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aPSL, Université Paris-Dauphine, LAMSADE UMR 7243, France.

{bazgan,florian.sikora}@lamsade.dauphine.fr
bInstitut für Optimierung und Operations Research, Universität Ulm, Germany.

morgan.chopin@uni-ulm.de
cInstitut für Softwaretechnik und Theoretische Informatik, TU Berlin, Germany.

andre.nichterlein@tu-berlin.de
dInstitut Universitaire de France

Abstract

In this paper, we consider the problem of maximizing the spread of influence through a social
network. Given a graph with a threshold value thr(v) attached to each vertex v, the spread
of influence is modeled as follows: A vertex v becomes “active” (influenced) if at least thr(v)
of its neighbors are active. In the corresponding optimization problem the objective is then
to find a fixed number k of vertices to activate such that the number of activated vertices
at the end of the propagation process is maximum. We show that this problem is strongly
inapproximable in time f(k) · nO(1), for some function f , even for very restrictive thresholds.
In the case that the threshold of each vertex equals its degree, we prove that the problem is
inapproximable in polynomial time and it becomes r(n)-approximable in time f(k) ·nO(1), for
some function f , for any strictly increasing function r. Moreover, we show that the decision
version parameterized by k is W[1]-hard but becomes fixed-parameter tractable on bounded
degree graphs.

Keywords: Parameterized Complexity, Approximation, Parameterized Approximation,
Target Set Selection, Dynamic Monopolies, Spread of Information, Viral Marketing

1. Introduction

Optimization problems that involve a diffusion process in a graph are well studied [23, 17,
10, 1, 14, 9, 4, 24, 3]. Such problems share the common property that, according to a specified
propagation rule, a chosen subset of vertices activates all or a fixed fraction of the vertices,
where initially all but the chosen vertices are inactive. Such optimization problems model the
spread of influence or information in social networks via word-of-mouth recommendations, of
diseases in populations, or of faults in distributed computing [23, 17, 14]. One representative
problem that appears in this context is the influence maximization problem introduced by
Kempe et al. [17]. Given a directed graph, the task is to choose a fixed number of vertices
such that the number of activated vertices at the end of the propagation process is maximized.

✩An extended abstract appeared in the Proceedings of the 9th Annual International Computing and Com-
binatorics Conference (COCOON’13), volume 7936 of LNCS, pages 543-554. Springer, 2013.
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The authors show that the problem is polynomial-time ( e
e−1 + ε)-approximable for any ε > 0

under some stochastic propagation models, but NP-hard to approximate within a ratio of
n1−ε for any ε > 0 for general propagation rules.

In this paper, we use the following deterministic propagation model. We are given an
undirected graph, a threshold value thr(v) associated to each vertex v, and the following
propagation rule: at each round, every non-activated vertex v with at least thr(v) many
activated neighbors gets activated. The propagation process proceeds in several rounds and
stops when no further vertex becomes active. Given this model, finding and activating a
minimum-size vertex subset such that all or a fixed fraction of the vertices become active is
known as the minimum target set selection (MinTSS) problem introduced by Chen [10]. It
has been shown NP-hard even for bipartite graphs of bounded degree when all thresholds are
at most two [10]. Moreover, the problem was surprisingly shown to be hard to approximate

within a ratio O(2log
1−ε n) for any ε > 0, even for constant degree graphs with thresholds

at most two and for general graphs when the threshold of each vertex is half its degree
(called majority thresholds) [10]. If the threshold of each vertex equals its degree (unanimity
thresholds), then the problem is polynomial-time equivalent to the vertex cover problem [10]
and, thus, admits a 2-approximation and is hard to approximate with a ratio better than
1.36 [12]. Concerning the parameterized complexity, the problem is shown to be W[2]-hard
with respect to (w.r.t.) the solution size, even on bipartite graphs of diameter four with
majority thresholds or thresholds at most two [21]. Furthermore, it is W[1]-hard w.r.t. each
of the parameters “treewidth”, “cluster vertex deletion number”, and “pathwidth” [4, 11].
On the positive side, the problem becomes fixed-parameter tractable w.r.t. each of the single
parameters “vertex cover number”, “feedback edge set size”, and “bandwidth” [21, 11]. If
the input graph is complete, or has a bounded treewidth and bounded thresholds then the
problem is polynomial-time solvable [21, 4].

Here, we study the maximization version of the problem MinTSS, called maximum k-
influence (MaxkInf) where the objective is to find k vertices to activate such that the total
number of activated vertices at the end of the propagation process is maximized. Since
both optimization problems have the same decision version, the parameterized as well as NP-
hardness results directly transfer from MinTSS to MaxkInf. We show that also MaxkInf is
hard to approximate and, confronted with the computational hardness, we study the param-
eterized approximability of MaxkInf.

Our results. Concerning the approximability of the problem, there are two possibilities of
measuring the value of a solution: counting the vertices activated by the propagation process
including or excluding the initially chosen vertices (denoted by Max Closed k-Influence
and Max Open k-Influence, respectively). Observe that whether or not counting the
chosen vertices might change the approximation factor. In this paper, we consider both cases
and our approximability results are summarized in Table 1.

While MinTSS is both constant-approximable in polynomial time and fixed-parameter
tractable for the unanimity case, this does not hold anymore for our problem. Indeed, we
prove that, in this case, Max Closed k-Influence (resp. Max Open k-Influence)
is strongly inapproximable in polynomial-time and the decision version, denoted by (k, ℓ)-
Influence, is W[1]-hard w.r.t. the combined parameter (k, ℓ) where ℓ denotes the number
of vertices activated during the propagation process. However, we show that Max Closed

k-Influence (resp. Max Open k-Influence) becomes approximable if we are allowed to
use a running time of the form f(k) · nO(1) (fpt-time w.r.t. k) and (k, ℓ)-Influence gets
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Max Open k-Influence Max Closed k-Influence

Thresholds Bounds poly-time fpt-time poly-time fpt-time

General
Upper n n n n
Lower n1−ε,∀ε > 0 n1−ε,∀ε > 0 n1−ε,∀ε > 0 n1−ε,∀ε > 0

Constant
Upper n n n n
Lower n1−ε,∀ε > 0 n1−ε,∀ε > 0 n1−ε,∀ε > 0 n1−ε,∀ε > 0 [Th. 4]

Majority
Upper n n n n
Lower n1−ε,∀ε > 0 n1−ε,∀ε > 0 n1−ε,∀ε > 0 n1−ε,∀ε > 0[Th. 3]

Unanimity
Upper 2k [Th. 8] r(n),∀r [Th. 9] 2k r(n),∀r
Lower n1−ε,∀ε > 0 [Th. 7] ? 1 + ε [Th. 13] ?

