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Abstract

This paper investigates the complexity of the min-max and min-max regret assignment

problems both in the discrete scenario and interval data cases. We show the strong NP -

hardness of the min-max and min-max regret versions of the assignment problem when

the number of scenarios is not bounded by a constant. We also show that the interval

data min-max regret assignment problem is strongly NP -hard.
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1 Introduction

Min-max and min-max regret optimization deal with optimization problems where some nu-
merical parameters occurring in the objective function are imprecise or uncertain. A possible
assignment of values to these numerical parameters is called a scenario. Each scenario s can
be represented as a vector in IRm where m is the number of relevant numerical parameters.
In min-max optimization, the aim is to find a solution having the best worst case value across
all scenarios. In min-max regret problem, it is required to find a feasible solution minimizing,
over all possible scenarios, the maximum deviation of the value of the solution from the opti-
mal value of the corresponding scenario. Two natural ways of describing the set of all possible
scenarios S have been considered in the literature. In the discrete scenario case, S is described
explicitly by the list of all vectors s ∈ S. In the interval data case, each numerical parameter
can take any value between a lower and upper bound, independently of the values of the other
parameters. Thus, in this case, S is the cartesian product of the intervals of uncertainty for
the parameters.

Min-max and min-max regret versions of various optimization problems have been studied
both in the discrete scenario and interval data cases. Kouvelis and Yu, who mainly focused on
the discrete scenario case, report in their book [8] motivations, various applications, complex-
ity results and algorithms for min-max and min-max regret versions of various optimization
problems. More recently, extensive research has been devoted to the interval data case for min-
max regret versions of various optimization problems including shortest path [7, 4], minimum
spanning tree [10, 4, 1], location [2] and resource allocation problems [3].
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In this paper, we study the complexity of the discrete scenario and the interval data min-
max and min-max regret assignment problems. In the classical assignment problem, the goal
is to find an assignment of minimum total cost of agents to tasks without assigning an agent
more than once and ensuring that all tasks are completed. The classical assignment problem
is polynomially solvable [9].

According to our knowledge, the only result known up to now concerning min-max and
min-max regret assignment problems is by Kouvelis and Yu [8] who showed that in the discrete
scenario case both problems are NP -hard even for instances with only two scenarios. We show
in this paper that both problems are strongly NP -hard when the number of scenarios is not
bounded by a constant. In the interval data case, the min-max assignment problem is easily
shown to be polynomial, whereas the min-max regret assignment problem is proved to be
strongly NP -hard in general, with some specific polynomial cases.

After introducing some preliminaries in the next section, we develop a general reduction
and state some of its properties in Section 3. This central reduction is used to establish results
both in the discrete scenarios case (Section 4) and in the interval data case (Section 5). Final
remarks are provided in Section 6.

2 Preliminaries

Let us consider an instance of a minimization problem Q and let X be the set of its feasible
solutions. We denote by val(x, s) =

∑m
i=1 sixi the value of solution x ∈ X under scenario

s ∈ S. In the interval data case, we assume that each coefficient si can take any value in the
interval [si, si].

The min-max optimization problem corresponding to Q consists of finding a solution x

having the best worst case value across all scenarios, which can be stated as:

min
x∈X

max
s∈S

val(x, s)

The regret R(x, s) of a solution x ∈ X under a scenario s ∈ S is defined as follows:

R(x, s) = max
y∈X

{val(x, s) − val(y, s)}

The maximum regret Rmax(x) of solution x is defined as

Rmax(x) = max
s∈S

R(x, s)

The min-max regret optimization problem corresponding to Q consists of finding a solution
x minimizing the maximum regret Rmax(x), or equivalently

min
x∈X

Rmax(x) = min
x∈X

max
y∈X
s∈S

{val(x, s) − val(y, s)}

Given a complete bipartite graph G = (V, E) with a bipartition V = V1 ∪ V2 and |V1| =
|V2| = n and costs cij associated with each edge (i, j) ∈ E, the assignment problem consists of
determining a perfect matching of minimum total cost. Equivalently, the assignment problem
can be formulated as follows:
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min val(a, c) =
n∑

i=1

n∑

j=1

cijaij

s.t. a ∈ A = {aij ∈ {0, 1} (i = 1, . . . , n; j = 1, . . . , n) :
n∑

i=1

aij = 1, (j = 1, . . . , n)

n∑

j=1

aij = 1, (i = 1, . . . , n)}

We consider in this paper the discrete scenario and interval data cases for min-max and
min-max regret assignment problems. The decision versions of these problems are defined
respectively as follows:

