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tThis paper investigates two problems related to the determination of 
riti
al edges forthe minimum 
ost assignment problem. Given a 
omplete bipartite balan
ed graph with nverti
es on ea
h part and with 
osts on its edges, k Most Vital Edges Assignment 
onsistsof determining a set of k edges whose removal results in the largest in
rease in the 
ost ofa minimum 
ost assignment. A dual problem, Min Edge Blo
ker Assignment, 
onsistsof removing a subset of edges of minimum 
ardinality su
h that the 
ost of a minimum 
ostassignment in the remaining graph is larger than or equal to a spe
i�ed threshold. We showthat k Most Vital Edges Assignment is NP-hard to approximate within a fa
tor c < 2and Min Edge Blo
ker Assignment is NP-hard to approximate within a fa
tor 1.36. Wealso provide an exa
t algorithm for k Most Vital Edges Assignment that runs in O(nk+2).This algorithm 
an also be used to solve exa
tly Min Edge Blo
ker Assignment.Keywords: most vital edges, min edge blo
ker, assignment problem, 
omplexity, approximation,exa
t algorithm.1 Introdu
tionIn many appli
ations involving the use of 
ommuni
ation or transportation networks, we oftenneed to identify 
riti
al infrastru
tures. By 
riti
al infrastru
ture we mean a set of lines/nodeswhose damage 
auses the largest in
onvenien
e within the network. Modeling the network by aweighted graph, where weights represent 
osts, identifying a vulnerable infrastru
ture amounts to�nding a subset of edges/nodes whose removal from the graph 
auses the largest 
ost in
rease. Inthe literature this problem is referred to as the k most vital edges/nodes problem. A dual problem
onsists of determining a set of edges/nodes of minimum 
ardinality whose removal 
auses the
ost within the residual network to be
ome larger than a given threshold. In the literature thisproblem is referred to as the min edge/node blo
ker problem. In this paper the k most vital edgesand min edge blo
ker versions for the assignment problem are investigated.The k most vital edges/nodes and min edge/node blo
ker versions have been studied for variousproblems in
luding shortest path, spanning tree, maximum �ow, independent set, vertex 
over,
p-median, p-
enter and maximum mat
hing. The k most vital ar
s problem with respe
t toshortest path was proved NP -hard in [2℄. Later, k most vital ar
s/nodes shortest path and minar
/node blo
ker shortest path were proved to be not 2-approximable and not 1.36-approximable,respe
tively, if P 6= NP [8℄. No positive result is known about the approximation of these problems.For minimum spanning tree, k most vital edges is NP -hard and O(log k)-approximable [6℄ whileseveral e�
ient exa
t algorithms have been proposed [10, 4℄. It is proved in [15℄ that k mostvital ar
s maximum �ow is NP -hard. It is shown in [3℄ that k most vital nodes and min nodeblo
ker with respe
t to independent set and vertex 
over for bipartite graphs remain polynomial1



time solvable on unweighted graphs and be
ome NP -hard for weighted graphs. It is shown in [5℄that k most vital edges p-median and k most vital edges p-
enter are NP -hard to approximatewithin a fa
tor 7
5 − ǫ and 4

3 − ǫ respe
tively, for any ǫ > 0, while k most vital nodes p-medianand k most vital nodes p-
enter are NP -hard to approximate within a fa
tor 3
2 − ǫ, for any ǫ > 0.The blo
ker versions of these four problems are NP -hard to approximate within a fa
tor 1.36 [5℄.For maximum mat
hing, k most vital nodes was shown polynomial time solvable for unweightedbipartite graphs and NP -hard for bipartite graphs when edge weights are bounded by a 
onstant[16℄. Moreover, min edge blo
ker maximum mat
hing is NP -hard even for unweighted bipartitegraphs [17℄, but polynomial for grids and trees [14℄.After introdu
ing some preliminaries in Se
tion 2, we prove in Se
tion 3 that k Most VitalEdges Assignment andMin Edge Blo
ker Assignment are NP -hard to approximate withina 
onstant fa
tor. An exa
t algorithm is presented in Se
tion 4 for both problems. Con
lusionsare provided in Se
tion 5.2 Basi
 
