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Abstract

We are interested in a problem introduced by Vassilvitskid &annakakis [12], the computation of a minimum set of sohg
that approximates within an accuraeythe Pareto set of a multi-objective optimization probleme Wainly establish a new
3-approximation algorithm for the bi-objective case. Wsoagpropose a study of the greedy algorithm performance fotrih
objective case when the points are given explicitly, ansvgesin open question raised by Koltun and Papadimitriou]in [9

Keywords: Multi-objective optimization, Pareto set, non-domingpeihts, approximation algorithm, greedy algorithm.

1. Introduction introduced by [12] and continued in [3] is théieient construc-

S S . _ tion of e-Pareto sets of size as small as possible. This paper
In multi-objective optimization, in opposition to singl®0  f5cuses on the same issue.

jective optimization, there is typically no optimal sobstii.e. In the following section, we define the basic concepts, for-
one that is best for all the objectives. Therefore, the steld 5)ize the problem and recall some results of previouseelat
situation is that any solution can always be improved onagtle \,orks. Then. in section 3. we mainly propose a new polyno-
one objective. The solutions of interest, callfficientsolu-  yjg) time 3-approximation algorithm of the size of a smalles
tions, are these such that any solution which is better on ong psreto set for the bi-objective case. In section 4, we aealy
objective is necessarily worse on at least one other obedtt  the performance of the greedy algorithm when the pointsef th
other_ WO.I’dS, a solgtlon |sﬂémgnt if its corresponding vector objectives space are given explicitly in the input and theanu
of objective values is not dominated by any other vector 6f ob g of objectives is three, answering an open questiondtrise

jective values corresponding to a feasible solution. Tvese 9], We conclude with some possible extensions to this work.
tors, associated tdfecient solutions, are calledon-dominated

points For many multi-objective optimization problems, one
of the main dfficulties is the large cardinality of the set of non-
dominated points (oPareto set. Indeed, it is well-known, in
particular, that most multi-objective combinatorial apization problems where we try to minimize several objectives, i.e.
problems aréntractablg in the sense that they admit families Mines{f1(X). ... f,(X)}, wherefy,.... f, arep > 2 objective

of instances for which the number of non-dominated points ignctions ands is the set of feasible solutions. In the case

exponential in the size of the instance [4]. Thus, instegufof  \;here some or all objective functions are to be maximized, ou
ducing the full set of non-dominated points, we may prefer to,aqits are directly extendable.

provide an approximation of this set. This idea is represgnt

by the concept of aa-Pareto set, which is a sBt. of solutions We distinguish the decision spa¥ewhich contains the set
that approximately dominates every other solutions, ikchs S of feasible solutions of the instance and the criterion gepac
that for every solutiors, it contains a solutiors’ that is better Y S R” which contains the criterion vectors or simgigints
within a factor +& thansin all the objectives. The existence of We denote byZ = f(S) ¢ Y the set of the images of feasible
&-Pareto sets of polynomial size is well-known [10] and poly-Solutions calledeasible points

nomial time algorithms that produaePgret_o sets ha\./e"been We denote by; the coordinate on criteriofi of a pointy € Y
developed and improved for many multi-objective optimi@at  forj = 1,..., p. We say that a poing dominatesnother point
problems, including Mcri-osiective Sortest Part [7, 13, 11], v if yis at least as good gsin all the objectives, i.ey; < y, for
Mutri-oBsecTivE Knapsack [5, 1]. However, note that there may gj i = 1,...,p. Afeasible solutiorx € S is calledefficient if
exist manye-Pareto sets, some of which can have very smalihere is no other feasible solutishe S such thatf (x) # f(x)
size and some others very large size. An interesting problemind f(x') dominatesf (X). If x is efficient,z = f(X) is called a
non-dominategboint in the criterion space. We denoteByhe
Email addressesbazgan@lamsade .dauphine.fr (Cristina Bazgan), set (.)f non-dominated points, (.:a"@dreto SEt .
florian.jamain@lamsade.dauphine.fr (Florian Jamain), .lee.n aconstant > 1, a pointy c-domlnatesano.ther point
vdp@lamsade.dauphine.fr (Daniel Vanderpooten) y if yis at least as good ag up to a factor ofc in all the

2. Preliminaries

In this paper, we consider multi-objective optimization
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objectives, i.e.y; < cy/. For any rationak > 0, ane-Pareto
set B, is a subset of feasible points such that forzal P, there
existsZ € P, such thatZ (1 + )-dominates. In the context
of e-Pareto sets, the central relation is theH%)-dominance
relation, denoted by,.

