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Abstract

In this paper we prove that every 1-tough graph has a partition of

its vertices into paths of length at least two.
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1 Introduction

We use Bondy and Murty’s book for notation and terminology not defined
here [2]. In addition, all the graphs considered in this paper are undirected
and simple. Let G = (V,E) be a graph. For each u ∈ V , we denote by d(u)
the degree of u in G and by N(u) the set of neighbors of u in G. If X is a
subset of V , let N(X) = ∪v∈XN(v).

A set P = {P1, . . . , Pk} of vertex-disjoint paths of G with length at least
two (i.e., at least three vertices) is called a long path system in G. A graph
G has a partition of its vertices into a long path system if there exists a long
path system P in G such that V (P) = V (G), where V (P) = ∪P∈PV (P ).

Let S ⊂ V (G). We denote by c(G − S) the number of connected com-
ponents of the induced subgraph G − S. A graph G is said to be t-tough
if for each subset S of vertices with c(G − S) > 1 we have c(G − S) ≤ |S|

t
.

The toughness of G, denoted by τ(G), is the largest value of t such that G
is t-tough.

The parameter “toughness” is strongly related to connectivity. It is clear
that a 1-tough graph is 2-connected. Chvátal [3] proved that for a non-

complete graph G with connectivity κ(G), τ(G) ≤ κ(G)
2

. Toughness condi-
tions also imply many other properties of the graph, in particular properties
related to cycles, paths and factors. The following conjecture due to Chvátal
is well known.

Conjecture 1 ([3]) There exists a constant t such that every t-tough graph
is hamiltonian.

Chvátal has also conjectured that every 2-tough graph is hamiltonian. Re-
cently, Bauer, Broersma and Veldman [1] gave examples of non-hamiltonian
graphs that are (9/4 − ǫ)-tough for any ǫ > 0. So if the above conjecture
were true, t should be at least 9/4.

The relation between the toughness of a graph and the possibility to
partition its vertex set into paths has also been studied. Ota conjectured the
following:

Conjecture 2 ([5]) For n ≡ 0 (mod k), every k
2
-tough graph on n vertices

admits a partition of its vertex set into paths Pk.
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Saito [6] showed that the above conjecture is true for k = 2, 4.

In this paper, we consider toughness condition and long path systems of
graphs. Our main result is the following:

Theorem 3 If G is a 1-tough graph, then G has a partition of its vertices
into a long path system.

We will give a complete proof of this theorem in section 3.

2 Preliminaries

In this section we introduce some notation and we prove a lemma necessary
for the proof of Theorem 3.

Let P = c1c2...cp be a path in G. For each i ≤ j we denote by ci
−→
P cj,

the path cici+1...cj, and by ci
←−
P cj the path cjcj−1...ci. We consider ci

−→
P cj

and ci
←−
P cj both as paths and as vertex sets. For any i, we let c+

i = ci+1,
c−i = ci−1, c++

i = ci+2 and c−−
i = ci−2. We shall denote the paths P of G by

P [u, v] where u and v are the end-vertices of P .
Let H1 and H2 be two subgraphs of G. H1 and H2 are said to be remote

if V (H1) ∩ V (H2) = ∅ and there is no edge between V (H1) and V (H2).

Lemma 1 Suppose G is a graph. Let P be a long path system which contains
a maximum number of vertices of G. Let P [u, v] be a path of P and let
H = V (G) − V (P). Then

a) The vertices u and v are not adjacent to H.
b) If a vertex w ∈ V (P ) is adjacent to a vertex x ∈ V (H) then the length

of the paths u
−→
P w and w

−→
P v is at most two.

c) P contains at most one vertex of N(H).

Proof: a) Suppose that u is adjacent to a vertex x ∈ V (H). Replacing P by

the path xu
−→
P v in P, we obtain a long path system containing more vertices

than P, which contradicts the choice of P. Similarly, N(v) ∩ V (H) = ∅.

b) Let w ∈ V (P ) be a vertex which is adjacent to x ∈ V (H) such that the

path u
−→
P w or the path w

−→
P v is of length at least three. Suppose that u

−→
P w

is of length at least three. So, the path u
−→
P w− has the length at least two.