on
epts and preliminary resultsGiven a dire
ted or an undire
ted graph G = (V,E), we denote by G−E′ the graph obtainedfrom G by removing a subset E′ ⊆ E of ar
s or edges. Moreover, for any V ′ ⊆ V , Γ(V ′) denotesthe set of verti
es whi
h are adja
ent to V ′.Given a 
omplete bipartite graph G = (V,E) with a bipartition V = V1 ∪ V2 where |V1| =

|V2| = n and 
osts cij asso
iated with ea
h edge (i, j) ∈ E, the assignment problem 
onsists ofdetermining a perfe
t mat
hing of minimum total 
ost. Let a∗ denote a minimum 
ost assignmentin G.We 
onsider in this paper the k most vital edges and min edge blo
ker versions of the assignmentproblem. These problems are de�ned respe
tively as follows.
k Most Vital Edges AssignmentInput: A 
omplete bipartite graph G = (V,E) with bipartition V = V1 ∪ V2 and |V1| = |V2| = n,where ea
h edge (i, j) ∈ E has a 
ost cij , and an integer k.Output: A subset S∗ ⊆ E, with |S∗| = k, su
h that the minimum 
ost of an assignment in G−S∗is maximum.Min Edge Blo
ker AssignmentInput: A 
omplete bipartite graph G = (V,E) with bipartition V = V1 ∪ V2 and |V1| = |V2| = n,where ea
h edge (i, j) ∈ E has a 
ost cij , and an integer U .Output: A subset S∗ ⊆ E of minimum 
ardinality su
h that the minimum 
ost of an assignmentin G− S∗ is at least U .Given an optimization problem and an instan
e I of this problem, we denote by |I| the size of
I, by opt(I) the optimum value of I and by val(I, S) the value of a feasible solution S of I. Theperforman
e ratio of S (or approximation fa
tor) is r(I, S) = max

{
val(I,S)
opt(I) ,

opt(I)
val(I,S)

}
. The errorof S, ε(I, S), is de�ned by ε(I, S) = r(I, S)− 1.For a fun
tion f , an algorithm is an f(n)-approximation, if for every instan
e I of the problem,it returns a solution S su
h that r(I, S) ≤ f(|I|).The notion of a gap-redu
tion was introdu
ed in [1℄ by Arora and Lund. In this paper weuse a gap-redu
tion between two minimization problems. A minimization problem Π is 
alled

gap-redu
ible to a minimization problem Π′ with parameters (c, ρ) and (c′, ρ′), if there exists apolynomial time 
omputable fun
tion f su
h that f maps an instan
e I of Π to an instan
e I ′ of
Π′, while satisfying the following properties.

• If opt(I) ≤ c then opt(I ′) ≤ c′ 2



• If opt(I) > cρ then opt(I ′) > c′ρ′Parameters c and ρ are fun
tion of |I| and parameters c′ and ρ′ are fun
tion of |I ′|. Also, wehave ρ, ρ′ ≥ 1.The interest of a gap-redu
tion is that if Π is not approximable within a fa
tor ρ then Π′ isnot approximable within a fa
tor ρ′.The notion of an E-redu
tion (error-preserving redu
tion) was introdu
ed by Khanna et al.[9℄. A problem Π is 
alled E-redu
ible to a problem Π′, if there exist polynomial time 
omputablefun
tions f , g and a 
onstant β su
h that
• f maps an instan
e I of Π to an instan
e I ′ of Π′ su
h that opt(I) and opt(I ′) are relatedby a polynomial fa
tor, i.e. there exists a polynomial p(n) su
h that opt(I ′) ≤ p(|I|)opt(I),
• g maps solutions S′ of I ′ to solutions S of I su
h that ε(I, S) ≤ βε(I ′, S′).An important property of an E-redu
tion is that it 
an be applied uniformly to all levels ofapproximability; that is, if Π is E-redu
ible to Π′ and Π′ belongs to C then Π belongs to C as well,where C is a 
lass of optimization problems with any kind of approximation guarantee (see [9℄ formore details).To 
on
lude this se
tion, we give a preliminary result 
on
erning our problems.Lemma 1 Given a 
omplete bipartite graph G = (V1 ∪V2, E) with |V1| = |V2| = n, for any subset

