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Abstract

We study the NP-hard Shortest Path Most Vital Edges problem arising in the context
of analyzing network robustness. For an undirected graph with positive integer edge lengths
and two designated vertices s and t, the goal is to delete as few edges as possible in order
to increase the length of the (new) shortest st-path as much as possible. This scenario has
been studied from the viewpoint of parameterized complexity and approximation algorithms.
We contribute to this line of research by providing refined computational tractability as well
as hardness results. We achieve this by a systematic investigation of various problem-specific
parameters and their influence on the computational complexity. Charting the border between
tractability and intractability, we also identify numerous challenges for future research.

1 Introduction

Finding shortest paths in graphs is arguably among the most fundamental graph problems. We
study the case of undirected graphs with positive integer edge lengths within the framework of
“most vital edges” or (equivalently) “interdiction” or “edge blocker” problems. That is, we are
interested in the scenario where the goal is to delete (few) edges such that in the resulting graph the
shortest st-path gets (much) longer. This is motivated by applications in investigating robustness
and critical infrastructure in the context of network design. Our results provide new insights
with respect to classical, parameterized, and approximation complexity of this fundamental edge
deletion problem which is known to be NP-hard [3, 23]. In its decision version, the problem reads
as follows.

Shortest Path Most Vital Edges (SP-MVE)

Input: An undirected graph G = (V, E) with positive edge lengths τ : E → N, two
vertices s, t ∈ V , and integers k, ℓ ∈ N.

Question: Is there an edge subset S ⊆ E, |S| ≤ k, such that the length of a shortest st-path
in G − S is at least ℓ?

We set b := ℓ − distG(s, t) to be the number by which the length of every shortest st-path shall be
increased. If all edges have length one, then we say that the graph has unit-length edges. Naturally,
SP-MVE comes along with two optimization versions: Either delete as few edges as possible in
order to achieve a length increase of at least b (called Min-Cost SP-MVE) or obtain a maximum
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length increase under the constraint that k edges can be deleted (called Max-Length SP-MVE).
For an instance of SP-MVE or Max-Length SP-MVE we assume that k is smaller than the size
of any st-edge-cut in the input graph. Otherwise, removing all edges of a minimum-cardinality
st-edge-cut (which is polynomial-time computable) would lead to a solution disconnecting s and t.

Related work. Due to the immediate practical relevance, e.g. in supply [14, 16] and communi-
cation [22] networks, there are numerous studies concerning “most vital edges (and vertices)” and
related problems. We focus on shortest paths, but there are further studies for problems such as
Minimum Spanning Tree [4, 5, 13, 19, 27] or Maximum Flow [19, 31, 36], to mention only
two. With respect to shortest path computation, the following is known.

First, we mention in passing that a general result of Fulkerson and Harding [14] implies that
allowing the subdivision of edges instead of edge deletions as modification operation makes the
problem polynomial-time solvable. Notably, it also has been studied to find one most vital edge
of a shortest path; this can be solved in almost linear time [29].

Bar-Noy et al. [3] showed that SP-MVE is NP-complete. Khachiyan et al. [23] found polynomial-
time constant-factor inapproximability results for both optimization versions. For the case of
directed graphs, Israeli and Wood [21] provided heuristic solutions based on mixed-integer pro-
gramming together with experimental results. Pan and Schild [31] studied the restriction of the
directed case to planar graphs and again obtained NP-hardness results.

Baier et al. [2] studied a minimization variant of SP-MVE where edges, in addition to a length
value, also have a deletion cost associated with them. They refer to this problem as Minimum
Length-Bounded Cut (MLBC) and showed that it is NP-hard to approximate within a factor
of 1.1377 for ℓ ≥ 5. Moreover, they developed a polynomial-time algorithm for the special case
of b = 1. Further, they showed that MLBC with general edge-costs and edge-lengths remains
NP-hard on series-parallel and outerplanar graphs.

Golovach and Thilikos [17] studied SP-MVE with unit-length edges under the name Bounded
Edge Undirected Cut (BEUC) from a parameterized complexity point of view. They showed
that SP-MVE with unit-length edges is W[1]-hard with respect to k and that it is fixed-parameter
tractable with respect to the combined parameter (k, ℓ). Answering an open question of Golovach
and Thilikos [17], Fluschnik et al. [12] showed that SP-MVE with unit-length edges does not
admit a polynomial-size problem kernel with respect to (k, ℓ), unless NP ⊆ coNP/poly. Moreover,
the latter showed that SP-MVE remains NP-hard on planar graphs. Dvořák and Knop [10] also
studied SP-MVE with unit-length edges. They showed that the problem is W[1]-hard with respect
to pathwidth. On the positive side, they showed that the problem is fixed-parameter tractable
with respect to the treedepth of the input graph and with respect to ℓ and the treewidth tw of the
input graph combined. Upon the latter, they proved that SP-MVE does not admit a polynomial-
size problem kernel with respect to (ℓ, tw), unless NP ⊆ coNP/poly. Moreover, they developed an

algorithm running in nO(tw2) time, that is, they showed that the problem lies in the complexity
class XP when parameterized by tw. Kolman [24] studied SP-MVE and its vertex deletion variant.
He proved that both variants on planar graphs are fixed-parameter tractable when parameterized
by ℓ. Additionally, for the vertex-deletion variant, he developed an O(tw ·

√
log tw)-approximation

algorithm, which improves to a tw-approximation algorithm when the tree decomposition is given.

Our results. We perform an extensive study of multivariate complexity aspects [11, 30] of
SP-MVE. More specifically, we perform a refined complexity analysis in terms of how certain
problem-specific parameters influence the computational complexity of SP-MVE and its optimiza-
tion variants. The parameters we study include aspects of graph structure as well as special
restrictions on the problem parameters. We also report a few findings on (parameterized) approx-
imability. Let us feature three main conclusions from our work: First, it is known that harming
the network only a little bit (that is, b = 1) is doable in polynomial time [2] while we show that
harming the network slightly more (that is, b ≥ 2) becomes NP-hard. Second, the “cluster ver-
tex deletion number”, advocated by Doucha and Kratochv́ıl [9] as a parameterization between
vertex cover number and clique-width, currently is our most interesting parameter that yields
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Figure 1: The parameterized complexity of SP-MVE with unit-length edges with respect to
different graph parameters. Herein, “distance to X” denotes the number of vertices that have
to be deleted in order to transform the input graph into a graph of the graph class X . For two
parameters that are connected by a line, the upper parameter is weaker (that is, larger) than
the parameter below [25]. In the later sections we will only define the graph parameters that we
directly work with. Refer to Sorge and Weller [33] for formal definitions of all parameters.

k ℓ

related to XP NP-hard for b = 2 and ℓ = 9
polynomial time ℓ-approximation

related to fpt time
n/2O(

√
log n)-approximation r(n)-approximation for

for unit-length edges every increasing r

fpt with respect to combined parameter (k, ℓ)

Table 1: Overview on the computational complexity classification of SP-MVE on n-vertex graphs.

fixed-parameter tractability for SP-MVE with unit-length edges. Third, with general edge-lengths
SP-MVE remains NP-hard even on complete graphs. Figure 1 surveys our current understand-
ing of the parameterized complexity of SP-MVE with respect to a number of well-known graph
parameters, identifying numerous open questions. Moreover, towards the goal of spotting further
fixed-parameter tractable special cases, it also suggests to look for reasonable parameter combina-
tions. In addition, Section 1 overviews our exact and approximate complexity results for SP-MVE.
Figure 2 summarizes our understanding of the complexity of SP-MVE with unit-length edges on
several graph classes.