Replacing in P the path P by the paths xw
−→
P v and u

−→
P w−, we obtain a long

path system containing more vertices than P, a contradiction.
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c) By a) and b), it follows that if N(H)∩V (P ) contains at least two vertices
w1 and w2, then w1 and w2 are consecutive on P , say w2 = w+

1 . If they have
a common neighbor x in H, replacing the path P by the path u

−→
P w1xw2

−→
P v

yields a contradiction. If there exist x′ ∈ N(w1) ∩ H and x′′ ∈ N(w2) ∩ H,

replacing the path P by the paths u
−→
P w1x

′ and x′′w2
−→
P v in P results in a

contradiction. 2

3 Proof of Theorem 3

Suppose that G is a 1-tough graph which does not have a partition of its
vertices into a long path system. Let P be a long path system such that:

1) |V (P)| is as large as possible;
2) Subject to 1, the number of paths of P is as small as possible.

Obviously there is no edge connecting the end-vertices of two paths of P
since otherwise condition 2) of the definition of P would not be satisfied.
Let H = V (G) − V (P).

In the following, we give a procedure to construct two sets A and B where
A is a set of vertices and B a set of induced subgraphs.

First, we initialize A = ∅ and B = ∅. Let B0 be the subgraph induced by
H. Add the subgraph B0 to B.

Step 1. Let P1 be a path joined to B0 by an edge ax where a ∈ V (P1)
and x ∈ V (B0). Let us set A1 = N(B0)∩V (P1) and B1 the subgraph induced
by V (P1) − A1. From Lemma 1, we deduce that the length of P1 is at most
four and |A1| = 1.

If B0 is not joined to some path of P different from P1, then the number
of connected components of G−A1 is at least two. So c(G−A1) ≥ |A1|+ 1
which contradicts the fact that G is 1-tough.

So B0 is joined to a path of P which is different from P1. Add the
subgraph B1 to B. We now describe the second step of the procedure.

Step 2. Let P2[u2, v2] be a path of P which is joined to B0 by an edge.
Let A2 = N(B)∩ V (P2) and let B2 be the subgraph induced by V (P2)−A2.
Add the subgraph B2 to B.

Fact 1 For each vertex u ∈ A2 the length of the paths u2
−→
P2u and u

−→
P2v2 is

at most two.
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Proof of Fact 1: Suppose that there exists a vertex u ∈ A2 such that
|V (u2

−→
P2u)| > 3. The proof is similar for |V (u

−→
P2v2)| > 3.

From Lemma 1b), we deduce that u is not adjacent to a vertex of B0. So,
u is adjacent to a vertex of B1. Let u′ be a vertex in B1 which is adjacent to
u. Without loss of generality suppose that u′ ∈ a+−→P1v1.

By Lemma 1b) we know |V (a+−→P1v1)| ≤ 2. If |V (a+−→P1v1)| = 2 we have
u′ = a+ or u′ = v1. If u′ = a+ (u′ = v1, resp.), then let P ′ be the long

path system obtained from P by replacing P1 and P2 by the paths u1
−→
P1ax,

u2
−→
P2u

− and v2
←−
P2uu′v1 (v2

←−
P2uu′a+, resp.). If |V (a+−→P1v1)| = 1 then u′ = v1.

Let P ′ be the long path system obtained from P by replacing P1 and P2 by
the paths u1

−→
P1ax, u2

−→
P2u

− and v2
←−
P2uu′. Clearly, P ′ contains more vertices

than P, a contradiction, which completes the proof of Fact 1. 2

From Fact 1, we deduce the following:

Remark 1 The length of P2 is at most four and |A2| ≤ 2.

Fact 2 If |A2| = 2, then the subgraph B2 is not connected.

Proof of Fact 2: Assume that |A2| = 2 and that B2 is connected. From
Fact 1 and since the length of P2 is at most four, we deduce that the length
of P2 is at most three and u2v2 ∈ E.

