
Degree-constrained decompositions of graphs:

bounded treewidth and planarity∗

Cristina Bazgan † Zsolt Tuza ‡ Daniel Vanderpooten †

Abstract

We study the problem of decomposing the vertex set V of a graph into two nonempty
parts V1, V2 which induce subgraphs where each vertex v ∈ V1 has degree at least a(v)
inside V1 and each v ∈ V2 has degree at least b(v) inside V2. We give a polynomial-
time algorithm for graphs with bounded treewidth which decides if a graph admits a
decomposition, and gives such a decomposition if it exists. This result and its variants
are then applied to designing polynomial-time approximation schemes for planar graphs
where a decomposition does not necessarily exist but the local degree conditions should
be met for as many vertices as possible.

Keywords: graph decomposition, treewidth, planar graph, polynomial algorithm, PTAS.

1 Introduction

Given a graph G = (V, E) and a subset S ⊆ V (G), we denote by dS(v) the degree of a vertex
v ∈ V in G[S], the subgraph of G induced by S. For S = V , the subscript is omitted, hence
d(v) stands for the degree of v in G.

Our starting point is the following general problem:

Decomposition

Input: A graph G = (V, E), and two functions a, b : V → IN such that a(v), b(v) ≤ d(v), for
all v ∈ V .
Question: Is there a nontrivial partition (V1, V2) of V such that dV1

(v) ≥ a(v) for every
v ∈ V1 and dV2

(v) ≥ b(v) for every v ∈ V2?

A partition satisfying the above property is called a decomposition of G. If G admits a
decomposition, we also say that G is decomposable. Moreover a vertex v is said to be satisfied
when if v ∈ V1 we have dV1

(v) ≥ a(v) and if v ∈ V2, we have dV2
(v) ≥ b(v).

The decision problem Decomposition is NP -complete. Indeed, the rather special case
where a = b = ⌈d

2⌉, introduced in [14] as Satisfactory Partition, has been shown to be

∗ This research was supported by the bilateral research cooperation Balaton between EGIDE (France) and
the Ministry of Education (Hungary) under grant numbers 07244RJ and F-29/2003. The second author was
also supported in part by the Hungarian Scientific Research Fund, grant OTKA T-042710.

† LAMSADE, Université Paris-Dauphine, Place du Marechal de Lattre de Tassigny, 75775 Paris Cedex 16,
France. Email: {bazgan,vdp}@lamsade.dauphine.fr

‡ Computer and Automation Institute, Hungarian Academy of Sciences, H-1111 Budapest, Kende u. 13-17,
Hungary; and Department of Computer Science, University of Veszprém, Hungary. Email: tuza@sztaki.hu

1

NP -complete in [5]. Moreover, it is NP -complete in the range ⌈d
2⌉ < a = b ≤ d− 1, as proved

in [4].

Even if the problem is NP -complete, polynomial instances of this problem may arise when
(i) restricting the structure of the graph, or (ii) imposing constraints on a and b, or (iii) both.

Concerning case (ii), Stiebitz [21] proved that, when a and b are such that d(v) ≥ a(v) +
b(v) + 1 for all v ∈ V , any graph admits a decomposition. His result is not constructive. A
polynomial-time algorithm that finds such a decomposition is given in [6].

In case (iii), Kaneko [19] showed that any triangle-free graph such that d(v) ≥ a + b for
all v ∈ V , where a and b are positive integer constants, admits a decomposition. Diwan [12]
showed that any graph with girth at least 5 such that d(v) ≥ a + b − 1 for all v ∈ V , where
again a and b are positive integers ≥ 2 independent of v, admits a decomposition. These two
results were presented for constants a and b instead of functions a(v) and b(v). Diwan’s result
was extended recently to the case of functions in [16]. However, the proofs of all these results
are not constructive. In [6] we gave algorithms that find a decomposition in polynomial time
for the general case of functions, provided that their sum (or sum minus 1) does not exceed
the degree function.

In this paper we study Decomposition in case (i), i.e. without any restrictions on the
functions a, b (apart from the trivial one that they should not exceed the degree function d),
but imposing restrictions on the class of graphs. We are not aware of any previous result
concerning this case. We show here that, for graphs with bounded treewidth, one can decide
in polynomial time if a graph is decomposable, and give in polynomial time a decomposition
when it exists.