S ⊂ E with |S| ≤ n− 1, G− S 
ontains an assignment.Proof : We show that the su�
ient 
ondition of Hall's theorem is satis�ed, i.e. that |Γ(A)| ≥ |A|for all A ⊂ V1, whi
h means that we 
an mat
h V1 in V2, thus obtaining an assignment. In order toredu
e |Γ(A)| by one unit, S must 
ontain |A| edges in
ident to the same node of V2. Thus, afterremoving edges of S, A loses at most ⌊ |S|
|A|⌋ neighbors in V2. Then, we have |Γ(A)| ≥ n− ⌊ |S|

|A|⌋. If
|A| = n, we have |Γ(A)| ≥ n and then |Γ(A)| ≥ |A|. If |A| ≤ n − 1, we have |Γ(A)| ≥ n − |S|

|A| ≥

n− n−1
|A| = (|A|−1) n+1

|A| ≥ (|A|−1)(|A|+1)+1
|A| = |A|. ✷Observe that there exists a subset S of edges, with |S| ≥ n, su
h that no assignment existsin G − S. Indeed, if we sele
t in S n edges in
ident to the same node v, then in G − S node vbe
omes isolated and 
annot be assigned.Therefore, we suppose in the following that k ≤ n−1 for k Most Vital Edges Assignmentand that |S∗| ≤ n for any optimal solution S∗ for Min Edge Blo
ker Assignment.Observe �nally that in order to have a 
han
e to in
rease the value of a minimum 
ost as-signment in G − S∗, S∗ must 
ontain at least one edge of a∗ so as to eliminate a∗ as an optimalsolution.3 ComplexityWe study in this se
tion the 
omplexity of k Most Vital Edges Assignment and MinEdge Blo
ker Assignment. We show that ea
h of these two problems is not approximablewithin a ratio that is better than a 
ertain 
onstant, unless P=NP.Ho�man and Markowitz [7℄ des
ribe a polynomial redu
tion from the shortest path problemto the assignment problem. We extend this redu
tion in order to prove our inapproximabilityresults. For this, we propose redu
tions from k Most Vital Ar
s Shortest Path and MinAr
 Blo
ker Shortest Path de�ned as follows:

k Most Vital Ar
s Shortest PathInput: A dire
ted graph G = (V,A), two verti
es s, t ∈ V , the length ℓij for ea
h ar
 (i, j) ∈ A,3