Let u ∈ A2. Replace the path P2 by the path u
−→
P2v2u2

−→
P2u

−. Then we get
a path system which contradicts Fact 1. 2

Finally, if there is no path different from P1 and P2 joined to B, then
we add A1 ∪ A2 to A. According to the construction of the sets A and B,
we deduce that the subgraphs B0, B1 and B2 are not connected by an edge.
From Fact 2 it follows that c(B2) ≥ |A2|. Since |A1| = 1 and |A2| ≤ 2, we
find c(B) ≥ c(B0) + c(B1) + c(B2) ≥ 2 + |A2| = 1 + |A|. We obtain that
c(G − A) ≥ c(B) ≥ |A| + 1, a contradiction.

So there exists a path of P, different from P1 and P2, and joined to B.
More generally, we define step i + 1 of the procedure. Let Pi[ui, vi] be the
path defined in step i. Let Bi be the corresponding subgraph and Ai the
corresponding set of vertices. Assume that for each u ∈ Ai, the length of
the paths ui

−→
Piu and u

−→
Pivi is at most two. Let B be the set of subgraphs

obtained at the end of step i. If there exists a path different from the paths
Pj, j ≤ i, then we define step i + 1 as follows:
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Step i+1. Let Pi+1[ui+1, vi+1] be a path of P joined to B, such that Pi+1

is different from the paths Pj, with j ≤ i. Let Ai+1 = N(B) ∩ V (Pi+1) and
let Bi+1 be the subgraph induced by V (Pi+1)−Ai+1. Add the subgraph Bi+1

to B.

Claim 1 At each step i of the procedure and for each u ∈ Ai,
1) There exists a long path system P ′ such that V (P ′) = (V (P) ∪ V (H ′)) −

V (u+−→Pivi), with H ′ 6= ∅, H ′ ⊆ H and ui is an end-vertex of a path of P ′.

Also the length of the path u
−→
Pivi is at most two.

2) There exists a long path system P ′′ such that V (P ′′) = (V (P)∪V (H ′′))−

V (ui
−→
Piu

−), with H ′′ 6= ∅, H ′′ ⊆ H and vi is an end-vertex of a path of P ′′.

Also the length of the path ui
−→
Piu is at most two.

Proof : We will prove assertions 1) and 2) of Claim 1 simultaneously. We
proceed by induction on the index of the steps.

Suppose that Claim 1 is true for each step j with j < i. We prove the
claim for step i. If i = 1, clearly the long path system P ′ obtained from P by
replacing P1 by u1

−→
P1ax is such that V (P ′) = (V (P)∪{x})−V (a+−→P1v1) which

proves assertion 1) of Claim 1. The long path system P ′′ obtained from P

by replacing P1 by xa
−→
P1v1 is such that V (P ′′) = (V (P) ∪ {x}) − V (u1

−→
P1a

−)
which proves assertion 2) of Claim 1. From Lemma 1b) the lengths of the

paths u
−→
Pivi, ui

−→
Piu are at most two.

Since i is a step of the procedure, Ai 6= ∅. Let u ∈ Ai. Clearly u is
adjacent to B. If u is adjacent to B0, then Claim 1 follows as in case i = 1.

If u is not adjacent to B0, then let Pr[ur, vr] be a path of P with r < i
and such that u is adjacent to Br by an edge uu′. We distinguish two main
cases:

Case 1. V (ur
−→
Pru

′) ∩ Ar = ∅.

Let b be the vertex of Ar such that V (u′+−→Prb
−)∩Ar = ∅. By the inductive

hypothesis, there exists a long path system P ′ such that V (P ′) = (V (P) ∪

V (H ′)) − V (ur
−→
Prb

−), where H ′ 6= ∅, H ′ ⊆ H and the length of the path

ur
−→
Prb is at most two.
The long path system P ′′ obtained from P ′ by replacing the path Pi by

the path obtained by joining ur
−→
Prb

−, uu′ and ui
−→
Piu would satisfy assertion

1) of Claim 1. Assume that |V (u+−→Pivi)| ≥ 3. Then the long path system

obtained from P ′′ by adding the path u+−→Pivi contains more vertices than P,
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a contradiction, which implies that the length of the path u
−→
Pivi is at most

two.
The long path system P ′′′ obtained from P ′ by replacing the path Pi by

the path obtained by joining ur
−→
Prb

−, uu′ and u
−→
Pivi would satisfy assertion

2) of Claim 1. Assume that |V (ui
−→
Piu

−)| ≥ 3. Then the long path system

obtained from P ′′′ by adding the path ui
−→
Piu

− contains more vertices than P,
a contradiction, which implies that the length of the path ui

−→
Piu is at most

two.

