
Critial edges for the assignment problem:omplexity and exat resolutionCristina Bazgan1,2 Sonia Toubaline3 Daniel Vanderpooten11. PSL, Université Paris-Dauphine, LAMSADE UMR 72432. Institut Universitaire de Frane3. Department of Seurity and Crime Siene, University College London{bazgan,vdp}�lamsade.dauphine.fr; s.toubaline�ul.a.ukAbstratThis paper investigates two problems related to the determination of ritial edges forthe minimum ost assignment problem. Given a omplete bipartite balaned graph with nverties on eah part and with osts on its edges, k Most Vital Edges Assignment onsistsof determining a set of k edges whose removal results in the largest inrease in the ost ofa minimum ost assignment. A dual problem, Min Edge Bloker Assignment, onsistsof removing a subset of edges of minimum ardinality suh that the ost of a minimum ostassignment in the remaining graph is larger than or equal to a spei�ed threshold. We showthat k Most Vital Edges Assignment is NP-hard to approximate within a fator c < 2and Min Edge Bloker Assignment is NP-hard to approximate within a fator 1.36. Wealso provide an exat algorithm for k Most Vital Edges Assignment that runs in O(nk+2).This algorithm an also be used to solve exatly Min Edge Bloker Assignment.Keywords: most vital edges, min edge bloker, assignment problem, omplexity, approximation,exat algorithm.1 IntrodutionIn many appliations involving the use of ommuniation or transportation networks, we oftenneed to identify ritial infrastrutures. By ritial infrastruture we mean a set of lines/nodeswhose damage auses the largest inonveniene within the network. Modeling the network by aweighted graph, where weights represent osts, identifying a vulnerable infrastruture amounts to�nding a subset of edges/nodes whose removal from the graph auses the largest ost inrease. Inthe literature this problem is referred to as the k most vital edges/nodes problem. A dual problemonsists of determining a set of edges/nodes of minimum ardinality whose removal auses theost within the residual network to beome larger than a given threshold. In the literature thisproblem is referred to as the min edge/node bloker problem. In this paper the k most vital edgesand min edge bloker versions for the assignment problem are investigated.The k most vital edges/nodes and min edge/node bloker versions have been studied for variousproblems inluding shortest path, spanning tree, maximum �ow, independent set, vertex over,
p-median, p-enter and maximum mathing. The k most vital ars problem with respet toshortest path was proved NP -hard in [2℄. Later, k most vital ars/nodes shortest path and minar/node bloker shortest path were proved to be not 2-approximable and not 1.36-approximable,respetively, if P 6= NP [8℄. No positive result is known about the approximation of these problems.For minimum spanning tree, k most vital edges is NP -hard and O(log k)-approximable [6℄ whileseveral e�ient exat algorithms have been proposed [10, 4℄. It is proved in [15℄ that k mostvital ars maximum �ow is NP -hard. It is shown in [3℄ that k most vital nodes and min nodebloker with respet to independent set and vertex over for bipartite graphs remain polynomial1



time solvable on unweighted graphs and beome NP -hard for weighted graphs. It is shown in [5℄that k most vital edges p-median and k most vital edges p-enter are NP -hard to approximatewithin a fator 7
5 − ǫ and 4

3 − ǫ respetively, for any ǫ > 0, while k most vital nodes p-medianand k most vital nodes p-enter are NP -hard to approximate within a fator 3
2 − ǫ, for any ǫ > 0.The bloker versions of these four problems are NP -hard to approximate within a fator 1.36 [5℄.For maximum mathing, k most vital nodes was shown polynomial time solvable for unweightedbipartite graphs and NP -hard for bipartite graphs when edge weights are bounded by a onstant[16℄. Moreover, min edge bloker maximum mathing is NP -hard even for unweighted bipartitegraphs [17℄, but polynomial for grids and trees [14℄.After introduing some preliminaries in Setion 2, we prove in Setion 3 that k Most VitalEdges Assignment andMin Edge Bloker Assignment are NP -hard to approximate withina onstant fator. An exat algorithm is presented in Setion 4 for both problems. Conlusionsare provided in Setion 5.2 Basi onepts and preliminary resultsGiven a direted or an undireted graph G = (V,E), we denote by G−E′ the graph obtainedfrom G by removing a subset E′ ⊆ E of ars or edges. Moreover, for any V ′ ⊆ V , Γ(V ′) denotesthe set of verties whih are adjaent to V ′.Given a omplete bipartite graph G = (V,E) with a bipartition V = V1 ∪ V2 where |V1| =

