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tWe 
onsider the k most vital edges (nodes) and min edge (node)blo
ker versions of the p-median and p-
enter lo
ation problems. Given aweighted 
onne
ted graph with distan
es on edges and weights on nodes,the k most vital edges (nodes) p-median (respe
tively p-
enter) problem
onsists of �nding a subset of k edges (nodes) whose removal from thegraph leads to an optimal solution for the p-median (respe
tively p-
enter)problem with the largest total weighted distan
e (respe
tively maximumweighted distan
e). The 
omplementary problem, min edge (node) blo
ker
p-median (respe
tively p-
enter), 
onsists of removing a subset of edges(nodes) of minimum 
ardinality su
h that an optimal solution for the
p-median (respe
tively p-
enter) problem has a total weighted distan
e(respe
tively a maximum weighted distan
e) at least as large as a spe
-i�ed threshold. We show that k most vital edges p-median and k mostvital edges p-
enter are NP -hard to approximate within a fa
tor 7

5
−ǫ and

4

3
− ǫ respe
tively, for any ǫ > 0, while k most vital nodes p-median and

k most vital nodes p-
enter are NP -hard to approximate within a fa
tor
3

2
− ǫ, for any ǫ > 0. We also show that the 
omplementary versions ofthese four problems are NP -hard to approximate within a fa
tor 1.36.Keywords: most vital edges and nodes, min edge and node blo
ker, p-median,

p-
enter, 
omplexity, approximation.1 Introdu
tionFor problems of se
urity or reliability, it is important to assess the ability of asystem to resist to a destru
tion or a failure of a number of its entities. Thisamounts to identifying 
riti
al entities whi
h 
an be determined with respe
t toa measure of performan
e or a 
ost asso
iated to the system. In this paper we1



fo
us on simple lo
ation problems. Consider for instan
e the following problem.We aim at lo
ating p hospitals or p supermarkets in order to serve n areas. Ea
harea is 
hara
terized by a population whi
h represents a potential demand.The areas are 
onne
ted by roads with a given distan
e. The obje
tive forlo
ating these hospitals or supermarkets is not the same. Indeed, for hospitals,we aim at �nding the lo
ations that minimize the maximum distan
e weightedby population from the 
losest hospital to all areas while for supermarkets weaim at �nding the lo
ations that minimize the total weighted distan
e from the
losest supermarket to all areas. However, there may o

ur in
idents su
h asworks on road or �oods that make some roads ina

essible. In this 
ase severalproblems may arise. We 
an aim at dete
ting the 
riti
al roads whose failure
auses the largest in
rease in the weighted distan
e. Alternatively, we 
an aimat determining the maximum number of damaged roads whi
h still ensures a
ertain quality of servi
e level. Modeling the 
onsidered network by a weighted
onne
ted graph with distan
es on edges and weights on nodes, where roads areedges and areas are nodes, these problems 
onsist either of �nding a subset ofedges or nodes whose removal from the graph generates the largest in
rease inthe total or maximum weighted distan
e or of determining a subset of edges ornodes of minimal 
ardinality su
h that, when we remove this subset from thegraph, the total or maximum weighted distan
e is at least as large as a spe
i�edthreshold. In the literature these problems are referred respe
tively to as the kmost vital edges/nodes and the min edge/node blo
ker problems.The k most vital edges/nodes and min edge/node blo
ker versions have beenstudied for several problems, in
luding shortest path, minimum spanning tree,maximum �ow, maximum mat
hing and independent set. The k most vitaledges problem with respe
t to shortest path was proved NP -hard [2℄. Later, kmost vital edges/nodes shortest path (and min edge/node blo
ker shortest path,respe
tively) were proved to be not 2-approximable (not 1.36-approximable, re-spe
tively) if P 6= NP [8℄. For minimum spanning tree, k most vital edges isNP-hard [6℄ and O(log k)-approximable [6℄. In [11℄ it is proved that k most vi-tal edges maximum �ow is NP -hard. For maximum mat
hing, min edge blo
keris NP -hard even for bipartite graphs [12℄, but polynomial for grids and trees [10℄.In [3℄, the k most vital nodes and min node blo
ker versions with respe
t to in-dependent set for bipartite graphs remain polynomial on the unweighted graphsand be
ome NP -hard for weighted graphs. For bounded treewidth graphs and
ographs these versions remain polynomial [3℄. Con
erning the approximationon bipartite weighted graphs, k most vital nodes with respe
t to independentset has no ptas [3℄.In this paper the k most vital edges (nodes) and min edge (node) blo
kerversions for the p-median and p-
enter problems are studied.After introdu
ing some preliminaries in Se
tion 2, we prove in Se
tions 3 and4 that k Most Vital Edges (Nodes) p-median (p-
enter) andMin Edge(Node) Blo
ker p-median (p-
enter) are not 
onstant approximable forsome 
onstants, unless P=NP. Final remarks are provided in Se
tion 5.2



2 Basi
 
on
epts and de�nitionsConsider G = (V, E) a 
onne
ted weighted graph with |V | = n and |E| = m.Let dvivj
be the distan
e between vi and vj for (vi, vj) ∈ E and wvi

be theweight asso
iated to node vi for i = 1, . . . , n (wvi
represents the demand o
-
urring at node vi). Denote by d(vi, vj) the minimum distan
e between twonodes vi and vj of G and let d(F, vi) = minf∈F d(f, vi), for any F ⊆ V . The

p-median (respe
tively p-
enter) problem 
onsists of �nding a subset F of pnodes whi
h minimizes the total weighted distan
e (respe
tively the maximumweighted distan
e) to all nodes of the graph given by ∑

vi∈V

wvi
d(F, vi) (respe
-tively max

vi∈V
wvi

d(F, vi)).Denote by G − R the graph obtained from G by removing the subset R ofedges or nodes.We 
onsider in this paper the k most vital edges (nodes) and min edge(node) blo
ker versions of the p-median and p-
enter problems. These problemsare de�ned as follows:
k Most Vital Edges p-median (p-
enter)Input: A 
onne
ted graph G = (V, E) weighted by two fun
tions d : E → Nand w : V → N and a positive integer k.Output: A subset S∗ ⊆ E, with |S∗| = k, whose removal generates an optimalsolution for the p-median (p-
enter) problem in the graph G − S∗ of maximalvalue.
k Most Vital Nodes p-median (p-
enter)Input: A 
onne
ted graph G = (V, E) weighted by two fun
tions d : E → Nand w : V → N and a positive integer k.Output: A subset N∗ ⊆ V , with |N∗| = k, whose removal generates an optimalsolution for the p-median (p-
enter) problem in the graph G − N∗ of maximalvalue.Min Edge Blo
ker p-median (p-
enter)Input: A 
onne
ted graph G = (V, E) weighted by two fun
tions d : E → Nand w : V → N and a positive integer U .Output: An edge blo
ker S∗ ⊆ E of minimal 
ardinality where an edge blo
keris a subset of edges su
h that the value of an optimal solution for the p-median(p-
enter) problem in the graph G − S∗ is greater than or equal to U .Min Node Blo
ker p-median (p-
enter)Input: A 
onne
ted graph G = (V, E) weighted by two fun
tions d : E → Nand w : V → N and a positive integer U .Output: A node blo
ker N∗ ⊆ V of minimal 
ardinality where a node blo
keris a subset of nodes su
h that the value of an optimal solution for the p-median(p-
enter) problem in the graph G − N∗ is greater than or equal to U .3