Organization of the paper. After introducing some preliminaries in Section 2, we prove in
Section 3 our NP-hardness results. In Section 4, we present our polynomial-time solvable spe-
cial cases. In Section 5, we provide parameterized and approximation algorithms for SP-MVE.
Conclusions and open questions are provided in Section 6.
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Figure 2: Computational complexity of SP-MVE with unit-length edges for some graph classes.
For SP-MVE with unit-length edges on proper interval graphs, we conjecture that it is solvable in
polynomial time.

2 Preliminaries

For an undirected graph G = (V, E) we set n := |V | and m := |E|. A path P of length r − 1 in G
is a sequence of distinct vertices P = v1-v2-. . .-vr with {vi, vi+1} ∈ E for all i ∈ {1, . . . , r − 1};
the vertices v1 and vr are the endpoints of the path. For 1 ≤ i < j ≤ r, we set viP vj to be the
subpath of P starting in vi and ending in vj , formally viP vj := vi-vi+1-. . .-vj . For i = 1 or j = r
we omit the corresponding endpoint, that is, we set P vj := v1P vj and viP := viP vr.For u, v ∈ V ,
a uv-path P is a path with endpoints u and v. The distance between u and v in G, denoted
by distG(u, v), is the length of a shortest uv-path. The diameter of G is the length of the longest
shortest path in G.

For v ∈ V let NG(v) be the set of neighbors of v and let NG[v] = NG(v) ∪ {v} be v’s closed
neighborhood. Two vertices u, v ∈ V are called true twins if NG[u] = NG[v] and false twins
if NG(u) = NG(v) but NG[u] 6= NG[v]; they are called twins if they are either true or false twins.
We denote by G − S the graph obtained from G by removing the edge subset S ⊆ E. For s, t ∈ V ,
an edge subset S is called st-cut if G − S contains no st-path. For V ′ ⊆ V let G[V ′] denote the
subgraph induced by V ′. For E′ ⊆ E let G[E′] denote the subgraph consisting of all endpoints of
edges in E′ and the edges in E′.

Parameterized complexity. A parameterized problem consisting of input instance I and pa-
rameter k is called fixed-parameter tractable (fpt) if there is an algorithm that decides any instance
(I, k) in f(k) · |I|O(1) time for some computable function f solely depending on k, where |I| denotes
the size of I. On the contrary, the parameterized complexity class XP contains all parameterized
problems that can be solved in |I|f(k) time; in other words, membership in XP means polynomial-
time solvability when the parameter value is a constant.

A core tool in the development of fixed-parameter tractability results is polynomial-time pre-
processing by data reduction, called kernelization [18, 26]. Here, the goal is to transform a given
problem instance (I, k) in polynomial time into an equivalent instance (I ′, k′) whose size is upper-
bounded by a function of k. That is, (I, k) is a yes-instance if and only if (I ′, k′) with |I ′|, k′ ≤ g(k)
for some function g is a yes-instance. Thus, such a transformation is a polynomial-time self-
reduction with the constraint that the reduced instance is “small” (measured by g(k)). If such a
transformation exists, then I ′ is called (problem) kernel of size g(k).
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Figure 3: A schematic representation of the graph G′ constructed from the tripartite graph G =
(V1 ⊎ V2 ⊎ V3, E). The vertices are grouped into the described sets. The edges in the picture
correspond to edge sets in G′ and cover the incidence structure of the displayed vertices in G′. A
bold edge indicates an edge-gadget and the corresponding number denotes its length.

Approximation. Given an NP optimization problem and an instance I of this problem, we
use opt(I) to denote the optimum value of I and val(I, S) to denote the value of a feasible
solution S of instance I. The approximation ratio of S (or approximation factor) is r(I, S) =

max
{

val(I,S)
opt(I) , opt(I)

val(I,S)

}

. For a function ρ, an algorithm A is a ρ(|I|)-approximation if for every

instance I of the problem, it returns a solution S such that r(I, S) ≤ ρ(|I|). If the problem comes
with a parameter k and the algorithm A runs in f(k) · |I|O(1) time, then A is called parameterized
ρ(|I|)-approximation.

3 NP-hardness results

In this section, we provide several hardness results for restricted variants of SP-MVE. We start by
adapting a reduction idea due to Khachiyan et al. [23] for the vertex deletion variant of SP-MVE.
We prove that SP-MVE is NP-hard even for constant values of b, ℓ, and the diameter of the input
graph.

Theorem 1. SP-MVE is NP-hard, even for unit-length edges, b = 2, ℓ = 9, and diameter 8.

Proof. As Khachiyan et al. [23, Theorems 8 and 11], we reduce from the NP-hard [15, GT1]
problem Vertex Cover on tripartite graphs, where the question is, given a tripartite graph G =
(V = V1 ⊎ V2 ⊎ V3, E) and an integer h ≥ 0, whether there is a subset V ′ ⊆ V with |V ′| ≤ h such
that G[V \V ′] contains no edge. While the fundamental approach remains the same, the technical
details when moving their vertex deletion scenario to our edge deletion scenario change to quite
some extent. We refrain from a step-by-step comparison. Given a Vertex Cover instance (G, h)
with G = (V1⊎V2⊎V3, E) being a tripartite graph on n vertices, we construct an SP-MVE instance
I ′ = (G′, k, ℓ) as follows. First, let k := h and ℓ := 9. The graph G′ = (V ′, E′) contains vertices
V ′ = V1 ⊎ V2 ⊎ V3 ⊎ V ′

2 ⊎ {s, t}, where s and t are two new vertices, and for each v ∈ V2 we add a
copy v′ ∈ V ′

2 .
Before describing the edge set E′, we introduce edge-gadgets. Here, by adding a length-α

edge-gadget eu,v, α ≥ 2, from the vertex u to vertex v, we mean to add n vertex-disjoint paths of
length α − 2 and to make u adjacent to the first vertex of each path and v adjacent to the last
vertex of each path. If α = 2, then each path is just a single vertex which is at the same time the
first and last vertex. The idea behind this is that one will never delete edges in an edge-gadget.

We add the following edges and edge-gadgets to G′ (see Figure 3 for a schematic representation
of the constructed graph). For each vertex v ∈ V2 we add the edge {v, v′} between v and its copy v′.
For each vertex v ∈ V1, we add the edge {s, v}, and for each vertex v ∈ V3, we add the edge {v, t}.

5



We also add the following edge-gadgets: For each edge {u, v} ∈ (V1 × V2) ∩ E we add the edge-
gadget eu,v of length two, for each edge {u, v} ∈ (V2 × V3) ∩ E we add the edge-gadget eu′,v of
length two, where u′ ∈ V ′

2 is the copy of u, and for each edge {u, v} ∈ (V1 × V3) ∩ E we add the
edge-gadget eu,v of length five. Furthermore, we add edge-gadgets of length four between s and
every vertex v ∈ V2 and between t and every vertex v′ ∈ V ′

2 . Observe that we have distG′(s, t) = 7
and thus b = ℓ − distG′(s, t) = 2.