For a given instanck, there may exist severatPareto sets,
and these may haveftkrent sizes. It is shown in [10] that,
for every classical multi-objective optimization probleam &-
Pareto set of size polynomial in the input size arid always
exists. Moreover its computation is related to the companat
of the following routineGAP;.

Given an instancé of a given problem, a point and a ra-
tional s > 0, the routineGAP;(y) either returns a feasible point
that dominatey or reports that there does not exist any feasibl
pointzsuch tha < - foralli=1,...,p.

We say that routin€&AP;(y) runs in polynomial time (resp.
fully polynomial time whens > 0) if its running time is poly-
nomial in|l| andly| (resp.]|l|, lyl, I6] and ¥/6). An e-Pareto set
is computable in polynomial time (resp. fully polynomiahi)
if and only if the routineGAP; runs in polynomial time (resp.
fully polynomial time) [10].

(S

erroré is a rational number, otherwise it is approximated from
below by a rational number. We denote By a smallests-
Pareto set and bgpt, its cardinality. It follows from [10] that
opt, is polynomial in the input size and &.

We are interested in generic algorithms that compute in-poly
nomial time ane-Pareto set of minimal size. For the bi-
objective case, a generic algorithm that computes-8areto
set of size at mostd@t, was established in [12] using rou-
tines GAP;. Moreover, if the routingGAP; runs in polyno-
mial time (resp. fully polynomial time) then the algorithiis@a
runs in polynomial time (resp. fully polynomial time). Then
it is shown in [3] that are-Pareto set of size at mosbgt, is
computable in polynomial time if there exists routirkestricy
computable in polynomial time for both objectives. These ap
proximation results are tight for the class of problems dtiing
such routines. An algorithm that computessaRareto set of
size at mosk.opt, is called ak-approximation algorithm.

3. Two objectives

Since ans-Pareto set of polynomial size can still be quite \\e first present a hardness result for theoBEctive Knap-

large, Vassilvitskii and Yannakakis investigate in [123 titeter-

sack problem then we propose a new generic algorithm that

mination ofe-Pareto sets of minimal size. These authors a|3%1pproximates the size of a smallesPareto set to a factor 3

proposegenericalgorithms to deal with this problem. An algo-

which is much simpler and, in some cases, mdfieient than

rithm is called generic if it does not depend on any particula e gne presented in [12].
problem and makes use of general purpose routines for which

only the implementation is specific to the proble@AP; is

such a general purpose routine). In such algorithms it ig onl

3.1. Approximation hardness f@1-osiective KNapsack

required to have bounds on the minimum and maximum values Diakonikolas and Yannakakis [3] showed that the size of a

of the objective functions. Assuming in the following thaet
objective functions take positive rational values whosmer
ators and denominators have at modbits, any feasible point
has a value betweerr2 and 2" and moreover the fference
between the values of any two solutions is at leadt Zor any
criterion. From [10],0pt. is polynomial in the input size and
1/e.

smalleste-Pareto set of Bosiective Suortest Parn and B-
OBJECTIVE SPANNING TREE Cannot be approximated within a factor
better than 2 in polynomial time, unless=PNP. These results
are tight since these two problems admit a rouRestrict that
runs in polynomial time, and thus arPareto set of size at most
20pt. is computable in polynomial time as shown in [3]. Vas-
silvitski and Yannakakis [12] showed that the size of a small

In order to use generic algorithms, Diakonikolas and Yan-este-Pareto set of an artificial variant ofNKpsack, called B-
nakakis introduced in [3] two other general purpose routine ossective 2-Type-Knapsack, cannot be approximated within a

calledRestrict andDualRestric§ for the bi-objective case.

