Partitioning vertices of 1-tough graphs into paths^{*}

Cristina Bazgan Amel Harkat-Benhamdine Hao Li Laboratoire de Recherche en Informatique URA 410 CNRS Université Paris-Sud, bât. 490 91405 Orsay Cedex, France {bazgan,hamel,li}@lri.fr

Mariusz Woźniak Faculty of Applied Mathematics A G H Department of Discrete Mathematics Al. Mickiewicza 30, 30 – 059 Kraków, Poland mwozniak@uci.agh.edu.pl

Abstract

In this paper we prove that every 1-tough graph has a partition of its vertices into paths of length at least two.

^{*}This work was partially supported by Projet BQR.

1 Introduction

We use Bondy and Murty's book for notation and terminology not defined here [2]. In addition, all the graphs considered in this paper are undirected and simple. Let G = (V, E) be a graph. For each $u \in V$, we denote by d(u)the degree of u in G and by N(u) the set of neighbors of u in G. If X is a subset of V, let $N(X) = \bigcup_{v \in X} N(v)$.

A set $\mathcal{P} = \{P_1, \ldots, P_k\}$ of vertex-disjoint paths of G with length at least two (i.e., at least three vertices) is called a *long path system* in G. A graph G has a partition of its vertices into a long path system if there exists a long path system \mathcal{P} in G such that $V(\mathcal{P}) = V(G)$, where $V(\mathcal{P}) = \bigcup_{P \in \mathcal{P}} V(P)$.

Let $S \subset V(G)$. We denote by c(G - S) the number of connected components of the induced subgraph G - S. A graph G is said to be *t*-tough if for each subset S of vertices with c(G - S) > 1 we have $c(G - S) \leq \frac{|S|}{t}$. The toughness of G, denoted by $\tau(G)$, is the largest value of t such that Gis *t*-tough.

The parameter "toughness" is strongly related to connectivity. It is clear that a 1-tough graph is 2-connected. Chvátal [3] proved that for a noncomplete graph G with connectivity $\kappa(G)$, $\tau(G) \leq \frac{\kappa(G)}{2}$. Toughness conditions also imply many other properties of the graph, in particular properties related to cycles, paths and factors. The following conjecture due to Chvátal is well known.

Conjecture 1 ([3]) There exists a constant t such that every t-tough graph is hamiltonian.

Chvátal has also conjectured that every 2-tough graph is hamiltonian. Recently, Bauer, Broersma and Veldman [1] gave examples of non-hamiltonian graphs that are $(9/4 - \epsilon)$ -tough for any $\epsilon > 0$. So if the above conjecture were true, t should be at least 9/4.

The relation between the toughness of a graph and the possibility to partition its vertex set into paths has also been studied. Ota conjectured the following:

Conjecture 2 ([5]) For $n \equiv 0 \pmod{k}$, every $\frac{k}{2}$ -tough graph on n vertices admits a partition of its vertex set into paths P_k .

Saito [6] showed that the above conjecture is true for k = 2, 4.

In this paper, we consider toughness condition and long path systems of graphs. Our main result is the following:

Theorem 3 If G is a 1-tough graph, then G has a partition of its vertices into a long path system.

We will give a complete proof of this theorem in section 3.

2 Preliminaries

In this section we introduce some notation and we prove a lemma necessary for the proof of Theorem 3.

Let $P = c_1 c_2 \dots c_p$ be a path in G. For each $i \leq j$ we denote by $c_i \overrightarrow{P} c_j$, the path $c_i c_{i+1} \dots c_j$, and by $c_i \overleftarrow{P} c_j$ the path $c_j c_{j-1} \dots c_i$. We consider $c_i \overrightarrow{P} c_j$ and $c_i \overleftarrow{P} c_j$ both as paths and as vertex sets. For any i, we let $c_i^+ = c_{i+1}$, $c_i^- = c_{i-1}, c_i^{++} = c_{i+2}$ and $c_i^{--} = c_{i-2}$. We shall denote the paths P of G by P[u, v] where u and v are the end-vertices of P.

Let H_1 and H_2 be two subgraphs of G. H_1 and H_2 are said to be *remote* if $V(H_1) \cap V(H_2) = \emptyset$ and there is no edge between $V(H_1)$ and $V(H_2)$.