Discrete Min-Max Assignment

Input: A complete bipartite graph G = (V, E) with bipartition V = V1∪V2 and |V1| = |V2| =
n, a set C of scenarios (all edge costs are assumed to be positive in all scenarios in C), and a
nonnegative integer k.
Question: Is there an assignment a with maxc∈C val(a, c) ≤ k?

Discrete Min-Max Regret Assignment

Input: A complete bipartite graph G = (V, E) with bipartition V = V1∪V2 and |V1| = |V2| =
n, a set C of scenarios (all edge costs are assumed to be positive in all scenarios in C), and a
nonnegative integer r.
Question: Is there an assignment a with Rmax(a) ≤ r?

Interval Min-Max Assignment

Input: A complete bipartite graph G = (V, E) with bipartition V = V1∪V2 and |V1| = |V2| =
n, lower and upper nonnegative integer bounds cij , and cij for each edge (i, j) ∈ E, and a
nonnegative integer r.
Question: Is there an assignment a with maxc∈C val(a, c) ≤ k?

Interval Min-Max Regret Assignment

Input: A complete bipartite graph G = (V, E) with bipartition V = V1∪V2 and |V1| = |V2| =
n, lower and upper nonnegative integer bounds cij , and cij for each edge (i, j) ∈ E, and a
nonnegative integer r.
Question: Is there an assignment a with Rmax(a) ≤ r?

3 Reduction from the shortest path problem to the assignment

problem

Hoffman and Markowitz [6] have described a polynomial reduction from the shortest path
problem to the assignment problem. We extend this reduction taking into account scenarios.
This extended reduction will be used in all the NP -hardness proofs.
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Consider an instance of the shortest path problem: a directed graph G = (V, A) with
|V | = n and two nodes s, t ∈ V corresponding to the origin and destination nodes respectively.
We obtain an instance G′ = (V ′, E′) of the assignment problem with bipartition V ′ = V ′

1 ∪V ′

2

in the following way: for each vertex i ∈ V \{s, t} we associate two vertices i ∈ V ′

1 and i′ ∈ V ′

2 ,
add vertex s to V ′

1 and vertex t to V ′

2 . Hence, we have |V ′

1 | = |V ′

2 | = n − 1. For each arc
(i, j) ∈ A, we add edge (i, j′) in E′ and for each vertex i ∈ V \ {s, t} we add edge (i, i′) in E′.
Finally, in order to obtain a complete bipartite graph G′, we add dummy edges (i, j′) ∈ E′

which correspond to the absence of arc (i, j) in G.

Let P denote the set of all simple paths from s to t in G. We denote by A the set of all
feasible assignments in G′ and by A′ ⊆ A the set of all feasible assignments in G′ that do not
include any dummy edge.

The following constructions describe a transformation from paths in P to assignments in
A′ and its converse transformation.

1. For each simple path p in P we associate a unique assignment ap in A′ in the following
way: for each arc (i, j) ∈ p, include edge (i, j′) ∈ E′ in ap as well as edges (i, i′) ∈ E′ if
vertex i does not belong to path p.

2. Each assignment a in A′ contains a set of edges P (a) ⊆ E′ corresponding to a unique
simple path pa in P, a set I(a) = {(i, i′) : (i, i′) ∈ a}, and possibly a set F (a) ⊆ E′

corresponding to arcs forming cycles in G. Observe that F (a) = ∅ if G is acyclic.

These two transformations define a one-to-one correspondence between simple paths of P
and assignments without dummy edges of A′.