We now show that G has a vertex cover of size at most h if and only if deleting k = h edges
in G′ results in s and t having distance at least ℓ = 9.

“⇒:” Let V ′′ ⊆ V be a vertex cover of size at most h in G. Consider the edge sets E′′
1 := {{s, v} :

v ∈ V1 ∩ V ′′}, E′′
2 := {{{v, v′} : v ∈ V2 ∩ V ′′, v′ ∈ V ′

2 copy of v}, and E′′
3 := {{v, t} : v ∈ V3 ∩ V ′′}.

We claim that for the set
E′′ = E′′

1 ∪ E′′
2 ∪ E′′

3

it holds that distG′−E′′(s, t) ≥ 9 and |E′′| = |V ′′| ≤ h. Clearly, |E′′| = |V ′′| ≤ h. Suppose towards
a contradiction that distG′−E′′(s, t) < 9. Let P be an st-path of length less than nine. Observe
that P contains an edge connecting s with some vertex in V1 or an edge connecting t with some
vertex in V3. We discuss only the first case, as the second follows by symmetry.

Let P contain an edge connecting s with vertex u in V1. Path P contains either (i) a subpath
of length three to vertex in V ′

2 , or (ii) a subpath of length five to a vertex in V3.
Case (i): Let u − a1 − a2 − v − v′, with v ∈ V2 and v′ ∈ V2 the copy of v, be a subpath of P ,

where a1, a2 are vertices in an edge-gadget eu,v. Then {u, v} ∈ E and u, v 6∈ V ′′, as {s, u} 6∈ E′′
1

and {v, v′} 6∈ E′′
2 , contradicting that V ′′ is a vertex cover of G.

Case (ii): Let u − a1 − . . .− a5 − v with v ∈ V3 be a subpath of P , where a1, . . . , a5 are vertices
in an edge-gadget eu,v. As P is of length less than 9, it follows that P = s−u−a1 − . . .−a5−v − t.
Then {u, v} ∈ E and u, v 6∈ V ′′, contradicting that V ′′ is a vertex cover of G.

“⇐:” Let E′′ ⊆ E′ be a set of edges such that distG′−E′′(s, t) ≥ 9 and |E′′| ≤ h. If E′′ contains
edges from an edge-gadget eu,v, then it must contain at least n edges from this gadget in order to
have a chance to increase the solution value. Therefore, since h < n, we can assume that E′′ does
not contain any edge contained in an edge-gadget. Thus, E′′ ⊆ ({s} × V1) ∪ (V2 × V ′

2 ) ∪ (V3 × {t}).
We construct a vertex cover V ′′ for G as follows: For each edge {s, v} ∈ E′′ it follows that v ∈ V1

and we add v to V ′′. Similarly, for each edge {v, t} ∈ E′′ it follows that v ∈ V3 and we add v
to V ′′. Finally, for each edge {v, v′} ∈ E′′ ∩ (V2 × V ′

2), we add v to V ′′.
Suppose towards a contradiction, that V ′′ is not a vertex cover in G, that is, there exists an

edge {u, v} ∈ E with u, v /∈ V ′′. If v ∈ V1 and u ∈ V2, then the st-path s-v-u-u′-t of length 8 < ℓ
is contained in G′ − E′′. If v ∈ V1 and u ∈ V3, then the st-path s-v-u-t of length 7 < ℓ is contained
in G′ − E′′. Finally, if v ∈ V2 and u ∈ V3, then the st-path s-v-v′-u-t of length 8 < ℓ is contained
in G′ − E′′. Each of the three cases contradicts the assumption that distG′−E′′(s, t) ≥ 9.

Baier et al. [2] showed that SP-MVE is polynomial-time solvable for the special case of b = 1.
Theorem 1 shows that this result cannot be extended to larger values of b. Regarding the diameter
of the input graph, the statement of Theorem 1 will be strengthened later: Considering the problem
with unit-length edges, we show that it remains NP-hard on graphs of diameter three (Theorem 4),
while it becomes polynomial-time solvable on graphs of diameter two (Proposition 1). For arbitrary
edge lengths, we show that the problem remains NP-hard on graphs of diameter one (Theorem 5).

When allowing length zero edges, Khachiyan et al. [23] stated that it is NP-hard to approximate
Max-Length SP-MVE within a factor smaller than two. We consider in this paper only positive
edge lengths and, by adapting the construction given in the above proof by considering edge-
gadgets of lengths polynomial in n (with high degree), we obtain the following.

Theorem 2. Unless P = NP, Max-Length SP-MVE is not 4/3 − 1/ poly(n)-approximable in
polynomial time, even for unit-length edges.

Proof. We construct a gap-reduction [1] from Vertex Cover on tripartite graphs to Max-
Length SP-MVE. More specifically, we use a gap-reduction from a decision problem to a max-
imization problem. A decision problem Π is called gap-reducible to a maximization problem Π′
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Figure 4: A schematic representation of the graph G′ constructed from the tripartite graph G =
(V1 ⊎ V2 ⊎ V3, E). The vertices are grouped to the used sets. The edges in the picture correspond
to edge sets in G′ and cover the incidence structure of the displayed vertices in G′. A bold edge
indicates an edge-gadget and the corresponding number denotes its length.

with gap ρ(|I|) > 1 if for any instance I of Π we can construct an instance I ′ of Q in polynomial
time while satisfying the following properties for some function c : N → R ∩ (0, +∞).

• If I is a yes-instance, then opt(I ′) ≥ c(|I|).

• If I is a no-instance, then opt(I ′) < c(|I|)
ρ(|I|) .

The idea behind a gap-reduction is that if Π is NP-hard then Π′ is not approximable within a
factor ρ provided that P 6= NP.

Starting with an instance (G = (V, E), h) of Vertex Cover on tripartite graphs we construct
an instance I ′ = (G′ = (V ′, E′), k, s, t) of Max-Length SP-MVE as in the proof of Theorem 1.
We only change some lengths as follows (see also Figure 4): For each edge {u, v} ∈ (V1 × V2) ∩ E
we add the edge-gadget eu,v of length x, for each edge {u, v} ∈ (V2 × V3) ∩ E we add the edge-
gadget eu′,v of length x, where u′ ∈ V ′

2 is the copy of u, and for each edge {u, v} ∈ (V1 × V3) ∩ E
we add the edge-gadget eu,v of length 3x. We add edge-gadgets of length 2x between s and every
vertex v ∈ V2 and between t and every vertex v′ ∈ V ′

2 . The value x could be any polynomial
function in |V | = n. Observe that we have distG′(s, t) ≤ 3x + 2.

We now show that if G has a vertex cover of size at most h, then opt(I ′) ≥ 4x + 1, otherwise
opt(I ′) ≤ 3x + 2.

Let V ′′ ⊆ V be a vertex cover of size at most h in G. It is not hard to verify (see proof
of Theorem 1) that for the set E′′ = {{s, v} : v ∈ V1 ∩ V ′′} ∪ {{v, v′} : v ∈ V2 ∩ V ′′, v′ ∈
V ′
2 copy of v} ∪ {{v, t} : v ∈ V3 ∩ V ′′} it holds that distG′−E′′(s, t) = 4x + 1 and |E′′| = |V ′′| ≤ h.