Given an instancé, a boundb and a rationab > 0, the
routineRestrict(f1, f2 < b) either returns a feasible poinsat-
isfyingz, < bandz; < (1+6). min{f1(X) : x € S and f,(x) < b}
or correctly reports that there does not exist any feasibiletz
such thatz, < b.

Given an instancé, a boundb and a rationab > 0, the
routineDualRestric§(fy, f, < b) either returns a feasible point
zsatisfyingz, < b(1+6) andz; < min{fi(x) : x e S andf,(x) <
b} or correctly reports that there does not exist any feasitiletp
zsuch thaiz, < b.

We say that routineRestrici(f;, f, < b) or DualRe-
stricts(f1, f2 < b) runs in polynomial time (resp. fully poly-
nomial time wherd > 0) if its running time is polynomial inl |
and|b| (resp.|l|, |bl, |6] and ¥/6). RoutinesRestrict(f1, f2 < b)
andDualRestricy(f2, f1 < b’) are polynomially equivalent as
proved in [3].

factor better than 3 in polynomial time, unless-RP. This re-
sult is also tight since this problem has a routdweP; that runs
in polynomial time, and thus an-Pareto set of size at most
3opt. is computable in polynomial time as shown in [12].

In this part, we investigate the status of the classical ver-
sion, called B-osiective Knapsack, with as input a se@) of
items, a capacitg and for each iteni two valuesvi(i), va(i)
and a weightv(i). Values and weights are positive rationals.
A solution is a nonempty subs& of items with total values
Vi(Q) = Zieq Wa(i), V2(Q) = Zieq Vo(i) and a total weight
W(Q') = Yieg W(i) < c. The goal is to maximize the values.
First, note that the size of a smallesPareto set of BosiecTive
KNapsack is approximable in polynomial time to a factor 3 since
this problem admits an FPTAS, which is equivalent to the-exis
tence of a polynomial time routim@AP; [5]. We prove that the
size of a smallest-Pareto set of Bosiective Knapsack is not
approximable in polynomial time within a factor better tH&n

In the routines considered in this paper we assume that théP # NP.

2



Theorem 1. For Br-osiective Knapsack the size of a smallest
&-Pareto set cannot be approximated within a factor bettanth
3 in polynomial time, unled8 = NP.

Proof : We construct a gap-preserving reduction from tle-P
tirion problem. Thus, from any instandeof Partition, we
construct an instanck of Br-ossective Knapsack such that if
the answer of is 'yes'’ then the size of the smallesPareto set
of I’ is 1 and if the answer dfis 'no’ then the size of the small-
este-Pareto set of’ is 3. Recall that in Bkrition, the input is
a setN of n positive integersy, ..., a,, and we have to deter-
mine if it is possible to partitiolN into two subsets with equal
sum. Starting with such an instance we construct an instafince
Br-ossective Knapsack as follows. Leth = 3, a/2. For each

i =1,...,n, we have one itemwith valuesv,(i) = w(i) = g
and weightw(i) = g. In addition, we have two special items
andg with vi(a) = (1 + &)b, vo(@) = 0, w(a) = bandv,(8) = 0,
V2(B) = (1 + )b, w(B) = b. The capacity of the knapsackhbs
Note that if a solution contains a special item, it cannottaion
any other item. Ler* andZ® be the points corresponding to the
solution with special itena andg respectively. Consider now
solutions without special items. The corresponding pdiats
ing the same value on each criterion,Zebe the point with the
largest values* on each criterionz* dominates all other such
points.

If | is a’yes’ instance, we hawe = b. Thus,z (1 + g)-
dominates botlz* andZ, and{z‘} is ane-Pareto set. I{ is a
'no’ instance, we have* < b. Thusz* andZ must make part
of anye-Pareto set anfr*, 22, 7} is a smallest-Pareto set. O

wheren is the number of jobd, andR are respectively lower
and upper bounds on the first coordinate of an optimal salutio
For Br-osiective BipartiTE MATCHING, the running time of the
routine presented in [6] ©(MP/9)) wheremis the number of
edges in the graph.