Given an NPO optimization problem and an instan
e I of this problem, weuse |I| to denote the size of I, opt(I) to denote the optimum value of I, and
val(I, S) to denote the value of a feasible solution S of instan
e I. The perfor-man
e ratio of S (or approximation fa
tor) is r(I, S) = max

{

val(I,S)
opt(I) ,

opt(I)
val(I,S)

}

.The error of S, ε(I, S), is de�ned by ε(I, S) = r(I, S) − 1.For a fun
tion f , an algorithm is an f(|I|)-approximation, if for every in-stan
e I of the problem, it returns a solution S su
h that r(I, S) ≤ f(|I|).The notion of a gap-redu
tion was introdu
ed in [1℄ by Arora and Lund. Inthis paper we use gap-redu
tions from minimization problems to maximizationproblems. A minimization problem Π is 
alled gap-redu
ible to a maximizationproblem Π′ with parameters (c, ρ) and (c′, ρ′), if there exists a polynomial time
omputable fun
tion f su
h that f maps an instan
e I of Π to an instan
e I ′ of
Π′, while satisfying the following properties.

• If opt(I) ≤ c then opt(I ′) ≥ c′

• If opt(I) > cρ then opt(I ′) < c′

ρ′Parameters c and ρ are fun
tion of |I| and parameters c′ and ρ′ are fun
tionof |I ′|. Also, we have ρ, ρ′ ≥ 1.The interest of a gap-redu
tion is that if Π is not approximable within afa
tor ρ then Π′ is not approximable within a fa
tor ρ′.The notion of an E-redu
tion (error-preserving redu
tion) was introdu
edin [9℄ by Khanna et al. A problem Π is 
alled E-redu
ible to a problem Π′, ifthere exist polynomial time 
omputable fun
tions f , g and a 
onstant β su
hthat
• f maps an instan
e I of Π to an instan
e I ′ of Π′ su
h that opt(I) and

opt(I ′) are related by a polynomial fa
tor, i.e. there exists a polynomial
p su
h that opt(I ′) ≤ p(|I|)opt(I),

• g maps any solution S′ of I ′ to one solution S of I su
h that ε(I, S) ≤
βε(I ′, S′).An important property of an E-redu
tion is that it 
an be applied uniformlyto all levels of approximability; that is, if Π is E-redu
ible to Π′ and Π′ belongsto C then Π belongs to C as well, where C is a 
lass of optimization problemswith any kind of approximation guarantee (see also [9℄).3 Inapproximability results for the k Most VitalEdges (Nodes) p-median and p-
enter problemsWe prove that k Most Vital Edges (Nodes) p-median and k Most VitalEdges (Nodes) p-
enter are not 
onstant approximable for some 
onstants,4



unless P=NP. For this, we 
onstru
t, in Theorems 1 to 4, gap-redu
tions fromMin Vertex Cover restri
ted to tripartite graphs. This problem is shownNP -hard in [7℄ where Garey et al. prove that it is NP -hard to �nd a minimumvertex 
over in graphs with maximum degree 3, 
onsidering also that thesegraphs, with the ex
eption of the 
lique K4, are 3-
olorable [4℄.Theorem 1 k Most Vital Edges p-median is NP-hard to approximate withina fa
tor 7
5 − ǫ, for any ǫ > 0 and p ≥ 1.Proof : We �rst prove the statement for p = 1. Let I be an instan
e ofMin Vertex Cover formed by a graph G = (V, E) with a tripartition V =

V1 ∪ V2 ∪ V3 and |V | = n. We 
onstru
t an instan
e I ′ of k Most VitalEdges 1-median 
onsisting of a graph G′ = (V ′, E′) with k < n as follows(see Figure 1). We asso
iate for ea
h node vi
ℓ ∈ Vi, two nodes vi

ℓ,1 and vi
ℓ,2 in

V ′ and 
onne
t them in E′, for i = 1, 2, 3 and ℓ = 1, . . . , |Vi|. We add for ea
hedge (vi
ℓ, v

j
r) ∈ E, with i < j, the edge (vi

ℓ,2, v
j
r,1) to E′. We also add four nodes

x1, x2, x
′

2, x3 
onne
ted by the path (x1, x
′

2), (x
′

2, x2), (x2, x3). We 
onne
t x1 to
v1

ℓ,1 for ℓ = 1, . . . , |V1|, x′

2 to v2
ℓ,1 and x2 to v2

ℓ,2 for ℓ = 1, . . . , |V2| and x3 to v3
ℓ,2for ℓ = 1, . . . , |V3|. We assign a distan
e 1 to edges (x1, x

′

2), (x1, v
1
ℓ,1), (x′

2, v
2
j,1),

(x2, v
2
j,2) and (x′

2, x3) for ℓ = 1, . . . , |V1| and j = 1, . . . , |V2|, a distan
e 2 for theedge (x′

2, x2) and a distan
e 0 for all the other edges in E′. We set wx1
= 8,

wx2
= wx3

= 1 and assign a weight 0 to all other nodes in V ′. We repla
e alledges of E′, ex
ept the edges (vi
ℓ,1, v

i
ℓ,2), for i = 1, 2, 3 and ℓ = 1, . . . , |Vi|, by thegadget given in Figure 2. For ea
h edge to be repla
ed, one 
hooses indi�erentlythe vertex playing the role of i in Figure 2, ex
ept for all edges in
ident to x1for whi
h we take x1 as i. We show in the following that:1. opt(I) ≤ k ⇒ opt(I ′) ≥ 72. opt(I) > k ⇒ opt(I ′) ≤ 5whi
h proves that k Most Vital Edges 1-median is NP -hard to approx-imate within a fa
tor 7