|V2| = n and osts cij assoiated with eah edge (i, j) ∈ E, the assignment problem onsists ofdetermining a perfet mathing of minimum total ost. Let a∗ denote a minimum ost assignmentin G.We onsider in this paper the k most vital edges and min edge bloker versions of the assignmentproblem. These problems are de�ned respetively as follows.
k Most Vital Edges AssignmentInput: A omplete bipartite graph G = (V,E) with bipartition V = V1 ∪ V2 and |V1| = |V2| = n,where eah edge (i, j) ∈ E has a ost cij , and an integer k.Output: A subset S∗ ⊆ E, with |S∗| = k, suh that the minimum ost of an assignment in G−S∗is maximum.Min Edge Bloker AssignmentInput: A omplete bipartite graph G = (V,E) with bipartition V = V1 ∪ V2 and |V1| = |V2| = n,where eah edge (i, j) ∈ E has a ost cij , and an integer U .Output: A subset S∗ ⊆ E of minimum ardinality suh that the minimum ost of an assignmentin G− S∗ is at least U .Given an optimization problem and an instane I of this problem, we denote by |I| the size of
I, by opt(I) the optimum value of I and by val(I, S) the value of a feasible solution S of I. Theperformane ratio of S (or approximation fator) is r(I, S) = max

{
val(I,S)
opt(I) ,

opt(I)
val(I,S)

}
. The errorof S, ε(I, S), is de�ned by ε(I, S) = r(I, S)− 1.For a funtion f , an algorithm is an f(n)-approximation, if for every instane I of the problem,it returns a solution S suh that r(I, S) ≤ f(|I|).The notion of a gap-redution was introdued in [1℄ by Arora and Lund. In this paper weuse a gap-redution between two minimization problems. A minimization problem Π is alled

gap-reduible to a minimization problem Π′ with parameters (c, ρ) and (c′, ρ′), if there exists apolynomial time omputable funtion f suh that f maps an instane I of Π to an instane I ′ of
Π′, while satisfying the following properties.

• If opt(I) ≤ c then opt(I ′) ≤ c′ 2



• If opt(I) > cρ then opt(I ′) > c′ρ′Parameters c and ρ are funtion of |I| and parameters c′ and ρ′ are funtion of |I ′|. Also, wehave ρ, ρ′ ≥ 1.The interest of a gap-redution is that if Π is not approximable within a fator ρ then Π′ isnot approximable within a fator ρ′.The notion of an E-redution (error-preserving redution) was introdued by Khanna et al.[9℄. A problem Π is alled E-reduible to a problem Π′, if there exist polynomial time omputablefuntions f , g and a onstant β suh that
• f maps an instane I of Π to an instane I ′ of Π′ suh that opt(I) and opt(I ′) are relatedby a polynomial fator, i.e. there exists a polynomial p(n) suh that opt(I ′) ≤ p(|I|)opt(I),
• g maps solutions S′ of I ′ to solutions S of I suh that ε(I, S) ≤ βε(I ′, S′).An important property of an E-redution is that it an be applied uniformly to all levels ofapproximability; that is, if Π is E-reduible to Π′ and Π′ belongs to C then Π belongs to C as well,where C is a lass of optimization problems with any kind of approximation guarantee (see [9℄ formore details).To onlude this setion, we give a preliminary result onerning our problems.Lemma 1 Given a omplete bipartite graph G = (V1 ∪V2, E) with |V1| = |V2| = n, for any subset