Lemma 1 Suppose G is a graph. Let \mathcal{P} be a long path system which contains a maximum number of vertices of G. Let P[u, v] be a path of \mathcal{P} and let $H = V(G) - V(\mathcal{P})$. Then

a) The vertices u and v are not adjacent to H.

b) If a vertex $w \in V(P)$ is adjacent to a vertex $x \in V(H)$ then the length of the paths $u \overrightarrow{P} w$ and $w \overrightarrow{P} v$ is at most two.

c) P contains at most one vertex of N(H).

Proof: a) Suppose that u is adjacent to a vertex $x \in V(H)$. Replacing P by the path $xu \overrightarrow{P}v$ in \mathcal{P} , we obtain a long path system containing more vertices than \mathcal{P} , which contradicts the choice of \mathcal{P} . Similarly, $N(v) \cap V(H) = \emptyset$.

b) Let $w \in V(P)$ be a vertex which is adjacent to $x \in V(H)$ such that the path $u \overrightarrow{P} w$ or the path $w \overrightarrow{P} v$ is of length at least three. Suppose that $u \overrightarrow{P} w$ is of length at least three. So, the path $u \overrightarrow{P} w^-$ has the length at least two. Replacing in \mathcal{P} the path P by the paths $xw \overrightarrow{P} v$ and $u \overrightarrow{P} w^-$, we obtain a long path system containing more vertices than \mathcal{P} , a contradiction.

c) By a) and b), it follows that if $N(H) \cap V(P)$ contains at least two vertices w_1 and w_2 , then w_1 and w_2 are consecutive on P, say $w_2 = w_1^+$. If they have a common neighbor x in H, replacing the path P by the path $u \overrightarrow{P} w_1 x w_2 \overrightarrow{P} v$ yields a contradiction. If there exist $x' \in N(w_1) \cap H$ and $x'' \in N(w_2) \cap H$, replacing the path P by the paths $u \overrightarrow{P} w_1 x'$ and $x'' w_2 \overrightarrow{P} v$ in \mathcal{P} results in a contradiction. \Box

3 Proof of Theorem 3

Suppose that G is a 1-tough graph which does not have a partition of its vertices into a long path system. Let \mathcal{P} be a long path system such that:

1) $|V(\mathcal{P})|$ is as large as possible;

2) Subject to 1, the number of paths of \mathcal{P} is as small as possible.

Obviously there is no edge connecting the end-vertices of two paths of \mathcal{P} since otherwise condition 2) of the definition of \mathcal{P} would not be satisfied. Let $H = V(G) - V(\mathcal{P})$.

In the following, we give a procedure to construct two sets A and B where A is a set of vertices and B a set of induced subgraphs.

First, we initialize $A = \emptyset$ and $B = \emptyset$. Let B_0 be the subgraph induced by H. Add the subgraph B_0 to B.

Step 1. Let P_1 be a path joined to B_0 by an edge ax where $a \in V(P_1)$ and $x \in V(B_0)$. Let us set $A_1 = N(B_0) \cap V(P_1)$ and B_1 the subgraph induced by $V(P_1) - A_1$. From Lemma 1, we deduce that the length of P_1 is at most four and $|A_1| = 1$.

If B_0 is not joined to some path of \mathcal{P} different from P_1 , then the number of connected components of $G - A_1$ is at least two. So $c(G - A_1) \ge |A_1| + 1$ which contradicts the fact that G is 1-tough.

So B_0 is joined to a path of \mathcal{P} which is different from P_1 . Add the subgraph B_1 to B. We now describe the second step of the procedure.

Step 2. Let $P_2[u_2, v_2]$ be a path of \mathcal{P} which is joined to B_0 by an edge. Let $A_2 = N(B) \cap V(P_2)$ and let B_2 be the subgraph induced by $V(P_2) - A_2$. Add the subgraph B_2 to B.

Fact 1 For each vertex $u \in A_2$ the length of the paths $u_2 \overrightarrow{P_2} u$ and $u \overrightarrow{P_2} v_2$ is at most two.

Proof of Fact 1: Suppose that there exists a vertex $u \in A_2$ such that $|V(u_2 \overrightarrow{P_2} u)| > 3$. The proof is similar for $|V(u \overrightarrow{P_2} v_2)| > 3$.