and an integer k.Output: A subset A′ ⊆ A, with |A′| = k, su
h that the minimum length of a path from s to t in
G−A′ is maximum.For an instan
e of k Most Vital Ar
s Shortest Path formed by a graph G, we 
onsider that
k ≤ λs,t(G)− 1, where λs,t(G) is the 
ardinality of an s− t minimum 
ut in G. Otherwise, takingall ar
s of an s − t minimum 
ut among the k ar
s to be removed would lead to a solution within�nite value.Min Ar
 Blo
ker Shortest PathInput: A dire
ted graph G = (V,A), two verti
es s, t ∈ V , the length ℓij for ea
h ar
 (i, j) ∈ A,and an integer U .Output: A subset A′ ⊆ A of minimum 
ardinality su
h that the minimum length of a path from
s to t in G−A′ is at least U .An optimal solution A′ of an instan
e of Min Ar
 Blo
ker Shortest Path formed by a graph
G is su
h that |A′| ≤ λs,t(G).We de�ne in the following the 
onstru
tion used in our redu
tions.Consider an instan
e of the shortest path problem: a dire
ted graph G = (V,A) with |V | = nin
luding two verti
es s, t ∈ V 
orresponding to the origin and destination nodes respe
tively, andthe length ℓij for ea
h ar
 (i, j) ∈ A. We 
onstru
t an instan
e G̃ = (W,E) of the assignmentproblem with bipartition W = V ′ ∪ V ′′ (see Figure 1). For ea
h vertex i ∈ V \ {s, t} we asso
iatetwo verti
es i′ ∈ V ′ and i′′ ∈ V ′′, and we add vertex s′ to V ′ and vertex t′′ to V ′′. We 
reate,for ea
h ar
 (i, j) ∈ A, an edge (i′, j′′) in E of 
ost ℓij and, for ea
h vertex i ∈ V \ {s, t}, anedge (i′, i′′) in E of 
ost 0. To 
omplete the 
onstru
tion of G̃, we 
onsider a 
omplete bipartitegraph Ki = (Xi, Yi) for ea
h i ∈ V \ {s, t} with Xi = X ′

i ∪ X ′′
i , where X ′

i = {x′
i1, . . . , x

′
i(n−1)}and X ′′

i = {x′′
i1, . . . , x

′′
i(n−1)}, and a 
ost 0 asso
iated to ea
h edge of Yi. We add the edges

(i′, x′′
iℓ) and (x′

iℓ, i
′′) of 
ost 0 for ea
h i ∈ V \ {s, t} and ℓ = 1, . . . , n − 1. Hen
e, we have

|V ′| = |V ′′| = 1 + n(n − 2). Finally, in order to obtain a 
omplete bipartite graph G̃, we adddummy edges of 
ost M =
∑

(i,j)∈A ℓij + 1.We denote by P the set of all simple paths from s to t in G, by A the set of all feasibleassignments in G̃ and by A′ ⊆ A the set of all feasible assignments in G̃ that do not in
lude anydummy edge of 
ost M .The following 
onstru
tions des
ribe a transformation from a path in P to an assignment in
A′ and its 
onverse transformation.1. For ea
h simple path p in P we asso
iate a unique assignment ap in A′ in the following way:we in
lude in ap, the edge (i′, j′′) ∈ E for ea
h ar
 (i, j) ∈ p, the edges (i′, i′′) ∈ E if vertex idoes not belong to path p and the edges (x′

iℓ, x
′′
iℓ) for ℓ = 1, . . . , n− 1, i ∈ V \ {s, t}. Clearly,the 
ost of ap is the same as the length of p.2. Ea
h assignment a in A′ 
ontains a subset of edges (s′, i′′1), (i′1, i′′2), . . . , (i′b−1, i

′′
b ), (i

′
b, t

′′) 
or-responding to a unique simple path pa = (s, i1, i2, . . . , ib, t) in P . Indeed, ea
h a in A′ne
essarily 
ontains an edge of type (s′, i′′). Moreover, if edges (s′, i′′1), (i′1, i′′2), . . . , (i′c−1, i
′′
c )belong to a then there exists k ∈ V \ {i1, i2, . . . , ic} su
h that (i′c, k′′) belongs to a. Clearly

k ∈ {i1, i2, . . . , ic} is impossible, but also (i′c, x
′′
icℓ

) sin
e otherwise a must 
ontain a dummyedge in
ident to one vertex of X ′
ic
. Assignment a 
an also 
ontain a set of edges of type