We show now how to preserve this correspondence for the values of solutions under all
possible scenarios. Let L denote the set of scenarios for an instance of the shortest path
problem. Each scenario ℓ ∈ L is defined by positive values ℓij , for each arc (i, j) ∈ A,
representing the length of arc (i, j) under scenario ℓ. In the following, ℓmax denotes the
maximum length under scenario ℓ. Let C denote the set of scenarios for the instance of the
assignment problem corresponding to the instance of the shortest path problem. Each scenario
c ∈ C is defined by positive values cij , for each edge (i, j′) ∈ E′, representing the cost of edge
(i, j′) under scenario c. We create a one-to-one correspondence between L and C defining the
two following constructions:

3. For each scenario ℓ ∈ L, we associate a unique scenario cℓ ∈ C where:

• cℓ
ij′ = ℓij , for each arc (i, j) ∈ A

• cℓ
ii′ = 0, for i ∈ V \ {s, t}

• cℓ
ij′ = M, for each dummy edge (i, j′) ∈ E′ where M is a sufficiently large value

that will be defined precisely when needed.

4. For each scenario c ∈ C, we associate a unique scenario ℓc ∈ L where

ℓc
ij = cij′ , for each arc (i, j) ∈ A

We can now state the following results.
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Proposition 1. Considering an instance of the shortest path problem and its corresponding
instance of the assignment problem, as well as constructions 1-4, we have:

(i) for any path p ∈ P and scenario ℓ ∈ L, val(p, ℓ) = val(ap, cℓ)

(ii) for any assignment a ∈ A′ and scenario c ∈ C, val(a, c) = val(pa, ℓc)

(iii) if M ≥ (n− 1)ℓmax +1, for any assignment a ∈ A\A′, any assignment b ∈ A′, and any
scenario c ∈ C, val(b, c) − val(a, c) < 0

Proof. (i) val(p, ℓ) =
∑

(i,j)∈p ℓij =
∑

(i,j′)∈P (ap) cℓ
ij′ = val(ap, cℓ)

(ii) val(a, c) =
∑

(i,j′)∈P (a) cij′ =
∑

(i,j)∈pa ℓc
ij = val(pa, ℓc)

(iii) Clearly val(b, c) ≤ (n − 1)ℓmax and val(a, c) ≥ (n − 1)ℓmax + 1 since a contains at least
one dummy edge.

Proposition 2. Considering an instance of the shortest path problem and its corresponding
instance of the assignment problem, as well as constructions 1-4, and M ≥ (n − 1)ℓmax + 1,
we have:

(i) for any path p ∈ P, Rmax(p) = Rmax(ap).

(ii) for any assignment a ∈ A′, Rmax(a) = Rmax(pa).

Proof. (i) We have, using definition of Rmax and Proposition 1(iii):

Rmax(ap) = max
a∈A

c∈C

{val(ap, c) − val(a, c)}

= max
a∈A′

c∈C

{val(ap, c) − val(a, c)}

= max
pa∈P

ℓc∈L

{val(p, ℓc) − val(pa, ℓc)}

= Rmax(p)

(ii) For any a ∈ A′, there exists p = pa such that a = ap. Thus, using (i), we have:

Rmax(a) = Rmax(ap) = Rmax(p) = Rmax(pa)

4 Discrete scenario case

Kouvelis and Yu [8] have proved that Discrete Min-Max Assignment and Discrete Min-

Max Regret Assignment are NP -hard for a constant number of scenarios, even when this
constant is two. We investigate the case of an unbounded number of scenarios for the min-max
(Section 4.1) and min-max regret (Section 4.2) assignment problems.
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4.1 Complexity of Discrete Min-Max Assignment

We prove here that Discrete Min-Max Assignment is strongly NP -hard for an unbounded
number of scenarios. For this, we construct a reduction from Discrete Min-Max Shortest

Path, described just below:

Discrete Min-Max Shortest Path

Input: A directed graph G = (V, A), two vertices s, t ∈ V corresponding to the origin and
destination nodes, a set L of scenarios (all arc lengths are assumed to be positive in all scenarios
in L) and a nonnegative integer k.
Question: Is there a path p from s to t with maxℓ∈L val(p, ℓ) ≤ k?