Suppose now that G has no vertex cover of size h. Let E′′ ⊆ E′ be a set of h edges. As in
the proof of Theorem 1, we can assume that E′′ does not contain any edge from an edge-gadget.
Thus E′′ ⊆ ({s} × V1) ∪ (V2 × V ′

2) ∪ (V3 × {t}). We construct a vertex set V ′′ for G as follows: For
each edge {s, v} ∈ E′′, we add v to V ′′ and for each edge {v, t} ∈ E′′, we add v to V ′′. Finally,
for each edge {v, v′} ∈ E′′ ∩ (V2 × V ′

2), we add v to V ′′.
Since V ′′ is not a vertex cover in G, there exists an edge {u, v} ∈ E with u, v /∈ V ′′. If v ∈ V1

and u ∈ V2, then the st-path s-v-u-u′-t of length 3x + 2 is contained in G′ − E′′. If v ∈ V1

and u ∈ V3, then the st-path s-v-u-t of length 3x + 2 is contained in G′ − E′′. Finally, if v ∈ V2

and u ∈ V3, then the st-path s-v-v′-u-t of length 3x + 2 is contained in G′ − E′′.
Since Vertex Cover is NP-hard on tripartite graphs [15, GT1], Max-Length SP-MVE is

not 4x+1
3x+2 = 4/3 − 1/ poly(n)-approximable in polynomial time.

Concerning special graph classes, we can show that the problem remains NP-hard on restricted
bipartite graphs. To formulate our result, we need the graph parameter degeneracy. A graph G
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has degeneracy d if every subgraph of G contains a vertex of degree at most d. By subdividing
every edge, we obtain the following.

Theorem 3. SP-MVE is NP-hard, even for bipartite graphs with degeneracy two, unit-length
edges, b = 4, ℓ = 18, and diameter 8.

Proof. We provide a self-reduction from SP-MVE with unit-length edges with b = 2, ℓ = 9, and
diameter 8. Let I = (G = (V, E), k, ℓ, s, t) be the given SP-MVE instance. We construct an
instance I ′ = (G′, k, 2ℓ, s, t) where G′ is obtained from G by subdividing all edges, that is, each
edge is replaced by a path of length two. The correctness of the reduction is easy to see as any
minimal solution contains at most one edge of each of the introduced induced paths of length two.
Clearly, I ′ can be computed in polynomial time. Furthermore, G′ is bipartite and has degeneracy
two.

We next prove that SP-MVE remains NP-hard on split graphs. A split graph is a graph whose
vertex set can be partitioned into a clique and an independent set. Observe that a split graph
has diameter at most three. Thus, the next theorem also shows NP-hardness on diameter-three
graphs.

Theorem 4. SP-MVE is NP-hard on split graphs, even for unit-length edges.

Proof. We reduce from SP-MVE on general graphs. Let I ′ := (G = (V, E), s, t, k, ℓ) be an instance
of SP-MVE, recall n = |V |. We obtain the graph G′ = (V ′, E′) from G by subdividing each edge
of G, and subsequently turning V (G) into a clique. Formally, the graph G′ = (V ′, E′) is defined
through

V ′ := V ∪ (W := {w
{u,v}
j | {u, v} ∈ E, j ∈ [n2]}),

E′ =

(

V

2

)

∪
{

{u, w
{u,v}
j }, {v, w

{u,v}
j } | {u, v} ∈ E, j ∈ [n2]

}

.

Observe that G′ is a split graph since G′[W ] forms an independent set and G′[V ] forms a clique.
Let I := (G′, s, t, k′, ℓ′) be an instance of SP-MVE on split graphs with k′ =

(

n
2

)

+ k · n2 and
ℓ′ := 2ℓ. We show that I is a yes-instance if and only if I ′ is a yes-instance.

Let I be a yes-instance. Let S ⊆ E(G) be such that G − S has no st-path of length smaller
than ℓ. We claim that G′ − S′ with

S′ :=

(

V

2

)

∪
{

{u, w
{u,v}
j } | {u, v} ∈ S, j ∈ [n2]

}

does not have an st-path of length smaller than ℓ′.
Note that |S′| ≤

(

n
2

)

+k ·n2. Suppose that there is an st-path P ′ in G′−S′ with |P ′| < 2ℓ. Then
the vertices in P ′ alternate between the vertices in V and W . By construction, if {v, w}, {w, u} ∈
E(P ′) with u, v ∈ V and w ∈ W , then the edge {u, v} is present in G − S. Hence, consider the
st-path P in G − S obtained from P ′ by restricting P ′ to V . It follows that |P | = |P ′|/2 < ℓ, a
contradiction to the choice of S. Thus I ′ is a yes-instance.

Conversely, let I ′ be a yes-instance. Let S′ ⊆ E(G′) be minimal such that G′ − S′ has no
st-paths of length smaller than ℓ′. We claim that G − S with

S :=
{

{u, v} | ∃w
{u,v}
j ∈ W, e ∈ S′ : w

{u,v}
j ∈ e

}

does not have an st-path of length smaller than ℓ. If {u, w
{u,v}
j } ∈ S′ for some u, v ∈ V and j ∈ [n2],

then for all i ∈ [n2], w
{u,v}
i is incident to exactly one edge in S′ since S′ is minimal (otherwise

S′\{u, w
{u,v}
j } is a smaller solution). Together with |S′| ≤

(

n
2

)

+ k · n2 < (k + 1) · n2 it follows that
|S| < k+1. Suppose there is an st-path P in G−S with |P | < ℓ. Then for each edge {u, v} ∈ E(P ),

there is a j ∈ [n2] such that {u, w
{u,v}
j }, {v, w

{u,v}
j } 6∈ S′. We construct an st-path P ′ in G′ − S′

from P by replacing each edge {u, v} ∈ E(P ) by two edges {u, w
{u,v}
j }, {v, w

{u,v}
j } 6∈ S′ for some

j ∈ [n2]. Then |P ′| ≤ 2 · |P | < 2 ·ℓ, a contradiction to the choice of S′. Thus I is a yes-instance.
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Note that SP-MVE can be solved on complete graphs with unit-length edges in polynomial
time. If ℓ = 1, then the instance is trivially a yes-instance. If ℓ = 2, one edge deletion is necessary
to obtain the desired distance. If ℓ > 2, then observe that for each vertex v ∈ V \ {s, t} the
path s − v − t has length two and all these paths are edge-disjoint. Hence, to increase the distance
between s and t to three, we have to delete n − 1 edges (the edge {s, t} and one edge in each
of the n − 2 paths of length two). However, with n − 1 edge deletions, one can delete all edges
incident to s and disconnect s from t, so this solution works for all ℓ > 2. Thus, if ℓ > 2, then the
instance is a yes-instance if and only if the number of edge-deletion is at least n − 1.

As soon as one deals with arbitrary edge lengths, however, the problem becomes NP-hard even
on complete graphs.

Theorem 5. SP-MVE remains NP-hard on complete graphs.

Proof. We reduce from SP-MVE on general graphs. Let I := (G = (V, E), s, t, k, ℓ) be an instance
of SP-MVE (w.l.o.g. let G not contain isolated vertices). Let G′ be the graph obtained from G
by adding the edge set E′ := {{v, w}|{v, w} 6∈ E} and assigning length τ(e) := ℓ + 1 to each edge
e ∈ E′. Observe that G′ is a complete graph. We claim that I ′ := (G′, s, t, k, ℓ) is a yes-instance
of SP-MVE if and only if I is a yes-instance of SP-MVE.