S ⊂ E with |S| ≤ n− 1, G− S ontains an assignment.Proof : We show that the su�ient ondition of Hall's theorem is satis�ed, i.e. that |Γ(A)| ≥ |A|for all A ⊂ V1, whih means that we an math V1 in V2, thus obtaining an assignment. In order toredue |Γ(A)| by one unit, S must ontain |A| edges inident to the same node of V2. Thus, afterremoving edges of S, A loses at most ⌊ |S|
|A|⌋ neighbors in V2. Then, we have |Γ(A)| ≥ n− ⌊ |S|

|A|⌋. If
|A| = n, we have |Γ(A)| ≥ n and then |Γ(A)| ≥ |A|. If |A| ≤ n − 1, we have |Γ(A)| ≥ n − |S|

|A| ≥

n− n−1
|A| = (|A|−1) n+1

|A| ≥ (|A|−1)(|A|+1)+1
|A| = |A|. ✷Observe that there exists a subset S of edges, with |S| ≥ n, suh that no assignment existsin G − S. Indeed, if we selet in S n edges inident to the same node v, then in G − S node vbeomes isolated and annot be assigned.Therefore, we suppose in the following that k ≤ n−1 for k Most Vital Edges Assignmentand that |S∗| ≤ n for any optimal solution S∗ for Min Edge Bloker Assignment.Observe �nally that in order to have a hane to inrease the value of a minimum ost as-signment in G − S∗, S∗ must ontain at least one edge of a∗ so as to eliminate a∗ as an optimalsolution.3 ComplexityWe study in this setion the omplexity of k Most Vital Edges Assignment and MinEdge Bloker Assignment. We show that eah of these two problems is not approximablewithin a ratio that is better than a ertain onstant, unless P=NP.Ho�man and Markowitz [7℄ desribe a polynomial redution from the shortest path problemto the assignment problem. We extend this redution in order to prove our inapproximabilityresults. For this, we propose redutions from k Most Vital Ars Shortest Path and MinAr Bloker Shortest Path de�ned as follows:

k Most Vital Ars Shortest PathInput: A direted graph G = (V,A), two verties s, t ∈ V , the length ℓij for eah ar (i, j) ∈ A,3



and an integer k.Output: A subset A′ ⊆ A, with |A′| = k, suh that the minimum length of a path from s to t in
G−A′ is maximum.For an instane of k Most Vital Ars Shortest Path formed by a graph G, we onsider that
k ≤ λs,t(G)− 1, where λs,t(G) is the ardinality of an s− t minimum ut in G. Otherwise, takingall ars of an s − t minimum ut among the k ars to be removed would lead to a solution within�nite value.Min Ar Bloker Shortest PathInput: A direted graph G = (V,A), two verties s, t ∈ V , the length ℓij for eah ar (i, j) ∈ A,and an integer U .Output: A subset A′ ⊆ A of minimum ardinality suh that the minimum length of a path from
s to t in G−A′ is at least U .An optimal solution A′ of an instane of Min Ar Bloker Shortest Path formed by a graph
G is suh that |A′| ≤ λs,t(G).We de�ne in the following the onstrution used in our redutions.Consider an instane of the shortest path problem: a direted graph G = (V,A) with |V | = ninluding two verties s, t ∈ V orresponding to the origin and destination nodes respetively, andthe length ℓij for eah ar (i, j) ∈ A. We onstrut an instane G̃ = (W,E) of the assignmentproblem with bipartition W = V ′ ∪ V ′′ (see Figure 1). For eah vertex i ∈ V \ {s, t} we assoiatetwo verties i′ ∈ V ′ and i′′ ∈ V ′′, and we add vertex s′ to V ′ and vertex t′′ to V ′′. We reate,for eah ar (i, j) ∈ A, an edge (i′, j′′) in E of ost ℓij and, for eah vertex i ∈ V \ {s, t}, anedge (i′, i′′) in E of ost 0. To omplete the onstrution of G̃, we onsider a omplete bipartitegraph Ki = (Xi, Yi) for eah i ∈ V \ {s, t} with Xi = X ′

i ∪ X ′′
i , where X ′

i = {x′
i1, . . . , x

′
i(n−1)}and X ′′

i = {x′′
i1, . . . , x

′′
i(n−1)}, and a ost 0 assoiated to eah edge of Yi. We add the edges

(i′, x′′
iℓ) and (x′

iℓ, i
′′) of ost 0 for eah i ∈ V \ {s, t} and ℓ = 1, . . . , n − 1. Hene, we have

|V ′| = |V ′′| = 1 + n(n − 2). Finally, in order to obtain a omplete bipartite graph G̃, we adddummy edges of ost M =
∑

