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Abstract

We are interested in a problem introduced by Vassilvitskii and Yannakakis [12], the computation of a minimum set of solutions
that approximates within an accuracyε the Pareto set of a multi-objective optimization problem. We mainly establish a new
3-approximation algorithm for the bi-objective case. We also propose a study of the greedy algorithm performance for the tri-
objective case when the points are given explicitly, answering an open question raised by Koltun and Papadimitriou in [9].
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1. Introduction

In multi-objective optimization, in opposition to single ob-
jective optimization, there is typically no optimal solution i.e.
one that is best for all the objectives. Therefore, the standard
situation is that any solution can always be improved on at least
one objective. The solutions of interest, calledefficient solu-
tions, are these such that any solution which is better on one
objective is necessarily worse on at least one other objective. In
other words, a solution is efficient if its corresponding vector
of objective values is not dominated by any other vector of ob-
jective values corresponding to a feasible solution. Thesevec-
tors, associated to efficient solutions, are callednon-dominated
points. For many multi-objective optimization problems, one
of the main difficulties is the large cardinality of the set of non-
dominated points (orPareto set). Indeed, it is well-known, in
particular, that most multi-objective combinatorial optimization
problems areintractable, in the sense that they admit families
of instances for which the number of non-dominated points is
exponential in the size of the instance [4]. Thus, instead ofpro-
ducing the full set of non-dominated points, we may prefer to
provide an approximation of this set. This idea is represented
by the concept of anε-Pareto set, which is a setPε of solutions
that approximately dominates every other solutions, i.e. such
that for every solutions, it contains a solutions′ that is better
within a factor 1+ε thans in all the objectives. The existence of
ε-Pareto sets of polynomial size is well-known [10] and poly-
nomial time algorithms that produceε-Pareto sets have been
developed and improved for many multi-objective optimization
problems, including Multi-objective Shortest Path [7, 13, 11],
Multi-objective Knapsack [5, 1]. However, note that there may
exist manyε-Pareto sets, some of which can have very small
size and some others very large size. An interesting problem
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introduced by [12] and continued in [3] is the efficient construc-
tion of ε-Pareto sets of size as small as possible. This paper
focuses on the same issue.

In the following section, we define the basic concepts, for-
malize the problem and recall some results of previous related
works. Then, in section 3, we mainly propose a new polyno-
mial time 3-approximation algorithm of the size of a smallest
ε-Pareto set for the bi-objective case. In section 4, we analyze
the performance of the greedy algorithm when the points of the
objectives space are given explicitly in the input and the num-
ber of objectives is three, answering an open question raised in
[9]. We conclude with some possible extensions to this work.

2. Preliminaries

In this paper, we consider multi-objective optimization
problems where we try to minimize several objectives, i.e.
minx∈S{ f1(x), . . . , fp(x)}, where f1, . . . , fp are p ≥ 2 objective
functions andS is the set of feasible solutions. In the case
where some or all objective functions are to be maximized, our
results are directly extendable.

We distinguish the decision spaceX which contains the set
S of feasible solutions of the instance and the criterion space
Y ⊆ Rp which contains the criterion vectors or simplypoints.
We denote byZ = f (S) ⊆ Y the set of the images of feasible
solutions calledfeasible points.

We denote byyi the coordinate on criterionfi of a pointy ∈ Y
for i = 1, . . . , p. We say that a pointy dominatesanother point
y′ if y is at least as good asy′ in all the objectives, i.e.yi ≤ y′i for
all i = 1, . . . , p. A feasible solutionx ∈ S is calledefficient if
there is no other feasible solutionx′ ∈ S such thatf (x) , f (x′)
and f (x′) dominatesf (x). If x is efficient,z = f (x) is called a
non-dominatedpoint in the criterion space. We denote byP the
set of non-dominated points, calledPareto set.

Given a constantc ≥ 1, a pointy c-dominatesanother point
y′ if y is at least as good asy′ up to a factor ofc in all the
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objectives, i.e.yi ≤ cy′i . For any rationalε > 0, anε-Pareto
set Pε is a subset of feasible points such that for allz ∈ P, there
existsz′ ∈ Pε such thatz′ (1 + ε)-dominatesz. In the context
of ε-Pareto sets, the central relation is the (1+ ε)-dominance
relation, denoted by�ε.

For a given instanceI , there may exist severalε-Pareto sets,
and these may have different sizes. It is shown in [10] that,
for every classical multi-objective optimization problem, anε-
Pareto set of size polynomial in the input size and 1/ε always
exists. Moreover its computation is related to the computation
of the following routineGAPδ.