By construction, G is isomorphic to G′[E(G)]. This implies that for any S ⊆ E(G), there is a
bijection between the set of st-paths in G − S and the set of st-paths in G′[E(G)] − S. Observe
that every st-path in G′ using an edge in E(G′)\E(G) has length greater than ℓ. Hence, if there
is an S ⊆ E(G) such that there is no st-path in G − S of length smaller than ℓ, then there is no
st-path in G′ − S of length smaller than ℓ, and vice versa.

4 Polynomial-time algorithms

In this section, we present three polynomial-time algorithms for special cases of SP-MVE.
We start with considering instances of SP-MVE on series-parallel graphs with s and t being

the natural two terminals of the underlying two-terminal graph. Here, a two-terminal graph is
a triplet containing a graph and two distinct vertices of the graph (the terminals). Every two-
terminal series-parallel graph can be constructed by a sequence of parallel and serial compositions
starting from single edges where the endpoints of an edge are the two terminals. Given two
two-terminal series-parallel graphs G1 and G2 with terminals s1, t1 and s2, t2 respectively, then

1. G is a serial composition of G1 and G2 with terminals s1, t2 if G is the disjoint union of G1

and G2 where t1 is identified with s2.
2. G is a parallel composition of G1 and G2 with terminals s, t if G is the disjoint union of G1

and G2 where s1 is identified with s2 and t1 is identified with t2.
Moreover, we can construct for each two-terminal series-parallel graph G a so-called sp-tree in

linear time [7, 35], a binary rooted tree representing the serial and parallel composition of two-
terminal series-parallel graphs to obtain G. Herein, every leaf α of the sp-tree is identified with an
edge, and the label λ(α) of the leaf α is the set of the endpoints of the edge. Moreover, each inner
node α of the sp-tree is labeled by either λ(α) = S or λ(α) = P, representing a serial or parallel
composition, respectively.

Theorem 6. Min-Cost-SP-MVE can be solved in O(m · ℓ2) time on two-terminal series-parallel
graphs with s and t being the two terminals.

Proof. Let (G = (V, E), s, t) be a two-terminal series-parallel graph with edge lengths specified
by τ : E → N. Let (T, λ) be an sp-tree for G, where λ is the labeling of the nodes of T . We
identify each node α ∈ V (T ) with a two-terminal series-parallel graph Gα induced by the subtree
rooted at α. Recall that if ρ ∈ V (T ) is the root of T , then Gρ = G.

Let C[α, x] denote the minimum number of edges to delete in Gα such that there is no path of
length smaller than x connecting the two terminals. Observe that such an edge deletion set exists
for every x ∈ N, and its size is upper-bounded by the size of a minimum cut disconnecting the
terminals.
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Case 1: If α ∈ V (T ) is a leaf of T with λ(α) = {v, w}, then

C[α, x] =

{

1, if τ({v, w}) < x,

0, otherwise.

Correctness: In the graph Gα = ({v, w}, {{v, w}}), we have to delete the edge {v, w} to increase
the distance between v and w to x. This is possible if and only if τ({v, w}) < x.

Case 2: If α ∈ V (T ) is an inner node of T with λ(α) = S and children α1 and α2, then

C[α, x] = min
x′∈{0,...,x}

(C[α1, x′] + C[α2, x − x′]). (1)

Correctness: Let Gα, Gα1 , and Gα2 be the graphs corresponding to nodes α, α1, and α2 respec-
tively. Let v, w denote the terminals of Gα, and let v′, u′ and u′′, w′ be the terminals of Gα1 and
Gα2 respectively. Recall that Gα is the serial composition of Gα1 and Gα2 , thus Gα is obtained
by identifying u′ with u′′ as u, and setting v := v′ and w := w′.

Let S ⊆ E(Gα) be a set of C[α, x] edges such that there is no vw-path of length smaller than x
in Gα − S. Since Gα is the serial composition, S = S1 ∪ S2 with S1 ⊆ E(Gα1) and S2 ⊆ E(Gα2 ).
Then there is x∗ ∈ {0, . . . , x} with distGα1−S1(v′, u′) ≥ x∗ and distGα2−S2(u′′, w′) ≥ x − x∗ since
every vw-path contains u. It follows that

C[α, x] = |S| = |S1| + |S2| ≥ min
x′∈{0,...,x}

(C[α1, x′] + C[α2, x − x′]).

Conversely, let x∗ ∈ {0, . . . , x} be such that the expression in Equation (1) is minimum. Let
S1 ⊆ E(Gα1) and S2 ⊆ E(Gα2 ) with |S1| = C[α1, x∗] and |S2| = C[α2, x − x∗] such that there is
no v′u′-path of length smaller than x∗ in Gα1 −S1 and no u′′w′-path of length smaller than x−x∗

in Gα2 − S2. Let S := S1 ∪ S2. Since every vw-path in G contains the vertex u, it follows that
distG−S(v, w) = distG−S(v, u) + distG−S(u, w) ≥ x∗ + x − x∗ = x. It follows that

min
x′∈{0,...,x}

(C[α1, x′] + C[α2, x − x′]) = |S1| + |S2| = |S| ≥ C[α, x].

Case 3: If α ∈ V (T ) is an inner node of T with λ(α) = P, and children α1 and α2, then

C[α, x] = C[α1, x] + C[α2, x].

Correctness: Let Gα, Gα1 , and Gα2 be the graphs corresponding to nodes α, α1, and α2, respec-
tively. Let v, w denote the terminals of Gα, and let v′, w′ and v′′, w′′ be the terminals of Gα1 and
Gα2 respectively. Recall that Gα is the parallel composition of Gα1 and Gα2 , thus Gα is obtained
by identifying v′ with v′′ as v and w′ with w′′ as w.

Let S ⊆ E(Gα) be a set of C[α, x] edges such that there is no vw-path of length smaller than x
in Gα − S. Since Gα is the parallel composition, it holds that S = S1 ∪ S2 with S1 ⊆ E(Gα1) and
S2 ⊆ E(Gα2 ). Observe that there is a vw-path of length smaller than x in G − S if and only if
there is a v′w′-path or a v′′w′′-path of length smaller than x in Gα1 − S1 or in Gα2 − S2. The
observation follows immediately from the definition of parallel compositions and the fact that v′

is identified with v′′ as v and w′ is identified with w′′ as w. It follows that

C[α, x] = |S| = |S1| + |S2| ≥ C[α1, x] + C[α2, x].

Conversely, let S1 ⊆ E(Gα1 ) and S2 ⊆ E(Gα2) with |S1| = C[α1, x] and |S2| = C[α2, x] such
that there is no v′w′-path of length smaller than x in Gα1 −S1 and no v′′w′′-path of length smaller
than x in Gα2 − S2. Let S := S1 ∪ S2. Following the preceding observation, we obtain

C[α1, x] + C[α2, x] = |S1| + |S2| = |S| ≥ C[α, x].