5 − ǫ, for any ǫ > 0.First observe that there exists at least one optimal solution of k MostVital Edges 1-median 
ontaining only edges among the edges (vi
ℓ,1, v

i
ℓ,2), for

i = 1, 2, 3 and ℓ = 1, . . . , |Vi|. Indeed, if a solution 
ontains edges from a gadget
orresponding to an initial edge (i, j), it must 
ontain at least n edges from thisgadget in order to have a 
han
e to in
rease the solution value by suppressing
ommuni
ation between i and j. Therefore, sin
e k < n, it is at least as goodto sele
t k edges among those whi
h do not belong to the gadgets.Observe also that G′ is designed so as to ensure that x1 will always be theoptimal 1-median node. Indeed, sin
e the weight of vertex x1 is 8 and all edgesin
ident to x1 have distan
e 1, any other node would have a total weighteddistan
e of at least 8. In the following, x1 has always a total distan
e of atmost 7. 5
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1. If there exists a vertex 
over V ′ ⊆ V of 
ardinality less than k in Gthen 
onsider any set of verti
es V ′′ ⊃ V ′ of 
ardinality k, and remove
S′′ = {(vi

ℓ,1, v
i
ℓ,2) : vi

ℓ ∈ V ′′} from G′. The optimal 1-median node in
G′−S′′ is x1 with a total weighted distan
e d(x1, x2)+d(x1, x3) = 3+4 = 7.Hen
e, opt(I ′) ≥ 7.2. Let S∗ be any solution of k Most Vital Edges 1-median whi
h 
ontainsonly edges (vi

ℓ,1, v
i
ℓ,2), for i = 1, 2, 3 and ℓ = 1, . . . , |Vi|. The optimal 1-median node in G′ − S∗ is x1 with opt(I ′) = d(x1, x2) + d(x1, x3). Ea
hedge (vi

ℓ,1, v
i
ℓ,2) of S∗ 
orresponds to a node vi

ℓ ∈ Vi in the graph G, for
i = 1, 2, 3 and ℓ = 1, . . . , |Vi|. Let N∗ be the subset of nodes in G that
orrespond to edges of S∗. Sin
e |N∗| = k and opt(I) > k, N∗ is not avertex 
over in G. Thus, there exists at least one edge (vi

ℓ, v
j
r) ∈ E whi
his not 
overed. This implies in G′ the existen
e of a path from xi (or x′

i)to xj , with i < j, passing through the gadget 
orresponding to the edge
(vi

ℓ,2, v
j
r,1), enabling a de
rease of some shortest path distan
es. Hen
e,

• if i = 1 and j = 2 then opt(I ′) ≤ 5

• if i = 1 and j = 3 then opt(I ′) ≤ 3

• if i = 2 and j = 3 then opt(I ′) ≤ 5Therefore, opt(I ′) ≤ 5.We now prove the statement for p ≥ 2. We use the same 
onstru
tion asabove for p = 1, and we add p− 1 nodes x1
1, . . . , x

p−1
1 . We 
onne
t xr

1 to x′

2 and
v1

ℓ,1, for r = 1, . . . , p − 1 and ℓ = 1, . . . , |V1|, and we assign a distan
e 1 to allthese edges. We assign a weight 8 to ea
h node xr
1, for r = 1, . . . , p− 1. Finally,we repla
e all edges (xr

1, x
′

2) and (xr
1, v

1
ℓ,1) for ℓ = 1, . . . , |V1| and r = 1, . . . , p−1,by the gadget given in Figure 2 where we take xr

1 as i, for r = 1, . . . , p − 1.As previously, there exists at least one optimal solution of k Most VitalEdges p-median 
ontaining only edges among the edges (vi
ℓ,1, v

i
ℓ,2), for i =

1, 2, 3 and ℓ = 1, . . . , |Vi|. Furthermore, observe that G′ is designed so as toensure that x1 and xr
1 for r = 1, . . . , p − 1 will always be the optimal p-mediannodes. Indeed, sin
e the weight of these verti
es is 8 and all edges in
ident tothem have distan
e 1, any other node would have a total weighted distan
e ofat least 8. Therefore, we 
an prove similarly as for p = 1, that:1. opt(I) ≤ k ⇒ opt(I ′) ≥ 72. opt(I) > k ⇒ opt(I ′) ≤ 5whi
h proves that k Most Vital Edges p-median is NP -hard to approx-imate within a fa
tor 7
5 − ǫ, for any ǫ > 0. 27



Theorem 2 k Most Vital Edges p-
enter is NP-hard to approximate withina fa
tor 4
3 − ǫ, for any ǫ > 0 and p ≥ 1.Proof : We �rst prove the statement for p = 1. We use the same 
onstru
tionas in Theorem 1 for p = 1. We show that:1. opt(I) ≤ k ⇒ opt(I ′) ≥ 42. opt(I) > k ⇒ opt(I ′) ≤ 3whi
h proves that k Most Vital Edges 1-
enter is NP -hard to approx-imate within a fa
tor 4

3 − ǫ, for any ǫ > 0.Similarly as above, there exists at least one optimal solution of k MostVital Edges 1-
enter 
ontaining only edges among the edges (vi
ℓ,1, v

i
ℓ,2), for

i = 1, 2, 3 and ℓ = 1, . . . , |Vi|. Moreover, as before, x1 will always be the optimal1-
enter node.1. If there exists a vertex 
over V ′ ⊆ V of 
ardinality less than k in Gthen 
onsider any set of verti
es V ′′ ⊃ V ′ of 
ardinality k, and remove
S′′ = {(vi

ℓ,1, v
i
ℓ,2) : vi

ℓ ∈ V ′′} from G′. The optimal 1-
enter node in G′−S′′is x1 with a maximum weighted distan
e max{d(x1, x2), d(x1, x3)} = 4.Hen
e, opt(I ′) ≥ 4.2. Let S∗ be any solution of k Most Vital Edges 1-
enter whi
h 
ontainsonly edges (vi
ℓ,1, v

i
ℓ,2), for i = 1, 2, 3 and ℓ = 1, . . . , |Vi|. The optimal 1-
enter node in G′ − S∗ is x1 with opt(I ′) = max{d(x1, x2), d(x1, x3)}.Ea
h edge (vi

ℓ,1, v
i
ℓ,2) of S∗ 
orresponds to a node vi

ℓ ∈ Vi in the graph
G, for i = 1, 2, 3 and ℓ = 1, . . . , |Vi|. Let N∗ be the subset of nodes of G
orresponding to edges in S∗. Sin
e |N∗| = k and opt(I) > k, N∗ is not avertex 
over in G. Thus, there exists at least one edge (vi