Table 1: Table of the approximation results for Max Open k-Influence and Max Closed k-Influence. In
this table, fpt-time means a running time of the form f(k) · nO(1). A ? symbol represents an open question.

fixed-parameter tractable w.r.t combined parameter (k,∆), where ∆ is the maximum degree
of the input graph.

Our paper is organized as follows. In Section 2, after introducing some preliminaries, we
establish some basic lemmas. In Section 3 we study Max Open k-Influence and Max

Closed k-Influence with majority thresholds and thresholds at most two. In Section 4
we study the case of unanimity thresholds in general graphs and in bounded degree graphs.
Conclusions are provided in Section 5.

2. Preliminaries & Basic Observations

In this section, we provide basic backgrounds and notation used throughout this paper,
give the statements of the studied problems, and establish some lemmas.

Graph terminology. Let G = (V,E) be an undirected graph. For a subset S ⊆ V , G[S] is the
subgraph induced by S. The open neighborhood of a vertex v ∈ V , denoted by N(v), is the set
of all neighbors of v. The closed neighborhood of a vertex v, denotedN [v], is the setN(v)∪{v}.
Furthermore, for a vertex set V ′ ⊂ V we set N(V ′) =

⋃

v∈V ′ N(v) and N [V ′] =
⋃

v∈V ′ N [v].
The set Nk[v], called the k-neighborhood of v, denotes the set of vertices which are at distance
at most k from v (thus N1[v] = N [v]). The degree of a vertex v is denoted by degG(v) and the
maximum degree of the graph G is denoted by ∆G. We skip the subscript if G is clear from
the context. Two vertices are twins if they have the same neighborhood. They are called true
twins if they are moreover neighbors, false twins otherwise.

Parameterized complexity. A parameterized problem (I, k) is said fixed-parameter tractable
(or in the class FPT) w.r.t. parameter k if it can be solved in f(k) · |I|c time, where f is any
computable function and c is a constant (one can see [13, 22]). The parameterized complexity
hierarchy is composed of the classes FPT ⊆W[1] ⊆W[2] ⊆ · · · ⊆W[P] (for a formal definition
of these classes see for instance [15]). A W[1]-hard problem is not fixed-parameter tractable
(unless FPT = W[1]) and one can prove W[1]-hardness by means of a parameterized reduction
from a W[1]-hard problem. A parameterized reduction a mapping of an instance (I, k) of a
problem A1 in g(k) · |I|O(1) time (for any computable g) into an instance (I ′, k′) for A2 such
that (I, k) ∈ A1 ⇔ (I ′, k′) ∈ A2 and k′ ≤ h(k) for some h.
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Approximation. Given an optimization problem Q and an instance I of this problem, we
denote by |I| the size of I, by optQ(I) the optimum value of I and by val(I, S) the value of a
feasible solution S of I. For any feasible solution S of I, we assume that |S| is polynomially
bounded in |I| i.e. |S| ≤ |I|O(1).

The performance ratio of S (or approximation factor) is r(I, S) = max
{

val(I,S)
optQ(I) ,

optQ(I)
val(I,S)

}

.

The error of S, ε(I, S), is defined by ε(I, S) = r(I, S)− 1. For a function f (resp. a constant
c > 1), an algorithm is a f(n)-approximation (resp. a c-approximation) if for any instance I
of Q it returns a solution S such that r(I, S) ≤ f(n) (resp. r(I, S) ≤ c).

An optimization problem is polynomial-time constant approximable (resp. has a
polynomial-time approximation scheme) if, for some constant c > 1 (resp. every constant
ε > 0), there exists a polynomial-time c-approximation (resp. (1 + ε)-approximation) for it.

An optimization problem is f(n)-approximable in fpt-time w.r.t. parameter k if there
exists an f(n)-approximation running in time g(k) · |I|O(1), where k is a given positive integer
called parameter and g is any computable function [20].

The notion of an E-reduction (error-preserving reduction) was introduced by Khanna et
al. [18]. A problem Q is called E-reducible to a problem Q′, if there exist polynomial-time
computable functions f , g and a constant β such that

• f maps an instance I of Q to an instance I ′ of Q′ such that opt(I) and opt(I ′) are
related by a polynomial factor, i.e. there exists a polynomial p(n) such that opt(I ′) ≤
p(|I|)opt(I),

• g maps solutions S′ of I ′ to solutions S of I such that ε(I, S) ≤ βε(I ′, S′).

An important property of an E-reduction is that it can be applied uniformly to all levels
of approximability; that is, if Q is E-reducible to Q′ and Q′ belongs to C then Q belongs
to C as well, where C is a class of optimization problems with any kind of approximation
guarantee.

It is worth noting that the investigated problems in this paper are in fact cardinality
constrained problems. Recall that a problem of this kind asks for finding a solution of k
elements that optimizes an objective function [7]. For such problems a natural choice for the
parameter is the cardinality k of the solutions.

Problems definition. Let G = (V,E) be an undirected graph and let thr: V → N be a

threshold function. In this paper, we consider majority thresholds i.e. thr(v) = ⌈deg(v)2 ⌉ for
each v ∈ V , unanimity thresholds i.e. thr(v) = deg(v) for each v ∈ V , and constant thresholds
i.e. thr(v) ≤ c for each v ∈ V and some constant c > 1. Initially, no vertex is active and
we select a subset S ⊆ V of k vertices. The propagation unfolds in discrete steps. At time
step 0, only the vertices in S are activated. At time step t+ 1, a vertex v is activated if and
only if the number of its activated neighbors at time t is at least thr(v). We apply the rule
iteratively until no more activations are possible. Given that S is the set of initially activated
vertices σ[S] is the set of all activated vertices at the end of the propagation process and σ(S)
is the set σ[S] \ S. The optimization problems we consider are then defined as follows.

Max Open k-Influence
Input: A graph G = (V,E), a threshold function thr : V → N, and an integer k.
Output: A subset S ⊆ V , |S| ≤ k such that |σ(S)| is maximum.
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Similarly, the Max Closed k-Influence problem asks for a set S such that |σ[S]| is
maximum. The corresponding decision version (k, ℓ)-Influence is also studied. Notice that
in this case considering either σ[S] or σ(S) is equivalent.