Given an instanceI of a given problem, a pointy and a ra-
tionalδ ≥ 0, the routineGAPδ(y) either returns a feasible point
that dominatesy or reports that there does not exist any feasible
pointzsuch thatzi ≤ yi

1+δ for all i = 1, . . . , p.
We say that routineGAPδ(y) runs in polynomial time (resp.

fully polynomial time whenδ > 0) if its running time is poly-
nomial in |I | and |y| (resp. |I |, |y|, |δ| and 1/δ). An ε-Pareto set
is computable in polynomial time (resp. fully polynomial time)
if and only if the routineGAPδ runs in polynomial time (resp.
fully polynomial time) [10].

Since anε-Pareto set of polynomial size can still be quite
large, Vassilvitskii and Yannakakis investigate in [12] the deter-
mination ofε-Pareto sets of minimal size. These authors also
proposegenericalgorithms to deal with this problem. An algo-
rithm is called generic if it does not depend on any particular
problem and makes use of general purpose routines for which
only the implementation is specific to the problem (GAPδ is
such a general purpose routine). In such algorithms it is only
required to have bounds on the minimum and maximum values
of the objective functions. Assuming in the following that the
objective functions take positive rational values whose numer-
ators and denominators have at mostm bits, any feasible point
has a value between 2−m and 2m and moreover the difference
between the values of any two solutions is at least 2−2m for any
criterion. From [10],optε is polynomial in the input size and
1/ε.

In order to use generic algorithms, Diakonikolas and Yan-
nakakis introduced in [3] two other general purpose routines
calledRestrictδ andDualRestrictδ for the bi-objective case.

Given an instanceI , a boundb and a rationalδ ≥ 0, the
routineRestrictδ( f1, f2 ≤ b) either returns a feasible pointzsat-
isfying z2 ≤ b andz1 ≤ (1+δ).min{ f1(x) : x ∈ S and f2(x) ≤ b}
or correctly reports that there does not exist any feasible point z
such thatz2 ≤ b.

Given an instanceI , a boundb and a rationalδ ≥ 0, the
routineDualRestrictδ( f1, f2 ≤ b) either returns a feasible point
zsatisfyingz2 ≤ b(1+δ) andz1 ≤ min{ f1(x) : x ∈ S and f2(x) ≤
b} or correctly reports that there does not exist any feasible point
zsuch thatz2 ≤ b.

We say that routineRestrictδ( f1, f2 ≤ b) or DualRe-
strictδ( f1, f2 ≤ b) runs in polynomial time (resp. fully poly-
nomial time whenδ > 0) if its running time is polynomial in|I |
and|b| (resp.|I |, |b|, |δ| and 1/δ). RoutinesRestrictδ( f1, f2 ≤ b)
andDualRestrictδ( f2, f1 ≤ b′) are polynomially equivalent as
proved in [3].

In the routines considered in this paper we assume that the

errorδ is a rational number, otherwise it is approximated from
below by a rational number. We denote byP∗ε a smallestε-
Pareto set and byoptε its cardinality. It follows from [10] that
optε is polynomial in the input size and 1/ε.

We are interested in generic algorithms that compute in poly-
nomial time anε-Pareto set of minimal size. For the bi-
objective case, a generic algorithm that computes anε-Pareto
set of size at most 3optε was established in [12] using rou-
tines GAPδ. Moreover, if the routineGAPδ runs in polyno-
mial time (resp. fully polynomial time) then the algorithm also
runs in polynomial time (resp. fully polynomial time). Then,
it is shown in [3] that anε-Pareto set of size at most 2optε is
computable in polynomial time if there exists routinesRestrictδ
computable in polynomial time for both objectives. These ap-
proximation results are tight for the class of problems admitting
such routines. An algorithm that computes anε-Pareto set of
size at mostk.optε is called ak-approximation algorithm.

3. Two objectives

We first present a hardness result for the Bi-objective Knap-
sack problem then we propose a new generic algorithm that
approximates the size of a smallestε-Pareto set to a factor 3,
which is much simpler and, in some cases, more efficient than
the one presented in [12].

3.1. Approximation hardness forBi-objective Knapsack

Diakonikolas and Yannakakis [3] showed that the size of a
smallestε-Pareto set of Bi-objective Shortest Path and Bi-
objective Spanning Tree cannot be approximated within a factor
better than 2 in polynomial time, unless P= NP. These results
are tight since these two problems admit a routineRestrictδ that
runs in polynomial time, and thus anε-Pareto set of size at most
2optε is computable in polynomial time as shown in [3]. Vas-
silvitski and Yannakakis [12] showed that the size of a small-
estε-Pareto set of an artificial variant of Knapsack, called Bi-
objective 2-Type-Knapsack, cannot be approximated within a
factor better than 3 in polynomial time, unless P= NP. This re-
sult is also tight since this problem has a routineGAPδ that runs
in polynomial time, and thus anε-Pareto set of size at most
3optε is computable in polynomial time as shown in [12].