(i′, i′′) or (i′, x′′
iℓ) or (x′

iℓ, i
′′) or (x′

iℓ, x
′′
ij) and possibly a set of edges 
orresponding to ar
sforming 
ir
uits in G.In general, the 
ost of a is equal to the length of pa plus the lengths of the 
ir
uits 
orre-sponding to the 
y
les des
ribed by a. However, when a is a minimum 
ost assignment, the
ost of a 
oin
ides with the length of pa, sin
e the 
y
les des
ribed by a 
an only have a 
ost0 (otherwise all verti
es i of these 
y
les 
ould be repla
ed by edges (i′, i′′) with 
ost 0).4
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MFigure 1: Constru
tion of G̃ from GGiven a subset S of ar
s from G, the subset of edges asso
iated to S in G̃, denoted by Ĩm(S),is de�ned by Ĩm(S) = {(i′, j′′) ∈ E : (i, j) ∈ S}. We have |Ĩm(S)| = |S|.Given a subset S̃ of edges from G̃, the subset of ar
s asso
iated to S̃ in G, denoted by Im(S̃),is de�ned by Im(S̃) = {(i, j) ∈ A : (i′, j′′) ∈ S̃, i 6= j, ci′j′′ 6= M}. We have |Im(S̃)| ≤ |S̃|.Observe that for any subset S of ar
s we have Im(Ĩm(S)) = S.In the following, we present two preliminary results. The �rst one 
hara
terizes a minimum 
ostassignment generated by deleting a subset of edges and the se
ond one allows us to establish thenon-approximability results for k Most Vital Edges Assignment and Min Edge Blo
kerAssignment.Lemma 2 For any subset S̃ ⊂ E of 
ardinality k, with k ≤ λs,t(G) − 1, any minimum 
ostassignment in G̃− S̃ does not 
ontain any dummy edge of 
ost M .Proof : By removing the subset of edges S̃ of E of 
ardinality k, the subset of ar
s Im(S̃)
ontains at most k ar
s of G. Sin
e k ≤ λs,t(G)− 1 then there exists at least one path from s to tin G− Im(S̃). Denote by p a shortest path from s to t in G− Im(S̃). If no edge of ap belongs to
S̃, then the result is established sin
e ap is an assignment in G̃− S̃ of 
ost less than M . Otherwise,
onsider the nonempty set of edges ap ∩ S̃. These edges belong either to 
omplete bipartitesubgraphs K ′

i indu
ed by X ′
i ∪X

′′

i when i ∈ V (p) \ {s, t} or to 
omplete bipartite subgraphs K ′′
iindu
ed by X ′

i ∪X
′′

i ∪{i′, i′′} when i ∈ V \V (p). All these subgraphs 
ontain only edges of 
ost 0.Moreover, subgraphs K ′
i 
ontain n−1 verti
es on ea
h part while subgraphs K ′′

i 
ontain n verti
es5



on ea
h part. Sin
e |S̃| ≤ n− 2, we 
an apply Lemma 1 to all relevant subgraphs K ′
i and K ′′

i andderive an assignment a′ with the same 
ost as ap (and thus without dummy edges) but withoutedges belonging to S̃. Sin
e a′ has a 
ost less than M , it is also the 
ase for any minimum 
ostassignment in G̃− S̃ whi
h thus does not 
ontain dummy edges. ✷Lemma 3 (i) Let S be a subset of k ar
s of G, with k ≤ λs,t(G) − 1, and p be a shortestpath from s to t in G − S. There exists a subset S̄ = Ĩm(S) of k edges of G̃ su
h that theassignment ap is a minimum 
ost assignment in G̃− S̄ and the 
ost of ap is the same as thelength of p.(ii) Let S̃ be a subset of k edges of G̃, with k ≤ λs,t(G)−1, and a be a minimum 
ost assignmentin G̃− S̃. There exists a subset S′ ⊇ Im(S̃) of k ar
s su
h that the path pa is a shortest pathfrom s to t in G− S′ and its length is the same as the 
ost of a.Proof : (i) The existen
e of an assignment a of 
ost lower than that of ap in G̃ − Ĩm(S) wouldimply that there exists in G− Im(Ĩm(S)) = G− S a path pa of length stri
tly less than that of
p. Hen
e, ap is a minimum 
ost assignment in G̃− S̄ and its 
ost is the same as the length of p.(ii) A