We consider C as a table in the remainder. We fill C in post-order on T , that is, whenever
the entries for an inner node are to be filled, the entries of the child nodes are filled before. By
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the correctness of the cases above, if ρ ∈ V (T ) denotes the root of T , then C[ρ, ℓ] denotes the
minimum number of edge deletions such that there is no st-path in G of length smaller than ℓ.

Since every edge in G one-to-one corresponds to a leaf in T , there are O(m) nodes in T . Hence,
the table C has O(m · ℓ) entries. In Case 2, we have to find a minimum in O(ℓ) time. Altogether,
the algorithm takes O(m · ℓ2) time.

Remark 1. With a similar dynamic programming approach one can show an algorithm solving
Max-Length SP-MVE in O(m · k2) time, see Stahlberg [34, Theorem 8.4] for details. Further-
more, both the O(m ·ℓ2)-time algorithm above and the O(m ·k2)-time algorithm extend to the case
where the edges have integral edge-deletion costs. This problem variant with both edge-deletion
costs and edge lengths was shown to be (weakly) NP-hard on series-parallel graphs with s and t
being the two terminals by Baier et al. [2]. The two algorithms above complement this with
fixed-parameter tractability with respect to each k and ℓ.

In Theorem 4 we showed that SP-MVE with unit-length edges on split graphs remains NP-
hard. Since split graphs are of diameter at most three, SP-MVE with unit-length edges remains
NP-hard on graphs of diameter at least three. The last result of this section shows that this bound
on the diameter is strict.

Proposition 1. SP-MVE with unit-length edges is linear-time solvable on graphs of diameter at
most two.

Proof. Itai et al. [22] proved that for ℓ ≤ 4, SP-MVE with unit-length edges is solvable in polyno-
mial time. Hence, it remains to consider the case where ℓ ≥ 5.

Payne et al. [32] showed that in any graph H of diameter two, for each pair of distinct vertices
v, w ∈ V (H), there are min{deg(v), deg(w)} many edge-disjoint paths of length at most four.
Hence, to achieve a distance of five or more between s and t we have to delete min{deg(s), deg(t)}
edges, which is sufficient to cut s from t. Thus, any instance (G, s, t, k, ℓ) with ℓ ≥ 5 and G being
a graph of diameter two is a yes-instance if and only if k ≥ min{deg(s), deg(t)}. This can be
decided in linear time.

Observe that each connected component of a cograph (a graph without an induced P4) has
diameter two. Note that threshold graphs are cographs. Thus, the preceding result also shows
that SP-MVE with unit-length edges is linear-time solvable on cographs and threshold graphs.

5 Algorithms for some NP-hard cases

In this section, we present fixed-parameter and approximation algorithms. First, we consider
bounded-degree graphs. Here, the basic observation is that the maximum vertex degree ∆ of a
graph upper-bounds the number of deleted edges for SP-MVE: a budget of ∆ would allow to
disconnect s from t by deleting all edges incident to s.

Proposition 2. SP-MVE can be solved in O(m∆−1(m + n log n)) time.

Proof. Recall that we assume k to be smaller than the maximum degree ∆ as otherwise we could
simply delete all edges incident to s. The straightforward algorithm branching into all O(mk)
cases to delete at most k edges and checking with Dijkstra’s shortest path algorithm whether the
distance between s and t is high enough runs in O(mk(m + n log n)) = O(m∆−1(m + n log n))
time.

The question whether one can replace m∆−1 by f(∆) · mO(1) for some function f , that is,
whether SP-MVE is not only in XP (as shown by Proposition 2) but also fixed-parameter tractable
with respect to ∆, remains open.

Golovach and Thilikos [17] used a search tree algorithm to show that SP-MVE is fixed-
parameter tractable when combining the parameters number k of removed edges and minimum
st-path length ℓ to be achieved. We next state the result and describe the search tree since we
will adapt it in the following.
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Proposition 3 (Golovach and Thilikos [17]). SP-MVE can be solved in O((ℓ − 1)k · (n log n + m))
time.

Proof. We employ a simple depth-bounded search tree: the basic idea is to search for a shortest
st-path and to “destroy” it by deleting one of the edges (trying all possibilities). This is repeated
until every shortest st-path has length at least ℓ. For each such shortest path, we branch into at
most ℓ − 1 possibilities to delete one of its edges, and the depth of the corresponding search tree is
at most k (our “deletion budget”) since otherwise we cannot find a solution with at most k edge
deletions. The correctness is obvious. Hence, we arrive at a search tree of size at most (ℓ − 1)k

where in each step we need to compute a shortest path. Using Dijkstra’s shortest algorithm, this
can be done in O(n log n+m) time. The overall running time is thus O((ℓ−1)k ·(n log n+m)).

Using the search tree described in the proof of Proposition 3 to destroy all paths of length at
most 2O(

√
log n) yields the following.

Corollary 1. For any constant c, Max-Length SP-MVE with unit-length edges can be approx-
imated within a factor of n/2c·

√
log n in O(2k2

k(n log n + m) + nc2+3) time.

Proof. We employ the search tree algorithm behind Proposition 3; it has size O((ℓ−1)k). The idea
now is to either compute an optimal solution in fpt-time or to derive the stated approximation in
polynomial time.

Our parameterized approximation algorithm works as follows. Trying ℓ = 1, 2, . . . , g(n) (where
g(n) is determined below) we employ the search tree to detect whether there is an optimal solution
of length smaller than g(n). Namely, if the search tree for some ℓ-value says no, then we know
that we found an optimal solution with the previous search tree and output this. Otherwise, we
reach ℓ = g(n) and thus, since the optimal value is at most n − 1, this means that we have a
factor-n/g(n)-approximation.

Overall, this procedure has at most g(n) iterations and each has a running time of O(g(n)k ·
(n log n+m)). It remains to determine for which (maximum) function g(n) this still yields fpt run-
ning time for parameter k. First, if k > log(g(n)), then g(n)k = 2k·log g(n) can be upper-bounded

by 2k2

and we are done. Second, if k ≤ log(g(n)), then we have that g(n)k ≤ g(n)log(g(n)) =

2(log(g(n))2 . The latter term is polynomial if and only if g(n) = 2O(
√
log n). More precisely, if for

any constant c we have g(n) = 2c·√log n, then we get the bound 2(log(g(n))2 ≤ nc2

. In total the

running time in this second case is bounded by O(nc2+3).

By deleting every edge on too short st-paths, we obtain an ℓ-approximation.

Proposition 4. Min-Cost SP-MVE can be approximated within a factor of ℓ in O(n2 log n+nm)
time.

Proof. Let I = (G = (V, E), ℓ, s, t, τ) be an instance of Min-Cost SP-MVE. We repeat the
following algorithm until the shortest st-path has length at least ℓ. Set G′ := G and let P be a
shortest st-path in G′. If the length τ(P ) of P is less than ℓ, then set G′ := G′−E(P ) and proceed.
Denote by i the number of iterations the algorithm realizes. Let E′′ be the set of all edges of the i
shortest paths removed from G. The size of E′′ is |E′′| ≤ iℓ since at each step at most ℓ edges are
deleted. Moreover, opt(I) ≥ i since an optimal solution contains at least one edge of each of these
i paths. The number of iteration is at most n and each iteration can be done in O(n log n + m)
time.

Baier et al. [2, Corollary 3.14] provided a b-approximation algorithm for Min-Cost SP-MVE
running in O(b · n · m) time. Observe that our approximation algorithm in Proposition 4 provides
a weaker approximation factor but a faster running time.