(k, ℓ)-Influence
Input: A graph G = (V,E), a threshold function thr : V → N, and two integers k and ℓ.
Output: Is there a subset S ⊆ V , |S| ≤ k such that |σ(S)| ≥ ℓ ?

Basic results. In the following, we state and prove some lemmas that will be used later in the
paper.

Lemma 1. Let r be any computable function. If Max Open k-Influence is r(n)-
approximable then Max Closed k-Influence is also r(n)-approximable where n is the
instance size.

Proof. Let A be an r(n)-approximation algorithm for Max Open k-Influence. Let I be an
instance of Max Closed k-Influence and opt(I) its optimum value. When we apply A on

I it returns a solution S such that |σ(S)| ≥ opt(I)−k
r(n) and then |σ[S]| = k+ |σ(S)| ≥ opt(I)

r(n) .

Lemma 2. If an optimization problem is r1(k)-approximable in fpt-time w.r.t. parame-
ter k for some strictly increasing function r1 depending solely on k then it is also r2(n)-
approximable in fpt-time w.r.t. parameter k for any strictly increasing function r2 depending
solely on the instance size n.

Proof. Let r−1
1 and r−1

2 be the inverse functions of r1 and r2, respectively. Let I be an
instance of a maximization problem with size n = |I| (the proof is analogous for minimization
problems). We distinguish the following two cases.

Case 1: k ≤ r−1
1 (r2(n)). In this case, we apply the r1(k)-approximation algorithm and

directly get a solution S such that r(I, S) ≤ r1(k) ≤ r1(r
−1
1 (r2(n))) = r2(n) in time f(k)·nO(1)

for some computable function f .
Case 2: k > r−1

1 (r2(n)). We then have n < r−1
2 (r1(k)) and thus we can solve the

instance I by exhaustively checking every solution S of I and return the one with the largest
val(I, S) value. Since we have |S| ≤ nO(1) (see the discussion above), we know that there

are at most 2n
O(1)
≤ 2r

−1
2 (r1(k))O(1)

different solutions assuming, without loss of generality,
that the solutions are encoded in binary. It follows that the running time in this case is
2r

−1
2 (r1(k))O(1)

= f(k) for some computable function f . This completes the proof.

As an illustration of this lemma, if a problem admits a polynomial-time k-approximation
then we can approximate this problem within any arbitrarily small ratio depending on the
instance size in fpt-time e.g. log(log(. . . log(n)).

It is worth pointing out that a problem which is proven inapproximable in fpt-time obvi-
ously implies that it is not approximable in polynomial time with the same ratio. Therefore,
fpt-time inapproximability can be considered as a “stronger” result than polynomial-time
inapproximability.

3. Parameterized inapproximability

In this section, we consider the parameterized approximability of both Max Closed k-
Influence and Max Open k-Influence. We show that these problems are W[2]-hard to
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Figure 1: Sample construction of the bipartite graph G′ from a graph G of Dominating Set. All vertices vti ,
1 ≤ i ≤ 5 have thresholds degG′(vti) while all vertices vbi , 1 ≤ i ≤ 5 have thresholds 1.

approximate within n1−ε for any ε > 0 for majority thresholds and thresholds at most two. To
do so, we use the following polynomial-time reduction from Dominating Set as the starting
point. The Dominating Set problem asks, given an undirected graph G = (V,E) and an
integer k, whether there is a vertex subset S ⊆ V , |S| ≤ k, such that N [S] = V .

Basic Reduction. Given an instance I = (G = (V,E), k) of Dominating Set we construct
the instance I ′ = (G′ = (V ′, E′), thr, k, |V ′|) of (k, |V ′|)-Influence as follows. For each
vertex v ∈ V , we add two vertices vt and vb (t and b respectively standing for top and
bottom) to V ′ as well as the edge vtvb to E′. For each edge uv ∈ E, add the edges utvb

and ubvt to E′. Finally, set thr(vt) = degG′(vt) and thr(vb) = 1 for every top vertex vt and
every bottom vertex vb, respectively. This completes the reduction (see Figure 1).

We claim that I is a yes-instance of Dominating Set if and only if I ′ is a yes-instance of
(k, |V ′|)-Influence. For the forward direction, suppose there exists a dominating set S ⊆ V
in G of size k. Consider the solution S′ ⊆ V ′ containing the corresponding top vertices.
After the first step, all bottom vertices are activated since they have thresholds one and S is
a dominating set. Finally, after the second step, all top vertices are activated too. For the
reverse direction, suppose there is a subset S′ ⊆ V ′ of size k in G′ such that σ[S′] = V ′. We
can assume without loss of generality that S′ contains no bottom vertex. Since all bottom
vertices are activated we have that {vi : v

t
i ∈ S′} is a dominating set in G.

Inapproximability results. We are now ready to prove the main results of this section.

Theorem 3. For any ε > 0, Max Closed k-Influence and Max Open k-Influence
with majority thresholds cannot be approximated within n1−ε in fpt-time w.r.t. parameter k
even on bipartite graphs, unless FPT = W[2].

Proof. By Lemma 1, it suffices to show the result forMax Closed k-Influence. We provide
a polynomial-time reduction from Dominating Set to Max Closed (k + 1)-Influence
with majority thresholds. In this reduction, we will make use of the q-edge gadget, for some
integer q. An q-edge between two vertices u and v consists of q vertices of threshold one
adjacent to both u and v.

Given an instance I = (G = (V,E), k) of Dominating Set with n = |V |, m = |E|, we
define an instance I ′ of Max Closed (k+1)-Influence. We start with the basic reduction
and modify G′ and the function thr as follows. Replace every edge vtvb by an (k + 2)-edge
between vt and vb. Moreover, for a given constant β = 8

ε−5, let L = ⌈nβ⌉ and we add nLmore
vertices x11, . . . , x

1
n, . . . , x

L
1 , . . . , x

L
n . For i = 1, . . . , n, vertex x1i is adjacent to all the bottom

vertices. Moreover, for any j = 2, . . . , L, each xji is adjacent to xj−1
k , for any i, k ∈ {1, . . . , n}.
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Figure 2: The graph G′ (right) obtained from G (left) after carrying out the modifications of Theorem 3. A

thick edge represents an q-edge for some q > 0. A “star” vertex v represents a vertex adjacent to
deg

G′ (v)

2

pending-vertices.

We also add a vertex w and an n+(k+2)(degG(v)−1)-edge between w and vb, for any bottom
vertex vb. For i = 1, . . . , n, vertex x1i is adjacent to w. For i = 1, . . . , n add n pending-vertices
(i.e. degree one vertices) adjacent to xLi . For any vertex vt add (degG(v)+1)(k+2) pending-
vertices adjacent to vt. Add also n + n2 + (k + 2)(2m − n) pending-vertices adjacent to w.
All vertices of the graph G′ have the majority thresholds (see also Figure 2).