In this part, we investigate the status of the classical ver-
sion, called Bi-objective Knapsack, with as input a setQ of
items, a capacityc and for each itemi two valuesv1(i), v2(i)
and a weightw(i). Values and weights are positive rationals.
A solution is a nonempty subsetQ′ of items with total values
v1(Q′) =

∑

i∈Q′ v1(i), v2(Q′) =
∑

i∈Q′ v2(i) and a total weight
w(Q′) =

∑

i∈Q′ w(i) ≤ c. The goal is to maximize the values.
First, note that the size of a smallestε-Pareto set of Bi-objective
Knapsack is approximable in polynomial time to a factor 3 since
this problem admits an FPTAS, which is equivalent to the exis-
tence of a polynomial time routineGAPδ [5]. We prove that the
size of a smallestε-Pareto set of Bi-objective Knapsack is not
approximable in polynomial time within a factor better than3,
if P , NP.
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Theorem 1. For Bi-objective Knapsack the size of a smallest
ε-Pareto set cannot be approximated within a factor better than
3 in polynomial time, unlessP= NP.

Proof : We construct a gap-preserving reduction from the Par-
tition problem. Thus, from any instanceI of Partition, we
construct an instanceI ′ of Bi-objective Knapsack such that if
the answer ofI is ’yes’ then the size of the smallestε-Pareto set
of I ′ is 1 and if the answer ofI is ’no’ then the size of the small-
estε-Pareto set ofI ′ is 3. Recall that in Partition, the input is
a setN of n positive integersa1, . . . , an, and we have to deter-
mine if it is possible to partitionN into two subsets with equal
sum. Starting with such an instance we construct an instanceof
Bi-objective Knapsack as follows. Letb =

∑n
i=1 ai/2. For each

i = 1, . . . , n, we have one itemi with valuesv1(i) = v2(i) = ai

and weightw(i) = ai. In addition, we have two special itemsα
andβ with v1(α) = (1+ ε)b, v2(α) = 0, w(α) = b andv1(β) = 0,
v2(β) = (1+ ε)b, w(β) = b. The capacity of the knapsack isb.
Note that if a solution contains a special item, it cannot contain
any other item. Letzα andzβ be the points corresponding to the
solution with special itemα andβ respectively. Consider now
solutions without special items. The corresponding pointshav-
ing the same value on each criterion, letz∗ be the point with the
largest valuev∗ on each criterion.z∗ dominates all other such
points.

If I is a ’yes’ instance, we havev∗ = b. Thus,z∗ (1 + ε)-
dominates bothzα andzβ, and{z∗} is anε-Pareto set. IfI is a
’no’ instance, we havev∗ < b. Thuszα andzβ must make part
of anyε-Pareto set and{z∗, zα, zβ} is a smallestε-Pareto set.2

Remark that we can generalize the previous result, proving
that for p-objective Knapsack with p ≥ 2 the size of a smallest
ε-Pareto set cannot be approximated within a factor better than
p+ 1 in polynomial time, unless P= NP.

3.2. A new 3-approximation algorithm

We propose in this section a new 3-approximation algorithm,
based on another routine calledSoftRestrictδ.

Given a positive rational boundb and a parameterδ > 0, the
routineSoftRestrictδ( f1, f2 ≤ b) either returns a feasible point
z satisfyingz2 ≤ (1 + δ)b andz1 ≤ (1 + δ).min{ f1(x) : x ∈
S and f2(x) ≤ b} or correctly reports that there does not exist
any feasible pointzsuch thatz2 ≤ b.

We say that a routineSoftRestrictδ( f1, f2 ≤ b) runs in poly-
nomial time (resp. fully polynomial time whenδ > 0) if its
running time is polynomial in|I | and |b| (resp. |I |, |b|, |δ| and
1/δ).

Remark that a routineSoftRestrictδ( f1, f2 < b), with a
strict constraint, can easily be simulated by a routineSoftRe-
strictδ( f1, f2 ≤ b′) usingb′ = b− 2−2m.