As shown in [11] by Yu and Yang, Discrete Min-Max Shortest Path is strongly
NP -hard even for acyclic directed graphs.

Theorem 1. Discrete Min-Max Assignment is strongly NP-hard.

Proof. Consider an acyclic instance of Discrete Min-Max Shortest Path. We use the
reduction from Section 3 to obtain from G an instance G′ = (V ′, E′) of Discrete Min-Max

Assignment with |C| = |L| scenarios. Scenario set C is defined according to construction 3
with M = k + 1.

We claim that there exists a path p ∈ P with maxℓ∈L val(p, ℓ) ≤ k if and only if there
exists an assignment a ∈ A with maxc∈C val(a, c) ≤ k.

⇒ Consider a path p ∈ P with maxℓ∈L val(p, ℓ) ≤ k. From Proposition 1(i) we have
val(ap, cℓ) = val(p, ℓ) for all ℓ ∈ L and thus, we have maxc∈C val(ap, c) = maxℓ∈L val(p, ℓ) ≤ k.

⇐ Consider an assignment a ∈ A with maxc∈C val(a, c) ≤ k. It is clear that assignment a ∈ A′,
i.e. does not include any dummy edges, since otherwise we would have val(a, c) ≥ k + 1. By
means of Proposition 1(ii) we have val(a, c) = val(pa, ℓc) for all c ∈ C and thus, we have
maxℓ∈L val(pa, ℓ) = maxc∈C val(a, c) ≤ k.

4.2 Complexity of Discrete Min-Max Regret Assignment

In this section we prove that Discrete Min-Max Regret Assignment is strongly NP -
hard. For this, we construct a reduction from Discrete Min-Max Regret Shortest

Path, described just below:

Discrete Min-Max Regret Shortest Path

Input: A directed graph G = (V, A), two vertices s, t ∈ V corresponding to the origin and
destination nodes, a set L of scenarios (all arc lengths are assumed to be positive in all scenarios
in L) and a nonnegative integer r.
Question: Is there a path p from s to t with Rmax(p) ≤ r?

As shown in [11], Discrete Min-Max Regret Shortest Path is strongly NP -hard
even for acyclic directed graphs.

Theorem 2. Discrete Min-Max Regret Assignment is strongly NP-hard.

Proof. Consider an acyclic instance of Discrete Min-Max Regret Shortest Path. We
construct graph G′ = (V ′, E′) as in Section 3. Scenario set C is defined according to construc-
tion 3 with M = (n − 1)ℓmax + 1 + r.
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We claim that there exists a path p ∈ P with Rmax(p) ≤ r if and only if there exists an
assignment a ∈ A with Rmax(a) ≤ r.

⇒ Consider a path p ∈ P with Rmax(p) ≤ r. From Proposition 2(i) we have Rmax(ap) ≤ r.
⇐ Let a be an assignment with Rmax(a) ≤ r. We first prove that assignment a ∈ A′,
i.e. does not include any dummy edge. In that case, we would have, for any scenario c,
val(a, c) ≥ (n − 1)ℓmax + 1 + r. For any path p ∈ P, and any scenario c ∈ C, val(ap, c) =∑

(i,j)∈p ℓc
ij ≤ (n − 1)ℓmax. This would imply Rmax(a) ≥ r + 1.

From Proposition 2(ii) it follows that Rmax(pa) ≤ r.

5 Interval data case

We first state the polynomiality of the min-max assignment problem (Section 5.1), and estab-
lish the NP -hardness of the min-max regret version (Section 5.2).

5.1 Complexity of Interval Min-Max Assignment

In the interval data case, the min-max version of a minimization problem corresponds to
solving this problem for the worst-case scenario defined by the upper bounds of all intervals.
Therefore, the min-max version of a minimization problem has the same complexity as the
classical version of the problem. Interval Min-Max Assignment is thus polynomial-time
solvable.