Our approximation algorithm has the same approximationra-
tio as the algorithm presented in [12] but is much simplethbo
in its description and in its proof, owing to the use of thetioe
SoftRestrigt instead ofGAP;. Its running time is comparable
to the one of [12] and better under some conditions.

Before presenting and analyzing this new 3-approximation
algorithm, we first compare the two routin@#\P and SoftRe-
strict.

Proposition 1. The routines SoftRestrict and GAP are polyno-
mially equivalent.

Proof: We first show that we can answer @AP;(y) us-
ing SoftRestrig(f;, 2 < y2/(1 + §)). Indeed, if SoftRe-
stricts(f1, f2 < y2/(1 + 6)) returns NO or returns a feasible
pointzwith z; > y;, we return NO and iBoftRestric{(f;, f, <
y2/(1 + 6)) returns a feasible poitwith z; < y; we returnz.

We give in the following an algorithm that computes the
function SoftRestri¢(f;, f, < b) using a polynomial num-
ber of calls toGAP; wheres’ V146 - 1. We first call
GAPy ((1+ 6)2™, (1 + §’)b). If it returns NO, then we also re-
turn NO for SoftRestrigi( f1, f, < b). Otherwise, we partition
the objective space by defining intervals, on the first object
from 27™/(1 + &’) to 2" such that the ratio between the up-

Remark that we can generalize the previous result, provinger and lower bounds of each interval is+%’. We perform

that for p-ossecTive Knapsack with p > 2 the size of a smallest
&-Pareto set cannot be approximated within a factor betgar th
p + 1 in polynomial time, unless P NP.

3.2. A new 3-approximation algorithm

a binary search on the upper bounds of the previous intervals
calling GAP;s (a, (1 + ¢’)b) for somea until one finds a valua*
such that (i\GAPs (a*(1+ ¢’), (1 + 8")b) returns a feasible point
Z" and (ii) GAPy (a*, (1 + 6")b) returns NO. Then we returi.
The number of subdivisions on the first coordinate is

We propose in this section a new 3-approximation algorithm2m/ log(1 + ¢’) ~ ®(4m/§’). Hence, the number of calls to

based on another routine call8dftRestrigt

Given a positive rational bouriwand a parametey > 0, the
routine SoftRestrigi(f;, f, < b) either returns a feasible point
z satisfyingz, < (1+6)bandz < (1 + 6).min{fy(x) : x €

GAPy is O(log(m/§”))=0(log(m/s)). m]

Corollary 1. Consider the class of bi-objective problems that
possess a fully polynomial time routine SoftRestrdth 5 > 0

S andf,y(x) < b} or correctly reports that there does not existfor both objectives. Then, for amy> 0, there is no polynomial

any feasible point such thatz, < b.

We say that a routin8oftRestrici(f;, f < b) runs in poly-
nomial time (resp. fully polynomial time whe# > 0) if its
running time is polynomial inl| and|b| (resp. ||, |b|, |6] and
1/6).

Remark that a routin&SoftRestrigl(f;, f, < b), with a
strict constraint, can easily be simulated by a routiodtRe-
stricts(f1, f, < ') usingb’ = b — 2-2™,

time generic algorithm using SoftRestsithat computes ag-
Pareto set of size less than or equaBumpt..

Proof : Follows from Proposition 1 and the fact that the same
result holds for the routin€AP; [12]. |

Algorithm description.We first describe briefly the idea of the
algorithm. We computd™" and f"" which represent lower

Such a routine was proposed for several problems. For inbounds on the minimum values on the first and second objec-

stance, for the Bosiective SpaNNING TREE problem, the running
time of the routine presented in [8]&mrPr(L(n—1)/6], L(n—
1)/6])) wheren is the number of vertices in the grapi,the
number of edges in the graph an(, b) is the time to multi-
ply polynomials of maximum degrees less than or equal to
andb. For a B-oBJecTive SINGLE M ACHINE SCHEDULING problem,
the running time of the routine presented in [2DE1°R/(6°L))

tives usingSoftRestrigt. The algorithm iteratively generates a
sequence of points', ', ...,rS g% Pointsgl,...,q° are se-
lected in decreasing order accordingftcand increasing order
according tof,. Pointq! is selected so as to ( &)-dominate
the feasible points that have an optimal second coordinaile w
getting the best possible value én The algorithm stops when
it generates a poirgf® that (1+ £)-dominates the feasible points