Case 2. V (ur
−→
Pru

′) ∩ Ar 6= ∅.

Let b be a vertex of Ar such that V (b+−→Pru
′−)∩Ar = ∅. By the inductive

hypothesis, there exists a long path system P ′ such that V (P ′) = (V (P) ∪

V (H ′))−V (b+−→Prvr), where H ′ 6= ∅, H ′ ⊆ H and the length of the path b
−→
Prvr

is at most two.
The long path system P ′′ obtained from P ′ by replacing the path Pi by

the path obtained by joining b+−→Prvr, uu′ and ui
−→
Piu would satisfy assertion

1) of Claim 1. Assume that |V (u+−→Pivi)| ≥ 3. Then the long path system

obtained from P ′′ by adding the path u+−→Pivi contains more vertices than P,
a contradiction, which implies that the length of the path u

−→
Pivi is at most

two.
The long path system P ′′′ obtained from P ′ by replacing the path Pi by

the path obtained by joining b+−→Prvr, uu′ and u
−→
Pivi would satisfy assertion

2) of Claim 1. Assume that |V (ui
−→
Piu

−)| ≥ 3. Then the long path system

obtained from P ′′ by adding the path ui
−→
Piu

− contains more vertices than P,
a contradiction, which implies that the length of the path ui

−→
Piu is at most

two.
2

From Claim 1, we deduce the following:

Remark 2 At each step i of the procedure, if |Ai| = 2 then the length of the
path Pi is at most three.

Claim 2 At each step i of the procedure, if |Ai| = 2 then the subgraph Bi is
not connected.

Proof: Assume that there exists a step i such that |Ai| = 2, and Bi is
connected. Let Pi[ui, vi] be the path obtained at step i. Since Bi is connected,
using Remark 2, we deduce that uivi ∈ E. The vertices u+

i and u++
i belong
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to Ai. From Claim 1, there exists a long path system P ′ such that V (P ′) =

(V (P)∪V (H ′))−V (u++
i

−→
Pivi), with H ′ 6= ∅, H ′ ⊆ H and ui is an end-vertex

of a path of P ′. The long path system obtained from P ′ by adding the path
u++

i

−→
Piviui, contains more vertices than P, a contradiction. 2

According to the construction of the set B, the subgraphs Bj are mutually
remote, where j is a step of the procedure.

In the following, we prove that if two subgraphs Bi and Bj are connected
by a path P = u0u1...up internally disjoint from Bi and Bj, with u0 in Bi

and up in Bj, then the vertices u1 and up−1 belong to A. Remark that u1

and up−1 can be the same vertex. The vertices u1 and up−1 do not belong to
H, because otherwise if u1 ∈ V (H) then u0 belongs to Ai, a contradiction.
We obtain a similar contradiction, if up−1 ∈ V (H). So u1 and up−1 belong to
V (P). Since the subgraphs of B are mutually remote, u1 and up−1 belong to
A, which concludes the proof of the assertion.

We deduce that the number of connected components of the subgraph
G − A is the number of components of the subgraphs of B. From Claim 2,
we deduce that the number of connected components of G − A is at least
|A| + 1 which contradicts the fact that the graph G is 1-tough and achieves
the proof of Theorem 3.

Remark 3 Using the ideas of the proof of Theorem 3 we can define a polyno-
mial time algorithm to construct a partition into long path system in 1-tough
graphs.
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[3] V. Chvátal, Tough graphs and hamiltonian circuits , Discrete Mathemat-
ics, 5(1973), 215–228.

[4] H. Enomoto, B. Jackson, P. Katerinis and A. Saito, Toughness and the
existence of k-factors , Journal of Graph Theory 9(1985), 87–95.

8



[5] Ota, personal communication, 1998.

[6] Saito, personal communication, 1998.

[7] S. Win, On a connection between the existence of the k-trees and the
toughness of a graph, Graphs and Combinatorics 5(1989), 201–205.

9