(i,j)∈A ℓij + 1.We denote by P the set of all simple paths from s to t in G, by A the set of all feasibleassignments in G̃ and by A′ ⊆ A the set of all feasible assignments in G̃ that do not inlude anydummy edge of ost M .The following onstrutions desribe a transformation from a path in P to an assignment in
A′ and its onverse transformation.1. For eah simple path p in P we assoiate a unique assignment ap in A′ in the following way:we inlude in ap, the edge (i′, j′′) ∈ E for eah ar (i, j) ∈ p, the edges (i′, i′′) ∈ E if vertex idoes not belong to path p and the edges (x′

iℓ, x
′′
iℓ) for ℓ = 1, . . . , n− 1, i ∈ V \ {s, t}. Clearly,the ost of ap is the same as the length of p.2. Eah assignment a in A′ ontains a subset of edges (s′, i′′1), (i′1, i′′2), . . . , (i′b−1, i

′′
b ), (i

′
b, t

′′) or-responding to a unique simple path pa = (s, i1, i2, . . . , ib, t) in P . Indeed, eah a in A′neessarily ontains an edge of type (s′, i′′). Moreover, if edges (s′, i′′1), (i′1, i′′2), . . . , (i′c−1, i
′′
c )belong to a then there exists k ∈ V \ {i1, i2, . . . , ic} suh that (i′c, k′′) belongs to a. Clearly

k ∈ {i1, i2, . . . , ic} is impossible, but also (i′c, x
′′
icℓ

) sine otherwise a must ontain a dummyedge inident to one vertex of X ′
ic
. Assignment a an also ontain a set of edges of type

(i′, i′′) or (i′, x′′
iℓ) or (x′

iℓ, i
′′) or (x′

iℓ, x
′′
ij) and possibly a set of edges orresponding to arsforming iruits in G.In general, the ost of a is equal to the length of pa plus the lengths of the iruits orre-sponding to the yles desribed by a. However, when a is a minimum ost assignment, theost of a oinides with the length of pa, sine the yles desribed by a an only have a ost0 (otherwise all verties i of these yles ould be replaed by edges (i′, i′′) with ost 0).4
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MFigure 1: Constrution of G̃ from GGiven a subset S of ars from G, the subset of edges assoiated to S in G̃, denoted by Ĩm(S),is de�ned by Ĩm(S) = {(i′, j′′) ∈ E : (i, j) ∈ S}. We have |Ĩm(S)| = |S|.Given a subset S̃ of edges from G̃, the subset of ars assoiated to S̃ in G, denoted by Im(S̃),is de�ned by Im(S̃) = {(i, j) ∈ A : (i′, j′′) ∈ S̃, i 6= j, ci′j′′ 6= M}. We have |Im(S̃)| ≤ |S̃|.Observe that for any subset S of ars we have Im(Ĩm(S)) = S.In the following, we present two preliminary results. The �rst one haraterizes a minimum ostassignment generated by deleting a subset of edges and the seond one allows us to establish thenon-approximability results for k Most Vital Edges Assignment and Min Edge BlokerAssignment.Lemma 2 For any subset S̃ ⊂ E of ardinality k, with k ≤ λs,t(G) − 1, any minimum ostassignment in G̃− S̃ does not ontain any dummy edge of ost M .Proof : By removing the subset of edges S̃ of E of ardinality k, the subset of ars Im(S̃)ontains at most k ars of G. Sine k ≤ λs,t(G)− 1 then there exists at least one path from s to tin G− Im(S̃). Denote by p a shortest path from s to t in G− Im(S̃). If no edge of ap belongs to
S̃, then the result is established sine ap is an assignment in G̃− S̃ of ost less than M . Otherwise,onsider the nonempty set of edges ap ∩ S̃. These edges belong either to omplete bipartitesubgraphs K ′