ording to Lemma 2, a 
ontains no dummy edge of 
ost M . Let S′ = Im(S̃)∪S′′, where
S′′ is any subset of k− |Im(S̃)| ar
s not belonging to pa. The length of pa is the same as the 
ostof a. We show in the following that pa is a shortest path from s to t in G− S′.Suppose that there exists a path p from s to t in G − S′ of length stri
tly less than that of
pa. Let ap be the assignment 
orresponding to p in G̃− Ĩm(S′). By 
onstru
tion, ap 
ontains nodummy edge. If ap 
ontains no edge of S̃ then ap is an assignment in G̃ − S̃ of 
ost stri
tly lessthan that of a, whi
h 
ontradi
ts the optimality of a in G̃ − S̃. Otherwise, ap 
an 
ontain onlyedges of S̃ of type (i′, i′′), i = 1, . . . , n− 2, or (x′

iℓ, x
′′
iℓ), ℓ = 1, . . . , n− 1. Then, we 
an exhibit anassignment a′ from ap in G̃− Ĩm(S′) whi
h 
ontains no edge of S̃ and with the same 
ost as thatof ap, as shown in the proof of Lemma 2. Hen
e, a′ is an assignment in G̃− S̃ of 
ost stri
tly lessthan that of a, 
ontradi
ting again the optimality of a in G̃− S̃. Therefore, pa is a shortest pathfrom s to t in G− S′. ✷We are now in a position to give our two main inapproximability results.Theorem 1 k Most Vital Edges Assignment is NP-hard to approximate within a fa
tor

2− ǫ, for any ǫ > 0.Proof : We 
onstru
t an E -redu
tion from k Most Vital Ar
s Shortest Path whi
h isshown to be NP -hard to approximate within a fa
tor 2 − ǫ, for any ǫ > 0 [8℄. This establishesthat k Most Vital Edges Assignment is also NP -hard to approximate within a fa
tor 2− ǫ,for any ǫ > 0.Let I be an instan
e of k Most Vital Ar
s Shortest Path 
onsisting of a graph G =
(V,A). We use the previous 
onstru
tion to de�ne from I an instan
e Ĩ of k Most Vital EdgesAssignment formed by the graph G̃ = (W,E).Consider an optimal solution S ⊂ A for I, with |S| = k, and denote by p a path of minimumlength from s to t in G − S. When removing from G̃ the subset of edges Ĩm(S), the assignment
ap is, a

ording to Lemma 3(i), a minimum 
ost assignment in G̃− Ĩm(S). Thus, opt(Ĩ) ≥ opt(I).Consider now a solution S̃ ⊂ E of Ĩ, with |S̃| = k, and denote by a a minimum 
ost assignmentin G̃ − S̃. Consider the subset of ar
s Im(S̃) and let pa be the path from s to t in G − Im(S̃)
orresponding to a. Let S be a subset of k ar
s 
onsisting of Im(S̃) possibly 
ompleted by anysubset of k−|Im(S̃)| ar
s not belonging to pa. A

ording to Lemma 3(ii), pa is a path of minimumlength in G−S whose length is equal to the 
ost of a. Hen
e, val(I, S) = val(Ĩ , S̃). In parti
ular,if S̃ is an optimal solution of Ĩ, then opt(Ĩ) = val(I, S) ≤ opt(I).Therefore, we have opt(I) = opt(Ĩ) and the error of the two solutions S and S̃ are equal ε(I, S) =
ε(Ĩ , S̃). ✷6