We claim that if I is a yes-instance then opt(I ′) ≥ nL ≥ nβ+1; otherwise opt(I ′) < n4.
Let n′ = |V ′|, notice that we have n′ ≤ n4 + nL.

Suppose that there exists a dominating set S ⊆ V in G of size at most k. Consider the
solution S′ for I ′ containing the corresponding top vertices and vertex w. After the first round,
all vertices belonging to the edge gadgets which top vertex is in S′ are activated. Since S is
a dominating set in G, after the second round, all the bottom vertices are activated. Indeed
degG′(vb) = 2(n + (k + 2) degG(v)) and after the first round vb has at least k + 2 neighbors
activated belonging to an (k+2)-edge between vb and some ut ∈ V and n+(k+2)(degG(v)−1)
neighbors activated belonging to an n+ (k + 2)(degG(v) − 1)-edge between vb and w. Thus,
every vertex x1i gets active after the third round, and generally after the jth round, j =

4, . . . , L + 2 the vertices xj−2
i are activated, and at the (L+ 3)th round all pending-vertices

adjacent to xLi are activated. Therefore, the size of an optimal solution is at least nL ≥ nβ+1.
Suppose that there is no dominating set in G of size k. Without loss of generality, we

may assume that no pending-vertices are in a solution of I ′ since they all have threshold one.
If w does not take part of a solution in I ′, then no vertex x1i could be activated and in this
case opt(I ′) is less than n′ − nL ≤ n4. Consider now the solutions of I ′ of size k + 1 that
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contain w. Observe that if a top-vertex vt gets active through bottom-vertices then vt can not
activate any other bottom-vertices. Indeed, as a contradiction, suppose that vt is adjacent to
a non-activated bottom-vertex. It follows that vt could not have been activated because of its
threshold and that no pending-vertices are part of the solution, a contradiction. Notice also
that it is not possible to activate a bottom vertex by selecting some x1i vertices since of their
threshold. Moreover, since there is no dominating set of size k, any subset of k top vertices
cannot activate all bottom vertices, therefore no vertex xki , i = 1, . . . , n, k = 1, . . . , L can be
activated. Hence, less than n′−nL vertices can be activated in G′ and the size of an optimal
solution is at most n4.

Assume now that there is an fpt-time n1−ε-approximation algorithm A for Max Closed

(k+1)-Influence with majority threshold. Thus, if I is a yes-instance, the algorithm gives

a solution of value A(I ′) ≥ nβ+1

(n′)1−ε > nβ+1

n(1−ε)(β+5) = n4 since n′ ≤ n4 + nL < n5L. If I is

a no-instance, the solution value is A(I ′) < n4. Hence, the approximation algorithm A can
distinguish in fpt-time between yes-instances and no-instances forDominating Set implying
that FPT = W[2] since this last problem is W[2]-hard [13].

Theorem 4. For any ε ≥ 0, Max Closed k-Influence and Max Open k-Influence with
thresholds at most two cannot be approximated within n1−ε in fpt-time w.r.t. parameter k even
on bipartite graphs, unless FPT = W[2].

Proof. By Lemma 1, it suffices to prove the result for Max Closed k-Influence. We
construct a polynomial-time reduction fromDominating Set toMax Closed k-Influence
with thresholds at most two. In this reduction, we will make use of the directed edge gadget.
A directed edge from a vertex u to another vertex v consists of a 4-cycle {a, b, c, d} such that a
and u as well as c and v are adjacent. Moreover thr(a) = thr(b) = thr(d) = 1 and thr(c) = 2.
The idea is that the vertices in the directed edge gadget become active if u is activated but
not if v is activated. Hence, the activation process may go from u to v via the gadget but
not in the reverse direction. In the rest of the proof, we may assume that no vertices from
{a, b, c, d} are part of a solution of Max Closed k-Influence. Indeed, it is always as good
to take the vertex u instead. We will also make use of a directed tree with leaves x1, . . . , xn
and root r defined as follows: introduce n − 1 new vertices y2, . . . , yn and insert a directed
edge from x1 to y2, from x2 to y2, from yi to yi+1 for i = 2, . . . , n − 1, from xi to yi for
i = 3, . . . , n, and from yn to r. Moreover thr(yi) = 2, i = 2, . . . , n and thr(r) = 1. The idea is
that the vertices in the directed tree become active if all vertices x1, . . . , xn are activated but
not if r is activated. So, we may assume that no vertex from y2, . . . , yn is part of a solution
of Max Closed k-Influence.

Given an instance I = (G = (V,E), k) of Dominating Set with n = |V |, we define an
instance I ′ of Max Closed k-Influence. We start with the basic reduction and modify
G′ and the function thr as follows. Set the thresholds of top-vertices to two. Replace every
edge between a top vertex vt and a bottom vertex vb by a directed edge from vt to vb. For
j = 1, . . . , nβ, where β = 4

ε − 3, add vertices pj1, . . . , p
j
n and a directed tree between leaves vbi ,

i = 1, . . . , n and root p1ℓ , for ℓ = 1, . . . , n. Moreover for j = 1, . . . , nβ − 1 add directed trees

between leaves pj1, . . . , p
j
n and root pj+1

ℓ , for ℓ = 1, . . . , n. This completes the construction
(see Figure 3). Let n′ = |V ′|, notice that we have n′ = 2n + n2nβ + 4(2n − 1)nβ+1 < nβ+3.

We claim that if I is a yes-instance then opt(I ′) > nβ+2; otherwise opt(I ′) < n3.
Suppose that there exists a dominating set S ⊆ V in G of size at most k. Consider the

solution S′ for I ′ containing the corresponding top vertices. Since S is a dominating set in
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Figure 3: The graph G′ (right) obtained from G (left) after carrying out the modifications of Theorem 4. A
black arrow from u to v represents a directed edge gadget from u to v. A gray arrow from u to v indicates a
directed tree where u is one of the leafs and v is the root.

G, after the fourth round, all the bottom vertices are activated. It follows that at the end of
the activation process all the vertices of the graph G′ are activated except the top vertices
outside S′ and the vertices of some directed edges of the basic gadget. The optimum solution
is opt(I ′) > n′ − 5n2 > nβ+2.