Combining the previous approximation algorithm with a tradeoff between running time and
approximation factor [6, Lemma 2], we obtain the following.

Corollary 2. For every increasing function r, Min-Cost SP-MVE is parameterized r(n)-approximable
with respect to the parameter ℓ.
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Parameter feedback edge set number. We next provide a linear-size problem kernel for
SP-MVE parameterized by the feedback edge set number. An edge set F ⊆ E is called feedback
edge set for a graph G = (V, E) if G − F is a tree or a forest. The feedback edge set number
of G is the size of a minimum feedback edge set. Note that if G is connected, then the feedback
edge set number equals m − n + 1. Computing a spanning tree, one can determine a minimum
feedback edge set in linear time. Hence, we assume in the following that we are given a feedback
edge set F with |F | = f for our input instance (G = (V, E), k, ℓ, s, t, τ). We start with two simple
data reduction rules dealing with degree-one and degree-two vertices.

Rule 1. Let (G = (V, E), k, ℓ, s, t, τ) be an SP-MVE instance and let v ∈ V \ {s, t} be a vertex of
degree one. Then, delete v.

The correctness of Rule 1 is obvious as no shortest path uses a degree-one vertex. We deal
with degree-two vertices as follows.

Rule 2. Let (G = (V, E), k, ℓ, s, t, τ) be an SP-MVE instance and let v ∈ V \ {s, t} be a ver-
tex of degree two with NG(v) = {u, w} and {u, w} /∈ E. Then add the edge {u, w} with the
length τ({u, w}) := τ({u, v}) + τ({v, w}) and delete v.

The correctness of Rule 2 follows from the fact that on an induced path at most one edge will
be deleted and it does not matter which one will get deleted. Applying both rules exhaustively
can be done in linear time and leads to the following problem kernel.

Theorem 7. SP-MVE admits a linear-time computable problem kernel with 5f+2 vertices and 6f+
2 edges.

Proof. Let (G = (V, E), k, ℓ, s, t, τ) be the input instance of SP-MVE. First, we exhaustively apply
Rules 1 and 2. It remains to upper-bound the size of the reduced graph G′. To this end, first
observe that G′ contains at most f degree-two vertices as every degree-two vertex that is not
deleted by Rule 2 has two neighbors that are adjacent to each other and thus induces together
with its neighbors a cycle. It remains to upper-bound the number of vertices with degree at least
three. To this end, let r denote the number of leaves in the tree G′ − F . Thus, G′ − F contains
at most r − 2 vertices of degree at least three. Due to Rule 1, G′ contains at most two degree-one
vertices (s and t) and, hence, r ≤ 2f + 2. Furthermore, there are at most 2f degree-three vertices
in G′ that are incident to an edge in F . Hence, G′ contains at most 4f + 2 vertices of degree at
least three. In total, G′ contains at most 5f + 2 vertices and, thus, 6f + 2 edges.

We now discuss the running time. To apply the rules, start with sorting the vertices by degree
in non-decreasing order. Since all degrees are smaller than n, the sorting can be done in O(n)
time using e. g. Bucket sort. Then, deleting all degree-one vertices and updating their neighbors’
degrees can be done in linear time. Similarly, once Rule 1 is no more applicable, the degree-two
vertices can be dealt with in similar fashion. Note that applying Rule 2 does not change the
degrees of the neighbors of the degree-two vertex. Thus, for each degree-two vertex removing it
and adding the extra edge can be done in constant time. Hence, the overall time to apply both
rules is linear.

By simply trying all possibilities to delete edges in the problem kernel and checking with
Dijkstra’s algorithm the distance between s and t, we obtain the following.

Corollary 3. SP-MVE can be solved in O(26f (n log n + m)) time where f is the feedback edge set
number.

Parameter cluster vertex deletion number. We now prove that SP-MVE restricted to unit-
length edges is fixed-parameter tractable with respect to the parameter cluster vertex deletion
number x. A graph G is a cluster graph if it is a disjoint union of cliques. A vertex set X ⊆ V
is called cluster vertex deletion set if G[V \ X ] is a cluster graph [20]. The cluster vertex deletion
number is the size of a minimum cluster vertex deletion set.
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Recall that SP-MVE with arbitrary edge lengths is NP-complete on complete graphs (see
Theorem 5). Thus, the algorithm presented below for the unit-length case cannot be extended to
the more general case with arbitrary edge lengths since a clique has cluster vertex deletion number
zero.

We assume in the following that for the input instance (G = (V, E), k, ℓ, s, t) we are given
a cluster vertex deletion set X of size x. If X is not already given, then we can compute X
in O(1.92x ·(n+m)) time [8]. Our algorithm is based on the observation that twins can be handled
equally in a solution. This follows from a more general statement provided in the following lemma.
It shows that for any set T ⊆ V \ {s, t} of vertices that have the same neighborhood in V \ T , we
can assume that we do not delete edges in G[T ] and that the vertices in T behave the same, that
is, one deletes either all edges or no edge between a vertex v ∈ V \ T and the vertices in T .

Lemma 1. Let G = (V, E) be an undirected graph with unit-length edges, let s, t ∈ V be two
vertices, and let T = {v1, . . . , vt} ⊆ V \{s, t} be a set of vertices such that NG(v1)\T = NG(v2)\T =
. . . = NG(vt) \ T . Then, for every edge subset S ⊆ E, there exists an edge subset S′ ⊆ E such
that distG−S′(s, t) ≥ distG−S(s, t), |S′| ≤ |S|, and NG[S′](v1) = NG[S′](v2) = . . . = NG[S′](vt).

Proof. Starting from the edge subset S ⊆ E, we construct S′ having the desired properties. To this
end, we abbreviate ℓ := distG−S(s, t). Let T ∈ V \ {s, t} be a set of vertices such that N(u) \ T =
N(v)\T for each pair u, v ∈ T . Assume that the vertices in T do not have the same neighborhood
in G[S]; otherwise, we simply set S′ := S. Let u ∈ T be a vertex that has in the graph (V, S) the
smallest degree of all vertices in T , that is, the vertex in T that is incident to the least number of
edges in S. Now, construct S′ as follows. First, initialize S′ as a copy of S. Second, remove all
edges of S′ that have both endpoints in T . Third, for each v ∈ T \ {u} remove all edges incident
to v from S and add for each edge {u, w} ∈ S the edge {v, w}. Summarizing, S′ is composed as
follows:

S′ := (S \ {{v, w} | v ∈ T \ {u} ∧ w ∈ V }) ∪
{{v, w} | v ∈ T \ {u} ∧ w ∈ V \ T ∧ {u, w} ∈ S}.

By construction of S′ we have |S′| ≤ |S|. Furthermore, we have NG[S′](v) = NG[S](u) \ T for
all v ∈ T and thus NG[S′](v) = NG[S′](v

′) for each pair v, v′ ∈ T . It remains to show that in G−S′

the distance between s and t is at least ℓ. To this end, assume by contradiction that G − S′

contains an st-path P of length less than ℓ. Since, by construction of S′, each edge in S \ S′ has
at least one endpoint in T , it follows that P contains at least one vertex of T . Let v and v′ be
the first respectively last vertex of T on P (possibly v = v′) and let w, w′ be the vertices before v
respectively after v′ on P , that is

P = s- . . . -w-v- . . . -v′-w′- . . . -t.