We prove now an inapproximability result for Min Ar
 Blo
ker Assignment. Unlike for
k Most Vital Edges Assignment, using our 
onstru
tion, it seems di�
ult to build an E-redu
tion whi
h imposes 
onditions on all feasible solutions (in parti
ular for those in G̃ of sizemore than λs,t(G) that do not give ne
essarily a feasible solution in G). Thus, we resort to agap-redu
tion whi
h imposes 
onditions on optimal solutions only.Theorem 2 Min Edge Blo
ker Assignment is NP-hard to approximate within a fa
tor 1.36.Proof : We 
onstru
t a gap-redu
tion fromMin Ar
 Blo
ker Shortest Path whi
h is knownto be NP -hard to approximate within a fa
tor 1.36 even for graphs G su
h that the optimum valueis less than λs,t(G) [8℄.Let I be an instan
e ofMin Ar
 Blo
ker Shortest Path 
onsisting of a graph G = (V,A)and a positive integer U . We use the previous 
onstru
tion to de�ne from I an instan
e Ĩ of MinEdge Blo
ker Assignment formed by the graph G̃ = (W,E) and U .Consider an optimal solution S ⊂ A for I, and denote by p a path of minimum length in G−Sfrom s to t. Sin
e |S| ≤ λs,t(G) − 1, a

ording to Lemma 3(i), the assignment ap is a minimum
ost assignment in G̃− Ĩm(S) of 
ost equal to the length of p, whi
h is at least U . Thus, we have
opt(Ĩ) ≤ opt(I) ≤ λs,t(G) − 1.Let S̃ ⊂ E be an optimal solution of Ĩ, and denote by a an assignment of minimum 
ost in G̃−S̃.Assignment a is su
h that its 
ost is at least U . A

ording to Lemma 3(ii), there exists a subset
S′ of |S̃| ar
s su
h that the path pa is a shortest path in G− S′ and its length is the same as the
ost of a. The length of pa is then greater than or equal to U . Hen
e, opt(I) ≤ |S′| = opt(Ĩ). Thus
opt(Ĩ) = opt(I), showing that opt(I) ≤ c implies opt(Ĩ) ≤ c and opt(I) > cρ implies opt(Ĩ) > cρwhi
h establishes thatMin Edge Blo
ker Assignment is also NP -hard to approximate withina fa
tor 1.36. ✷4 Exa
t resolutionWe propose in this se
tion an exa
t algorithm for solving k Most Vital Edges Assignmentand Min Edge Blo
ker Assignment. Consider G = (V1 ∪ V2, E) a 
omplete bipartite graphwith |V1| = |V2| = n and a 
ost is asso
iated to ea
h edge of E. Denote by a∗ a minimum 
ostassignment in G.An approa
h to solve 1 Most Vital Edge Assignment is to delete one by one ea
h of the nedges belonging to a∗, determine the minimum 
ost assignments on the n resulting partial graphs,and retain the deleted edge whi
h leads to a largest minimum 
ost assignment. This approa
his very similar to the s
heme developed by Murty [12℄ for ranking the assignments in in
reasing
ost order, ex
ept that in Murty's approa
h a minimum 
ost assignment is sele
ted among the n
andidate assignments. In this 
ontext, Miller et al. [11℄ and Pedersen et al. [13℄ showed that the
n assignments 
an be found e�
iently using reoptimization. Indeed, given an edge e = (y, z) ∈ a∗,a minimum 
ost assignment ae in G − {e} 
an be found using Dijktra's algorithm in O(n2) bysolving a single shortest path problem between y and z where ar
s are valued by (nonnegative)redu
ed 
osts. Therefore, the time 
omplexity for �nding all assignments ae for all edges e ∈ a∗ is
O(n3). Thus, we obtain the following result.Theorem 3 1 Most Vital Edge Assignment 
an be solved in O(n3) for 
omplete bipartitegraphs with n verti
es in ea
h part.In the following, we are interested in the exa
t resolution of k Most Vital Edges Assign-ment. Taking advantage of the fa
t that optimal solutions must 
ontain at least one edge of a∗,a naive approa
h would be to remove ea
h edge e ∈ a∗, 
onsider all possible 
ombinations of k− 1edges to delete from the n2 − 1 remaining edges and determine a minimum 
ost assignment inthe resulting partial graphs. An optimal solution is a subset of removed edges whi
h leads to thelargest minimum 
ost assignment. Hen
e, a naive approa
h for solving k Most Vital Edges7