Suppose that there is no dominating set in G of size k. Consider a solution S′ for I ′ of
size k. Without loss of generality, we may assume that no pji vertices or bottom vertices
are contained in S′ since they all have threshold one. For the reason previously mentioned,
we know that no vertices from the directed edge gadgets and no vertices from the directed
trees are in S′. It follows that S′ only contains top-vertices. Since there is no dominating
set of size k in G then at least one bottom-vertex is not activated. Moreover, because of the
directed edges the activated bottom-vertices cannot activate new top-vertices. Thus at least
one vertex of each directed tree with roots p1i , i = 1, . . . , n cannot be activated implying that

no pji vertices can be activated. This leads to a solution of size at most 5n2 < n3.
Assume now that there is an fpt-time n1−ε-approximation algorithm A for Max Closed

k-Influence with threshold at most two. Thus, if I is a yes-instance, the algorithm gives a
solution of value A(I ′) ≥ nβ+2

(n′)1−ε > nβ+2

n(1−ε)(β+3) > n3 since n′ < nβ+3. If I is a no-instance, the

solution value is A(I ′) < n3. Hence, the approximation algorithm A can distinguish in fpt-
time between yes-instances and no-instances for Dominating Set implying that FPT = W[2]
since this last problem is W[2]-hard [13].

Using Lemma 2, Theorem 3, and Theorem 4 we can deduce the following corollary.
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Figure 4: Illustration of the reduction from an instance (G, k) of Clique to an instance (G′, k, ℓ) of (k, ℓ)-
Influence, where k = 2 and ℓ = 3.

Corollary 5. For any strictly increasing function r, Max Closed k-Influence and Max

Open k-Influence with thresholds at most two or majority thresholds cannot be approxi-
mated within r(k) in fpt-time w.r.t. parameter k unless FPT = W[2].

4. Unanimity thresholds

In the previous section, we proved that the problem is parameterized inapproximable
even for constant and majority thresholds. In this section, we show that assuming unanimity
thresholds leads to more positive results. More precisely, we give a parameterized approxi-
mation algorithm on general graphs, and show that the problem is fixed-parameter tractable
w.r.t. k for the class of graphs of bounded maximum degree. The key observation towards
these results is that there is just one activation round.

4.1. General graphs

We first show that, in the unanimity case, (k, ℓ)-Influence is W[1]-hard w.r.t. parameter
k + ℓ and Max Open k-Influence is not approximable within n1−ε for any ε > 0 in
polynomial time, unless NP = ZPP. However, if we are allowed to use fpt-time then Max

Open k-Influence with unanimity is r(n)-approximable in fpt-time w.r.t. parameter k for
any strictly increasing function r.

Theorem 6. (k, ℓ)-Influence with unanimity thresholds is W[1]-hard w.r.t. the combined
parameter (k, ℓ) even for bipartite graphs.

Proof. We provide a parameterized reduction from the W[1]-hard Clique problem [13] to
(k, ℓ)-Influence. Given an instance (G = (V,E), k) of Clique, we construct an instance
(G′ = (V ′, E′), k, ℓ) of (k, ℓ)-Influence as follows. For each vertex v ∈ V add a copy v′ to
V ′. For each edge uv ∈ E, add k + 1 edge-vertices e1uv, . . . , e

k+1
uv adjacent to both u′ and v′.

Set ℓ = (k + 1)
(k
2

)

and thr(u) = degG′(u) for all u ∈ V ′ (see also Figure 4).
We claim that there is a clique of size k in G if and only if there exists a subset S ⊆ V ′

of size k such that |σ(S)| ≥ ℓ.
“⇒”: Assume that there is a clique C ⊆ V of size k in G. One can easily verify that the

set S = {v′ ∈ V ′ : v ∈ C} activates |σ(S)| ≥ (k + 1)
(k
2

)

= ℓ edge-vertices in G′ since C is
clique.

“⇐”: Suppose that there exists a subset S ⊆ V ′ of size k such that |σ(S)| ≥ ℓ. We may
assume without loss of generality that no edge-vertices belong to S. Indeed, each edge-vertex
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is adjacent to only vertices with threshold at least k + 1. Thus choosing some edge-vertices
to S cannot activate any new vertices in G′. Since the solution S activates at least (k+1)

(k
2

)

edge-vertices, this implies that S is a clique in G.

Theorem 7. For any ε > 0, Max Open k-Influence with unanimity thresholds cannot be
approximated within n1−ε in polynomial time, unless NP = ZPP.

Proof. We will show how to transform any approximation algorithm for Max Open k-
Influence into another one with the same ratio for Max Independent Set. Consider
the instance Ik of Max Open k-Influence consisting of a graph G = (V,E), an integer k
and unanimity threshold. One can note and easily check that the following holds. Given a
solution S ⊆ V of Ik, σ(S) is obtained in only one step of the diffusion process and is an
independent set. Therefore there exists an integer k∗ ∈ [1, n] such that σ(OPT (Ik∗)) is the
maximum independent set in G, where OPT (Ik∗) is the optimal solution of Ik∗ .

Suppose that Max Open k-Influence has an f(n)-approximation algorithm A, we then

have |σ(A(Ik∗))| ≥
|σ(OPT (Ik∗))|

f(n) , where A(Ik∗) is a solution given by A for the instance Ik∗ .

It follows from the previous observation that σ(A(Ik∗)) is an independent set in G and an
f(n)-approximate solution.

Now, it suffices to apply the approximation algorithm A for each k = 1, . . . , n and return
the approximate solution Smax that has the largest value. Given this solution, we have
|σ(Smax)| ≥ |σ(A(Ik∗))|. Hence, we get a polynomial-time f(n)-approximation algorithm for
Max Independent Set problem. Since Max Independent Set cannot be approximated
within n1−ε for any ε > 0 unless NP = ZPP [16], the result follows.

In what follows, we provide an fpt-time r(n)-approximation algorithm w.r.t. parameter k
for any strictly increasing function r. As a first step toward this goal, we need the following
result.

Theorem 8. Max Open k-Influence and Max Closed k-Influence with unanimity
thresholds are 2k-approximable in polynomial time.

Proof. By Lemma 1, it suffices to show the result for Max Open k-Influence. Consider
an instance I = (G = (V,E), k) of Max Open k-Influence with unanimity thresholds.
The polynomial-time algorithm consists in the following two steps: (i) Find F , the largest
false-twins set such that deg(v) ≤ k, ∀v ∈ F , and (ii) Return N(F ). Formally, a false-twins
set is a set X ⊆ V of vertices where every pair u, v ∈ X are false twins.