It should be noted that the general result developed by Courcelle [11] — stating that any
problem expressible in second-order monadic logic is polynomial-time solvable for graphs of
bounded treewidth — cannot be applied directly here. The technical difficulty concerning the
applicability of this result for Decomposition is that if a(v) and b(v) cannot be expressed

for almost all v ∈ V in a uniform way (e.g., a(v) = a and b(v) = b are constants, or d(v)
a(v)

and d(v)
b(v) are independent of v), then the formula for the problem in second-order monadic

logic is not of constant length. A similar technical complication yields the non-applicability
of Gerber and Kobler’s result [15] on graphs of bounded clique-width.

We also study some variants of Decomposition with additional constraints on the size
of the vertex classes. Let t = t(n) be an integer-valued function such that 0 ≤ t(n) ≤ n for
every n ∈ IN. We consider the following problem:

t-Decomposition

Input: A graph G = (V, E), and two functions a, b : V → IN such that a(v), b(v) ≤ d(v), for
all v ∈ V .
Question: Is there a partition (V1, V2) of V with |V1| = t(|V |) such that dV1

(v) ≥ a(v) for
every v ∈ V1 and dV2

(v) ≥ b(v) for every v ∈ V2?

A partition (V1, V2) such that |V1| = t(|V |) is called a t-partition. A t-partition where all
vertices are satisfied is called a t-decomposition. If G admits a t-decomposition, we also say
that G is t-decomposable.

A particular interesting case of this problem is when the graph has an even number of
vertices and we consider only balanced partitions (t = n

2 , where n is the number of vertices),

2

giving rise to the following problem.

Balanced Decomposition

Input: A graph G = (V, E) with an even number of vertices, and two functions a, b : V → IN
such that a(v), b(v) ≤ d(v), for all v ∈ V .
Question: Is there a partition (V1, V2) of V with |V1| = |V2| such that dV1

(v) ≥ a(v) for
every v ∈ V1 and dV2

(v) ≥ b(v) for every v ∈ V2?

Since an input graph may not have any (t-)decomposition, it is of interest to study the
corresponding optimization problem where we try to satisfy as many of the vertices as possible.
(In this setting it is not necessary to assume anymore that the vertex degree d(v) is an upper
bound on a(v) and b(v).) We consider then the two following problems.

Max Satisfying Decomposition

Input: A graph G = (V, E) and two functions a, b : V → IN.
Solution: A nontrivial partition (V1, V2) of V .
Value: The number of satisfied vertices v, i.e. those with dV1

(v) ≥ a(v) if v ∈ V1 and
dV2

(v) ≥ b(v) if v ∈ V2.

Max Satisfying t-Decomposition

Input: A graph G = (V, E) and two functions a, b : V → IN.
Solution: A partition (V1, V2) of V such that |V1| = t(|V |).
Value: The number of satisfied vertices v, i.e. those with dV1

(v) ≥ a(v) if v ∈ V1 and
dV2

(v) ≥ b(v) if v ∈ V2.

The particular case where cardinalities of the two vertex classes are imposed to be equal
corresponds to a problem that we call Max Satisfying Balanced Decomposition.

Max Satisfying Balanced Decomposition was studied in [5] for the restricted func-

tions a(v) = b(v) = ⌈d(v)
2 ⌉. This problem is not only NP -hard but also has no polynomial-time

approximation scheme, unless P=NP. The strongest positive result known so far on Max
Satisfying Balanced Decomposition is a polynomial-time 3-approximation.

In Section 2 of this paper we prove that all the previous problems — and also their search
versions — can be solved in polynomial time on graphs of bounded treewidth (Theorem 1).
This result is then applied in Section 3 to design a polynomial-time approximation scheme
for Max Satisfying t-Decomposition and Max Satisfying Decomposition on planar
graphs (Theorem 3). Note that these problems are not known to be NP -hard on planar
graphs. Our approach is to combine Baker’s method [3] of dividing the input planar graph
into families of k-outerplanar graphs and our method of finding maximum t-partitions of
bounded-treewidth graphs.