Assignment would require n
(
n2−1
k−1

)
O(n3) = O(n2k+2) time. A more e�
ient algorithm 
an beobtained through the following result.Theorem 4 k Most Vital Edges Assignment 
an be solved in O(nk+2) time for 
ompletebipartite graphs with n nodes in ea
h part and for general k.Proof : Consider a minimum 
ost assignment a∗ in G. Obviously, a set S∗ of k most vital edgesmust 
ontain at least one edge e in a∗. Consider now a minimum 
ost assignment b∗ in G − {e}.If k ≥ 2, then S∗ must 
ontain at least one edge of b∗, and so on. Hen
e, by simply enumeratingall possibilities to 
hoose an edge in a∗, then one in b∗ and so on, one 
an �nd an optimal solutionby looking at O(nk) possible subsets of removed edges. At ea
h step, we 
ompute a minimum
ost assignment in time O(n2) as for example when determining b∗ in G − {e} starting from a∗.Therefore, we 
ompute in this way n + n2 + . . . + nk minimum 
ost assignments, resulting in atime O(nk+2). ✷This algorithm 
an be implemented by developing a sear
h tree with k + 1 levels. The rootnode at level 0 
orresponds to the optimal assignment a∗ and ea
h node at level i (i = 1, . . . , k)represents a tentative sele
tion of i edges whi
h 
ould be part of the k most vital edges. Are�ned implementation, avoiding the repetition of tentative sele
tions but still in O(nk+2), 
an beobtained using a bran
hing s
heme similar to the one used by Murty [12℄. Moreover, observe thatsolving k Most Vital Edges Assignment in this way (developing a 
omplete or redu
ed sear
htree) allows the determination of an optimal solution for i Most Vital Edges Assignment bysimply s
anning all nodes of level i and retaining a node 
orresponding to the largest minimum
ost assignment (i = 1, . . . , k).We show now how to solve Min Edge Blo
ker Assignment. If the minimum 
ost of anassignment is at least U then the optimal 
ardinality is 0. Otherwise, we sear
h for the smallestlevel i, 1 ≤ i ≤ n − 1 su
h that the optimum value of i Most Vital Edges Assignment is atleast U . If su
h an i does not exists, then any subset of n edges in
ident to a vertex is optimal.Thus, 
onsidering that we need to develop our sear
h tree until level n− 1 at most, we 
an solveMin Edge Blo
ker Assignment in O(nn+1).5 Con
lusionsWe established in this paper negative results 
on
erning the approximation of k most vitaledges and min edge blo
ker versions of the assignment problem.It is remarkable that all the proofs of NP -hardness or inapproximability previously used upto now for k most vital edges and min edge blo
ker versions of 
lassi
al optimization problemsare based on redu
tions from standard problems like vertex 
over, 
lique, independent set, ormin k 
ut. Our proofs are the �rst ones using redu
tions from a k most vital edges and minedge blo
ker version of a 
lassi
al optimization problem, namely shortest path. A main advantageof our E-redu
tion is to preserve the value of solutions and therefore approximation propertiesbetween these versions of shortest path and assignment. Thus, a polynomial time approximationalgorithm for k Most Vital Edges Assignment would imply a polynomial time approximationalgorithm with the same approximation ratio for the 
orresponding versions of shortest path.A gap-redu
tion only preserves inapproximability results. Thus, any stronger inapproximabilityresult for k most vital edges and min edge blo
ker shortest path, would give rise to the same resultfor the 
orresponding versions of assignment.Con
erning positive results, we proposed exa
t algorithms, in O(nk+2) for k Most VitalEdges Assignment and in O(nn+1) for Min Edge Blo
ker Assignment. An interestingopen question is to try to establish approximation algorithms or better exa
t algorithms for theseproblems.
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