The first step can be done for example by searching for the largest set of identical lines
with at most k ones in the adjacency matrix of G. Since F is a false-twins set with vertices
of degree at most k, the size of the neighborhood of F is also bounded by k. Consider the
activation of the set N(F ). After one round, this will activate |σ(N(F ))| ≥ |F | vertices, since
all the neighborhood of the vertices in F are activated.

Let S ⊆ V be any set of vertices of size at most k. Observe that there are at most 2k

different false-twins sets in N(S) (one for each subset of S). Therefore, any optimal solution
for I could activate at most 2k · |F | vertices, providing the claimed approximation ratio.

Using Lemma 2 and Theorem 8 we directly get the following.

Corollary 9. For any strictly increasing function r, Max Open k-Influence and Max

Closed k-Influence with unanimity thresholds are r(n)-approximable in fpt-time w.r.t.
parameter k.
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For example, Max Open k-Influence is log(n)-approximable in time O∗(2k2
k

), where
the O∗ notation suppresses polynomial factors.

Finding dense subgraphs. In the following we show that Max Open k-Influence with una-
nimity thresholds is at least as difficult to approximate as the Densest k-Subgraph prob-
lem, that consists of finding in a graph a subset of vertices of cardinality k that induces a
maximum number of edges. In particular, any positive approximation result for Max Open

k-Influence with unanimity would directly transfers to Densest k-Subgraph. This last
problem has no polynomial-time approximation scheme unless NP has no subexponential-time
algorithms [19] and is O(n

1
4
+ǫ)-approximable in time nO( 1

ǫ
) where n is the size of the input

graph [5].

Theorem 10. For any strictly increasing function r, if Max Open k-Influence with
unanimity thresholds is r(n)-approximable in fpt-time w.r.t. parameter k then Densest k-
Subgraph is r(n)-approximable in fpt-time w.r.t. parameter k.

Proof. We give an E-reduction from Densest k-Subgraph to Max Open k-Influence.
Consider an instance I of Densest k-Subgraph formed by a graph G = (V,E) and we
construct an instance I ′ of Max Open k-Influence with unanimity thresholds consisting
of graph G′ = (V ′, E′) as follows: for each vertex v ∈ V add a copy v′ to V ′; for each edge
uv ∈ E add an edge-vertex euv to V ′; moreover add k+1 vertices x1, . . . , xk+1. For any edge
uv ∈ E add edges u′euv, euvv

′ to E′. Furthermore, add an edge between xi and v′ for any
1 ≤ i ≤ k + 1 and any v′ ∈ V ′. Therefore, every vertex xi has degree |V |, every vertex v′ has
degree degG(v) + k + 1 and every edge-vertex e has degree 2.

Let S ⊆ V , |S| = k be an optimum solution for I that is opt(I) is the number of edges
induced by S. The set S′ = {v′ : v ∈ S} is such that |σ(S′)| = opt(I) since no x vertex will
be activated. Thus opt(I ′) ≥ opt(I).

Given any solution S′ ⊆ V ′ of size k, we can consider that S′ contains only vertices of type
v′ such that v ∈ V . Indeed, observe that no v′ and xi vertices are activated by propagation
because their threshold is greater than k and there is only one step of propagation. So
only edge-vertices can be activated by propagation. Therefore, it is more interesting to
consider only solutions containing v′ vertices. Thus the set S = {v : v′ ∈ S′} has value
val(S) = val(S′). Moreover if S′ is optimal, then opt(I) ≥ opt(I ′) and thus opt(I) = opt(I ′).
Therefore, we have ε(I, S) = ε(I ′, S′).

Using Theorem 10 and Corollary 9, we have the following corollary, independently estab-
lished in [6].

Corollary 11. For any strictly increasing function r, Densest k-Subgraph is r(n)-
approximable in fpt-time w.r.t. parameter k.

4.2. Bounded degree graphs and regular graphs

While Max Open k-Influence and Max Closed k-Influence are not at all approx-
imable in polynomial time on general graphs, we show in the following that they are con-
stant approximable in polynomial time on bounded degree graphs. Moreover, Max Closed

k-Influence and then Max Open k-Influence have no polynomial-time approximation
scheme even on 3-regular graphs if P 6= NP. From the parameterized complexity point of
view, we show that (k, ℓ)-Influence becomes fixed-parameter tractable w.r.t. parameter k
on bounded degree graphs.
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Lemma 12. Max Open k-Influence and Max Closed k-Influence with unanimity
thresholds on bounded degree graphs are constant approximable in polynomial time.

Proof. By Lemma 1, it suffices to show the result for Max Open k-Influence. Indeed on
graphs of degree bounded by ∆, the optimum is bounded by k ·∆ and we can construct in
polynomial time a solution S of value at least ⌊ k∆⌋ by considering iteratively vertices with
disjoint neighborhoods and putting their neighbors in S.

Theorem 13. Max Open k-Influence and Max Closed k-Influence with unanimity
thresholds have no polynomial-time approximation scheme even on 3-regular graphs for k =
θ(n), unless P = NP.

Proof. By Lemma 1, it suffices to show the result for Max Closed k-Influence. We
show that if Max Closed k-Influence with unanimity thresholds has a polynomial-time
approximation scheme Aε′ , ε

′ ∈ (0, 1), on 3-regular graphs when k = θ(n), then Min Vertex

Cover has also a polynomial-time approximation scheme on 3-regular graphs. Consider
G = (V,E) a 3-regular graph. Clearly, a minimum vertex cover has a value opt(G) satisfying
n
2 ≤ opt(G) < n. For any ε ∈ (0, 1), we apply the polynomial-time approximation scheme
Aε′ that establishes an (1 + ε′)-approximation for Max Closed k-Influence on graph G
for each k between n

2 and n and ε′ = ε
2−ε . By applying Aε′ on G for k between n

2 and n, we
obtain a solution Sk ⊂ V of size k such that Sk ∪ σ(Sk) is an (1+ ε′)-approximation. The set
V \ σ(Sk) is a vertex cover in G of size denoted by valk. We show in the following that the
best solution obtained in this way is an (1+ε)-approximation for Min Vertex Cover on G.
Indeed the best solution obtained in this way has a value val∗ ≤ valℓ, where valℓ is the value of
the solution obtained for ℓ = opt(G). Thus valℓ = |V \σ(Sℓ)|. Since |Sℓ∪σ(Sℓ)| is an (1+ε′)-
approximation and the optimum solution activates all vertices, we have |Sℓ∪σ(Sℓ)| ≥

n
1+ε′ and

|V \(Sℓ∪σ(Sℓ))| ≤ n ε′

1+ε′ . Thus val
∗ ≤ valℓ ≤ ℓ+n ε′

1+ε′ ≤ ℓ(1+ 2ε′

1+ ε′ ) = ℓ(1+ε). The theorem
follows from the fact thatMin Vertex Cover has no polynomial-time approximation scheme
on 3-regular graphs, unless P = NP [2].

