
Complexity and approximation of the Constrained Forest

problem

Cristina Bazgan 1 Basile Couëtoux 1 Zsolt Tuza 2,∗

1 Université Paris-Dauphine, LAMSADE
Place du Marechal de Lattre de Tassigny, 75775 Paris Cedex 16, France

2 Computer and Automation Institute, Hungarian Academy of Sciences
H–1111 Budapest, Kende u. 13–17, Hungary

and

Department of Computer Science, University of Pannonia
H–8200 Veszprém, Egyetem u. 10, Hungary

Abstract

Given an undirected graph on n vertices with weights on its edges, Min WCF(p)
consists of computing a covering forest of minimum weight such that each of its tree
components contains at least p vertices. It has been proved that Min WCF(p) is NP -hard
for any p ≥ 4 (Imielinska et al., 1993) but (2− 1

n
)-approximable (Goemans and Williamson,

1995). While Min WCF(2) is polynomial-time solvable, already the unweighted version
of Min WCF(3) is NP -hard even on planar bipartite graphs of maximum degree 3.
We prove here that for any p ≥ 4, the unweighted version is NP -hard, even for planar
bipartite graphs of maximum degree 3; moreover, the unweighted version for any p ≥ 3
has no ptas for bipartite graphs of maximum degree 3. The latter theorem is the first-ever
APX-hardness result on this problem. On the other hand, we show that Min WCF(p) is
polynomial-time solvable on graphs with bounded treewidth, and for any p bounded by
O(log n

log log n
) it has a ptas on planar graphs.

1 Introduction

Let G = (V,E) be a graph with |V | = n vertices. An edge cover of G is a subset of the edge
set E such that every vertex is incident with at least one edge in the covering set. Finding
the minimum size, ρ(G), of an edge cover of a graph is a fundamental problem. As proved
by Gallai [8], it is strongly related to determining the maximum size, ν(G), of a matching
in G. A famous result of [8] states that any graph G without isolated vertices satisfies the
identity ν(G) + ρ(G) = n. As a matter of fact, the relation is much more than quantitative:
every maximum matching of a graph can be extended to a minimum edge cover, and also
conversely, every minimum edge cover contains a maximum matching. In this way, one can
derive a minimum-size edge cover from a maximum matching M just by adding an arbitrary
incident edge for each vertex missing from M . Hence, a minimum-size edge cover can be
found in polynomial time.

∗ Research supported in part by the Hungarian Scientific Research Fund, OTKA grant T-049613.

1

In the case where the graph G = (V,E) has weights on its edges, the minimum-weight edge
cover problem can be reduced to the problem of finding a minimum-weight perfect matching;
a simple reduction is described e.g. in the first volume of Schrijver’s monograph [17, Section
19.2]. As a consequence, an optimal solution can be found in O(n3) time by the results of
Edmonds and Johnson [7]. It should be noted, however, that the relation between maximum
matchings and minimum edge covers does not remain valid for weighted graphs, neither for
uniform hypergraphs of edge size greater than two [18].

A problem that generalizes the minimum-weight edge cover problem in a very natural way
is the Min Weighted Constrained Forest problem, denoted by Min WCF(p) in the sequel.
It consists of computing a spanning forest of G of minimum weight such that every tree
component contains at least p vertices, for a given integer p. Although traditionally p is
assumed to be a constant, the methods proving our positive results will allow us to take p as
a function of n, too.

Monnot and Toulouse [14] proved that the unweighted version of Min WCF(3) is NP -hard
even on planar bipartite graphs of maximum degree three. Imielinska et al. [10] showed that
Min WCF(p) is NP -hard for p ≥ 4, and that a greedy algorithm achieves a 2-approximation.
Interestingly enough, a different algorithm studied by Laszlo and Mukherjee [12] has exactly
the same tight worst-case ratio of 2, as well as a common generalization of those two ap-
proaches [13]. With the methods of Goemans and Williamson [9], just a slightly better ratio
2 − 1

n can be achieved.
Let us denote by Min CF(p) the unweighted version of the problem. Until now, nothing

was known about the complexity of Min CF(p) for p ≥ 4. We settle this problem by showing
that Min CF(p) is NP -hard for any p ≥ 4, already on planar bipartite graphs with maximum
degree three.

Moreover, we study non-approximability of these problems for the first time. In this
direction we prove that dropping the condition of planarity, Min CF(p) becomes APX -hard
for any p ≥ 3 on bipartite graphs, and even on those with maximum degree three. It also turns
out that this weakening in the condition necessarily has to appear in non-approximability
results, since we can design a polynomial-time approximation scheme for Min WCF(p) on
planar graphs. In this result we may allow p to be bounded by O(log n

log log n). An important tool
in the proof is an algorithm computing an optimal solution for Min WCF(p) on any input
graph of treewidth at most k in O(kckp2k+2n) time, for some constant c. This time bound is
valid without any restrictions on the growth of p, hence applicable also in graph classes which
cannot be treated with Courcelle’s powerful method via monadic second-order logic [4]. The
latter would require to fix p as a constant.

It is worth noting that the unweighted case admits a much simpler approach than the
weighted one. Indeed, since every feasible solution of Min CF(p) has at most n/p connected
components, the optimum can never have a value smaller than n − n/p = p−1

p n, and hence

any spanning tree gives a (1 + 1
p−1)-approximation.

Our results on NP- and APX-hardness are proved in Section 3, while efficient algorithms
are presented in Section 4. Conclusions are provided in the final section.

2 Preliminaries

We begin with some basic definitions, summarized in three groups.

2

Problems. First, we formally define the problem we will study in the sequel.

Min Weighted Constrained Forest p (Min WCF(p))

Input: An undirected graph G = (V,E) with non-negative weights on its edges.
Output: A spanning forest of minimum weight where every tree is of order at least p (i.e.,
it contains at least p vertices).