In fact, the approximability of Max Satisfying t-Decomposition on planar graphs is
a rather particular instance of a quite general principle that we formulate as Theorem 2 in
Section 3. This result provides the frame for a technique to design approximation algorithms
on a structure class when an efficient exact algorithm (or just a PTAS, or an algorithm of
guaranteed approximation ratio) is already available on another class. We have chosen the
formulation of Theorem 2 in a way to make it applicable not only for approximation schemes
but also for less accurate approximations. On applying this method, the approximation

3

scheme given in Theorem 3 is derived from Theorem 1. The main ingredients of this approach
can already be found in Baker’s paper [3], and have been applied to a number of problems e.g.
in [10, 17, 18, 22]. One of the objectives in Section 3.1 is to point out that the technique can be
split in a clear manner into two well-defined and completely independent parts; namely, one
dealing with structural decomposability and the other concerning optimization problems that
become approximable when certain structural conditions are imposed. In connection with the
former, Eppstein [13] investigated how far one can extend the class of planar graphs in order
that we still have a well-structured vertex partition into subgraphs of bounded treewidth.
The combination of his results with our Theorems 1 and 2 implies a PTAS for our problems
on a wider class of graphs, too, though it is formulated in Theorem 3 for planar graphs only.

2 Decomposition of graphs with bounded treewidth

Many graph problems, including a very large number of well-known NP -hard problems, have
been shown to be solvable in polynomial time on graphs with treewidth bounded by a constant
k [1, 7, 11]. In this section we prove that this is the case for deciding the existence of a
(t-)decomposition and for maximizing the number of vertices that are simultaneously satisfied.

First, let us recall some necessary definitions.

Definition A tree representation T = (T,H) of a graph G = (V, E) consists of a tree
T = (X, F) with node set X and edge set F , and a set system H over V whose members
Hx ∈ H are labeled with the nodes x ∈ X, such that the following conditions are met:

•
⋃

x∈X Hx = V .

• For each uv ∈ E there is an x ∈ X with u, v ∈ Hx.

• For each v ∈ V , the node set {x ∈ X | v ∈ Hx} induces a subtree of T .

The third condition is equivalent to assuming that if v ∈ Hx′ and v ∈ Hx′′ then v ∈ Hx

holds for all nodes x of the (unique) x′–x′′ path in T . The width of a tree representation T
is w(T) = maxx∈X |Hx| − 1 and the treewidth of G is defined as

tw(G) = min
T

w(T)

where the minimum is taken over all tree representations T = (T,H) of G. The ‘−1 ’ in the
definition of w(T) is included for the convenience that trees have treewidth 1 (rather than 2).

The determination of the treewidth of a graph is NP -hard [2]. However, for constant k,
Bodlaender [8] gave a linear-time algorithm that determines whether the treewidth of G is at
most k, and if so, finds a tree decomposition of G with treewidth at most k.

As indicated for example in [20], any tree representation T = (T,H) of a graph can
be transformed in linear time into a so-called nice tree representation T ′ = (T ′,H′) with
w(T ′) = w(T), with size |T ′| ≤ c|T | (for some absolute constant c) and with H ′

x 6= ∅ for all
H ′

x ∈ H′, where T ′ is a rooted tree satisfying the following conditions:

(a) Each node of T ′ has at most two children.

(b) For each node x with two children y, y′, we have H ′
y = H ′

y′ = H ′
x.

4

(c) If a node x has just one child y, then

H ′
x ⊂ H ′

y or H ′
y ⊂ H ′

x and | |H ′
x| − |H ′

y| | = 1 .

Concerning the appearance of substructures, one can see that the subtree Tx of T rooted
at node x represents the subgraph Gx induced by precisely those vertices of G which occur
in at least one Hy where y runs over the nodes of Tx.

Theorem 1 Let k > 1 be any fixed integer. On the class of graphs with treewidth less
than k, the problems Decomposition and t-Decomposition, for any function t = t(n),
can be decided in polynomial time. Moreover, decompositions for them — if they exist —
and also an optimum solution for Max Satisfying Decomposition and Max Satisfying
t-Decomposition, for any function t = t(n), can be found in polynomial time.