Such a routine was proposed for several problems. For in-
stance, for the Bi-objective Spanning Tree problem, the running
time of the routine presented in [8] isO(mn5τ(⌊(n− 1)/δ⌋, ⌊(n−
1)/δ⌋)) wheren is the number of vertices in the graph,m the
number of edges in the graph andτ(a, b) is the time to multi-
ply polynomials of maximum degrees less than or equal toa
andb. For a Bi-objective SingleMachine Scheduling problem,
the running time of the routine presented in [2] isO(n5R/(δ3L))

wheren is the number of jobs,L andR are respectively lower
and upper bounds on the first coordinate of an optimal solution.
For Bi-objective Bipartite Matching, the running time of the
routine presented in [6] isO(mO(1/δ2)) wherem is the number of
edges in the graph.

Our approximation algorithm has the same approximation ra-
tio as the algorithm presented in [12] but is much simpler, both
in its description and in its proof, owing to the use of the routine
SoftRestrictδ instead ofGAPδ. Its running time is comparable
to the one of [12] and better under some conditions.

Before presenting and analyzing this new 3-approximation
algorithm, we first compare the two routinesGAPandSoftRe-
strict.

Proposition 1. The routines SoftRestrict and GAP are polyno-
mially equivalent.

Proof : We first show that we can answer toGAPδ(y) us-
ing SoftRestrictδ( f1, f2 ≤ y2/(1 + δ)). Indeed, if SoftRe-
strictδ( f1, f2 ≤ y2/(1 + δ)) returns NO or returns a feasible
point z with z1 > y1, we return NO and ifSoftRestrictδ( f1, f2 ≤
y2/(1+ δ)) returns a feasible pointzwith z1 ≤ y1 we returnz.

We give in the following an algorithm that computes the
function SoftRestrictδ( f1, f2 ≤ b) using a polynomial num-
ber of calls toGAPδ′ whereδ′ =

√
1+ δ − 1. We first call

GAPδ′((1+ δ′)2m, (1+ δ′)b). If it returns NO, then we also re-
turn NO forSoftRestrictδ( f1, f2 ≤ b). Otherwise, we partition
the objective space by defining intervals, on the first objective,
from 2−m/(1 + δ′) to 2m such that the ratio between the up-
per and lower bounds of each interval is 1+ δ′. We perform
a binary search on the upper bounds of the previous intervals
callingGAPδ′(a, (1+ δ′)b) for somea until one finds a valuea∗

such that (i)GAPδ′(a∗(1+ δ′), (1+ δ′)b) returns a feasible point
z∗ and (ii)GAPδ′ (a∗, (1+ δ′)b) returns NO. Then we returnz∗.

The number of subdivisions on the first coordinate is
2m/ log(1 + δ′) ≈ Θ(4m/δ′). Hence, the number of calls to
GAPδ′ isΘ(log(m/δ′))=Θ(log(m/δ)). 2

Corollary 1. Consider the class of bi-objective problems that
possess a fully polynomial time routine SoftRestrictδ with δ > 0
for both objectives. Then, for anyε > 0, there is no polynomial
time generic algorithm using SoftRestrictδ that computes anε-
Pareto set of size less than or equal to3optε.

Proof : Follows from Proposition 1 and the fact that the same
result holds for the routineGAPδ [12]. 2

Algorithm description.We first describe briefly the idea of the
algorithm. We computef min

1 and f min
2 which represent lower

bounds on the minimum values on the first and second objec-
tives usingSoftRestrictδ. The algorithm iteratively generates a
sequence of pointsr1, q1, . . . , r s, qs. Pointsq1, . . . , qs are se-
lected in decreasing order according tof1 and increasing order
according tof2. Pointq1 is selected so as to (1+ ε)-dominate
the feasible points that have an optimal second coordinate while
getting the best possible value onf1. The algorithm stops when
it generates a pointqs that (1+ ε)-dominates the feasible points
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Algorithm 1: Algorithm SoftGreedy
input : An instance of a bi-objective problem for which

routinesSoftRestrictδ( f1, f2 ≤ b) and
SoftRestrictδ( f2, f1 ≤ b) are available

output : An ε-Pareto set of size at most 3optε

1 f min
1 ← f1(SoftRestrictδ( f1, f2 ≤ 2m))/(1+ δ);
f min
2 ← f2(SoftRestrictδ( f2, f1 ≤ 2m))/(1+ δ);

2 r1 ← SoftRestrictδ( f2, f1 ≤ 2m);

3 f2
1
← 1+ε

(1+δ)2 r1
2;

4 q1← SoftRestrictδ( f1, f2 ≤ f2
1
);

5 f1
1
← q1

1/(1+ ε);
6 Q← {q1};
7 i ← 1;

8 while f1
i
> f min

1 do
9 i ← i + 1;

10 r i ← SoftRestrictδ( f2, f1 < f1
i−1

);

