpliitly but the size of the approximation set is roughly bounded. In this setion we on-sider a general maximization problem Π and establish a su�ient ondition that guaranteesthe onstrution of a onstant approximation of the Pareto set with an expliitly given numberof solutions for Π. This result allows to onstrut a (1 − ε)-approximation of the Pareto setwith O(1ε ) solutions but not neessarily in polynomial time. Moreover, if the single objetiveproblem is polynomial time onstant approximable and the above onstrution is done in poly-3



nomial time then the biobjetive version is also polynomial time onstant approximable withone solution. Thus we obtain onstant approximations and polynomial time onstant approx-imations with one solution for Biobjetive Submodular Symmetri Funtion and alsofor Biobjetive Max Partition, Biobjetive Max Cut, Biobjetive Max Set Splittingbut also for Biobjetive Max Mathing.In the following, we are interested in biobjetive maximization problems, Biobjetive Π,whih satisfy the following property.Property 1 Given any two feasible solutions S1 and S2, and any real α satisfying 0 < α ≤ 1,if w2(S1) < αw2(S2) and w1(S2) < αw1(S1) then there exists a feasible solution S3 whihsatis�es w1(S3) > (1− α)w1(S1) and w2(S3) > (1− α)w2(S2).We say that Biobjetive Π satis�es Property 1 polynomially if S3 an be onstruted inpolynomial time.Property 1 means that if S1 is not an α-approximation of S2 and S2 is not an α-approximationof S1 for both objetive funtions w1 and w2, then there exists a feasible solution S3 whihsimultaneously approximates S1 and S2 with performane guarantee 1− α.Given a positive integer ℓ, onsider the equations x2ℓ = 1−xℓ and x2ℓ−1 = 1−xℓ. Denote by
αℓ and βℓ their respetive solutions in the interval [0, 1). Note that αℓ =

(√
5−1
2

)1/ℓ. Moreover
αℓ < βℓ+1 < αℓ+1, ℓ ≥ 1. Indeed, sine βℓ ∈ (0, 1), we have 1−βℓ

ℓ+1 < 1−βℓ+1
ℓ+1 = β2ℓ+1

ℓ+1 < β2ℓ
ℓ+1.Sine the funtion fℓ(x) = x2ℓ+xℓ− 1 is stritly inreasing when x ∈ (0, 1), for any ℓ ≥ 1 and

fℓ(βℓ+1) > 0 = fℓ(αℓ), we have βℓ+1 > αℓ.Theorem 1 If Biobjetive Π satis�es Property 1, then it admits a βℓ-approximate Pareto set(resp. an αℓ-approximate Pareto set) ontaining at most p solutions, where p is a positive oddinteger suh that p = 2ℓ− 1 (resp. a positive even integer suh that p = 2ℓ).Proof : Let S1 (resp. S2) be a solution optimal for the �rst objetive (resp. seond one).In the following, opt denotes the optimal value on the �rst objetive and also on the seondobjetive. This an be assumed without loss of generality beause a simple resaling an makethe optimal values oinide (e.g. we an always assume that opt2 6= 0, thus by multiplyingeah weight w2(e) by opt1
opt2

we are done; sine the result is only existential, the time omplexityfor the determination of opt1 and opt2 is not taken into aount). Then w1(S1) = w2(S2) =
opt. Consider �rst the ase where p is odd. Let ρ = βℓ with p = 2ℓ − 1. Subdivide thebidimensionnal value spae with oordinates {0} ∪ {ρiopt : 0 ≤ i ≤ p}. See Figure 1 for anillustration.Given i, 1 ≤ i ≤ p, the strip s(i, ·) is the part of the spae ontaining all ouples (w1, w2)satisfying ρiopt < w1 ≤ ρi−1opt and 0 ≤ w2 ≤ opt. The strip s(p + 1, ·) is the part of thespae ontaining all ouples (w1, w2) satisfying 0 ≤ w1 ≤ ρpopt and 0 ≤ w2 ≤ opt. Given
j, 1 ≤ j ≤ p, the strip s(·, j) is the part of the spae ontaining all ouples (w1, w2) satisfying
ρjopt < w2 ≤ ρj−1opt and 0 ≤ w1 ≤ opt. The strip s(·, p + 1) is the part of the spaeontaining all ouples (w1, w2) satisfying 0 ≤ w2 ≤ ρpopt and 0 ≤ w1 ≤ opt.Suppose that w2(S1) < ρpopt and w1(S2) < ρpopt. In other words S1 ∈ s(1, ·) ∩ s(·, p+ 1)and S2 ∈ s(·, 1) ∩ s(p+ 1, ·). Using Property 1 there exists a solution S3 satisfying w1(S3) >
(1− ρp)opt and w2(S3) > (1− ρp)opt. Moreover, 1− ρp = 1− β2ℓ−1