Proof : Let G be any input graph, say on n vertices v1, . . . , vn. We consider a tree represen-
tation of width less than k, which can be obtained in linear time by the algorithm proposed
in [8]. Let T = (T,H) be a nice tree representation, rooted in r, obtained from the previous
one.

The essential part of the algorithm is dynamic programming, organized as a postorder
traversal of (T, r). For each node x of T , a collection of 4-tuples

Rj(x) = (Pj ,vj , fj , sj) j = 1, 2, . . .

will be calculated, where

• Pj = (A, B) is a bipartition of Hx,

• vj is a vector of length n, all of its coordinates are integers between 0 and n − 1, and
its ith coordinate is positive only if vi ∈ Hx,

• fj and sj are integers between 0 and n.

Since w(T) < k, at most 2k · nk · (n + 1)2 = O(2knk+2) records are maintained for each x.
In addition,

• if x is not a leaf, then one or two pointers from each Rj(x) to one record of each child y

of x is registered, indicating which partition at the node y has been used when creating
Rj(x).

The components of Rj(x) are interpreted as follows. Suppose that (Ax, Bx) is a vertex par-
tition of Gx, such that A ⊆ Ax and B ⊆ Bx. Then, for vi ∈ Hx, the ith coordinate of vector
vj is equal to dAx

(vi) if vi ∈ Ax and dBx
(vi) if vi ∈ Bx. Moreover, we define fj = |Ax|

(cardinality of the f irst partition class) and sj to be the number of vertices that are satisfied
in Gx under (Ax, Bx), i.e. with dAx

(vi) ≥ a(vi) or dBx
(vi) ≥ b(vi), respectively. A 4-tuple —

combination of those data — occurs as one such Rj(x) if and only if there exists at least one
partition (Ax, Bx) with exactly the values listed in Rj(x). It is essential to observe that the
number of the records Rj(x) for any one node x remains just polynomial in n, despite the
number of vertex bipartitions of Gx becomes exponential as Gx gets large.

If it does not cause ambiguity, we sometimes omit the subscript j or the argument (x)
from vj , Rj(x), etc. However, since Hx = Hy may occur, in the formalism it may be necessary

5

e.g. to write f(x) or fj(x) for f , to indicate that the object in question belongs to a specific
record (numbered j) at the node x. Analogously, the coordinate for vi ∈ Hx in Rj(x) will be
denoted by vj(x : i).

In the trivial case where T consists of just one node, G can have at most k non-isolated
vertices, therefore the existence of a (t-) decomposition can be decided by brute force in
constant time, since k is fixed. Similarly, a t-partition with the maximum number of satisfied
vertices can be found efficiently. Hence, we assume that T has at least one leaf.

Depending on the position of x in T , and on the type of Hx, the 4-tuples Rj are computed
as follows.

Leaf. If x ∈ X is a leaf of T , then P = (A, B) runs over all partitions of Hx (also including
the two trivial ones), i.e. j = 1, 2, . . . , 2|Hx|. The coordinates of vj and the values fj and sj

are computed directly.

Two children. Let x ∈ X, its two children y′ and y′′. Consider any partition P (x) = (A, B) of
Hx. In order to create the set of records Rj(x) where (A, B) appears, all Rj′(y

′) and Rj′′(y
′′)

containing (A, B) are collected, and for each such pair of 4-tuples an Rj(x) is generated
and the two pointers from Rj(x) are adjusted to Rj′(y

′) and Rj′′(y
′′) (unless the 4-tuple has

already been obtained from an earlier pair). The coordinates of vj remain zero outside Hx,
while for vi ∈ A we have vj(x : i) = vj′(y

′ : i) + vj′′(y
′′ : i) − dA(vi) (and analogously for

vi ∈ B). Similarly, fj(x) = fj′(y
′) + fj′′(y

′′) − |A|. To compute s(x) from s(y′) + s(y′), we
need to subtract the number of those vi which are satisfied in both Rj′(y

′) and Rj′′(y
′′), and

add the number of those not satisfied in either of Rj′(y
′) and Rj′′(y

′′) but satisfied in Rj(x).
All this is easily done by comparing a(vi) or b(vi) with v(z : i) for z ∈ {x, y′, y′′}.