Algorithm 1: Algorithm SoftGreedy

input : An instance of a bi-objective problem for which i Tlf ‘ ?1‘2 Tl‘l
routinesSoftRestricy( f, f» < b) and I |
SoftRestrig(f,, f1 < b) are available [~ o SR
output : An e-Pareto set of size at mosb Bt, I . fj)f
1 . +o)i2
1 0 fi(SoftRestrigi(f1, f2 < 2M)/(L + 6); 7 T G
f%m'” « fa(SoftRestrig(f2, f, < 2M)/(1+6); L
2 11 « SoftRestrigy(f,, f; < 2M); L - — ol
1 Lee . "
3 fo (1+a)2r2’
4 g « SoftRestrig(fy, f, < ,); ol .
5 fl — qll/(l + 5) Figure 1: lllustration of Algorithm 1 with & ¢ = Vi+e
7 | — 1 —i-1
o Whi|ef_1l S flmm do have z > maxXf, ,r,/(1+0)}.
|'<— i+1; Proof: This results from the definition of the routiigoftRe-
10 — SoftRestr|q,t(f2, h<f ) strict; and steps 10-12 and 15 of the algorithm. m
1 fz « Ermaxf, f, r2/(1+6) _ .
1 q — SoﬂRestrlgl(fl, f, < fz). Lemma2. Foralli = 1,...,s we have(l)_(?'2 < (1+6)f
13 if ql > ry then and (i) for each feasible point z with,z< f,, we have z >
14 L q « r' dy/(1+9).
15 | T e ql/(1i+_‘9)? Proof: This results from the definition of the routirgoftRe-
6 | Qe=QuUid) strict; and steps 10-12 of the algorithm. O
17 return Q;

We can now prove the following result.

) ) ) ) Proposition 2. Set Q is are-Pareto set.
that have a first coordinate equal f§". RoutinesSoftRe-

stricts(f2, f1 < b) andSoftRestricl(fa, f, < b) are alternatively  proof:  We show that the points i@ cover all the feasible

used to construct points and pointsy' respectively. Point’ points by partitioning the range of feasible valuesfenMore
is a point with a smallest second coordinate that we can-deteprecisely, we show that:

mine with the routineSoftRestrigt that is not (1+ £)/(1 + 6)- (i) Pointgt (1 + &)-dominates all the feasible points with an
dominated by the pointg’ with j < i. Pointq' is a point with f; value greater than or equal ¢d/(1 + ).
a smallest first coordinate that we can determine with reutin (i) For eachi = 2,...,s pointq (1 + &)-dominates all
SoftRestricithat (1+ £)-dominates point'. A formal descrip-  the feasible points that have thefi value in the interval
tion of this algonthm is givenin _Algquthm 1. _ . r[qll/(l +e), qll—l/(l " 8))'

In order to obtain a 3-approximation algorithm, we conside

iii) There is no feasible point with & value smaller than
in the following thats < V1 + & — 1. Before analyzing this al- qs/((1)+ €) P A
1 .

gorithm, we illustrate its behavior in Figure 1 where 3 psint
o o2, q® are selected by Algorithm 1 in order to cover the part(i) Let z be a feasible point witlr; > q}/(1 + £). We need to
of the objective space with first objective value at legsy  show thatzis (1+ £)-dominated byy', i.e. thatzo > gz/(1+ ).

whereas only one poinp?, is suficient. From steps 2-4 we getwhegg < r;(1+¢)/(1+6) < f;"(1+¢)
and thusqz/(1+ g) <M<z,

Algorithm analysis.We show now that Algorithm 1 produces (ii) Let z be a fea3|ble point satlsfylngl/(l +& <75 <

a 3- apprOX|mat|0n of the S|ze of a smallesPareto set. Let q'1 1/(1 + &). We need to show that is (1 + ¢)-dominated