ℓ = βℓ
ℓ = ρℓ. Then S3 is a

ρ-approximation of any solution S satisfying max{w1(S), w2(S)} ≤ ρℓ−1opt.4
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tFigure 1: Illustration of Theorem 1One an onstrut a ρ-approximate Pareto set P as follows: P = {S3} at the beginningand for j = ℓ− 1 down to 1, pik a feasible solution S with maximum weight w1 in s(·, j) (if

s(·, j) ontains at least one value of a feasible solution) and set P = P ∪ {S}. Afterwards, for
i = ℓ − 1 down to 1, pik a feasible solution S with maximum weight w2 in s(i, ·) (if s(i, ·)ontains at least one value of a feasible solution) and set P = P ∪ {S}. For every strip thealgorithm selets a solution whih ρ-approximates (on both objetive funtions) any othersolution in the strip. Sine the solutions of P approximate the whole bidimensionnal spae,
P is a ρ-approximate Pareto set ontaining at most p = 2ℓ− 1 solutions.Now suppose that w2(S1) ≥ ρpopt (the ase w1(S2) ≥ ρpopt is treated similarly). Solution
S1 must be in s(·, j∗) for 1 ≤ j∗ ≤ p. Sine w1(S1) = opt, S1 is a ρ-approximation of anysolution S in s(·, p) ∪ s(·, p + 1). One an build an ρ-approximate Pareto set P as follows:
P = {S1} at the beginning and for j = j∗ − 1 down to 1, pik a feasible solution S withmaximum weight w1 in s(·, j) (if s(·, j) ontains at least one value of a feasible solution) andset P = P ∪ {S}. Sine the strips form a partition of the spae, the algorithm returns an
ρ-approximate Pareto set ontaining at most p solutions.The proof is similar in the seond ase where p is even by onsidering ρ = αℓ with p = 2ℓ.

2Corollary 1 If Biobjetive Π satis�es Property 1, then it admits a (1−ε)-approximate Paretoset ontaining O(1ε ) solutions.Proof : Aording to Theorem 1, we need at most 2ℓ solutions where (
√
5−1
2 )1/ℓ ≥ 1 − ε inorder to obtain a (1− ε)-approximate Pareto set. Thus ℓ = O(1ε ). 2Property 1 an be relaxed in the following way:Property 2 Given any two feasible solutions S1 and S2, and a real α satisfying 0 < α ≤ 1.If w2(S1) < αw2(S2) and w1(S2) < αw1(S1) then there exists a feasible solution S3 whihsatis�es w1(S3) > (c− α)w1(S1) and w2(S3) > (c− α)w2(S2), where 0 < c ≤ 1 is a onstant.We say that Biobjetive Π satis�es Property 2 polynomially if S3 an be onstruted inpolynomial time.Given a positive integer ℓ, onsider the equations x2ℓ = c− xℓ and x2ℓ−1 = c−xℓ. Denoteby γℓ and δℓ their respetive solutions in the interval [0, 1). Note that γℓ = (

√
1+4c−1

2 )1/ℓ and
γℓ < δℓ < γℓ+1, ℓ ≥ 1. 5



Theorem 2 If Biobjetive Π satis�es Property 2, then it admits a δℓ-approximate Pareto set(resp. a γℓ-approximate Pareto set) ontaining at most p solutions, where p is a positive oddinteger suh that p = 2ℓ− 1 (resp. a positive even integer suh that p = 2ℓ).Proof : The proof is similar to the proof of Theorem 1. Suppose that w2(S1) < ρpopt and
w1(S2) < ρpopt. Using Property 2 there exists a solution S3 satisfying w1(S3) > (c−ρp)opt and
w2(S3) > (c−ρp)opt. For the ase ρ = δℓ and p = 2ℓ−1, we get that c−ρp = c−δ2ℓ−1

ℓ = δℓℓ = ρℓ.For the ase ρ = γℓ and p = 2ℓ, we get that c − ρp = c − γ2ℓℓ = γℓℓ = ρℓ. Then S3 is a ρ-approximation of any solution S satisfying max{w1(S), w2(S)} ≤ ρℓ−1opt. 2The previous results of this setion onsider the onstrution, not neessarily in polynomialtime, of an approximate Pareto set with a �xed number of solutions. We give in the followingsome onditions on the onstrution in polynomial time of an approximate Pareto set withone solution.Proposition 1 If Π is polynomial time ρ-approximable and Biobjetive Π satis�es Property1 polynomially (resp. 2), then Biobjetive Π is polynomial time ρ
2 -approximable (resp. cρ

2 -approximable) with one solution.Proof : Consider �rst the ase where Biobjetive Π satis�es Property 2 polynomially. Let S1(resp. S2) be a polynomial time ρ-approximation solution for the �rst objetive (resp. seondone). In the following, opt1 (resp. opt2) denotes the optimal value on the �rst objetive (resp.seond one). If w2(S1) ≥
cw2(S2)

2 then w2(S1) ≥
cρ
2 opt2 and thus S1 is a cρ

2 -approximate Paretoset. If w1(S2) ≥ cw1(S1)
2 then w1(S2) ≥ cρ

2 opt1 and thus S2 is a cρ
2 -approximate Pareto set.Otherwise, w2(S1) <

cw2(S2)
2 and w1(S2) <

cw1(S1)
2 and sine Biobjetive Π satis�es Property2 polynomially, we an onstrut in polynomial time a feasible solution S3 whih satis�es

w1(S3) ≥
cw1(S1)

2 and w2(S3) ≥
cw2(S2)