From Lemma 1b), we deduce that u is not adjacent to a vertex of B_0 . So, u is adjacent to a vertex of B_1 . Let u' be a vertex in B_1 which is adjacent to u. Without loss of generality suppose that $u' \in a^+ \overrightarrow{P_1} v_1$.

By Lemma 1b) we know $|V(a^+\overrightarrow{P_1}v_1)| \leq 2$. If $|V(a^+\overrightarrow{P_1}v_1)| = 2$ we have $u' = a^+$ or $u' = v_1$. If $u' = a^+$ $(u' = v_1, \text{ resp.})$, then let \mathcal{P}' be the long path system obtained from \mathcal{P} by replacing P_1 and P_2 by the paths $u_1\overrightarrow{P_1}ax$, $u_2\overrightarrow{P_2}u^-$ and $v_2\overleftarrow{P_2}uu'v_1$ $(v_2\overleftarrow{P_2}uu'a^+, \text{ resp.})$. If $|V(a^+\overrightarrow{P_1}v_1)| = 1$ then $u' = v_1$. Let \mathcal{P}' be the long path system obtained from \mathcal{P} by replacing P_1 and P_2 by the paths $u_1\overrightarrow{P_1}ax$, $u_2\overrightarrow{P_2}u^-$ and $v_2\overleftarrow{P_2}uu'a^+$. Clearly, \mathcal{P}' contains more vertices than \mathcal{P} , a contradiction, which completes the proof of Fact 1.

From Fact 1, we deduce the following:

Remark 1 The length of P_2 is at most four and $|A_2| \leq 2$.

Fact 2 If $|A_2| = 2$, then the subgraph B_2 is not connected.

Proof of Fact 2: Assume that $|A_2| = 2$ and that B_2 is connected. From Fact 1 and since the length of P_2 is at most four, we deduce that the length of P_2 is at most three and $u_2v_2 \in E$.

Let $u \in A_2$. Replace the path P_2 by the path $u\overrightarrow{P_2}v_2u_2\overrightarrow{P_2}u^-$. Then we get a path system which contradicts Fact 1.

Finally, if there is no path different from P_1 and P_2 joined to B, then we add $A_1 \cup A_2$ to A. According to the construction of the sets A and B, we deduce that the subgraphs B_0 , B_1 and B_2 are not connected by an edge. From Fact 2 it follows that $c(B_2) \ge |A_2|$. Since $|A_1| = 1$ and $|A_2| \le 2$, we find $c(B) \ge c(B_0) + c(B_1) + c(B_2) \ge 2 + |A_2| = 1 + |A|$. We obtain that $c(G - A) \ge c(B) \ge |A| + 1$, a contradiction.

So there exists a path of \mathcal{P} , different from P_1 and P_2 , and joined to B. More generally, we define step i + 1 of the procedure. Let $P_i[u_i, v_i]$ be the path defined in step i. Let B_i be the corresponding subgraph and A_i the corresponding set of vertices. Assume that for each $u \in A_i$, the length of the paths $u_i \overrightarrow{P_i} u$ and $u \overrightarrow{P_i} v_i$ is at most two. Let B be the set of subgraphs obtained at the end of step i. If there exists a path different from the paths $P_j, j \leq i$, then we define step i + 1 as follows: Step i+1. Let $P_{i+1}[u_{i+1}, v_{i+1}]$ be a path of \mathcal{P} joined to B, such that P_{i+1} is different from the paths P_j , with $j \leq i$. Let $A_{i+1} = N(B) \cap V(P_{i+1})$ and let B_{i+1} be the subgraph induced by $V(P_{i+1}) - A_{i+1}$. Add the subgraph B_{i+1} to B.

Claim 1 At each step *i* of the procedure and for each $u \in A_i$,

1) There exists a long path system \mathcal{P}' such that $V(\mathcal{P}') = (V(\mathcal{P}) \cup V(H')) - V(u^+ \overrightarrow{P}_i v_i)$, with $H' \neq \emptyset$, $H' \subseteq H$ and u_i is an end-vertex of a path of \mathcal{P}' . Also the length of the path $u \overrightarrow{P}_i v_i$ is at most two.