11 f2
i
← 1+ε

1+δmax{ f2
i−1
, r i

2/(1+ δ)};
12 qi ← SoftRestrictδ( f1, f2 ≤ f2

i
);

13 if qi
1 > r i

1 then
14 qi ← r i ;

15 f1
i
← qi

1/(1+ ε);
16 Q← Q∪ {qi};
17 return Q;

that have a first coordinate equal tof min
1 . RoutinesSoftRe-

strictδ( f2, f1 ≤ b) andSoftRestrictδ( f1, f2 ≤ b) are alternatively
used to construct pointsr i and pointsqi respectively. Pointr i

is a point with a smallest second coordinate that we can deter-
mine with the routineSoftRestrictδ that is not (1+ ε)/(1 + δ)-
dominated by the pointsq j with j < i. Pointqi is a point with
a smallest first coordinate that we can determine with routine
SoftRestrictδ that (1+ ε)-dominates pointr i . A formal descrip-
tion of this algorithm is given in Algorithm 1.

In order to obtain a 3-approximation algorithm, we consider
in the following thatδ ≤ 3

√
1+ ε − 1. Before analyzing this al-

gorithm, we illustrate its behavior in Figure 1 where 3 points
q1, q2, q3 are selected by Algorithm 1 in order to cover the part

of the objective space with first objective value at leastf1
3
,

whereas only one point,p∗1, is sufficient.

Algorithm analysis.We show now that Algorithm 1 produces
a 3-approximation of the size of a smallestε-Pareto set. Let
Q = {q1, . . . , qs} and R = {r1, . . . , r s} be the sets of feasible
points produced by the algorithm. We show in the following
that setQ is anε-Pareto set, then that its size is at most three
times the size ofP∗ε, anε-Pareto set of minimal size. The proof
is essentially the same as the one in [3] for the 2-approximation
algorithm. We first show some preliminarily results regarding
points inQ andR.

Lemma 1. For all i = 2, . . . , s we have(i) r i
1 < qi−1

1 (1+ δ)/(1+
ε) and (ii ) for each feasible point z with z1 < qi−1

1 /(1 + ε), we

f2

f1

f2
1

b r1

b q1

f1
1

b r2

f2
2u p∗1

b q2

f1
2

b r3
(1+ δ) f2

2

b q
3

(1+ δ) f2
1

f1
3

f2
3

(1+ δ) f2
3

p∗11
1+ε

p∗12
1+ε

f min
2

f min
1

. . .

Figure 1: Illustration of Algorithm 1 with 1+ δ = 3√1+ ε

have z2 ≥ max{ f2
i−1
, r i

2/(1+ δ)}.

Proof : This results from the definition of the routineSoftRe-
strictδ and steps 10-12 and 15 of the algorithm. 2

Lemma 2. For all i = 1, . . . , s we have(i) qi
2 ≤ (1 + δ) f2

i

and (ii ) for each feasible point z with z2 ≤ f2
i
, we have z1 ≥

qi
1/(1+ δ).

Proof : This results from the definition of the routineSoftRe-
strictδ and steps 10-12 of the algorithm. 2

We can now prove the following result.

Proposition 2. Set Q is anε-Pareto set.

Proof : We show that the points inQ cover all the feasible
points by partitioning the range of feasible values onf1. More
precisely, we show that:

(i) Pointq1 (1+ ε)-dominates all the feasible points with an
f1 value greater than or equal toq1

1/(1+ ε).
(ii ) For eachi = 2, . . . , s point qi (1 + ε)-dominates all

the feasible points that have theirf1 value in the interval
[

qi
1/(1+ ε), q

i−1
1 /(1+ ε)

)

.
(iii ) There is no feasible point with af1 value smaller than

qs
1/(1+ ε).

(i) Let z be a feasible point withz1 ≥ q1
1/(1 + ε). We need to

show thatz is (1+ ε)-dominated byq1, i.e. thatz2 ≥ q1
2/(1+ ε).

From steps 2-4 we get whereq1
2 ≤ r1

2(1+ε)/(1+δ) ≤ f min
2 (1+ε)

and thusq1
2/(1+ ε) ≤ f min

2 ≤ z2.
(ii ) Let z be a feasible point satisfyingqi

1/(1 + ε) ≤ z1 <

qi−1
1 /(1 + ε). We need to show thatz is (1 + ε)-dominated

by qi, i.e. thatz2 ≥ qi
2/(1 + ε). From Lemma 1-(ii ) we have

z2 ≥ max{ f2
i−1
, r i

2/(1+ δ)}. Furthermore from Lemma 2-(i) we

haveqi
2 ≤ (1+ δ) f2

i
. Hence, from the definition off2

i
(step 11),

we getqi
2 ≤ max{ f2

i−1
, r i

2/(1+ δ)} ≤ (1+ ε)z2.