2 , that is a cρ
2 -approximate Pareto set. The propositionalso holds in the ase where Biobjetive Π satis�es Property 1 polynomially by replaing cby 1. 2In the following, we say that Property 1 is tight if there exist S1, S2 and α suh that

w2(S1) < αw2(S2) and w1(S2) < αw1(S1) and there is no α′ < α and a feasible solution S4satisfying w1(S4) > (1− α′)w1(S1) and w2(S4) > (1− α′)w2(S2).We onsider in Setions 3.1 and 3.2 several examples of problems Π that satisfy the salinghypothesis and suh that Biobjetive Π satisfy Property 1 or Property 2.3.1 Max Submodular Symmetri FuntionA funtion f de�ned on the power set of some ground set U is alled
• submodular if f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ), for all X,Y ⊆ U ;
• symmetri if f(X) = f(U \X) for all X ⊆ U ;
• non negative if f(X) ≥ 0 for all X ⊆ U .Max Submodular Symmetri Funtion is a ombinatorial optimization problemwhih onsists of maximizing a non negative, symmetri, and submodular funtion f om-putable in polynomial time. The problem is known to generalize many NP-hard problems6



[14, 24℄. Feige, Mirrokni and Vondràk [14℄ give a (12 −o(1))-approximation algorithm forMaxSubmodular Symmetri Funtion.Lemma 1 Biobjetive Max Submodular Symmetri Funtion satis�es Property 1 poly-nomially.Proof : Let α ∈ (0, 1] and S1, S2 two solutions of an instane of Biobjetive Max Submod-ular Symmetri Funtion satisfying the inequalities: w2(S1) < αw2(S2) and w1(S2) <
αw1(S1). Consider S3 = S1∆S2 = (S1 \ S2) ∪ (S2 \ S1), where ∆ is the symmetri di�erene.We have

w1(S3) + w1(S2) ≥ w1(S1 ∪ S2) + w1(S2 \ S1)

= w1(U \ (S1 ∪ S2)) + w1(S2 \ S1)

≥ w1(U \ S1) + w1(∅)

≥ w1(S1) (1)where submodularity is used on the �rst and third lines, symmetry is used on the seondand third lines and non negativity is used on the third line. Using w1(S2) < αw1(S1) intoInequality (1), we get that w1(S3) ≥ w1(S1)−w1(S2) ≥ (1−α)w1(S1). With similar argumentswe get that w2(S3) ≥ w2(S2)− w2(S1) ≥ (1− α)w2(S2). 2Corollary 2 Biobjetive Max Submodular Symmetri Funtion admits a(i) βℓ-approximate Pareto set (resp. an αℓ-approximate Pareto set) ontaining at most psolutions, where p = 2ℓ− 1 (resp. p = 2ℓ).(ii) (1− ε)-approximate Pareto set ontaining O(1ε ) solutions.As indiated above, Corollary 2 deals with the possibility to reah some approximationbounds when the number of solutions in the Pareto set is �xed. We give in the following anapproximation bound that we an obtain in polynomial time with one solution.Corollary 3 Biobjetive Max Submodular Symmetri Funtion admits a polynomialtime (14 − o(1))-approximate Pareto set with one solution.Proof : The results follows from Lemma 1 and Proposition 1 with ρ = 1
2 − o(1). 2Now we review some speial ases ofMax Submodular Symmetri Funtion and useProposition 1 to derive the existene of an approximate Pareto set with one solution for thebiobjetive version.Speial ases of Max Submodular Symmetri FuntionMax Pos NAE onsists of a set of lauses C de�ned on a set U of boolean variables

x1, . . . , xn. The lauses are omposed of two or more positive variables and they are endowedwith a non negative weight. The Max Pos NAE problem onsists of �nding an assignmentof the variables suh that the total weight of the lauses that are satis�ed is maximum, wherea positive lause is satis�ed by an assignment if it ontains at least a true variable and at leasta false variable. It is NP-hard and 0.7499-approximable [36℄. Max Pos NAE is also knownunder the name Max Set Splitting or Max Hypergraph Cut [36℄. The speial ase in7



whih every lause ontains exatly k variables is denotedMax Pos kNAE.Max Pos 3NAEis 0.908-approximable [37℄. For k ≥ 4, Max Pos kNAE is (1 − 21−k)-approximable [3, 22℄and this is the best possible sine it is hard to approximate within a fator of 1 − 21−k + ε,for any onstant ε > 0 [20℄. Another speial ase of Max Pos NAE in whih every lauseontains exatly 2 variables orresponds to Max Cut (given a graph G = (V,E) with nonnegative weights on its edges, �nd V ′ ⊂ V suh that the total weight of the edges havingexatly one extremity in V ′ is maximum) whih is 0.878-approximable [16℄.The Max Partition problem onsists of a set J of n items 1, . . . , n where eah item
j has a non negative weight w(j). A solution S is a bipartition J1 ∪ J2 of the items. Thegoal is to �nd a solution S suh that w(S) = min{

∑
j∈J1 w(j),

∑
j∈J2 w(j)} is maximized.This NP-hard problem was also studied in the ontext of sheduling, where the number ofpartitions is not �xed, and onsists of maximizing the earliest mahine ompletion time [35℄.Max Partition is a speial ase of the Max Subset Sum problem. An input of MaxSubset Sum is formed by a set J of n items 1, . . . , n, eah item j has a non negative weight

w(j), and an integer t. The problem onsists of �nding a subset S of J whose sum w(S)is bounded by t and maximum. Max Subset Sum has an FPTAS [10℄. We an obtain aFPTAS for Max Partition using the previous FPTAS for t = ∑n
i=1w(i)/2.Observe that BiobjetiveMax Partition is not (1/2+ε)-approximable with one solution.In order to see this, onsider 3 items of weights w1(1) = 2, w2(1) = 1, w1(2) = 1, w2(2) =