2) There exists a long path system \mathcal{P}'' such that $V(\mathcal{P}'') = (V(\mathcal{P}) \cup V(H'')) - V(u_i \overrightarrow{P}_i u^-)$, with $H'' \neq \emptyset$, $H'' \subseteq H$ and v_i is an end-vertex of a path of \mathcal{P}'' . Also the length of the path $u_i \overrightarrow{P}_i u$ is at most two.

Proof: We will prove assertions 1) and 2) of Claim 1 simultaneously. We proceed by induction on the index of the steps.

Suppose that Claim 1 is true for each step j with j < i. We prove the claim for step i. If i = 1, clearly the long path system \mathcal{P}' obtained from \mathcal{P} by replacing P_1 by $u_1 \overrightarrow{P_1} ax$ is such that $V(\mathcal{P}') = (V(\mathcal{P}) \cup \{x\}) - V(a^+ \overrightarrow{P_1} v_1)$ which proves assertion 1) of Claim 1. The long path system \mathcal{P}'' obtained from \mathcal{P} by replacing P_1 by $xa\overrightarrow{P_1}v_1$ is such that $V(\mathcal{P}'') = (V(\mathcal{P}) \cup \{x\}) - V(u_1\overrightarrow{P_1}a^-)$ which proves assertion 2) of Claim 1. From Lemma 1b) the lengths of the paths $u\overrightarrow{P_i}v_i$, $u_i\overrightarrow{P_i}u$ are at most two.

Since *i* is a step of the procedure, $A_i \neq \emptyset$. Let $u \in A_i$. Clearly *u* is adjacent to *B*. If *u* is adjacent to B_0 , then Claim 1 follows as in case i = 1.

If u is not adjacent to B_0 , then let $P_r[u_r, v_r]$ be a path of \mathcal{P} with r < iand such that u is adjacent to B_r by an edge uu'. We distinguish two main cases:

Case 1. $V(u_r \overrightarrow{P_r} u') \cap A_r = \emptyset$.

Let b be the vertex of A_r such that $V(u'^+\overrightarrow{P_r}b^-)\cap A_r = \emptyset$. By the inductive hypothesis, there exists a long path system \mathcal{P}' such that $V(\mathcal{P}') = (V(\mathcal{P}) \cup V(H')) - V(u_r\overrightarrow{P_r}b^-)$, where $H' \neq \emptyset$, $H' \subseteq H$ and the length of the path $u_r\overrightarrow{P_r}b$ is at most two.

The long path system \mathcal{P}'' obtained from \mathcal{P}' by replacing the path P_i by the path obtained by joining $u_r \overrightarrow{P_r} b^-$, uu' and $u_i \overrightarrow{P_i} u$ would satisfy assertion 1) of Claim 1. Assume that $|V(u^+ \overrightarrow{P_i} v_i)| \geq 3$. Then the long path system obtained from \mathcal{P}'' by adding the path $u^+ \overrightarrow{P_i} v_i$ contains more vertices than \mathcal{P} , a contradiction, which implies that the length of the path $u\overrightarrow{P}_iv_i$ is at most two.

The long path system \mathcal{P}''' obtained from \mathcal{P}' by replacing the path P_i by the path obtained by joining $u_r \overrightarrow{P_r} b^-$, uu' and $u \overrightarrow{P_i} v_i$ would satisfy assertion 2) of Claim 1. Assume that $|V(u_i \overrightarrow{P_i} u^-)| \geq 3$. Then the long path system obtained from \mathcal{P}''' by adding the path $u_i \overrightarrow{P_i} u^-$ contains more vertices than \mathcal{P} , a contradiction, which implies that the length of the path $u_i \overrightarrow{P_i} u$ is at most two.

Case 2. $V(u_r \overrightarrow{P_r} u') \cap A_r \neq \emptyset$.

Let b be a vertex of A_r such that $V(b^+\overrightarrow{P_r}u'^-) \cap A_r = \emptyset$. By the inductive hypothesis, there exists a long path system \mathcal{P}' such that $V(\mathcal{P}') = (V(\mathcal{P}) \cup V(H')) - V(b^+\overrightarrow{P_r}v_r)$, where $H' \neq \emptyset$, $H' \subseteq H$ and the length of the path $b\overrightarrow{P_r}v_r$ is at most two.