ℓ, v
j
r) ∈ E whi
his not 
overed. This implies in G′ the existen
e of a path from xi (or x′

i)to xj , with i < j, passing through the gadget 
orresponding to the edge
(vi

ℓ,2, v
j
r,1). Hen
e,

• if i = 1 and j = 2 then opt(I ′) ≤ 3

• if i = 1 and j = 3 then opt(I ′) ≤ 3

• if i = 2 and j = 3 then opt(I ′) ≤ 3Therefore, opt(I ′) ≤ 3.We now prove the statement for p ≥ 2. We use the same 
onstru
tion as inTheorem 1 for p ≥ 2.Similarly as for k Most Vital Edges p-median, there exists at least oneoptimal solution of k Most Vital Edges p-
enter 
ontaining only edgesamong the edges (vi
ℓ,1, v

i
ℓ,2), for i = 1, 2, 3 and ℓ = 1, . . . , |Vi|. Moreover, as inTheorem 1, x1 and xr

1, for r = 1, . . . , p − 1, will always be the optimal p-
enternodes. Therefore, we 
an prove similarly as for p = 1, that:8



1. opt(I) ≤ k ⇒ opt(I ′) ≥ 42. opt(I) > k ⇒ opt(I ′) ≤ 3whi
h proves that k Most Vital Edges p-
enter is NP -hard to approx-imate within a fa
tor 4
3 − ǫ, for any ǫ > 0. 2Theorem 3 k Most Vital Nodes p-median is NP-hard to approximate withina fa
tor 3

2 − ǫ, for any ǫ > 0 and p ≥ 1.Proof : We begin by proving the statement for p = 1. Let I be an instan
eof Min Vertex Cover formed by a graph G = (V, E) with a tripartition
V = V1 ∪ V2 ∪ V3 and |V | = n. We 
onstru
t an instan
e I ′ of k Most VitalNodes 1-median 
onsisting of a graph G′ = (V ′, E′) with k < n as follows(see Figure 3). G′ is a 
opy of G to whi
h we add 
omplete graphs Ki

n with nnodes x1
i , . . . , x

n
i for i = 1, 2, 3. We 
onne
t ea
h node vi

ℓ ∈ Vi with ea
h node
xr

i , for i = 1, 2, 3, ℓ = 1, . . . , |Vi| and r = 1, . . . , n. We 
onne
t also ea
h node
xr

i to ea
h node xr
i+1 for i = 1, 2 and r = 1, . . . , n. We assign a distan
e 2 toedges (xr

i , x
r
i+1) for i = 1, 2 and r = 1, . . . , n, a distan
e 1 to edges (xr

1, v
1
ℓ ) for

ℓ = 1, . . . , |V1| and r = 1, . . . , n and a distan
e 0 to all other edges in E′. Weset wxr
1

= 7 and wxr
2

= wxr
3

= 1 for r = 1, . . . , n, and wvi
ℓ

= 0 for i = 1, 2, 3,
ℓ = 1, . . . , |Vi|. We show in the following that:1. opt(I) ≤ k ⇒ opt(I ′) ≥ 6n2. opt(I) > k ⇒ opt(I ′) ≤ 4nwhi
h proves that k Most Vital Nodes 1-median is NP -hard to approx-imate within a fa
tor 3

2 − ǫ, for any ǫ > 0.First observe that there exists at least one optimal solution of k MostVital Nodes 1-median 
ontaining only nodes of V . Indeed, if a solution
ontains nodes from Ki
n for some i, it must 
ontain all nodes of Ki

n in order tohave a 
han
e to in
rease the solution value by dis
onne
ting these nodes fromthe graph. Therefore, sin
e k < n, it is at least as good to sele
t k nodes in Vonly.Observe also that G′ is designed so as to ensure that any node xr
1 for r =

1, . . . , n will always be an optimal 1-median node. Indeed, sin
e the weightof a vertex xr
1 is 7 and all edges in
ident to xr

1, ex
ept the edges (xr
1, x

j
1) for

j = 1, . . . , n and j 6= r have distan
e at least 1, any other node would havea total weighted distan
e of at least 7, while any node xr
1 has always a totalweighted distan
e of at most 6. We 
onsider arbitrarily in the following that x1

1is the sele
ted optimal 1-median node.1. If there exists a vertex 
over V ′ ⊆ V of 
ardinality less than k in G then
onsider any set of verti
es V ′′ ⊃ V ′ of 
ardinality k, and remove V ′′from G′. Taking x1
1 as the optimal 1-median node in G′ − V ′′, we get atotal weighted distan
e ∑n

j=1(d(x1
1, x

j
2) + d(x1

1, x
j
3)) =

∑n

j=1(2 + 4) = 6n.Hen
e, opt(I ′) ≥ 6n. 9



v1

2

v1

1

v3

2

v3

1

v2

3

v2

2

v2

1

v3

2

v3

1

v1

2

v1

1

v2

3

v2

2

v2

1

V1

V2

V3

K1
7

K2
7

K3
7

1 1

2 2

0

0
0

00

V1

V2

V30

0

0

0

0

0

00

7 1 1with wvℓ
= 0 for vℓ ∈ Vi, i = 1, 2, 3Figure 3: Constru
tion of G′ from G2. Let N∗ ⊆ V be any solution of k Most Vital Nodes 1-median whi
h
ontains only nodes of V . Taking x1

1 as the optimal 1-median node in
G′ − N∗, we get opt(I ′) =

∑n

ℓ=1(d(x1
1, x

ℓ
2) + d(x1

1, x
ℓ
3)). Sin
e |N∗| = kand opt(I) > k, N∗ is not a vertex 
over in G. Thus, there exists at leastone edge (vi, vj) ∈ E whi
h is not 
overed. This implies in G′ the existen
eof a path from ea
h xr

i to ea
h xr
j for r = 1, . . . , n, passing through theedge (vi, vj). Hen
e,

• if i = 1 and j = 2 then opt(I ′) ≤
∑n

ℓ=1(1 + 3) = 4n

• if i = 1 and j = 3 then opt(I ′) ≤
∑n

ℓ=1(2 + 1) = 3n

• if i = 2 and j = 3 then opt(I ′) ≤
∑n

ℓ=1(2 + 2) = 4nConsequently, opt(I ′) ≤ 4n.We now prove the statement for p ≥ 2. We use the same 
onstru
tionas above for p = 1, and we add p − 1 
omplete graphs K1,h
n with n nodes

x1
1,h, . . . , xn

1,h for h = 1, . . . , p − 1. We 
onne
t ea
h node v1
ℓ ∈ V1 with ea
hnode xr

1,h, for ℓ = 1, . . . , |V1|, h = 1, . . . , p−1 and r = 1, . . . , n. We 
onne
t alsoea
h node xr
1,h to ea
h node xr

2 for h = 1, . . . , p− 1 and r = 1, . . . , n. We assigna distan
e 2 to edges (xr
1,h, xr

2) for h = 1, . . . , p − 1 and r = 1, . . . , n, a distan
e1 to edges (xr
1,h, v1