2, w1(1) = 1, w2(3) = 1. The two e�ient solutions Si, i = 1, 2 onsists of plaing i in a partand the other items in the other part and have weights w1(S1) = 2, w2(S1) = 1, w1(S2) =
1, w2(S2) = 2. Any other solution is either dominated by one of these two or has weights equalto 1 on both riteria.Using Proposition 1, we obtain the following approximation ratios for the the biobjetiveversions with one solution of speial ases of Max Submodular Symmetri Funtion:Problem approx. ratioMax Pos NAE 0.374Max Pos 3NAE 0.454Max Pos kNAE, k ≥ 4 1/2− 1/2kMax Cut 0.439Max Partition 1/2− εNote that the result about Max Cut is the same as the one given in [4℄. Moreover,Biobjetive Max Cut is not (1/2 + ε)-approximable with one solution [4℄, meaning that weare lose to the best possible approximation result.3.2 Max MathingGiven a omplete graph G = (V,E) with non negative weights on the edges, the MaxMathing problem is to �nd a mathing of the graph of total weight maximum. MaxMathing is solvable in polynomial time [11℄. We study in this part the biobjetive MaxMathing problem and onsider instanes where the graph is a olletion of omplete graphsinside whih the weights satisfy the triangle inequality, sine otherwise the biobjetive MaxMathing problem is not at all approximable with one solution. In order to see this, onsidera omplete graph on 3 verties with weights (1, 0), (0, 1), (0, 0). The optimum value on eah8



objetive is 1. Nevertheless, any solution has value 0 with respet to at least one objetive.Clearly Property 1 is not satis�ed in this ase.Biobjetive Max Mathing problem is NP-hard [30℄. It remains NP-hard even oninstanes where the graph is a olletion of omplete graphs inside whih the weights satisfy thetriangle inequality. In order to see this, we redue in polynomial time Partition (proved NP-hard in [23℄) to our problem. Given an instane I of Partition with 2n non negative integers
a1, . . . , a2n suh that ∑n

i=1 ai = 2B, we onstrut a graph G, instane of our problem asfollows: G ontains 6n verties, at eah integer ai we assoiate a triangle with verties v1i , v2i , v3iand weights w1(v
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i ) = 2ai. For every edge between 2 di�erent triangles we assoiate an weight 0on both objetives. Clearly, there is a partition of the 2n integers into two sets of sum B ifand only if there is a mathing in G of weight at least 3B on eah objetive. It remains anopen problem to deide if Biobjetive Max Mathing remains NP-hard on omplete graphswhere the weights satisfy the triangle inequality.Lemma 2 Biobjetive Max Mathing satis�es Property 2 polynomially with c = 1/3.Proof : Let α ∈ (0, 1] and S1, S2 two solutions of an instane of biobjetive Max Mathingsatisfying the inequalities: w2(S1) < αw2(S2) and w1(S2) < αw1(S1). The set of edges of

S1∪S2 onstitutes several onneted omponents: yles of size 4ℓ, yles of size 4ℓ+2, ℓ ≥ 1,and paths of length ℓ ≥ 1. In order to onstrut S3 we proeed in two steps. Firstly, startingfrom S1∪S2, we onstrut in polynomial time a olletion of vertex disjoint paths P of lengthat most 2 suh that wi(Si ∩ P) ≥ wi(Si)
3 . Seondly, we onstrut S3 from P.Given suh a olletion P of paths of length at most 2, we onstrut S3 as follows: foreah path Pj = v1, v2 of length 1 from P, we add (v1, v2) to S3; for eah path Pj = v1, v2, v3of length 2 from P, we add (v1, v3) in S3. It is easy to see, sine P is vertex disjoints, that S3is a mathing. In this last ase, using triangle inequality, we have

wi(S3−i ∩ Pj) + wi(S3 ∩ Pj) ≥ wi(Si ∩ Pj) for i = 1, 2and thus making the sum over all paths Pj ∈ P, we obtain
wi(S3−i ∩ P) + wi(S3) ≥ wi(Si ∩ P) for i = 1, 2.Moreover, wi(S3−i ∩ P) < wi(S3−i) < αwi(Si). Thus

wi(S3) ≥ wi(Si ∩ Pj)− αwi(Si) ≥
wi(Si)

3
− αwi(Si) =

(
1

3
− α

)
wi(Si) for i = 1, 2.We show in the following how to onstrut the olletion P.Consider a yle of size 4ℓ, Cj = v1, v2, . . . , v4ℓ from S1 ∪ S2 and suppose S1 ∩ Cj =

{(v2i+1, v2i+2), i = 0, . . . , 2ℓ − 1}. Let S′
1 be the mathing of maximum weight w1 between