i indued by X ′
i ∪X

′′

i when i ∈ V (p) \ {s, t} or to omplete bipartite subgraphs K ′′
iindued by X ′

i ∪X
′′

i ∪{i′, i′′} when i ∈ V \V (p). All these subgraphs ontain only edges of ost 0.Moreover, subgraphs K ′
i ontain n−1 verties on eah part while subgraphs K ′′

i ontain n verties5



on eah part. Sine |S̃| ≤ n− 2, we an apply Lemma 1 to all relevant subgraphs K ′
i and K ′′

i andderive an assignment a′ with the same ost as ap (and thus without dummy edges) but withoutedges belonging to S̃. Sine a′ has a ost less than M , it is also the ase for any minimum ostassignment in G̃− S̃ whih thus does not ontain dummy edges. ✷Lemma 3 (i) Let S be a subset of k ars of G, with k ≤ λs,t(G) − 1, and p be a shortestpath from s to t in G − S. There exists a subset S̄ = Ĩm(S) of k edges of G̃ suh that theassignment ap is a minimum ost assignment in G̃− S̄ and the ost of ap is the same as thelength of p.(ii) Let S̃ be a subset of k edges of G̃, with k ≤ λs,t(G)−1, and a be a minimum ost assignmentin G̃− S̃. There exists a subset S′ ⊇ Im(S̃) of k ars suh that the path pa is a shortest pathfrom s to t in G− S′ and its length is the same as the ost of a.Proof : (i) The existene of an assignment a of ost lower than that of ap in G̃ − Ĩm(S) wouldimply that there exists in G− Im(Ĩm(S)) = G− S a path pa of length stritly less than that of
p. Hene, ap is a minimum ost assignment in G̃− S̄ and its ost is the same as the length of p.(ii) Aording to Lemma 2, a ontains no dummy edge of ost M . Let S′ = Im(S̃)∪S′′, where
S′′ is any subset of k− |Im(S̃)| ars not belonging to pa. The length of pa is the same as the ostof a. We show in the following that pa is a shortest path from s to t in G− S′.Suppose that there exists a path p from s to t in G − S′ of length stritly less than that of
pa. Let ap be the assignment orresponding to p in G̃− Ĩm(S′). By onstrution, ap ontains nodummy edge. If ap ontains no edge of S̃ then ap is an assignment in G̃ − S̃ of ost stritly lessthan that of a, whih ontradits the optimality of a in G̃ − S̃. Otherwise, ap an ontain onlyedges of S̃ of type (i′, i′′), i = 1, . . . , n− 2, or (x′

iℓ, x
′′
iℓ), ℓ = 1, . . . , n− 1. Then, we an exhibit anassignment a′ from ap in G̃− Ĩm(S′) whih ontains no edge of S̃ and with the same ost as thatof ap, as shown in the proof of Lemma 2. Hene, a′ is an assignment in G̃− S̃ of ost stritly lessthan that of a, ontraditing again the optimality of a in G̃− S̃. Therefore, pa is a shortest pathfrom s to t in G− S′. ✷We are now in a position to give our two main inapproximability results.Theorem 1 k Most Vital Edges Assignment is NP-hard to approximate within a fator

2− ǫ, for any ǫ > 0.Proof : We onstrut an E -redution from k Most Vital Ars Shortest Path whih isshown to be NP -hard to approximate within a fator 2 − ǫ, for any ǫ > 0 [8℄. This establishesthat k Most Vital Edges Assignment is also NP -hard to approximate within a fator 2− ǫ,for any ǫ > 0.Let I be an instane of k Most Vital Ars Shortest Path onsisting of a graph G =
(V,A). We use the previous onstrution to de�ne from I an instane Ĩ of k Most Vital EdgesAssignment formed by the graph G̃ = (W,E).Consider an optimal solution S ⊂ A for I, with |S| = k, and denote by p a path of minimumlength from s to t in G − S. When removing from G̃ the subset of edges Ĩm(S), the assignment
ap is, aording to Lemma 3(i), a minimum ost assignment in G̃− Ĩm(S). Thus, opt(Ĩ) ≥ opt(I).Consider now a solution S̃ ⊂ E of Ĩ, with |S̃| = k, and denote by a a minimum ost assignmentin G̃ − S̃. Consider the subset of ars Im(S̃) and let pa be the path from s to t in G − Im(S̃)orresponding to a. Let S be a subset of k ars onsisting of Im(S̃) possibly ompleted by anysubset of k−|Im(S̃)| ars not belonging to pa. Aording to Lemma 3(ii), pa is a path of minimumlength in G−S whose length is equal to the ost of a. Hene, val(I, S) = val(Ĩ , S̃). In partiular,if S̃ is an optimal solution of Ĩ, then opt(Ĩ) = val(I, S) ≤ opt(I).Therefore, we have opt(I) = opt(Ĩ) and the error of the two solutions S and S̃ are equal ε(I, S) =
ε(Ĩ , S̃). ✷6