ℓ ) for ℓ = 1, . . . , |V1|, h = 1, . . . , p − 1 and r = 1, . . . , n and a10



distan
e 0 to all edges in K1,h
n for h = 1, . . . , p− 1. Finally, we set wxr

1,h
= 7 for

h = 1, . . . , p − 1 and r = 1, . . . , n.As previously, there exists at least one optimal solution of k Most VitalNodes p-median 
ontaining only nodes of V . Furthermore, observe that G′ isdesigned so as to ensure that any node xr
1 for r = 1, . . . , n and any node xr

1,hfor r = 1, . . . , n and h = 1, . . . , p− 1 will always be an optimal p-median nodes.Indeed, sin
e the weight of these verti
es is 7 and all edges in
ident to them,ex
ept the edges (xr
1, x

j
1) for j = 1, . . . , n and j 6= r, have a distan
e at least 1,any other subset of p nodes would have a total weighted distan
e of at least 7.Therefore, we 
an prove similarly as for p = 1, that:1. opt(I) ≤ k ⇒ opt(I ′) ≥ 6n2. opt(I) > k ⇒ opt(I ′) ≤ 4nwhi
h proves that k Most Vital Nodes p-median is NP -hard to approx-imate within a fa
tor 3

2 − ǫ, for any ǫ > 0. 2Theorem 4 k Most Vital Nodes p-
enter is NP-hard to approximatewithin a fa
tor 3
2 − ǫ, for any ǫ > 0 and p ≥ 1.Proof : We �rst prove the statement for p = 1. We use the same 
onstru
tionas in Theorem 3 for p = 1, but we modify the distan
e asso
iated to the edges

(xr
2, x

r
3) for r = 1, . . . , n for whi
h we assign a distan
e 1. We show that:1. opt(I) ≤ k ⇒ opt(I ′) ≥ 32. opt(I) > k ⇒ opt(I ′) ≤ 2whi
h proves that k Most Vital Nodes 1-
enter is NP -hard to approx-imate within a fa
tor 4

3 − ǫ, for any ǫ > 0.As previously, we 
an show that only the nodes of V 
an be removed. Weobserve as above that any node xr
1 for r = 1, . . . , n will always be an optimal1-
enter node. We 
onsider arbitrarily in the following that x1

1 is the sele
tedoptimal 1-
enter node.1. If there exists a vertex 
over V ′ ⊆ V of 
ardinality less than k in G then
onsider any set of verti
es V ′′ ⊃ V ′ of 
ardinality k, and remove V ′′ from
G′. Taking x1

1 as the optimal 1-
enter node in G′−V ′′, we get a maximumweighted distan
e of value max { max
j=1,...,n

d(x1
1, x

j
2), max

j=1,...,n
d(x1

1, x
j
3)} = 3.Hen
e, opt(I ′) ≥ 3.2. Let N∗ ⊆ V be any solution of k Most Vital Nodes 1-
enter whi
h
ontains only nodes of V . Taking x1

1 as the optimal 1-
enter node in
G′ −N∗, we get opt(I ′) = max { max

ℓ=1,...,n
d(x1

1, x
ℓ
2), max

ℓ=1,...,n
d(x1

1, x
ℓ
3)}. Sin
e11



|N∗| = k and opt(I)> k, N∗ is not a vertex 
over in G. Thus, there existsat least one edge (vi, vj) ∈ E whi
h is not 
overed. This implies in G′the existen
e of a path from ea
h xr
i to ea
h xr

j for r = 1, . . . , n, passingthrough the edge (vi, vj). Hen
e,
• if i = 1 and j = 2 then opt(I ′) = max{d(x1

1, x
1
2), d(x1

1, x
1
3)} ≤ 2

• if i = 1 and j = 3 then opt(I ′) = d(x1
1, x

1
2) ≤ 2

• if i = 2 and j = 3 then opt(I′) = max{d(x1
1, x

1
2), d(x1

1, x
1
3)} ≤ 2.Therefore, opt(I ′) ≤ 2.We now prove the statement for p ≥ 2. We use the same 
onstru
tion asin Theorem 3 for p ≥ 2, but we modify the distan
e asso
iated to the edges

(xr
2, x

r
3) for r = 1, . . . , n for whi
h we assign a distan
e 1.Similarly as for k Most Vital Edges p-median, we 
an show that onlythe nodes of V 
an be removed. Moreover, as in Theorem 3, any node xr

1 for
r = 1, . . . , n and any node xr

1,h for r = 1, . . . , n and h = 1, . . . , p− 1, will alwaysbe the optimal p-
enter nodes. Therefore, we 
an prove similarly as for p = 1,that:1. opt(I) ≤ k ⇒ opt(I ′) ≥ 32. opt(I) > k ⇒ opt(I ′) ≤ 2whi
h proves that k Most Vital Nodes 1-
enter is NP -hard to approx-imate within a fa
tor 4
3 − ǫ, for any ǫ > 0. 24 Inapproximability results for Min Edge (Node)Blo
ker p-median and p-
enter problemsWe prove that the four problems Min Edge (Node) Blo
ker p-median andMin Edge (Node) Blo
ker p-
enter are not 1.36 approximable, unlessP=NP. These results, stated in Theorems 5 to 8, are obtained by 
onstru
ting

E-redu
tions fromMin Vertex Cover shown NP -hard to approximate withina fa
tor 1.36 [5℄.Theorem 5 Min Edge Blo
ker p-median is NP-hard to approximate withina fa
tor 1.36, for any p ≥ 1.Proof : We �rst prove the statement for p = 1. Let I be an instan
e ofMin Vertex Cover 
onsisting of a graph G = (V, E) with V = {v1, . . . , vn}.We 
onstru
t an instan
e I ′ of Min Edge Blo
ker 1-median formed by agraph G′ = (V ′, E′) and a positive integer U as follows (see Figure 4). Weasso
iate for ea
h node vi ∈ V two nodes vi and v′i in V ′ and 
onne
t them in12



E′ for i = 1, . . . , n. We add for ea
h edge (vi, vj) ∈ E, with i < j, an edge
(v′i, vj) to E′. We also add 2n nodes x1, x

′

1, x2, x
′

2, . . . , xn, x′

n 
onne
ted by thepath (x1, x
′

1), (x′

1, x2), (x2, x
′

2), (x′

2, x3), . . . , (x′

n−1, xn), (xn, x′

n). Finally, we
onne
t xi to vi and x′

i to v′i for i = 1, . . . , n. We assign the following distan
esto the edges of E′: dviv
′

i
= 0, dxivi

= dx′

i
v′

i
= 1 and dxix

′

i
= 2 for i = 1, . . . , n,

dx′

i
xi+1

= 0 for i = 1, . . . , n−1 and dv′

i
vj

= 2(j− i)−1 for (vi, vj) ∈ E and i < j.We set wx1
= 2n2 + 1, wxi

= 1 for i = 2, . . . , n, wx′

i
= 1 and wvi

= wv′

i
= 0for i = 1, . . . , n and we 
onsider that U = 2n2. We repla
e ea
h edge of E′,ex
ept the edges (vi, v