M={(v4i+1, v4i+2), i = 0, . . . , ℓ−1} and (S1∩Cj)\M . Thus w1(S
′
1) ≥

1
2w1(S1∩Cj). Similarlywe onstrut S′

2 obtaining w2(S
′
2) ≥

1
2w2(S2∩Cj). S′

1∪S′
2 onsists of paths of length two andwe add S′

1 ∪ S′
2 to P. Thus, w1(S

′
1 ∪ S′

2) ≥
1
2w1(S1 ∩ Cj) and w2(S

′
1 ∪ S′

2) ≥
1
2w2(S2 ∩ Cj).On a path of length ℓ ≥ 1 from S1 ∪ S2, we proeed as in the previous ase, obtaining thesame inequalities as before. 9



Consider a yle Cj of size 4ℓ + 2 from S1 ∪ S2. We remove from Cj the edge with thesmallest w1 from S1 ∩ Cj and the one with the smallest w2 from S2 ∩ Cj . On the path orthe two remaining paths we proeed as in the previous ase for the onstrution of S′
1 and

S′
2. S′

1 ∪ S′
2 onsists of paths of length at most two and we add S′

1 ∪ S′
2 to P. In this ase,

w1(S
′
1) ≥

1
2(1 − 1

2ℓ+1 )w1(S1 ∩ Cj) ≥
1
3w1(S1 ∩ Cj) and w2(S

′
2) ≥

1
2(1 − 1

2ℓ+1)w2(S2 ∩ Cj) ≥
1
3w2(S2 ∩ Cj).Thus, summing all these inequalities we obtain wi(Si ∩ P) ≥ wi(Si)

3 for i = 1, 2. 2Corollary 4 Biobjetive Max Mathing admits a δℓ-approximate Pareto set (resp. an γℓ-approximate Pareto set) ontaining at most p solutions, where p = 2ℓ− 1 (resp. p = 2ℓ).Corollary 5 Biobjetive Max Mathing admits a polynomial time 1
6 -approximate Paretoset with one solution.Proof : It follows from Lemma 2 and Proposition 1 onsidering ρ = 1. 24 Approximation with one solution for biobjetive problemsIn this setion, we establish a neessary and su�ient ondition for onstruting, notneessarily in polynomial time, a onstant approximation with one solution of the Paretoset for biobjetive maximization problems. Moreover, if the onstrution an be done inpolynomial time and the single-objetive problem is polynomial time onstant approximable,then the biobjetive version is polynomial time onstant approximable with one solution.Using this ondition, we establish a polynomial time 0.174-approximation with one solutionfor Biobjetive Max Bisetion.In the following, we are interested in biobjetive maximization problems, Biobjetive Π,whih satisfy the following property.Property 3 We an onstrut three solutions S1, S2, S3 suh that Si is a ρi-approximationfor problem Π on objetive i, i = 1, 2, and S3 is suh that w1(S2) + w1(S3) ≥ α · w1(S1) and

w2(S1) + w2(S3) ≥ α · w2(S2) for some �xed onstant α ≤ 1.We say that Biobjetive Π satis�es Property 3 polynomially if S1, S2, S3 an be onstrutedin polynomial time.The aim of solution S3 in Property 3 is to ompensate the potential ine�ieny of Si onriterion 3− i, i = 1, 2.Theorem 3 Biobjetive Π is onstant approximable with one solution if and only if it satis�esProperty 3. Moreover, if Biobjetive Π is polynomial time onstant approximable with onesolution then it satis�es Property 3 polynomially. More preisely, if Biobjetive Π satis�esProperty 3 polynomially suh that Si is a polynomial time ρi-approximation for problem Π onobjetive i, i = 1, 2, then Biobjetive Π admits a polynomial time αmin{ρ1,ρ2}
2 -approximationalgorithm with one solution.

10



Proof : Suppose that Biobjetive Π is ρ-approximable with one solution. Let S3 be thissolution and S1 and S2 any two solutions. Then w1(S3) ≥ ρ · opt1 ≥ ρ · w1(S1) and thus bysetting α = ρ we have w1(S2) + w1(S3) ≥ α · w1(S1). The seond inequality holds also.Suppose now that Biobjetive Π satis�es Property 3. Sine Si is a ρi-approximation forproblem Π on objetive i, i = 1, 2, we have w1(S1) ≥ ρ1 · opt1 and w2(S2) ≥ ρ2 · opt2.Sine Property 3 is satis�ed, we an onstrut S3 suh that
w1(S2) + w1(S3) ≥ α · w1(S1) (2)and
w2(S1) + w2(S3) ≥ α · w2(S2) (3)Now, we study di�erent ases:

• If w1(S2) ≥ α
2w1(S1), then we dedue that S2 is a good approximation of the Paretoset. From the hypothesis, we have w1(S2) ≥

α
2w1(S1) ≥ α · min{ρ1,ρ2}

2 opt1. On the otherhand, we also have w2(S2) ≥ ρ2 · opt2 ≥ αmin{ρ1,ρ2}
2 opt2.

• If w2(S1) ≥ α
2w2(S2), then we dedue that S1 is a good approximation of the Paretoset. From the hypothesis, we have w2(S1) ≥

α
2w2(S2) ≥ α · min{ρ1,ρ2}

2 opt2. On the otherhand, by the onstrution of S1 we also have w1(S1) ≥ ρ1 · opt1 ≥ α · min{ρ1,ρ2}
2 opt1.