Q =1{d%....q% andR = {rt rs} be the sets of feasible by d, i.e. thatzz > qz/(l + ¢£). From Lemma 14i{) we have

points produced by the algorlthm We show in the followmg22 > max fz

that setQ is ane-Pareto set, then that its size is at most three

times the size oP;, ane-Pareto set of minimal size. The proof haveqz < (1+9) fz Hence from the definition dfz (step 11),

is essentially the same as the one in [3] for the 2-approximat we getq2 < max fg 2/(1 +0)} < (1+¢)z.

algorithm. We first show some preliminarily results regagdi  (jii) The stopping condition of the algorithm (step 8)f_'1§ —
points inQ andR. q/(L+e) < flmm_ 0

2/(1 + 6)}. Furthermore from Lemma H(we

Lemmal. Foralli = , S we havdi) r' < q'1 Y1+6)/(1+ We show now that the size fis at most three times the size
g) and(ii) for each feaS|bIe point z Wlth_|_Z< ay 1/(1+¢),we of an optimals-Pareto set.
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Proposition 3. Set Q is such thdQ| < 3opt.. algorithm based on the routinBAP, that establishes a 3-
approximation of the size of a smallesPareto set and it needs

Proof: LetP; = {p},..., p*} be an optimak-Pareto set, O(opt, - log(m/e)) routine calls. Since algorith@lGZAGand
where its pointgp* for i = 1,...,k are in increasing order of our algorithm run in polynomial time for the same class of
their coordinates off, and decreasing order of their coordinatesproblems and give the same approximation ratio of a smallest
on fi. We have to show tha®| < 3k. For this purpose, we show s-Pareto set we can compare them with regard to their run-
by induction oni that if the algorithm selects a feasible point ning times. The running time of a generic algorithm is de-
g®~2 then there must exist a poilpl‘fi in P;, if the algorithm  fined as the product between the number of routine calls and
selects a poing®~* thenp;'(1+ 6) > ¢~ and if the algorithm  the running time of the routine called. This way, the running
selects a poing® thenp}' > (1 + 6)q time of algorithmZIGZAGis O(opt. - log(m/¢)) - Teap, With
6 = Y1+ & -1 and the running time of our algorith@oft-
Greedyis O(0pt.) - Tsoftrestrigt With 6 = V1 + £ — 1 whereTgap,
andTsoftrestrigt are the running times of the routin€AP; and
SoftRestrictrespectively.

The running times of algorithn®oftGreedyandZIGZAGare
definitions off,* and,” (step1l)andusingthat< V1+e-1,  comparable since we can solve the routBwtRestrict using
we haveri(1+e) = f_gl(l +6)2 < T Using thatpi < T, and  ©(log(m/e)) calls toGAP; with & = Y1+ 6 — 1 (see the proof
Lemma 2-{i) we obtainp§1(1+ 8) > qi Since we have|1 < r3 of Proposition 1). Moreover, if we can solve faster the nogiti
(steps 13 and 14) Lemma I)}{mplies tha1q3 < q1(1+5)/(1+g) SoftRestrigt, the running time of algorithrsoftGreedwill be
and so that the third statement is a consequence of the secog@aller than the one of algorith@iGZAG Especially, if the
one, considering that< V1 + ¢ — 1. best known algorithm to solM8AP; solvesSoftRestrigtin the

Induction step. Assume the result is true until index1,  Same time, we gain the time of the binary searches. It is the
we prove it for index. First, if the algorithm selects a point case for B-osjective Spanning TreE since the algorithm in [8]
q 8-2 we show thaP: contains a poinp*i By the termination that solvesSoftRestrigtis the best known to solVBAP;.
condition of the algor|thm (step 8), we haq% 5> (1+ e)fm'“
and by the induction hypothesis thpr > (1+ 6)q , it
follows thatp;~! > (1+6)(1+&) f™". Thus, pointp*- ldoes not
(1 + &)-dominate the feasible points that have a minimum first
coordinate, and sB: must contain another poupf' To prove

the second statement we first show tp§t< fz . Since the
feasible point®-2 must be (1+ £)-dominated by a point oP:
and in particular by pomp*' We havep*' <r32(1+e). From

Initialization ( = 1). The first statement trivially holds. To

prove the second statement we first show fiat< T,. Since
the feasible point' must be (& )-dominated by a point d®:
andin partlcular by ponh*l we havep;! < ri(1+¢). Fromthe

4, Morethan two objectives

Computing smalk-Pareto sets for problems wiih> 3 ob-
jectives raises specificftiiculties.