′

i) for i = 1, . . . , n, by the gadget given in Figure 2 whereea
h edge is repla
ed by n + 1 instead of n disjoint paths of length 2 (for edges
(x1, v1) and (x1, x

′

1), x1 plays the role of i in Figure 2).
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x3x′
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v1v4

v3
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1 1

1 1

1 1

1 1

2020202

1

5

31

0

0

0

0

2n2 + 1 1 1 1 1 1 1 1with wvℓ
= wv′

ℓ
= 0 for ℓ = 1, . . . , 4Figure 4: Constru
tion of G′ from G with n = 4 nodesObserve that G′ is designed so as to ensure that x1 will always be the optimal1-median node. Indeed, sin
e the weight of vertex x1 is 2n2 + 1 and all edgesin
ident to x1 have distan
e at least 1, any other node would have a totalweighted distan
e of at least 2n2 + 1. In the following, x1 has always a totaldistan
e of at most 2n2.We prove �rst that opt(I ′) ≤ opt(I). Let V ∗ ⊆ V be a minimum vertex
over of G. Let us 
onsider S∗ = {(vi, v

′

i) : vi ∈ V ∗}. By removing the edgesin S∗ from G′, the optimal 1-median node is x1 with a total weighted distan
e
∑n

i=1 wxi
d(x1, xi)+

∑n

i=1 wx′

i
d(x1, x

′

i) = 2(
∑n−1

i=1 i+
∑n

i=1 i) = 2n2 = U . Hen
e,
opt(I ′) ≤ |S∗| = opt(I).When we remove all edges (vi, v

′

i), for i = 1, . . . , n from G′, the optimal 1-mediannode in the resulting graph is x1 with value U . Hen
e, opt(I ′) ≤ n. Let S ⊆ E′13



be an edge blo
ker for G′. If S 
ontains an edge (i, eℓ
ij) or (eℓ

ij , j) from a gadget
orresponding to an initial edge (i, j), it must 
ontain at least n + 1 edges fromthis gadget in order to suppress the 
ommuni
ation between i and j, otherwisethe value of an optimal solution for the 1-median problem in G′−S is the sameas in G′ − (S\{(i, eℓ
ij)}) or G′ − (S\{(eℓ

ij , j)}). Therefore, sin
e opt(I ′) ≤ n,we 
an 
onsider in the following that S 
ontains only edges among the edges
(vi, v

′

i), i ∈ {1, . . . , n}.Let us 
onsider N = {vi : (vi, v
′

i) ∈ S} where S is an edge blo
ker. We prove,by 
ontradi
tion, that N is a vertex 
over in G. Suppose that there exists anedge (vi, vj) ∈ E su
h that vi 6∈ N , vj 6∈ N and i < j. We show in the followingthat by removing S from G′, the value of an optimal solution for the 1-medianproblem in the remaining graph is stri
tly less than 2n2. Indeed, x1 is theoptimal 1-median node in G′ − S. Let D(x1) be the total weighted distan
easso
iated to x1 in G′−S. We have D(x1) =
∑n

ℓ=1 d(x1, x
′

ℓ)+
∑n

ℓ=1 d(x1, xℓ) =
∑j−1

ℓ=1 d(x1, x
′

ℓ) + d(x1, x
′

j) +
∑n

ℓ=j+1 d(x1, x
′

ℓ)+∑n

ℓ=1 d(x1, xℓ). Then, D(x1) ≤

2
∑j−1

ℓ=1 ℓ + d(x1, x
′

j) + 2
∑n

ℓ=j+1 ℓ + 2
∑n−1

ℓ=1 ℓ = 2
∑n

ℓ=1 ℓ − 2j + d(x1, x
′

j) +

2
∑n−1

ℓ=1 ℓ = 2n2 − 2j + d(x1, x
′

j). The edge (vi, vj) being not 
overed, thisimplies the existen
e of a path from x1 to x′

j using a subpath from x1 to xi andjoining xi to x′

j by a subpath passing through the gadget asso
iated to the edge
(vi, vj). We have d(x1, x

′

j) ≤ 2(i − 1) + 1 + 2(j − i) − 1 + 1 = 2j − 1. Thus, wehave D(x1) ≤ 2n2 − 1 < 2n2, 
ontradi
ting the assumption that S is an edgeblo
ker. Therefore, N is a vertex 
over in G su
h that val(I, N) = val(I ′, S).Consequently, ε(I, N) = val(I,N)
opt(I) − 1 ≤ val(I′,S)

opt(I′) − 1 = ε(I ′, S), whi
h a
hievesthe proof for p = 1.We now prove the statement for p ≥ 2. We use the same 
onstru
tion asabove for p = 1, and we add p− 1 nodes x1
1, . . . , x

p−1
1 . We 
onne
t xr

1 to x′

1 and
v1, for r = 1, . . . , p − 1. We assign a distan
e 1 to edges (xr

1, v1) and a distan
e2 to edges (xr
1, x

′

1), for r = 1, . . . , p − 1. We assign a weight 2n2 + 1 to ea
hnode xr
1, for r = 1, . . . , p − 1. Finally, we repla
e all edges (xr

1, x
′

1) and (xr
1, v1)for r = 1, . . . , p − 1, by the gadget given in Figure 2 where we take xr

1 as i, for
r = 1, . . . , p − 1. We set U = 2n2.Observe that G′ is designed so as to ensure that x1 and xr

1, for r = 1, . . . , p−1,will always be the optimal p-median nodes. Indeed, sin
e the weight of theseverti
es is 2n2 + 1 and all edges in
ident to them have distan
e at least 1,any other subset of p nodes would have a total weighted distan
e of at least
2n2 + 1. As previously, we 
an assume that only edges among edges (vi, v

′

i)
an be removed. Therefore, similarly to p = 1, we prove that opt(I ′) ≤ opt(I)and that for an edge blo
ker S in G′ we 
onstru
t in a polynomial time a vertex
over N in G su
h that val(I, N) = val(I ′, S). Consequently, ε(I, N) ≤ ε(I ′, S),whi
h a
hieves the proof for p ≥ 2. 2Theorem 6 Min Edge Blo
ker p-
enter is NP-hard to approximate withina fa
tor 1.36, for any p ≥ 1. 14