(iii ) The stopping condition of the algorithm (step 8) isf1
s
=

qs
1/(1+ ε) ≤ f min

1 . 2

We show now that the size ofQ is at most three times the size
of an optimalε-Pareto set.
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Proposition 3. Set Q is such that|Q| ≤ 3optε.

Proof : Let P∗ε = {p∗1, . . . , p∗k} be an optimalε-Pareto set,
where its pointsp∗i for i = 1, . . . , k are in increasing order of
their coordinates onf2 and decreasing order of their coordinates
on f1. We have to show that|Q| ≤ 3k. For this purpose, we show
by induction oni that if the algorithm selects a feasible point
q3i−2 then there must exist a pointp∗i in P∗ε, if the algorithm
selects a pointq3i−1 thenp∗i1 (1+ δ) ≥ q3i−1

1 and if the algorithm
selects a pointq3i thenp∗i1 > (1+ δ)q3i

1 .

Initialization (i = 1). The first statement trivially holds. To

prove the second statement we first show thatp∗12 ≤ f2
2
. Since

the feasible pointr1 must be (1+ ε)-dominated by a point ofP∗ε
and in particular by pointp∗1, we havep∗12 ≤ r1

2(1+ε). From the

definitions off2
1

and f2
2

(step 11) and using thatδ ≤ 3
√

1+ ε−1,

we haver1
2(1+ ε) = f2

1
(1+ δ)2 ≤ f2

2
. Using thatp∗12 ≤ f2

2
and

Lemma 2-(ii ) we obtainp∗11 (1+ δ) ≥ q2
1. Since we haveq3

1 ≤ r3
1

(steps 13 and 14) Lemma 1-(i) implies thatq3
1 < q2

1(1+δ)/(1+ε),
and so that the third statement is a consequence of the second
one, considering thatδ ≤ 3

√
1+ ε − 1.

Induction step. Assume the result is true until indexi − 1,
we prove it for indexi. First, if the algorithm selects a point
q3i−2, we show thatP∗ε contains a pointp∗i . By the termination
condition of the algorithm (step 8), we haveq3i−3

1 > (1+ ε) f min
1

and by the induction hypothesis thatp∗i−1
1 > (1 + δ)q3i−3

1 , it
follows thatp∗i−1

1 > (1+δ)(1+ε) f min
1 . Thus, pointp∗i−1 does not

(1 + ε)-dominate the feasible points that have a minimum first
coordinate, and soP∗ε must contain another pointp∗i . To prove

the second statement we first show thatp∗i2 ≤ f2
3i−1

. Since the
feasible pointr3i−2 must be (1+ ε)-dominated by a point ofP∗ε
and in particular by pointp∗i , we havep∗i2 ≤ r3i−2

2 (1+ ε). From

the definitions off2
3i−2

and f2
3i−1

(step 11) and using thatδ ≤
3
√

1+ ε−1, we haver3i−2
2 (1+ ε) ≤ f2

3i−2
(1+ δ)2 ≤ f2

3i−1
. Using

that p∗i2 ≤ f2
3i−1

and Lemma 2-(ii ) we obtainp∗i1 (1+ δ) ≥ q3i−1
1 .

Since we haveq3i
1 ≤ r3i

1 (steps 13 and 14) Lemma 1-(i) implies
thatq3i

1 < q2i−1
1 (1+δ)/(1+ε), and so that the third statement is a

consequence of the second one, considering thatδ ≤ 3
√

1+ ε−1.
2

Combining the previous results, we obtain the main result of
this section.

Theorem 2. Algorithm 1 computes anε-Pareto set of size
less than or equal to3optε using O(optε) routine calls to
SoftRestrictδ, whenδ ≤ 3

√
1+ ε − 1.

Proof : The result is a direct consequence of Propositions 2 and
3. Since the algorithm uses 2|Q| times the routineSoftRestrictδ,
the number of routine calls is bounded by 6optε. 2

Comparison to existing algorithms.For the class of problems
admitting a routineGAP that runs in polynomial time, the al-
gorithm of Vassilvitski and Yannakakis presented in [12] was
the only one ensuring some guarantee on the size of the re-
turnedε-Pareto set. This algorithm, calledZIGZAGis a generic

algorithm based on the routineGAP, that establishes a 3-
approximation of the size of a smallestε-Pareto set and it needs
O(optε · log(m/ε)) routine calls. Since algorithmZIGZAGand
our algorithm run in polynomial time for the same class of
problems and give the same approximation ratio of a smallest
ε-Pareto set we can compare them with regard to their run-
ning times. The running time of a generic algorithm is de-
fined as the product between the number of routine calls and
the running time of the routine called. This way, the running
time of algorithmZIGZAG is O(optε · log(m/ε)) · TGAPδ with
δ =

4
√

1+ ε − 1 and the running time of our algorithmSoft-
Greedyis O(optε) ·TSoftRestrictδ with δ = 3

√
1+ ε−1 whereTGAPδ

andTSoftRestrictδ are the running times of the routinesGAPδ and
SoftRestrictδ respectively.