We prove now an inapproximability result for Min Ar Bloker Assignment. Unlike for
k Most Vital Edges Assignment, using our onstrution, it seems di�ult to build an E-redution whih imposes onditions on all feasible solutions (in partiular for those in G̃ of sizemore than λs,t(G) that do not give neessarily a feasible solution in G). Thus, we resort to agap-redution whih imposes onditions on optimal solutions only.Theorem 2 Min Edge Bloker Assignment is NP-hard to approximate within a fator 1.36.Proof : We onstrut a gap-redution fromMin Ar Bloker Shortest Path whih is knownto be NP -hard to approximate within a fator 1.36 even for graphs G suh that the optimum valueis less than λs,t(G) [8℄.Let I be an instane ofMin Ar Bloker Shortest Path onsisting of a graph G = (V,A)and a positive integer U . We use the previous onstrution to de�ne from I an instane Ĩ of MinEdge Bloker Assignment formed by the graph G̃ = (W,E) and U .Consider an optimal solution S ⊂ A for I, and denote by p a path of minimum length in G−Sfrom s to t. Sine |S| ≤ λs,t(G) − 1, aording to Lemma 3(i), the assignment ap is a minimumost assignment in G̃− Ĩm(S) of ost equal to the length of p, whih is at least U . Thus, we have
opt(Ĩ) ≤ opt(I) ≤ λs,t(G) − 1.Let S̃ ⊂ E be an optimal solution of Ĩ, and denote by a an assignment of minimum ost in G̃−S̃.Assignment a is suh that its ost is at least U . Aording to Lemma 3(ii), there exists a subset
S′ of |S̃| ars suh that the path pa is a shortest path in G− S′ and its length is the same as theost of a. The length of pa is then greater than or equal to U . Hene, opt(I) ≤ |S′| = opt(Ĩ). Thus
opt(Ĩ) = opt(I), showing that opt(I) ≤ c implies opt(Ĩ) ≤ c and opt(I) > cρ implies opt(Ĩ) > cρwhih establishes thatMin Edge Bloker Assignment is also NP -hard to approximate withina fator 1.36. ✷4 Exat resolutionWe propose in this setion an exat algorithm for solving k Most Vital Edges Assignmentand Min Edge Bloker Assignment. Consider G = (V1 ∪ V2, E) a omplete bipartite graphwith |V1| = |V2| = n and a ost is assoiated to eah edge of E. Denote by a∗ a minimum ostassignment in G.An approah to solve 1 Most Vital Edge Assignment is to delete one by one eah of the nedges belonging to a∗, determine the minimum ost assignments on the n resulting partial graphs,and retain the deleted edge whih leads to a largest minimum ost assignment. This approahis very similar to the sheme developed by Murty [12℄ for ranking the assignments in inreasingost order, exept that in Murty's approah a minimum ost assignment is seleted among the nandidate assignments. In this ontext, Miller et al. [11℄ and Pedersen et al. [13℄ showed that the
n assignments an be found e�iently using reoptimization. Indeed, given an edge e = (y, z) ∈ a∗,a minimum ost assignment ae in G − {e} an be found using Dijktra's algorithm in O(n2) bysolving a single shortest path problem between y and z where ars are valued by (nonnegative)redued osts. Therefore, the time omplexity for �nding all assignments ae for all edges e ∈ a∗ is
O(n3). Thus, we obtain the following result.Theorem 3 1 Most Vital Edge Assignment an be solved in O(n3) for omplete bipartitegraphs with n verties in eah part.In the following, we are interested in the exat resolution of k Most Vital Edges Assign-ment. Taking advantage of the fat that optimal solutions must ontain at least one edge of a∗,a naive approah would be to remove eah edge e ∈ a∗, onsider all possible ombinations of k− 1edges to delete from the n2 − 1 remaining edges and determine a minimum ost assignment inthe resulting partial graphs. An optimal solution is a subset of removed edges whih leads to thelargest minimum ost assignment. Hene, a naive approah for solving k Most Vital Edges7