Proof : We �rst prove the statement for p = 1. We use the same 
onstru
tionas in Theorem 5 for p = 1 with U = 2n. As above in Theorem 5, G′ is designedso as to ensure that x1 will always be the optimal 1-
enter node.We show �rst that opt(I ′) ≤ opt(I). Let V ∗ ⊆ V be a minimum vertex 
overin G. Let us 
onsider S∗ = {(vi, v
′

i) : vi ∈ V ∗}. By removing the edges of S∗from the graph G′, the optimal 1-
enter node is x1 with a maximum weighteddistan
e d(x1, x
′

n) = 2n = U . Hen
e, opt(I ′) ≤ |S∗| = opt(I).Let S ⊆ E′ be an edge blo
ker. We 
an assume, similarly to the 1-medianproblem, that S 
ontains only edges among the edges (vi, v
′

i), i ∈ 1, . . . , n. Letus 
onsider N = {vi : (vi, v
′

i) ∈ S}. In the following, we show by 
ontradi
tionthat N is a vertex 
over in G. Suppose that there exists an edge (vi, vj) ∈ Esu
h that vi 6∈ N , vj 6∈ N and i < j. Then x1 is the optimal 1-
enter node in
G′ − S with a maximum weighted distan
e Dmax(x1) = d(x1, xn). The edge
(vi, vj) being not 
overed, this implies the existen
e of a path from x1 to x′

j usinga subpath from x1 to xi and joining xi to x′

j by a subpath passing through thegadget asso
iated to the edge (vi, vj). Then Dmax(x1) ≤ 2(i−1)+1+2(j− i)−
1 + 1 + 2(n− j) = 2n− 1 < 2n, 
ontradi
ting the assumption that S is an edgeblo
ker. Therefore N is a vertex 
over in G su
h that val(I, N) = val(I ′, S).Consequently, ε(I, N) = val(I,N)

opt(I) − 1 ≤ val(I′,S)
opt(I′) − 1 = ε(I ′, S), whi
h a
hievesthe proof for p = 1.We now prove the statement for p ≥ 2. We use the same 
onstru
tion as inTheorem 5 for p ≥ 2 with U = 2n.Similarly to Min Edge Blo
ker p-median, G′ is designed so as to ensurethat x1 and xr

1, for r = 1, . . . , p − 1, will always be the optimal p-
enter nodes.Also, we 
an assume that only edges among edges (vi, v
′

i) 
an be removed.Therefore, as for Min Edge Blo
ker 1-
enter, we prove that opt(I ′) ≤
opt(I) and that for an edge blo
ker S in G′ we 
onstru
t in a polynomial time avertex 
over N in G su
h that val(I, N) = val(I ′, S). Consequently, ε(I, N) ≤
ε(I ′, S), whi
h a
hieves the proof for p ≥ 2. 2Theorem 7 Min Node Blo
ker p-median is NP-hard to approximate withina fa
tor 1.36, for any p ≥ 1.Proof : We �rst prove the statement for p = 1. Let I be an instan
e of MinVertex Cover 
onsisting of a graph G = (V, E) with V = {v1, . . . , vn}. We
onstru
t an instan
e I ′ of Min Node Blo
ker 1-median formed by a graph
G′ = (V ′, E′) and a positive integer U as follows (see Figure 5). G′ is a 
opy of
G to whi
h we add one node x1 and 
omplete graphs Ki

n+1 with n + 1 nodes
x1

i , . . . , x
n+1
i for i = 2, . . . , n. We 
onne
t x1 to v1 and xr

2 for r = 1, . . . , n + 1,and ea
h node xr
i to vi for i = 2, . . . , n and r = 1, . . . , n + 1. We also 
onne
tea
h node xr

i to ea
h node xr
i+1 for r = 1, . . . , n + 1 and i = 2, . . . , n − 1. Weassign a distan
e 1 to the edge (x1, v1), a distan
e 2 to the edges (x1, x

r
2) and

(xr
i , x

r
i+1) for i = 2, . . . , n− 1 and r = 1, . . . , n + 1, and a distan
e 0 to all other15



edges in E′. Let us set wx1
= n3, wxr

i
= 1 for i = 2, . . . , n and r = 1, . . . , n + 1and wvi

= 0 for i = 1, . . . , n. Finally, we set U = n(n2 − 1).
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Figure 5: Constru
tion of G′ from G with n = 4 nodesObserve that G′ is designed so as to ensure that x1 will always be the optimal1-median node. Indeed, sin
e the weight of vertex x1 is n3 and all edges in
identto x1 have distan
e at least 1, any other node would have a total weighteddistan
e of at least n3. In the following, x1 has always a total distan
e of atmost n(n2 − 1).We show �rst that opt(I ′) ≤ opt(I). Let V ∗ ⊆ V be a minimum vertex 
overin G. By removing V ∗ from G′, the optimal 1-median node is x1 with a totalweighted distan
e∑n

ℓ=2

∑n+1
r=1 d(x1, x

r
ℓ) = 2(n+1)

∑n−1
i=1 i = n(n−1)(n+1) = U .Hen
e, opt(I ′) ≤ |V ∗| = opt(I).Let N ⊆ V ′ be a node blo
ker. A

ording to the 
onstru
tion of G′, in orderto obtain an optimal solution for the 1-median problem in the graph G′ −N ofa value at least U , N must be in
luded in V . We show, by 
ontradi
tion, that

N is a vertex 
over in G. Suppose that there exists an edge (vi, vj) ∈ E su
hthat vi 6∈ N , vj 6∈ N and i < j. The optimal 1-median node in G′−N is x1 withvalue stri
tly less than n(n− 1)(n +1). Indeed, let D(x1) be the total weighteddistan
e asso
iated to x1 in G′ − N . Hen
e, D(x1) =
∑n

ℓ=2

∑n+1
r=1 d(x1, x

r
ℓ) =

∑j−1
ℓ=2

∑n+1
r=1 d(x1, x

r
ℓ) +

∑n+1
r=1 d(x1, x

r
j) +

∑n+1
r=1

∑n
ℓ=j+1 d(x1, x

r
ℓ)). We distin-guish two 
ases:

• If vi = v1 then d(x1, x
r
j) = dx1v1

+ dv1vj
+ dvjxr

j
= 1 for r = 1, . . . , n + 1.Hen
e, we obtain D(x1) ≤ 2(n + 1)

∑j−2
ℓ=1 ℓ + (n + 1) + 2(n + 1)