A first type of dificulties is related to the power or availabil-
ity of the routines. In [12], Vassilvitski and Yannakakiosted
M that any generic algorithm based on rout®AP; cannot es-
the definitions offz and fz (step 11) and usmg that< tablish ac-approximation of the size of a smallesPareto set
Vi+e-1, We havg'3' 2(1+e) < f2 (1+5)2 < f2 .Using forany constant. UsingSoftRestrictinstead ofGAR; leads to
the same result since the two routines are polynomiallyvequi
alent (see Proposition 1, whose proof for 2 objectives can be
generalized straightforwardly fgr objectives).

Therefore, in order to obtain stronger results, it is neces-
sary to resort to routines involving less tolerance, sucthas
extended versions, fop objectives, ofRestrict or DualRe-

Combining the previous results, we obtain the main result oftricts. First remark that extendeRestric is more demand-
this section. ing than extende®ualRestrict since the tolerancéis repre-

sented only once in the objective to be minimizediestric
Theorem 2. Algorithm 1 computes am-Pareto set of size Wwhereas it is present in the- 1 constraints irDualRestric.
less than or equal tBopt, using (Qopt,) routine calls to This is confirmed by known results [6], where it is shown that,
SoftRestrigt, whens < V1 + ¢ — 1. for p > 3, there is no polynomial-time routingestricy for

classical problems like Mri-oBiecTIVE SHORTEST PaTH, MULTI-
Proof: The resultis a direct consequence of Propositions 2 andsIECTIVE SPANNING TREE, MULTI-OBJECTIVE PERFECT MATCHING,
3. Since the algorithm usegQ@ times the routin&oftRestrigt, ~ whereas, for instance, there exists a polynomial-timeimeut
the number of routine calls is bounded hyg&.. O DualRestricy for Murrr-oiecTive SpANNING TREE. Therefore,

an interesting problem is to devise a generic procedurere ge
Comparison to existing algorithmd-or the class of problems erate arns-Pareto set of smallest size forpacriteria problem,
admitting a routinéGAP that runs in polynomial time, the al- usingDualRestric}.
gorithm of Vassilvitski and Yannakakis presented in [12kwa A second type of diiculties is related to the way of exploring
the only one ensuring some guarantee on the size of the rebjective spaces with more than two objectives. It should be
turnede-Pareto set. This algorithm, call@liGZAGis a generic  noticed that, in the bi-objective case, non-dominatedtsaian

5

thatp < fz ~ and Lemma 2i() we obtainp;'(1+6) > g3*
Since we have13' < r3' (steps 13 and 14) Lemma {}-{mplies
thatql < q1 1(1+5)/(1+s), and so that the third statementis a

consequence of the second one, consideringitkaf'l + —1.



be sorted such that their objective values are increasiogén

Let¢ = yi{Z} andl’ = UT;, I’ = YI. We can sei,b,c

objective and decreasing in the other objective. This oisler suficiently large to have the following (& €)-dominance rela-
used in algorithms generating smalPareto sets, including our tions:

algorithm SoftGreedy. The non-existence of such an order fo o ) )

p > 3 makes the exploration of the objective space much more(i) foranyz,z e ¢, 7 <, 2

difficult.

Owing to the previous diculties, we focus in this section on

the simple case where the feasible points are given explioit

(ii) foranyi,j=1,...,logn-1,foranyze U}, Z <, zif
and only ifi = j

the input. In this case, we can easily filter out the dominatediii) foranyzz €T',z<,Z

points and thus we consider in the following that the input-co

tains non-dominated points only.