Assignment would require n
(
n2−1
k−1

)
O(n3) = O(n2k+2) time. A more e�ient algorithm an beobtained through the following result.Theorem 4 k Most Vital Edges Assignment an be solved in O(nk+2) time for ompletebipartite graphs with n nodes in eah part and for general k.Proof : Consider a minimum ost assignment a∗ in G. Obviously, a set S∗ of k most vital edgesmust ontain at least one edge e in a∗. Consider now a minimum ost assignment b∗ in G − {e}.If k ≥ 2, then S∗ must ontain at least one edge of b∗, and so on. Hene, by simply enumeratingall possibilities to hoose an edge in a∗, then one in b∗ and so on, one an �nd an optimal solutionby looking at O(nk) possible subsets of removed edges. At eah step, we ompute a minimumost assignment in time O(n2) as for example when determining b∗ in G − {e} starting from a∗.Therefore, we ompute in this way n + n2 + . . . + nk minimum ost assignments, resulting in atime O(nk+2). ✷This algorithm an be implemented by developing a searh tree with k + 1 levels. The rootnode at level 0 orresponds to the optimal assignment a∗ and eah node at level i (i = 1, . . . , k)represents a tentative seletion of i edges whih ould be part of the k most vital edges. Are�ned implementation, avoiding the repetition of tentative seletions but still in O(nk+2), an beobtained using a branhing sheme similar to the one used by Murty [12℄. Moreover, observe thatsolving k Most Vital Edges Assignment in this way (developing a omplete or redued searhtree) allows the determination of an optimal solution for i Most Vital Edges Assignment bysimply sanning all nodes of level i and retaining a node orresponding to the largest minimumost assignment (i = 1, . . . , k).We show now how to solve Min Edge Bloker Assignment. If the minimum ost of anassignment is at least U then the optimal ardinality is 0. Otherwise, we searh for the smallestlevel i, 1 ≤ i ≤ n − 1 suh that the optimum value of i Most Vital Edges Assignment is atleast U . If suh an i does not exists, then any subset of n edges inident to a vertex is optimal.Thus, onsidering that we need to develop our searh tree until level n− 1 at most, we an solveMin Edge Bloker Assignment in O(nn+1).5 ConlusionsWe established in this paper negative results onerning the approximation of k most vitaledges and min edge bloker versions of the assignment problem.It is remarkable that all the proofs of NP -hardness or inapproximability previously used upto now for k most vital edges and min edge bloker versions of lassial optimization problemsare based on redutions from standard problems like vertex over, lique, independent set, ormin k ut. Our proofs are the �rst ones using redutions from a k most vital edges and minedge bloker version of a lassial optimization problem, namely shortest path. A main advantageof our E-redution is to preserve the value of solutions and therefore approximation propertiesbetween these versions of shortest path and assignment. Thus, a polynomial time approximationalgorithm for k Most Vital Edges Assignment would imply a polynomial time approximationalgorithm with the same approximation ratio for the orresponding versions of shortest path.A gap-redution only preserves inapproximability results. Thus, any stronger inapproximabilityresult for k most vital edges and min edge bloker shortest path, would give rise to the same resultfor the orresponding versions of assignment.Conerning positive results, we proposed exat algorithms, in O(nk+2) for k Most VitalEdges Assignment and in O(nn+1) for Min Edge Bloker Assignment. An interestingopen question is to try to establish approximation algorithms or better exat algorithms for theseproblems.
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