Since w, w′ /∈ T , NG(v) \ T = NG(v′) \ T , and NG[S′](v) = NG[S′](v
′), it follows that P w-v-w′P is

also an st-path with length less than ℓ in G − S′. Similarly, it follows that P ′ := P w-u-w′P is also
an st-path with length less than ℓ in G − S′ (where u is the vertex used in the construction of S′).
Since NG[S′](u) = NG[S](u) \ T it follows that {u, w}, {u, w′} /∈ S, implying that P ′ is an st-path
of length less than ℓ in G − S; a contradiction to the assumption that distG−S(s, t) = ℓ.

Using Lemma 1 we can show that SP-MVE with unit-length edges is linear-time fixed-parameter
tractable with respect to the parameter cluster vertex deletion number.

Theorem 8. SP-MVE with unit-length edges can be solved in 22
O(x)

(n + m) time where x is the
cluster vertex deletion number.

Proof. Let (G = (V, E), k, ℓ, s, t) be the input instance of SP-MVE and let X ⊆ V be a cluster
vertex deletion set of size x. Hence, G − X is a cluster graph and the vertex sets C1, . . . , Cr form
the cliques (clusters) for some r ∈ N. We set C := {C1, . . . , Cr}. Assume that there is an SP-MVE
solution S ⊆ E of size at most k; otherwise the algorithm will output ‘no’ as it finds no solution.
We describe an algorithm that finds S.
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Our algorithm is based on the following observation. Let P be an arbitrary shortest st-path
that goes through a clique C ∈ C in G − S. Then, P contains at most 2x vertices from C: By
Lemma 1, we can assume that the twins in G are still twins in G − S. Since P is a shortest path,
P does not contain two vertices that are twins. As the vertices in C form a clique, they only differ
in how they are connected to vertices in X . Thus, C contains at most 2x “different” vertices, that
is, vertices with pairwise different neighborhoods.

Now, consider two non-adjacent vertices u, v ∈ X . From the above considerations it follows
that in G − S a uv-path avoiding the vertices in X has length between one and 2x + 1 as it can
pass through at most one clique. Our algorithm tries for each vertex pair from X all possibilities
for the distance it has in G − S and then tries to realize the current possibility. After the current
possibility is realized, the cliques in C are obsolete and thus the instance size can be upper-bounded
in a function of x. More precisely, our algorithm works as follows:

1. Branch into all possibilities to delete edges contained in G[X ]. Decrease the budget k
accordingly.

2. Branch into all possibilities to add for each pair u, v of non-adjacent vertices in X an edge
with a length lying in {2, 3, . . . , 2x, 2x + 1, ∞} and indicating the length of a shortest path
between u and v that does not contain any vertex in X .

3. Delete for each clique containing neither s nor t the minimum number of edges to ensure
that a shortest path between each pair of vertices in X is completely contained in G[X ].
Decrease the budget k accordingly.

4. Remove all cliques except the ones that contain s or t. Do not change the budget k.

5. Solve the problem on the remaining graph with the remaining budget (that was not spent
in Steps 1 and 3).

Note that Step 2 is performed for each possibility in Step 1. Hence, in Steps 1 and 2 at most
2x2 · (2x + 1)x2

possibilities are considered and for each of these possibilities Step 3 is invoked.
In Step 3, the algorithm tries to realize the prediction made in Step 2. To this end, let C ∈ C

be a clique containing neither s nor t. The algorithm branches into all possibilities to delete edges
in G[C] or edges with one endpoint in C and the other endpoint in X . Since G[C] contains at

most 2x different vertices, it follows from Lemma 1 that at most 2(2
x)2+2x·x = 2(4

x)+2x·x possi-
bilities need to be considered to delete edges. For each possibility, the algorithm checks in xO(1)

time whether all shortest paths between a pair of vertices of X go through C. If yes, then the
algorithm discards the currently considered branch; if no, then the current branch is called valid.
From all valid branches for C, the algorithm picks the one that deletes the minimum amount of
edges and proceeds with the next clique. Observe that since X is a vertex separator for all cliques
in C, the algorithm can solve Step 3 for each clique independently of the outcome in the other

cliques. Hence, the overall running time for Step 3 is 22
O(x) · n as |C| ≤ n.

As discussed above, the cliques in C containing neither s nor t are now obsolete as there is
always a shortest path avoiding these cliques. Hence, the algorithm removes these cliques (Step 4).
This can be done in linear time. The remaining instance consists of the vertices in X and the at
most two cliques containing s and t. As the algorithm deleted the edges within G[X ] in Step 1,
it remains to consider deleting edges within the two cliques or between the two cliques and the
vertices in X . Again, by Lemma 1, the algorithm only needs to branch into 22·(4

x+x·2x) possibilities
to delete edges and check for each branch whether s and t have distance at least ℓ and the overall
budget k is not exceeded. If one branch succeeds, then the algorithm found a solution and returns
it. If no branch succeeds, then there exists no solution of size k since the algorithm performed an

exhaustive search. Overall, the running time is 22
O(x) · (n + m).

Obviously, it would be interesting to improve the above algorithm by obtaining linear-time
fixed-parameter tractability with a single-exponential-time algorithm.
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6 Conclusion

The Shortest Path Most Vital Edges (SP-MVE) problem is a natural edge deletion problem
that is amenable to a rich body of fine-grained (multivariate) computational complexity analysis.
Such a study has been initiated here, identifying numerous challenges for future work. Figure 1
in the introductory section depicts a wide range of graph parameters for which the parameterized
complexity status of SP-MVE is unknown. Also concerning the approximation point of view
not much is known. There is a huge gap between the known lower and upper bounds of the
approximation factor achievable in polynomial time. Further, from a practical point of view it
would make sense to extend our studies by restricting the input to planar graphs [12, 31]—here
one might hope for further fixed-parameter tractability results. Moreover, the complexity of SP-
MVE remains open even for highly structured graphs such as interval or proper interval graphs;
we conjecture that SP-MVE is polynomial-time solvable on proper interval graphs [34]. Finally,
also in terms of parameterized approximability [28] Shortest Path Most Vital Edges offers
a number of interesting challenges for future work.
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[32] M. S. Payne, A. Pór, P. Valtr, and D. R. Wood. On the connectivity of visibility graphs.
Discrete & Computational Geometry, 48(3):669–681, 2012. 11

[33] M. Sorge and M. Weller. The graph parameter hierarchy. Manuscript, 2013. URL
http://fpt.akt.tu-berlin.de/msorge/parameter-hierarchy.pdf. 3

[34] M. Stahlberg. Finding the most vital edges for shortest paths — algorithms and
complexity for special graph classes, Bachelor’s thesis, TU Berlin, 2016. URL
http://fpt.akt.tu-berlin.de/publications/theses/BA-maximilian-stahlberg.pdf.
4, 11, 16

[35] J. Valdes, R. E. Tarjan, and E. L. Lawler. The recognition of series parallel digraphs. SIAM
Journal on Computing, 11(2):298–313, 1982. 9

[36] R. K. Wood. Deterministic network interdiction. Mathematical and Computer Modeling, 17
(2):1–18, 1993. 2

17

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