• If w1(S2) ≤ α
2w1(S1) and w2(S1) ≤ α

2w2(S2), then it is S3 whih is a good approxi-mation of the Pareto set. Indeed, from inequality (2), we dedue w1(S3) ≥
α
2w1(S1) ≥

α · min{ρ1,ρ2}
2 opt1 and on the other hand, from inequality (3), we also get w2(S3) ≥

α
2w2(S2) ≥ α · min{ρ1,ρ2}

2 opt2.In any of these three ases, we obtain a α · min{ρ1,ρ2}
2 -approximation with one solution.Clearly, if S1, S2, S3 are omputable in polynomial time, then Biobjetive Π is approx-imable in polynomial time. 2Note that we an extend Theorem 3 to the ase where ρi are not onstant.The interest of Property 3 is to �nd a simple method in order to onstrut a polynomialtime onstant approximation for Biobjetive Π. This method does not allow us to obtain thebest polynomial time onstant approximation for Biobjetive Π with one solution, but only toprove the fat that the problem is polynomial time onstant approximable with one solution.In Proposition 1 we prove that if a problem Π is (resp. polynomial time) onstant ap-proximable and if Biobjetive Π satis�es (resp. polynomially) Property 1, then Biobjetive Πis (resp. polynomial time) onstant approximable with one solution, and thus Biobjetive Πsatis�es (resp. polynomially) Property 3 by Theorem 3. Thus all problems studied in Setion 3satisfy Property 3.There exist problems whih are polynomial time onstant approximable and thus satisfyProperty 3 and do not satisfy Property 1. One example is Biobjetive Max TSP, whih ispolynomial time 7

27 -approximable with one solution [26℄ and does not satisfy Property 1.Proposition 2 Biobjetive Max TSP does not satisfy Property 1.Proof : Consider the omplete graphK5 where a �xedK4 is deomposable into 2 edge-disjointHamiltonian paths P1 and P2. For every edge e ∈ E(K5), set w1(e) = 1 and w2(e) = 0 if11



e ∈ P1, w1(e) = 0 and w2(e) = 1 if e ∈ P2 and w1(e) = 0 and w2(e) = 0 if e /∈ P1∪P2. We anhek that there are four non-dominated tours Ti, i = 1, . . . , 4 with w1(T1) = 3, w2(T1) = 0,
w1(T2) = 0, w2(T2) = 3, w1(T3) = 2, w2(T3) = 1 and w1(T4) = 1, w2(T4) = 2. Consider
Si = Ti, i = 1, 2 and α = 1/2. Clearly w2(S1) < αw2(S2) and w1(S2) < αw1(S1). Moreoverthere is no solution S3 suh that w1(S3) > (1− α)w1(S1) and w2(S3) > (1− α)w2(S2). 2We onsider in the following a problem that satis�es Property 3 and for whih we are notable to prove that it satis�es Property 1.4.1 Max BisetionGiven a graph G = (V,E) with non negative weights on the edges, the Max Bisetionproblem onsists of �nding a bipartition of the vertex set V into two sets of equal size suhthat the total weight of the ut is maximum. We establish in this part a polynomial time
ρ
4 -approximation algorithm for Biobjetive Max Bisetion where ρ is any polynomial timeapproximation ratio given for Max Bisetion. Max Bisetion is NP-hard [23℄ and thebest approximation ratio known for Max Bisetion is ρ = 0.701 [17℄.Lemma 3 Biobjetive Max Bisetion on graphs with 4n verties satis�es Property 3 poly-nomially with α = 1 and ρ1 = ρ and ρ2 = ρ

2 , where ρ is any polynomial time approximationratio given for Max Bisetion.Proof : Formally, let S1 = (V1, V2) be a bisetion of I = (G,w1) given by a polynomial time
ρ-approximation algorithm for Max Bisetion. Let Gi be the subgraph of G indued by Vi,
i = 1, 2 and let (A,B) (resp., (C,D)) be a bisetion of I1 = (G1, w2) (resp., I2 = (G2, w2))given by a polynomial time ρ-approximation algorithm. We produe two other bisetions S2and S3 of G desribed by (A∪C,B∪D) and (A∪D,B∪C). W.l.o.g., assume w2(S2) ≥ w2(S3).We show in the following that S1, S2, S3 satisfy inequalities of Property 3 with α = 1.Let S∗ = (V ∗

1 , V
∗
2 ) be an optimal bisetion on (G,w2) using edge set E∗. Thus, w2(S

∗) =
w2(E

∗) = opt2. Let V ′
1 = V ∗

1 ∩ (A ∪ B) (resp., V ′′
1 = V ∗

1 ∩ (C ∪D)) and V ′
2 = V ∗

2 ∩ (A ∪ B)(resp., V ′′
2 = V ∗

2 ∩ (C ∪D)). Let E∗
1 (resp., E∗

2) be the edge set given the ut S′
1 = (V ′

1 , V
′
2)(resp., S′

2 = (V ′′
1 , V

′′
2 )). Hene, for i = 1, 2, E∗

i is the restrition of S∗ on Gi = (Vi, Ei).Finally, let E∗
3 be the remaining edges, E∗