Larger child. Assume Hx = Hy \ {vi}, where y is the child of x. For each Rj(y) we
set Aj(x) = Aj(y) \ {vi} and Bj(x) = Bj(y) \ {vi}, and if Aj gets decreased, we write
fj(x) = fj(y) − 1. The only change in v is to reset vj(x : i) = 0. In this step, s remains
unchanged. Also here, each possible 4-tuple is kept only once; and when Rj(x) is created, a
pointer from it to Rj(y) is introduced.

Smaller child. Assume Hx = Hy ∪ {vi}, where y is the child of x. From each R(y) with a
partition P = (A, B) of Hy, two of the records R(x) are generated: one with the partition
P ′ = (A ∪ {vi}, B) and the other one with P ′′ = (A, B ∪ {vi}). For the former, the value of
f is increased by 1. Moreover, from each v(y), the coordinates of the corresponding v(x) are
obtained by increasing the coordinates at the neighbors of vi in A or in B by 1, and adjusting
v(x : i) to dA(vi) or dB(vi). Similarly to the case of two children, s(x) is computed from s(y)
by comparing a(vi) or b(vi) with v(x : i) and v(y : i). Then, the pointer specifies R(y) for
both R(x) generated from R(y).

Root. Investigating the records Rj(r) at the root r of T , the following necessary and sufficient
conditions hold.

• Decomposition has an affirmative answer if and only if there is a j such that 0 <

fj(r) < n and sj(r) = n are valid in Rj(r).

• t-Decomposition has an affirmative answer if and only if fj(r) = t and sj(r) = n hold
in some Rj(r).

• Max Satisfying Decomposition has the following optimum:

max {sj(r) | 0 < fj(r) < n}

6

• Max Satisfying t-Decomposition has the following optimum:

max {sj(r) | fj(r) = t}

These requirements can be tested in an obvious way, once the records Rj(r) at the root have
been computed. Having found one affirmative or optimal case (for decision or maximization,
respectively), from Rj(r) one can trace back a sequence of records down to all the leaves of T

along the pointers registered. This sequence determines a vertex partition of the entire G, in
which the degree (and size) conditions hold, and the number of satisfied vertices is maximum.

Time analysis. Since only O(2k nk+2) records are maintained at each node, and every
non-leaf node has one or two children, at most O(4k n2k+4) combinations are considered in
each step. One can see that each of them requires only a polynomial number of elementary
operations; and also the occurring redundancies (more than one copy of the same 4-tuple
at the same node) can be eliminated efficiently. Altogether, the algorithm terminates in
polynomial time. 2

3 Approximation schemes and planar graphs

In connection with the Decomposition problem, the contribution of this section is a poly-
nomial-time approximation scheme for Max Satisfying t-Decomposition and Max Sat-
isfying Decomposition on planar graphs. Since the proof is based on a much more general
approach, however, it seems reasonable to split the section into two parts, hence separating
the method itself from its application.

3.1 Extending an approximation to another structure class

Theorem 2 Let P be a maximization [minimization] problem, c ≥ 1 any real number, and G,
H structure classes. Suppose that there exist reals c′, c′′ ≥ 1 such that the following conditions
are met:

(a) P has a polynomial c′-approximation on H.

(b) For every instance G ∈ G of P it is possible to find in polynomial time an instance
H ∈ H such that OptP(H) ≥ 1

c′′
OptP(G) [respectively, OptP(H) ≤ c′′ OptP(G)].

(c) Each solution of H can be extended in polynomial time to a solution on G without
making its value worse.

(d) c′c′′ ≤ c.

Then P has a polynomial c-approximation on G.

Proof : Based on the conditions above, the following procedure can be designed:

1. Given G and c, find an instance H ∈ H that satisfies (b).

2. Obtain a c′-approximation for H.

3. Extend this solution to one on G, whose value is not worse than that on H.

7

This procedure is well-defined and runs in polynomial time, since Step 1 can be done efficiently
by assumption, Step 2 is guaranteed by Condition (a), Step 3 only needs the assumptions
given in (c).