The running times of algorithmsSoftGreedyandZIGZAGare
comparable since we can solve the routineSoftRestrictδ using
Θ(log(m/ε)) calls toGAPδ′ with δ′ =

√
1+ δ− 1 (see the proof

of Proposition 1). Moreover, if we can solve faster the routine
SoftRestrictδ, the running time of algorithmSoftGreedywill be
smaller than the one of algorithmZIGZAG. Especially, if the
best known algorithm to solveGAPδ solvesSoftRestrictδ in the
same time, we gain the time of the binary searches. It is the
case for Bi-objective Spanning Tree since the algorithm in [8]
that solvesSoftRestrictδ is the best known to solveGAPδ.

4. More than two objectives

Computing smallε-Pareto sets for problems withp ≥ 3 ob-
jectives raises specific difficulties.

A first type of difficulties is related to the power or availabil-
ity of the routines. In [12], Vassilvitski and Yannakakis showed
that any generic algorithm based on routineGAPδ cannot es-
tablish ac-approximation of the size of a smallestǫ-Pareto set
for any constantc. UsingSoftRestrictδ instead ofGAPδ leads to
the same result since the two routines are polynomially equiv-
alent (see Proposition 1, whose proof for 2 objectives can be
generalized straightforwardly forp objectives).

Therefore, in order to obtain stronger results, it is neces-
sary to resort to routines involving less tolerance, such asthe
extended versions, forp objectives, ofRestrictδ or DualRe-
strictδ. First remark that extendedRestrictδ is more demand-
ing than extendedDualRestrictδ since the toleranceδ is repre-
sented only once in the objective to be minimized inRestrictδ
whereas it is present in thep − 1 constraints inDualRestrictδ.
This is confirmed by known results [6], where it is shown that,
for p ≥ 3, there is no polynomial-time routineRestrictδ for
classical problems like Multi-objective Shortest Path, Multi-
objective Spanning Tree, Multi-objective Perfect Matching,
whereas, for instance, there exists a polynomial-time routine
DualRestrictδ for Multi-objective Spanning Tree. Therefore,
an interesting problem is to devise a generic procedure to gen-
erate anε-Pareto set of smallest size for ap-criteria problem,
usingDualRestrictδ.

A second type of difficulties is related to the way of exploring
objective spaces with more than two objectives. It should be
noticed that, in the bi-objective case, non-dominated points can
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be sorted such that their objective values are increasing inone
objective and decreasing in the other objective. This orderis
used in algorithms generating smallε-Pareto sets, including our
algorithm SoftGreedy. The non-existence of such an order for
p ≥ 3 makes the exploration of the objective space much more
difficult.

Owing to the previous difficulties, we focus in this section on
the simple case where the feasible points are given explicitly in
the input. In this case, we can easily filter out the dominated
points and thus we consider in the following that the input con-
tains non-dominated points only.

In this context, whenp = 3, the problem of finding anε-
Pareto set of smallest size isc-approximable, for some con-
stantc [9]. Moreover, for any number of criteria, there exists
an O(logn)-approximation since our problem reduces to Set
Cover, for which the greedy algorithm provides anO(logn)-
approximation. An interesting open question, raised by Koltun
and Papadimitriou in [9], is to known whether thegreedyal-
gorithm performs better on the very specific instances of our
problem. We provide an negative answer in Theorem 3. Recall
that thegreedyalgorithm iteratively selects the point that covers
the largest number of non-covered points.

Note that for 2 criteria, thegreedyalgorithm gives a 2-
approximation, but it is not really satisfying because the al-
gorithm of Diakonikolas and Yannakakis [3] finds an optimal
solution when the points are given explicitly in the input.

Theorem 3. For p ≥ 3 objectives, when the feasible points are
given explicitly in the input, the solution set produced by the
greedy algorithm forSet Cover has a sizeΘ(logn) · optε in the
worst case.

Proof : We prove the result forp = 3. The result clearly ex-
tends top ≥ 4 since we can consider the same points extended
with the lastp−3 coordinates to 0. In order to prove it, we give
a family of instances where the algorithm produces aΘ(logn)-
approximation. Leta, b, c be three nonnegative integers,n = 2ℓ

and considerN = 2ℓ + ℓ − 3 = n + logn − 3 non-dominated
points in the criterion space, defined as follows.