5.2 Complexity of Interval Min-Max Regret Assignment

We show that Interval Min-Max Regret Assignment is strongly NP -hard. However,
when the number u ≤ m of uncertain/imprecise parameters, corresponding to non-degenerate
intervals, is small enough, then the problem becomes polynomial. More precisely, as shown
by Averbakh and Lebedev [4] for general networks problems solvable in polynomial time, if u

is fixed or bounded by the logarithm of a polynomial function of m, then the min-max regret
version is also solvable in polynomial time (based on the fact that an optimal solution for
the min-max regret version corresponds to one of the optimal solutions for the 2u extreme
scenarios). This clearly applies to the assignment problem.

In order to prove the strong NP -hardness of Interval Min-Max Regret Assignment,
we construct a reduction from Interval Min-Max Regret Shortest Path, defined as
follows:

Interval Min-Max Regret Shortest Path

Input: A directed graph G = (V, A), two vertices s, t ∈ V corresponding to the origin
and destination nodes, lower and upper nonnegative integer lengths ℓij and ℓij for each arc
(i, j) ∈ A, and a nonnegative integer r.
Question: Is there a path p from s to t in G with Rmax(p) ≤ r?

As shown in [4], Interval Min-Max Regret Shortest Path is strongly NP -hard,
even when G is acyclic and ℓij , ℓij ∈ {0, 1}.

Theorem 3. Interval Min-Max Regret Assignment is strongly NP-hard even when
cij , cij ∈ {0, 1, n + r}.
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Proof. Consider an acyclic instance of Interval Min-Max Regret Shortest Path defined
on n vertices with ℓij , ℓij ∈ {0, 1}. We use reduction of Section 3 to obtain the instance
G′ = (V ′, E′) of Interval Min-Max Regret Assignment from G. Scenario set C is
defined according to construction 3 with M = (n − 1)ℓmax + 1 + r = n + r.

We claim that there exists a path p ∈ P with Rmax(p) ≤ r if and only if there exists an
assignment a ∈ A with Rmax(a) ≤ r.

⇒ Consider a path p ∈ P with Rmax(p) ≤ r. From Proposition 2(i) we have Rmax(ap) ≤ r.
⇐ Let a be an assignment with Rmax(a) ≤ r. We first prove that assignment a ∈ A′, i.e.
does not include any dummy edge. In that case, we would have, for any scenario c ∈ C,
val(a, c) ≥ n + r. For any path p ∈ P, and any scenario c ∈ C, val(ap, c) ≤ n− 1. This would
imply Rmax(a) ≥ r + 1.

From Proposition 2(ii) it follows that Rmax(pa) ≤ r.

6 Conclusions

We reviewed in this paper positive and negative results concerning the complexity of min-
max and min-max regret versions of the assignment problem. These results also apply to the
weighted matching problem which contains as a particular case the assignment problem (even
for positive results, where the polynomial algorithmic approaches described in Section 5.1 and
at the beginning of Section 5.2 remain valid).

It is remarkable that all the proofs of NP -hardness previously used for min-max and min-
max regret versions of classical optimization problems are based on reductions from standard
problems like 3-partition, set cover or hamiltonian path. Our proofs are the first ones using
reductions from a min-max or min-max regret version of a classical optimization problem,
namely shortest path. A main advantage of our reductions is to preserve the value of so-
lutions and therefore approximation properties between these versions of shortest path and
assignment. Thus, a polynomial time approximation algorithm for min-max or min-max regret
assignment would imply a polynomial time approximation algorithm with the same approxi-
mation ratio for the corresponding version of shortest path. Conversely, any inapproximability
result for min-max or min-max regret shortest path, would give rise to the same result for the
corresponding version of assignment.

All the negative results proved in this paper are strong NP -hardness results. An interesting
case is the discrete case with a constant number of scenarios. For this case, the original proof
of NP -hardness of min-max and min-max regret assignment [8] is obtained using a reduction
from partition, which has a pseudo-polynomial time algorithm [5]. Our reductions would also
apply, but, for this case, min-max or min-max regret shortest path have pseudo-polynomial
time algorithms [8]. Therefore, it remains an open question whether min-max and min-max
regret assignment have pseudo-polynomial time algorithms or are strongly NP -hard for a
constant number of scenarios.
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