Since the optimum on H is just c′′ away from the optimum on G, and the solution found
for H is within c′ from its optimum, Condition (d) implies that a c-approximation on G is
obtained. 2

A way of implementing Condition (b) is to find in polynomial time a bounded number,
m = mc′′(n) of instances Hi ∈ H for all i = 1, . . . , m (where n is the size of G) such that
max1≤i≤m OptP(Hi) ≥

1
c′′

OptP(G) [respectively, min1≤i≤m OptP(Hi) ≤ c′′ OptP(G)]. Let
us note that in this case for every feasible c′′, the function mc′′(n) is a polynomial in n.
Nevertheless, in the application of the second subsection, m will be a constant for every
fixed c.

An interesting special case of Theorem 2 is when c′ = 1, i.e. if P admits an exact solution
on H. It often happens for well-structured classes (e.g. interval systems) or classes with a
restricted invariant, such as the class of graphs with bounded treewidth. This latter one is
the approach of [18] for Max Bisection on planar graphs. We follow a similar approach for
decomposition problems on planar graphs.

3.2 Max Satisfying (t-)Decomposition on planar graphs

Applying Theorem 1 and the method described in the previous subsection, here we prove the
following result.

Theorem 3 Max Satisfying t-Decomposition, for any function t = t(n), and Max Sat-
isfying Decomposition admit a polynomial-time approximation scheme on planar graphs.

Proof : For every ε > 0, we describe a polynomial-time algorithm that gives a (1 + ε)-
approximation for Max Satisfying t-Decomposition in any planar input graph. We shall
use the notation of Theorem 2.

Given ε, let m ≥ 2 + 2
ε

be any integer (independent of input size). We choose c′ = 1 and
c′′ = 1 + ε, so that Condition (d) holds automatically.

We define G = {planar graphs} and H = {graphs of treewidth less than 3m}. Theorem 1
then implies the validity of (a). Hence, what remains is to ensure Condition (b). For this
purpose we will select subgraphs H1, . . . , Hm, as indicated after the proof of Theorem 2, for
one of which we can guarantee that the optimum solution on it will not be far from the
optimum on G. Though the Hi will be different from those applied in [18], the method of
finding them is fairly similar.

Let G = (V, E) be the planar input graph. First we embed G in the plane, and set
G0 = G and V0 = ∅. Assuming that Gi and Vi are at hand, and Gi is nonempty, let Vi+1 be
the set of vertices on the boundary of the infinite region of Gi, and Gi+1 the induced subgraph
Gi − Vi+1. At the end of this procedure (which clearly can be implemented in polynomial
time) we obtain a partition of V into the nonempty sets V1, . . . , Vk, for some k.

Now, for i = 1, 2, . . . , m let Hi be the graph obtained from G by deleting the edges between
Vℓ and Vℓ+1 for all ℓ such that 1 ≤ ℓ < k and ℓ ≡ i (mod m). Moreover, in each Hi, if v was
incident to a deleted edge of G, then we modify the values a, b to a(v) = b(v) = dG(v). On
all the other vertices of Hi, the functions a, b remain unchanged. That is, every vertex gets
modified values in at most two of the Hi.

8

The subgraphs Hi are so-called m-outerplanar graphs and have bounded treewidth 3m−1
[9] i.e. Hi ∈ H holds and hence Theorem 1 applies, verifying Condition (a). It is also clear
that any t-partition of Hi is one of G as well, and — since no vertex of modified a, b can be
satisfied in Hi — the number of vertices satisfied in G under the same vertex partition cannot
be smaller than that in any Hi.

Finally, to prove the validity of Condition (b), suppose that an optimum solution (V ′, V ′′)
on G satisfies the vertices of the set S (i.e., Opt(G) = |S|). Consider the subsets Si obtained
from S by deleting those vertices whose a, b has been modified in Hi. Since every vertex gets
modified values of functions a and b in at most two of the Hi, |S1|+ . . . + |Sm| ≥ (m− 2) |S|,
consequently there exists an i with |Si| ≥ (1− 2

m
) |S| ≥ 1

1+ε
|S|. In the corresponding Hi, the

partition (V ′, V ′′) satisfies all vertices of Si, thus Opt(Hi) ≥ |Si| ≥
1

1+ε
Opt(G) as required.