For all i = 1, . . . , logn − 1 let zi
=

( a
(1+ε)i/(logn−1) ,

b
(1+ε)i/(logn−1) , c(1+ ε)

i−1
logn−1+1), Γi be a

set of n
2i+1 points lying uniformly on the line

from (a, b
(1+ε)(i−1)/(logn−1)+1 − 1, c(1+ ε)

i−1
logn−1 ) to (a(1 +

ε), b
(1+ε)i/(logn−1)+1 , c(1+ ε)

i−1
logn−1 ) if i , logn − 1 and be

the singleton {(a, b
(1+ε)(i−1)/(logn−1)+1 − 1, c(1+ ε)

i−1
logn−1 )} if

i = logn − 1, and Γ′i be a set of n
2i+1 points lying uni-

formly on the line from ( a
(1+ε)(i−1)/(logn−1)+1 − 1, b, c(1+ ε)

i−1
logn−1 ) to

( a
(1+ε)i/(logn−1)+1 , b(1+ ε), c(1+ ε)

i−1
logn−1 ) if i , logn− 1 and be the

singleton{( a
(1+ε)(i−1)/(logn−1)+1 − 1, b, c(1+ ε)

i−1
logn−1 )} if i = logn− 1.

Note that if the coordinates of pointszi are not rational, we
approximate its coordinates from below by rational ones. More-
over, if the coordinates of points inΓ ∪ Γ′ are not rational, we
approximate its coordinates from above by rational ones.

Let ξ = ∪i{zi} andΓ = ∪iΓi , Γ′ = ∪iΓ
′
i . We can seta, b, c

sufficiently large to have the following (1+ ε)-dominance rela-
tions:

(i) for anyzi , zj ∈ ξ, zi �ε zj

(ii) for any i, j = 1, . . . , logn− 1, for anyz ∈ Γ j ∪ Γ′j , zi �ε z if
and only if i = j

(iii) for any z, z′ ∈ Γ, z�ε z′

(iv) for anyz, z′ ∈ Γ′, z�ε z′

(v) for anyz ∈ Γ, z′ ∈ Γ′, z�ε z′ andz′ �ε z

We show in the following that the greedy algorithm selects
the pointszi , i = 1, . . . , logn− 1 in this order. The proof is by
induction oni.

Initialization (i=1). Note that|Γ| = |Γ′| = n
2 − 1. From (v)

it follows that any point inΓ ∪ Γ′ (1 + ε)-dominates at most
n
2 + logn−2 points. From (i) and (ii) pointzi (1+ ε)-dominates
exactly the points inξ ∪ Γi ∪ Γ′i , where|ξ ∪ Γi ∪ Γ′i | =

n
2i +

logn − 1. In particular pointz1 (1 + ε)-dominatesn
2 + logn −

1 points. Therefore, pointz1 is the first point selected by the
greedy algorithm.

Induction step. Assuming that the firsti − 1 points selected
by the greedy algorithm arez1, . . . , zi−1, we prove that the next
one is pointzi . The points (1+ε)-dominated by{z1, . . . , zi−1} are
exactly the points inξ ∪ (∪i−1

j=1(Γ j ∪ Γ′j)). Therefore, any point

in Γ ∪ Γ′ (1+ ε)-dominates exactly| ∪logn−1
j=i (Γ j ∪ Γ′j)| =

n
2i − 1

points that are not already covered. Pointzi exactly (1+ ε)-
dominates, among the non-covered points, the points inΓi ∪ Γ′i
where|Γi ∪ Γ′i | =

n
2i . Thus pointzi is selected by the greedy

algorithm at stepi.
Observe now, that the first point ofΓ1 (1+ ε)-dominates all

the points inξ. Thus, from (iii) and (iv), it follows that a set
constituted by the first point ofΓ1 and any point inΓ′ (1+ ε)-
dominate theN points. Therefore, the greedy algorithm returns
a set of points of size logn − 1 while an optimal set of points
contains only two points. 2

5. Conclusions

We investigated the problem of computing smallε-Pareto
sets for multiobjective problems. While the situation is clear
for bi-objective problems, it remains challenging for problems
involving at least three objectives. In this latter case, even when
the points are given explicitly in the input, it is NP-hard tode-
termine anε-Pareto set of minimal size, but there exists a 100-
approximation of the size of a smallestε-Pareto set [9]. A natu-
ral open question is to narrow the large gap between lower and
upper bounds.
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