3 = E∗ \ (E∗
1 ∪ E∗

2). Note that E∗
3 belongs to therossing edges between G1 and G2, i.e., are in the ut S1. Thus, we get:

opt2 = w2(E
∗
1) + w2(E

∗
2) + w2(E

∗
3) (4)Sine F1 = (A,B) (resp., F2 = (C,D)) is the solution given by a polynomial time ρ-approximation algorithm on I1 = (G1, w2) (resp., I2 = (G2, w2)), we obtain for i = 1, 2:

w2(Fi) ≥ ρ · opt2(Ii) ≥
ρ

2
w2(E

∗
i ) (5)Atually, onsider the ut S′

1 = (V ′
1 , V

′
2) and assume |V ′

1 | ≥ |V ′
2 |. Let U = argmin{w2(U, V

′
2) :

U ⊂ V ′
1 and |U | = n − |V ′

2 |}. Sine |V ′
1 | + |V ′

2 | = 2n, we get 2|U | ≤ |V ′
1 |. Thus, we dedue

2w2(U, V
′
2) ≤ w2(V

′
1 , V

′
2) = w2(E

∗
1). Now, observe that S̃1 = (V ′

1 \ U, V ′
2 ∪ U) is a bisetionof G1. Hene opt2(I1) ≥ w2(S̃1)) ≥ w2(E

∗
1 ) − w2(U, V

′
2) ≥ 1

2w2(E
∗
1). Obviously, the samearguments for the ut S′

2 = (V ′′
1 , V

′′
2 ) on G2 lead to a similar onlusion.On the other hand, sine w2(S2) ≥ w2(S3), we have:12



2(w2(A,D) + w2(B,C)) ≥ w2(S1) ≥ w2(E
∗
3) (6)Finally, using w2(S2) = w2(F1)+w2(F2)+w2(A,D)+w2(B,C), equality (4), (5), (6) and

ρ ≤ 1, we obtain that S2 is a ρ/2-approximation.Due to the onstrution of S1, S2 and S3, we get w1(S1) +w1(S2) +w1(S3) = 2(w1(S1) +
w1(A,B) + w1(C,D)) and w2(S1) + w2(S2) + w2(S3) = 2(w2(S2) + w2(A,C) + w2(B,D)).Thus, we dedue:

w1(S2) + w1(S3) ≥ w1(S1) (7)and
w2(S1) + w2(S3) ≥ w2(S2) (8)

2Corollary 6 Biobjetive Max Bisetion on graphs with 4n verties admits a polynomialtime 0.174-approximate Pareto set with one solution.Proof : The results follows from Theorem 3 and Lemma 3 and using the polynomial time0.701-approximation algorithm for Max Bisetion [17℄. 25 Approximation with one solution for some multiobjetive se-letion problemsIn this setion we establish a su�ient ondition for the onstrution, not neessarily inpolynomial time, of a solution with performane guarantee for k-objetive seletion problems.Moreover, if all steps of the onstrution are feasible in polynomial time, then the k-objetiveversion is polynomial time approximable with one solution. The general result is applied tothe k-objetive versions of three problems: Max Coverage (and its speial ases Max qVertex Cover and Max q Seletion), Heaviest Subgraph and Max Coloring ofinterval graphs.Consider a general single-objetive maximization problem Π de�ned as follows: a set Uof elements, a non negative weight w(e) for every element e ∈ U , a family F of subsets of U(either F is given expliitly or there is a funtion that an deide if a subset S ∈ F), a positiveinteger q, a overing funtion c suh that c(S) ⊆ U for every subset S ⊆ F . It is assumedthat c(F) = U and S ⊆ S′ ⇒ c(S) ⊆ c(S′). A feasible solution is a set S of q subsets of F .Its weight, to be maximized, is denoted by w(S) and de�ned as ∑e∈c(S)w(e).We are interested in problems Π whih satisfy the following property.Property 4 For any integer t, 1 ≤ t ≤ q, there exists a funtion ρ(t, q) ∈ (0, 1] suh that forany feasible solution S, one an always selet t subsets among the q subsets of S suh that theweight of these t subsets is at least ρ(t, q)w(S).We say that Π satis�es Property 4 polynomially if the t subsets an be found in poly-nomial time. In the k-objetive version of Π, every element e has k non negative weights
w1(e), . . . , wk(e). 13



Theorem 4 If Π satis�es Property 4, then k-objetive Π admits a ρ(⌊q/k⌋, q)-approximatePareto set with one solution. Moreover, if Π satis�es Property 4 polynomially and if Π has apolynomial time r-approximation algorithm then k-objetive Π has a rρ(⌊q/k⌋, q)-approximatePareto set with one solution omputable in polynomial time.Proof : Using S ⊆ S′ ⇒ c(S) ⊆ c(S′) and the fat that every element e has a non negativeweight wi(e) for every i, 1 ≤ i ≤ k, we dedue that S ⊆ S′ ⇒ wi(S) ≤ wi(S
′). Hene when apartial solution ontaining less than q subsets is ompleted with additional subsets, its weightannot derease.Let Si (resp. Ŝi) be an optimal (resp. r-approximate) solution with respet to wi. UsingProperty 4 one an hoose ⌊ qk ⌋ subsets in eah Si (resp. Ŝi) to build a new solution S0(resp. Ŝ0) ontaining at most q subsets. We omplete, if neessary, S0 (resp. Ŝ0) in order toobtain a solution with exatly q subsets. Thus, wi(S0) ≥ ρ(⌊q/k⌋, q)wi(Si) (resp. wi(Ŝ0) ≥