In Theorem 6 we showed that (k, ℓ)-Influence with unanimity thresholds is W[1]-hard
w.r.t. parameters k and ℓ. In the following we give several fixed-parameter tractability
results for (k, ℓ)-Influence w.r.t. parameter k on regular graphs and bounded degree graphs
with unanimity thresholds. First we show that using results of Cai et al. [8] we can obtain
fixed-parameter tractability. Then we establish an explicit and more efficient combinatorial
algorithm. Using [8] we can show:

Theorem 14. (k, ℓ)-Influence with unanimity thresholds can be solved in 2O(k∆3)n2 log n
time where ∆ denotes the maximum degree and in 2O(k2 log k)n log n time for regular graphs.

Proof. For graphs of maximum degree ∆, we simply apply the result from [8, Theorem 4]
with i = 3.

Let G be a ∆-regular graph. When ∆ > k, any k vertices of the graph form a solution since
no vertex outside the set becomes active. Hence, we assume in the following that ∆ ≤ k.
Since G is regular, it follows that any subset S, |S| = k can activate at most k vertices.
Hence, the graph G[σ[S]] contains at most 2k vertices and, thus, ℓ ≤ k. Furthermore, since
we consider unanimity thresholds, every vertex v ∈ σ(S) has exactly ∆ neighbors in S and,
thus, |NG[σ[S]](v)| = ∆ and NG[σ[S]](v) ⊆ S. Our fpt-algorithm solving (k, ℓ)-Influence runs
in two phases:
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Phase 1: Guess a graph H being isomorphic to G[σ[S]].

Phase 2: Check whether H is a subgraph of G.

Phase 1 is realized by simply iterating over all possible graphs H with k+ℓ vertices. A simple

upper bound on the number of different graphs with k + ℓ vertices is 2(
k+ℓ

2 ) ≤ 24k
2
. Hence,

in Phase 1 the algorithm tries at most O(24k
2
) possibilities. Note that Phase 2 can be done

in 2O(∆k log k)n log n using a result from [8, Theorem 1]. Altogether this gives a running time
of O(24k

2
2O(∆k log k)n log n). Since ∆ ≤ k, this gives 2O(k2 log k)n log n. The correctness of the

algorithm follows from the exhaustive search.

While the previous results use general frameworks to solve the problem, we now give a
direct combinatorial algorithm for (k, ℓ)-Influence with unanimity thresholds on bounded
degree graphs. For this algorithm we need the following definition and lemma.

Definition 1. Let (α, β) be a pair of positive integers, G = (V,E) an undirected graph with
unanimity thresholds, and v ∈ V a vertex. A vertex v is called a realizing vertex for the
pair (α, β) if there exists a vertex subset V ′ ⊆ N2α−1[v] of size |V ′| ≤ α such that |σ(V ′)| ≥ β
and σ[V ′] is connected. Furthermore, σ[V ′] is called a realization of the pair (α, β).

We show first that in bounded degree graphs the problem of deciding whether a vertex
is a realizing vertex for a pair of positive integers (α, β) is fixed-parameter tractable w.r.t.
parameter α.

Lemma 15. Checking whether a vertex v is a realizing vertex for a pair of positive inte-
gers (α, β) can be done in ∆O(α2) time, where ∆ is the maximum degree.

Proof. The algorithm solving the problem checks for all vertex subsets V ′ of size α in N2α−1[v]
whether V ′ activates at least β vertices and whether σ[V ′] is connected. Since we consider
unanimity thresholds it follows that σ[V ′] ⊆ N2α[v].

The correctness of this algorithm results from the exhaustive search. We study in
the following the running time: The (2α − 1)th neighborhood of any vertex contains at
most ∆(∆2α)/(∆− 1) + 1 ≤ 2∆2α vertices. Hence, there are 2α∆(2α)α possibilities to choose
the α vertices forming V ′. For each choice of V ′ the algorithm has to check how many vertices
are activated by V ′. Since this can be done in linear time and there are O(∆∆2α) edges, this
gives another O(∆2α+1) term. Altogether, we obtain a running time of O(2α∆2α2+2α+1) =
∆O(α2).

Consider in the following the Connected (k, ℓ)-Influence problem that is (k, ℓ)-
Influence with the additional requirement that G[σ[S]] has to be connected. Note that with
Lemma 15 we can show that Connected (k, ℓ)-Influence is fixed parameter tractable w.r.t.
parameter k on bounded degree graphs. Indeed, observe that two vertices in σ(S) cannot be
adjacent since we consider unanimity thresholds. From this and the requirement that G[σ[S]]
is connected, it follows that G[σ[S]] has a diameter of at most 2k. Hence, the algorithm for
Connected (k, ℓ)-Influence checks for each vertex v ∈ V whether v is a realizing vertex
for the pair (k, ℓ). By Lemma 15 this gives an overall running time of ∆O(k2) · n.

We can extend the algorithm for the connected case to deal with the case where G[σ[S]]
is not connected. The general idea is as follows. For each connected component Ci of G[σ[S]]
the algorithm guesses the number of vertices in S ∩Ci and in σ(S)∩Ci. This gives an integer
pair (ki, ℓi) for each connected component in G[σ[S]]. Similar to the connected case, the
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algorithm will determine realizations for these pairs and the union of these realizations give S
and σ(S). Unlike the connected case, it is not enough to look for just one realization of a
pair (ki, ℓi) since the realizations of different pairs may be not disjoint and, thus, vertices may
be counted twice as being activated. To avoid the double-counting we show that if there are
“many” different realizations for a pair (ki, ℓi), then there always exist a realization being
disjoint to all realizations of the other pairs. Now consider only the integer pairs that do not
have “many” different realizations. Since there are only “few” different realizations possible,
the graph induced by all the vertices contained in all these realizations is “small”. Thus, the
algorithm can guess the realizations of the pairs having only “few” realizations and afterwards
add greedily disjoint realizations of pairs having “many” realizations. See Algorithm 1 for
the pseudocode.

Algorithm 1 The pseudocode of the algorithm solving the decision problem (k, ℓ)-
Influence. The guessing part in the algorithm behind Lemma 15 is used in Line 7 as
subroutine. The final check in Line 19 is done by brute force checking all possibilities.