The long path system \mathcal{P}'' obtained from \mathcal{P}' by replacing the path P_i by the path obtained by joining $b^+ \overrightarrow{P_r} v_r$, uu' and $u_i \overrightarrow{P_i} u$ would satisfy assertion 1) of Claim 1. Assume that $|V(u^+ \overrightarrow{P_i} v_i)| \geq 3$. Then the long path system obtained from \mathcal{P}'' by adding the path $u^+ \overrightarrow{P_i} v_i$ contains more vertices than \mathcal{P} , a contradiction, which implies that the length of the path $u \overrightarrow{P_i} v_i$ is at most two.

The long path system \mathcal{P}''' obtained from \mathcal{P}' by replacing the path P_i by the path obtained by joining $b^+ \overrightarrow{P_r} v_r$, uu' and $u\overrightarrow{P_i} v_i$ would satisfy assertion 2) of Claim 1. Assume that $|V(u_i\overrightarrow{P_i}u^-)| \geq 3$. Then the long path system obtained from \mathcal{P}'' by adding the path $u_i\overrightarrow{P_i}u^-$ contains more vertices than \mathcal{P} , a contradiction, which implies that the length of the path $u_i\overrightarrow{P_i}u$ is at most two.

From Claim 1, we deduce the following:

Remark 2 At each step *i* of the procedure, if $|A_i| = 2$ then the length of the path P_i is at most three.

Claim 2 At each step *i* of the procedure, if $|A_i| = 2$ then the subgraph B_i is not connected.

Proof: Assume that there exists a step *i* such that $|A_i| = 2$, and B_i is connected. Let $P_i[u_i, v_i]$ be the path obtained at step *i*. Since B_i is connected, using Remark 2, we deduce that $u_i v_i \in E$. The vertices u_i^+ and u_i^{++} belong

to A_i . From Claim 1, there exists a long path system \mathcal{P}' such that $V(\mathcal{P}') = (V(\mathcal{P}) \cup V(H')) - V(u_i^{++} \overrightarrow{P_i} v_i)$, with $H' \neq \emptyset$, $H' \subseteq H$ and u_i is an end-vertex of a path of \mathcal{P}' . The long path system obtained from \mathcal{P}' by adding the path $u_i^{++} \overrightarrow{P_i} v_i u_i$, contains more vertices than \mathcal{P} , a contradiction. \Box

According to the construction of the set B, the subgraphs B_j are mutually remote, where j is a step of the procedure.

In the following, we prove that if two subgraphs B_i and B_j are connected by a path $P = u_0 u_1 \dots u_p$ internally disjoint from B_i and B_j , with u_0 in B_i and u_p in B_j , then the vertices u_1 and u_{p-1} belong to A. Remark that u_1 and u_{p-1} can be the same vertex. The vertices u_1 and u_{p-1} do not belong to H, because otherwise if $u_1 \in V(H)$ then u_0 belongs to A_i , a contradiction. We obtain a similar contradiction, if $u_{p-1} \in V(H)$. So u_1 and u_{p-1} belong to $V(\mathcal{P})$. Since the subgraphs of B are mutually remote, u_1 and u_{p-1} belong to A, which concludes the proof of the assertion.

We deduce that the number of connected components of the subgraph G - A is the number of components of the subgraphs of B. From Claim 2, we deduce that the number of connected components of G - A is at least |A| + 1 which contradicts the fact that the graph G is 1-tough and achieves the proof of Theorem 3.

Remark 3 Using the ideas of the proof of Theorem 3 we can define a polynomial time algorithm to construct a partition into long path system in 1-tough graphs.

References

- [1] D. Bauer, H.J. Broersma and H.J. Veldman, Not every 2-tough graph is hamiltonian, preprint 1997.
- [2] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, Macmillan Press, 1976.
- [3] V. Chvátal, Tough graphs and hamiltonian circuits, Discrete Mathematics, 5(1973), 215–228.
- [4] H. Enomoto, B. Jackson, P. Katerinis and A. Saito, *Toughness and the existence of k-factors*, Journal of Graph Theory 9(1985), 87–95.

- [5] Ota, personal communication, 1998.
- [6] Saito, personal communication, 1998.
- [7] S. Win, On a connection between the existence of the k-trees and the toughness of a graph, Graphs and Combinatorics 5(1989), 201–205.