In this context, wherp = 3, the problem of finding al-

Pareto set of smallest size ésapproximable, for some con-
stantc [9]. Moreover, for any number of criteria, there exists

an O(logn)-approximation since our problem reduces tr S
Cover, for which the greedy algorithm provides &{logn)-
approximation. An interesting open question, raised bytuol
and Papadimitriou in [9], is to known whether thesedyal-

gorithm performs better on the very specific instances of ou
problem. We provide an negative answer in Theorem 3. Reca
that thegreedyalgorithm iteratively selects the point that covers 1p

the largest number of non-covered points.
Note that for 2 criteria, theyreedyalgorithm gives a 2-

(iv) foranyzZ eI, z<, Z
(v) foranyzel',Z eI",z4, Z andZ 4, z

We show in the following that the greedy algorithm selects
the pointsZ, i = 1,...,logn — 1 in this order. The proof is by
induction oni.

Initialization (=1). Note thatl] = || = § — 1. From (v)
it follows that any point in[C U I (1 + &)-dominates at most
1 +logn—-2 points. From (i) and (i) point (1+ &)-dominates

xactly the points iF UT; UT], wherel¢ UT; UT]| = 7 +
gn— 1. In particular point* (1 + g)-dominates] + logn —
oints. Therefore, poirt* is the first point selected by the
greedy algorithm.

Induction step. Assuming that the filist 1 points selected

approximation, but it is not really satisfying because the a by the greedy algorithm a, ..., 71, we prove that the next

gorithm of Diakonikolas and Yannakakis [3] finds an optimal

solution when the points are given explicitly in the input.

Theorem 3. For p > 3 objectives, when the feasible points are

given explicitly in the input, the solution set produced bg t
greedy algorithm foiSer Cover has a sizé(logn) - opt. in the
worst case.

Proof: We prove the result fop = 3. The result clearly ex-

one is pointZ. The points (*)-dominated byz', ..., 7z} are
exactly the points iF U (u'j;ll(l“j U l"'j)). Therefore, any point

iNnTUT” (1 + &)-dominates exactlyu'joj "~h(rju Mi=4-1
points that are not already covered. Panexactly (1+ &)-
dominates, among the non-covered points, the pointsunl;
where|[; UT]| = 5. Thus pointZ is selected by the greedy
algorithm at step.

Observe now, that the first point 8f (1 + £)-dominates all

the points iné. Thus, from (iii) and (iv), it follows that a set

te_nds top > 4 since we can consider the same poin_ts eXtel_"deGonstituted by the first point df; and any point i’ (1 + &)-
with the lastp— 3 coordinates to 0. In order to prove it, we give dominate theN points. Therefore, the greedy algorithm returns

a family of instances where the algorithm produce&lag n)-
approximation. Lea, b, ¢ be three nonnegative integensy 2
and consideN = 2/ + £ - 3 = n+ logn — 3 non-dominated
points in the criterion space, defined as follows.

For all i = 1,...,logn - 1 let Z =
-1
((1+£)i/a(logn71) b rgl_'_g)i/tzlogn_—l) b C(l +_8) |ogn,1+l-), Fi be . a
set of 5z points lying uniformly on the line

g
from @ gmrreemr - Lo(l+e)™) to (@l +

&), mrayerr 6L+ &)%) if i # logn - 1 and be

the singleton {(a,(lﬂ)(i,n% 1 c(l+&)momt)}  if
logn - 1, andI] be a set ofs; points lying uni-

formly on the line from grg)ﬁ—lamw —1,b,¢(1+ &)®n1) to

(w%,b(l+s),c(l+ s)loé%) if i #logn— 1 and be the

singleton|(rryraimeor — 1.b, o(1 + &) 1)} if i = logn - 1,
Note that if the coordinates of poinfsare not rational, we
approximate its coordinates from below by rational onesrévio
over, if the coordinates of points InU I are not rational, we
approximate its coordinates from above by rational ones.

a set of points of size log— 1 while an optimal set of points
contains only two points. ]

5. Conclusions

We investigated the problem of computing smalPareto
sets for multiobjective problems. While the situation isasi
for bi-objective problems, it remains challenging for pliehs
involving at least three objectives. In this latter casenewhen
the points are given explicitly in the input, it is NP-hardde-
termine are-Pareto set of minimal size, but there exists a 100-
approximation of the size of a smallesPareto set [9]. A natu-
ral open question is to narrow the large gap between lower and
upper bounds.
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