In order to obtain a polynomial-time approximation scheme for Max Satisfying De-
composition, we just need to iterate the previous polynomial-time approximation scheme
for t = 1, . . . , n

2 and retain the best solution found. 2

References

[1] S. Arnborg, Efficient algorithms for combinatorial problems on graphs with bounded
decomposability—A survey, BIT, 25 (1985), 2–23.

[2] S. Arnborg, D. G. Corneil and A. Proskurowski, Complexity of finding embeddings in a
k-tree, SIAM Journal on Algebraic and Discrete Methods, 8 (1987), 277–284.

[3] B. S. Baker, Approximation algorithms for NP -complete problems on planar graphs,
Journal of the ACM, 41 (1994), 153–180.

[4] C. Bazgan, Zs. Tuza and D. Vanderpooten, On the existence and determination of satis-
factory partitions in a graph, Proceedings of the 14th ISAAC 2003, LNCS 2906, 444–453.

[5] C. Bazgan, Zs. Tuza and D. Vanderpooten, Complexity and approximation of satisfactory
partition problems, Proceedings of the 11th COCOON 2005, LNCS 3595, 829–838.

[6] C. Bazgan, Zs. Tuza and D. Vanderpooten, Efficient algorithms for decomposing graphs
under degree constraints, submitted, 2005.

[7] H. L. Bodlaender, Dynamic programming algorithms on graphs with bounded treewidth,
Proceedings of the 18th ICALP 1988, LNCS 317, 105–119.

[8] H. L. Bodlaender, A linear-time algorithm for finding tree-decompositions of small
treewidth, SIAM Journal on Computing, 25 (1996), 1305–1317.

[9] H. L. Bodlaender, A partial k-arboretum of graphs with bounded treewidth, Theoretical
Computer Science, 209 (1998), 1–45.

[10] Z.-Z. Chen, Practical approximation schemes for maximum induced-subgraph problems on
K3,3-free or K5-free graphs, Proceedings of the 23rd ICALP 1996, LNCS 1099, 268–279.

[11] B. Courcelle, The monadic second-order logic of graphs. III. Tree-decompositions, minors
and complexity issues, RAIRO Informatique Théorique Appliquée, 26 (1992), 257–286.

9

[12] A. Diwan, Decomposing graphs with girth at least five under degree constraints, Journal
of Graph Theory, 33 (2000), 237–239.

[13] D. Eppstein, Diameter and treewidth in minor-closed graph families, Algorithmica, 27
(2000), 275–291.

[14] M. Gerber and D. Kobler, Algorithmic approach to the satisfactory graph partitioning
problem, European Journal of Operation Research, 125 (2000), 283–291.

[15] M. Gerber and D. Kobler, Algorithms for vertex-partitioning problems on graphs with
fixed clique-width, Theoretical Computer Science, 299 (2003), 719–734.

[16] M. Gerber and D. Kobler, Classes of graphs that can be partitioned to satisfy all their
vertices, Australasian Journal of Combinatorics, 29 (2004), 201–214.

[17] H. B. Hunt III, M. V. Marathe, V. Radhakrishnan, S. S. Ravi, D. J. Rosenkrantz and
R. E. Stearns, A unified approach to approximation schemes for NP- and PSPACE-hard
problems for geometric graphs, Proceedings of the 2nd ESA 1994, LNCS 855, 424–435.

[18] K. Jansen, M. Karpinski, A. Lingas and E. Seidel, Polynomial time approximation
schemes for Max-Bisection on planar and geometric graphs, Proceedings of the 18th
STACS 2001, LNCS 2010, 365–375.

[19] A. Kaneko, On decomposition of triangle-free graphs under degree constraints, Journal of
Graph Theory, 27 (1998), 7–9.

[20] T. Kloks, Treewidth. Computations and Approximations, LNCS 842, 1994.

[21] M. Stiebitz, Decomposing graphs under degree constraints, Journal of Graph Theory, 23
(1996), 321–324.

[22] D. M. Thilikos and H. L. Bodlaender, Fast partitioning l-apex graphs with applications
to approximating maximum induced-subgraph problems, Information Processing Letters,
61 (1997), 227–232.

10