1: procedure solveInfluence(G, thr, k, ℓ)
2: Guess x ∈ {1, . . . , k} ⊲ x: number of connected components of G[σ[S]]
3: Guess (k1, ℓ1), . . . , (kx, ℓx) such that

∑

x

i=1
ki = k and

∑

x

i=1
ℓi = ℓ

4: Initialize c1 = c2 = . . . = cx ← 0 ⊲ one counter for each integer pair (ki, ℓi)
5: for each vertex v ∈ V do ⊲ determine realizing vertices
6: for i← 1 to x do

7: if v is a realizing vertex for the pair (ki, ℓi) then ⊲ see Lemma 15
8: ci ← ci + 1
9: T (v, i) = “yes”

10: else

11: T (v, i) = “no”

12: initialize X ← ∅ ⊲ X stores all pairs with “few” realizations
13: for i← 1 to x do

14: if ci ≤ 2 · x ·∆4k then

15: X ← X ∪ {i}

16: for each vertex v ∈ V do ⊲ remove vertices not realizing any pair in X
17: if ∀i ∈ X : T (v, i) = “no” then

18: delete v from G.
19: if all pairs (ki, ℓi), i ∈ X , can be realized in the remaining graph then

20: return ‘YES’
21: else

22: return ‘NO’

Theorem 16. Algorithm 1 solves (k, ℓ)-Influence with unanimity thresholds
in 2O(k2 log(k∆)) · n time, where ∆ is the maximum degree of the input graph.

Proof. Let S be a solution set, that is, S ⊂ V , |S| ≤ k and σ(S) ≥ ℓ. In the following we
show that Algorithm 1 decides whether or not such set S exists in 2O(k2 log(k∆)) · n time. We
remark that the algorithm can be adapted to also give such set S if it exists. First we prove
the correctness of the algorithm and then show the running time bound.

Correctness: We now show that a solution set S exists if and only if the algorithm returns
“YES”. “⇒:” Assume that S is the solution set. Observe that G[σ[S]] consists of at most k
connected components and, thus, the guesses in Lines 2 and 3 are correct. Clearly, in the
solution set S there is a realization for each pair (ki, ℓi). Furthermore observe that in Line 13
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it holds that X ⊆ {1, . . . , x} and that in the loop starting in Line 16 only vertices that cannot
realize any pair corresponding to X are deleted. Hence, there exists a realization for the pairs
corresponding to X in the remaining graph. Since the checking in Line 19 is done by trying
all possibilities, the algorithm returns “YES”.

“⇐:” Now assume that the algorithm returns “YES”. Observe that this implies that in
Line 19 there exists a realization for the all the pairs corresponding to X. Hence, it remains
to show that for each pair (kj , ℓj) where j ∈ {1, . . . , x} \ X there exists a realization in G.
(Clearly, if all pairs are realized then the union of the realizations form the vertex set σ[S] such
that |S| = k.) To see that there exist realizations for these pairs observe the following: The
(4k)th neighborhood of any vertex contains at most 2∆4k vertices. Thus, if in the case of two
pairs (k1, ℓ1), (k2, ℓ2) the value of the second counter is c2 > 2∆4k, then we can deduce that for
every realizing vertex v1 for (k1, ℓ1) there exists a realizing vertex v2 for (k2, ℓ2) such that the
distance d between v1 and v2 is more than 4k. Since d > 4k, it follows that the realizations for
(k1, ℓ1) and (k2, ℓ2) do not overlap. (If two realizations would overlap then some vertices in
σ(S) may be counted twice.) Generalizing this argument to x integer pairs (k1, ℓ1), . . . , (kx, ℓx)
yields the following: If there exists an i ∈ {1, . . . , x} such that ci > x · 2 ·∆4k, then for any
realization of the pairs (kj , ℓj) with i 6= j there exists a non-overlapping realization of (ki, ℓi).
Thus, we can ignore the pair (ki, ℓi) where ci > x · 2 ·∆4k in the remaining algorithm and can
assume that (ki, ℓi) is realized.

Observe that from the Lines 5 to 16 it follows that for all j ∈ {1, . . . , x} \ X we have
cj > x · 2 ·∆4k. Thus, from the argumentation in the previous paragraph it follows that there
exist non-overlapping realizations for all pairs corresponding to {1, . . . , x} \X. Thus, there
exists a solution set S as required.

Running time: Observe that ℓ ≤ ∆k as described in the proof of Lemma 12. Thus,
the guessing in Lines 2 and 3 can clearly be done in O(k · kk(∆k)k) = O(k2k+1∆k). By
Lemma 15 the checking in Line 7 can be done in ∆O(k2i ) time. Thus, the loop in Line 5
requires n ·

∑x
i=1∆

O(k2i ) ≤ ∆O(k2) ·x ·n time. Clearly, the loop in Line 13 needs O(x) ≤ O(k)
time. Furthermore, the loop in Line 16 needs O(k · n) time. For the checking in Line 19
observe the following. After deleting the vertices in the loop in Line 16 the remaining graph
can have at most

∑

i∈X ci ≤ x ·2 ·x ·∆4k vertices. Furthermore,
∑

i∈X ki ≤ k and, thus, there
are at most (2 ·x2 ·∆4k)k candidate subsets for the solution set S. Checking whether

∑

i∈X ki
chosen vertices activate

∑

i∈X ℓi other vertices can be done in (2 · x2 ·∆4k)2 time. Hence, the

checking in Line 19 can be done in ∆O(k2) time. Putting all together we arrive at a running
time of (k∆)O(k2) · n = 2O(k2 log(k∆)) · n.

5. Conclusions

We established results concerning the parameterized complexity as well as the polynomial-
time and fpt-time approximability of two problems modeling the spread of influence in social
networks, namely Max Open k-Influence and Max Closed k-Influence.

In the case of unanimity thresholds, we show that Max Open k-Influence is at least as
hard to approximate as Densest k-Subgraph, a well-studied problem. We established that
Densest k-Subgraph is r(n)-approximable for any strictly increasing function r in fpt-time
w.r.t. parameter k. An interesting open question consists of determining whether Max Open

k-Influence is constant approximable in fpt-time. Such a positive result would improve the
approximation in fpt-time for Densest k-Subgraph. In the case of thresholds bounded by
two we excluded a polynomial time approximation scheme for Max Closed k-Influence

16



but we did not found any polynomial-time approximation algorithm. Hence, the question
arises, whether this hardness result can be strengthened.
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