∑n−1
ℓ=j ℓ <

2(n + 1)
∑j−2

ℓ=1 ℓ + 2(j − 1)(n + 1) + 2(n + 1)
∑n−1

ℓ=j ℓ = n(n − 1)(n + 1),
ontradi
tion. 16



• If vi 6= v1 then d(x1, x
r
j) = d(x1, x

1
i ) + dx1

i
vi

+ dvivj
+ dvjxr

j
= d(x1, x

1
i ) for

r = 1, . . . , n+1. Hen
e, we obtain D(x1) ≤ 2(n+1)
∑j−2

ℓ=1 ℓ+2(i−1)(n+

1)+2(n+1)
∑n−1

ℓ=j ℓ < 2(n+1)
∑j−2

ℓ=1 ℓ+2(j−1)(n+1)+2(n+1)
∑n−1

ℓ=j ℓ =
n(n − 1)(n + 1), 
ontradi
tion.Therefore N is a vertex 
over in G su
h that val(I, N) = val(I ′, N). Conse-quently, ε(I, N) = val(I,N)

opt(I) − 1 ≤ val(I′,N)
opt(I′) − 1 = ε(I ′, N), whi
h a
hieves theproof for p = 1.We now prove the statement for p ≥ 2. We use the same 
onstru
tion asabove for p = 1, and we add p− 1 nodes x1

1, . . . , x
p−1
1 . We 
onne
t xh

1 to v1 and
xr

2, for r = 1, . . . , n + 1 and h = 1, . . . , p − 1. We assign a distan
e 1 to edges
(xh

1 , v1) for h = 1, . . . , p−1, and a distan
e 2 to edges (xh
1 , xr

2) for r = 1, . . . , n+1and h = 1, . . . , p−1. We assign a weight n3 to ea
h node xh
1 , for h = 1, . . . , p−1.We set U = n(n2 − 1).Observe that G′ is designed so as to ensure that x1 and xh

1 , for h = 1, . . . , p−
1, will always be the optimal p-median nodes. Indeed, sin
e the weight of theseverti
es is n3 and all edges in
ident to them have distan
e at least 1, any othersubset of p nodes would have a total weighted distan
e of at least n3. Aspreviously, a

ording to the 
onstru
tion of G′, in order to obtain an optimalsolution for the p-median problem in resulting graph of a value at least U , we
an only remove nodes from V . Therefore, similarly to p = 1, we prove that
opt(I ′) ≤ opt(I) and that for a node blo
ker N in G′, N is a vertex 
over in
G su
h that val(I, N) = val(I ′, N). Consequently, ε(I, N) ≤ ε(I ′, N), whi
ha
hieves the proof for p ≥ 2. 2Theorem 8 Min Node Blo
ker p-
enter is NP-hard to approximate withina fa
tor 1.36, for any p ≥ 1.Proof : We �rst prove the statement for p = 1. We use the same 
onstru
tionas in Theorem 7 for p = 1 with U = 2(n − 1). Here again, we observe that G′is designed so as to ensure that x1 will always be the optimal 1-
enter node.We show �rst that opt(I ′) ≤ opt(I). Let V ∗ ⊆ V be a minimum vertex
over in G. By deleting the nodes of V ∗ from G′, the optimal 1-
enter nodein the remaining graph is x1 with a maximum weighted distan
e d(x1, x

r
n) =

2(n − 1) = U for any r = 1, . . . , n + 1. Hen
e, opt(I ′) ≤ |V ∗| = opt(I).When we remove all nodes vi, i = 1, . . . , n from G′, the optimal 1-
enternode in the resulting graph is x1 with value U . Hen
e, opt(I ′) ≤ n. Let N ⊆ V ′be a node blo
ker. A

ording to the 
onstru
tion of G′, in order to obtain anoptimal 1-
enter node in G′ − N of value at least U , N 
annot 
ontain x1. If
N 
ontains nodes xℓ

i for a given i and ℓ, then N must 
ontains all the n + 1nodes xr
i for r = 1, . . . , n + 1, otherwise the value of an optimal solution for the1-
enter problem in G′ − N is the same as in G′ − (N\{xℓ

i}). Therefore, sin
e
opt(I ′) ≤ n, we 
an 
onsider in the following that N is in
luded in V . In the17



following, we prove by 
ontradi
tion that N forms a vertex 
over in G. Supposethat there exists an edge (vi, vj) ∈ E su
h that vi 6∈ N , vj 6∈ N and i < j. Byremoving N from G′, the optimal 1-
enter node is x1 with a maximum weighteddistan
e Dmax(x1) = d(x1, x
r
n) for any r = 1, . . . , n. We distinguish two 
ases:

• if vi = v1 then Dmax(x1) = dx1v1
+ dv1vj

+ dvjx1
j
+ d(x1

j , x
r
n) ≤ 1 + 0 + 0 +

2(n − j) ≤ 1 + 2n − 4 < 2(n − 1), 
ontradi
tion.
• if vi 6= v1 then Dmax(x1) ≤ d(x1, x

1
i ) + dx1

i
vi

+ dvivj
+ dvjx1

j
+ d(x1

j , x
r
n) ≤

2(i−1)+0+0+0+2(n−j) = 2(n−1)−2(j− i) < 2(n−1), 
ontradi
tion.Therefore N is a vertex 
over in G su
h that val(I, N) = val(I ′, N). Conse-quently, ε(I, N) = val(I,N)
opt(I) − 1 ≤ val(I′,N)

opt(I′) − 1 = ε(I ′, N), whi
h a
hieves theproof for p = 1.We now prove the statement for p ≥ 2. We use the same 
onstru
tion asabove in Theorem 7 for p ≥ 2 with U = 2(n − 1).Similarly to Min Node Blo
ker p-median, G′ is designed so as to ensurethat x1 and xh
1 , for h = 1, . . . , p− 1, will always be the optimal p-
enter nodes.Also, when we remove all nodes vi, i = 1, . . . , n from G′, the optimal p-
enternodes in the resulting graph is x1 and xh

1 , for h = 1, . . . , p − 1, with value
U . Hen
e, opt(I ′) ≤ n. Let N ⊆ V ′ be a node blo
ker. A

ording to the
onstru
tion of G′, in order to obtain an optimal p-
enter nodes in G′ − Nof value at least U , N 
annot 
ontain x1 and xh

1 , for h = 1, . . . , p − 1. If N
ontains nodes xℓ
i for a given i and ℓ, then N must 
ontains all the n + 1 nodes

xr
i for r = 1, . . . , n + 1, otherwise the value of an optimal solution for the p-
enter problem in G′ − N is the same as in G′ − (N\{xℓ

i}). Therefore, sin
e
opt(I ′) ≤ n, we 
an 
onsider in the following that N is in
luded in V . Therefore,as forMin Node Blo
ker 1-
enter, we prove that opt(I ′) ≤ opt(I) and that
val(I, N) = val(I ′, N). Consequently, ε(I, N) ≤ ε(I ′, N), whi
h a
hieves theproof for p ≥ 2. 25 Con
lusionsWe established in this paper negative results 
on
erning the approximation of kmost vital edges (nodes) and min edge (node) blo
ker versions of the p-medianand p-
enter lo
ation problems. An interesting open question would be to estab-lish positive results 
on
erning the approximability of these problems. Anotherinteresting perspe
tive is to �nd e�
ient exa
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