ρ(⌊q/k⌋, q)wi(Ŝi) ≥ rρ(⌊q/k⌋, q)wi(Si)) for every i, 1 ≤ i ≤ k.Clearly, if Ŝi is omputable in polynomial time and Π satis�es Property 4 polynomially,then Ŝ0 is a polynomial time approximation for k-objetive Π. 2Several examples of Π whih satisfy Property 4 are given in Setions 5.1, 5.2 and 5.3.5.1 Max Coverage and speial asesThe input ofMax Coverage is a set U of elements, a non negative weight w(e) for everyelement e ∈ U , a family F of subsets of U and a positive integer q. The goal is to selet qelements of F so that the total weight of the elements of U overed by the union of these
q elements of F is maximum. Max Coverage is NP-hard and (1 − 1/e)-approximable inpolynomial time [1℄. Clearly, Max Coverage is a speial ase of Π and it is not di�ult toprove that Max Coverage satis�es Property 4 polynomially for ρ(t, q) = t

q .Max q Vertex Cover is a speial ase of max overage. It onsists of �nding qverties from an undireted and edge-weighted graph G = (V,E), where q ≤ |V |, suh thatthe total edge weight overed by the q verties is maximized. Max q Vertex Cover isNP-hard and 3
4 -approximable [18℄.Max q Seletion is another speial ase of Max Coverage. It onsists of �nding qitems from a set of n weighted items of maximum weight. Max q Seletion is trivial but

k-objetive Max q Seletion is NP-hard even for k = 2 [7℄.Using Theorem 4, we get that k-objetive Max Coverage, Max q Vertex Cover andMax q Seletion admit a ⌊q/k⌋
q -approximate Pareto set with one solution. In addition, a

ρ ⌊q/k⌋
q -approximate Pareto set with one solution an be omputed in polynomial time where

ρ = (1− 1/e), ρ = 3/4 and ρ = 1 for Max Coverage, Max q Vertex Cover and Max qSeletion respetively.5.2 Heaviest SubgraphThe input of Heaviest Subgraph is a omplete graph G = (V,E) with a non negativeweight w(e) for eah edge e ∈ E and a positive integer q ≤ |V |. The goal is to selet qnodes of V suh that the total weight of the subgraph indued by these q nodes is maximum.The weight of a subgraph indued by V ′ ⊂ V is denoted by w(V ′) and de�ned as w(V ′) =∑
{(i,j):i∈V ′, j∈V ′, i<j}w((i, j)). Heaviest Subgraph is an NP-hard problem and it remainsNP-hard even when the weights satisfy the triangle inequality [29℄. It is also known under14



the name max edge-weighted lique problem and densest subgraph problem (when all theedge weights are equal to 1) [31, 15, 25, 21, 2℄ and its approximation was studied in [31, 15℄.Heaviest Subgraph is also a speial ase of Π. The problem satis�es Property 4 for ρ(t, p) =
t(t−1)
q(q−1) [31℄. Hene k-objetive Heaviest Subgraph admits a ⌊q/k⌋(⌊q/k⌋−1)

q(q−1) -approximate Pa-reto set with one solution.5.3 Max Coloring of interval graphsThe input of the maximum oloring problem in interval graphs (Max Coloring for short)is a set of intervals U from the real line, eah interval u ∈ U has a non negative weight w(u)and q olors. The goal is to �nd a oloring of the intervals of maximum total weight suh thattwo interseting intervals must reeive distint olors. The problem is solvable in polynomialtime [9℄. Clearly, Max Coloring is a speial ase of Π and it is not di�ult to prove that itsatis�es Property 4 polynomially for ρ(t, q) = t
q . Then, k-objetive Max Coloring admitsa ⌊q/k⌋

q -approximate Pareto set with one solution whih an be omputed in polynomial time.6 ConlusionIn this paper, we have established some su�ient onditions that allow to onlude onthe existene of onstant approximations of the Pareto set with an expliitly given numberof solutions for several biobjetive maximization problems. The results we obtained establisha polynomial time approximation when we ask for a single solution in the approximation setexept for Heaviest Subgraph. A possible future work would be to give a polynomialtime approximation for any expliitly given number of solutions. A neessary and su�ientondition is given for the onstrution of (polynomial time) onstant approximation with onesolution for biobjetive maximization problems. It would be interesting to generalize thisresult to maximization problems with more than two objetives. Another interesting futurework would be to establish lower bounds for any expliitly given number of solutions formultiobjetive maximization problems. We also established in this paper a su�ient onditionthat allows to onlude on the existene of approximations of the Pareto set with one solutionfor multiobjetive seletion problems. A possible future work would be to establish polynomialtime approximation for any expliitly given number of solutions.Our approahes deal with maximization problems and they do not seem to apply to min-imization problems. A possible explanation is that, in the maximization framework, addingelements to a partial solution rarely deteriorates it. Minimization problems rarely satisfythis property. Establishing onstant approximation of the Pareto set with a given number ofsolutions or show that this is not possible for minimization problems is an interesting openquestion.Referenes[1℄ A. Ageev and M. Sviridenko. Pipage Rounding: A New Method of Construting Al-gorithms with Proven Performane Guarantee. Journal of Combinatorial Optimization8(3):307�328, 2004.
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