The unweighted version of Min WCF(p) will be denoted by Min CF(p).

In our proofs we shall use the following problems:

3-Dimensional Matching (3DM)

Input: Three disjoint sets A,B,C of the same size q, and a set T ⊆ A × B × C of triplets.
Question: Does T contain a perfect matching, that is a subset M ⊆ T such that |M| = q
and no two elements of M agree in any coordinate (i.e., for any (a, b, c), (a′, b′, c′) ∈ M we
have a 6= a′, b 6= b′, and c 6= c′) ?

We can associate a bipartite graph with any instance of 3DM as follows. We take an
‘element-vertex’ for each element of A ∪B ∪C, and one ‘triplet-vertex’ for each triplet in T .
There is an edge connecting a triplet-vertex to an element-vertex if and only if the element is
a member of the triplet. Moreover, we say that the instance is planar if the graph associated
with it is planar.

Max 3-Dimensional Matching (Max 3DM)

Input: Three disjoint sets A,B,C of the same size and a set T ⊆ A × B × C of triplets.
Output: A matching (set of mutually disjoint triplets) M ⊆ T of maximum size.

The restricted versions of 3DM and of Max 3DM where each element of A ∪ B ∪ C
appears in exactly two triplets will be denoted by 3DM2 and Max 3DM2, respectively.

Approximability. Given an instance x of an optimization problem A and a feasible solution
y of x, we denote by v(x, y) the value of the solution y, and by optA(x) the value of an optimum
solution of x. The performance ratio of y is

R(x, y) = max

{

v(x, y)

optA(x)
,
optA(x)

v(x, y)

}

.

For a constant c > 1, an algorithm is a c-approximation if for any instance x of the problem
it returns a solution y such that R(x, y) ≤ c. An optimization problem is said to be constant
approximable if, for some c > 1, there exists a polynomial-time c-approximation for it. The
class of problems which are constant approximable is denoted by APX. An optimization
problem has a polynomial-time approximation scheme (a ptas, for short) if, for every constant
ε > 0, there exists a polynomial-time (1 + ε)-approximation for it.

Reductions. The notion of L-reduction was introduced by Papadimitriou and Yannakakis
in [15]. Let A and B be two optimization problems. Then A is said to be L-reducible to B if
there are two constants α, β > 0 such that

1. there exists a function, computable in polynomial time, which transforms each instance
x of A into an instance x′ of B such that optB(x′) ≤ α · optA(x),

3

2. there exists a function, computable in polynomial time, which transforms each solution
y′ of x′ into a solution y of x such that |v(x, y) − optA(x)| ≤ β · |v(x′, y′) − optB(x′)|.

For us the important property of this reduction is that if a maximization problem A is
L-reducible to a minimization problem B and B is c-approximable then A is 1

1−αβ(c−1) -
approximable.

3 Complexity for p ≥ 3

Min CF(3) was proved NP -hard even on planar bipartite graphs of maximum degree three
[14]. In this section we prove that Min CF(3) is intractable for every p ≥ 4 for the same
restricted classe of problem instances. We first deal with time complexity and then with
approximation hardness.

3.1 NP-hardness for p ≥ 4, planar bipartite unweighted graphs

Theorem 1. For any p ≥ 4, Min CF(p) is NP-hard, even on planar bipartite graphs with
maximum degree 3.

Proof. First, we prove NP -hardness for p = 4. We construct a polynomial reduction from
3DM to Min CF(4). Let I = (A,B,C,T) be an instance of 3DM where |A| = |B| = [C| = q
and T = {T1, . . . , Tm}. Assume, without loss of generality, that each element occurs in at
least one triplet (otherwise I admits no perfect matching at all).

The graph instance G(I) = (V,E) of Min CF(4) is constructed as follows (see an illustra-
tion in Figure 1 with a particular instance I of 3DM). For each triplet Tℓ = (ai, bj , ck) ∈ T we
create a copy of a star with 3 branches, that we shall call star gadget, with vertices aℓ

i , b
ℓ
j , c

ℓ
k, d

ℓ

and edges (aℓ
i , d

ℓ), (bℓ
j , d

ℓ), (cℓ
k, dℓ). These stars are assumed to be vertex-disjoint. For their

union we denote
VT =

⋃

Tℓ=(ai,bj ,ck)∈T

{aℓ
i , b

ℓ
j , c

ℓ
k, dℓ} and

ET =
⋃

Tℓ=(ai,bj ,ck)∈T

{(aℓ
i , d

ℓ), (bℓ
j , d

ℓ), (cℓ
k , dℓ)}.

To the elements of A∪B∪C we assign linking gadgets; if an element appears in h triplets,
then h − 1 gadgets will be associated with it.

Consider first the set A. We define the set JA ⊂ A × N × N to be the collection of all
(ai, r, s) with the following properties: ai ∈ A, and r, s are two consecutive indices of triplets
containing ai, in the sense that ai ∈ Tr and ai ∈ Ts but ai /∈ Tℓ for any r < ℓ < s. (In this
general setting we allow that some ai occur in just one member of T — hence generating
no linking gadgets — although in such a situation I would easily be reducible to a smaller
instance.) Each (ai, r, s) ∈ JA defines a linking gadget inducing a ‘claw’ in G(I), with vertices
ar

i , a
s
i , a

r,s
i , a r,s

i and edges (ar
i , a

r,s
i), (ar,s

i , as
i), (a

r,s
i , a r,s

i). For their union we denote

VA =
⋃

(ai,r,s)∈JA

{ar,s
i , a r,s

i } and EA =
⋃

(ai,r,s)∈JA

{(ar
i , a

r,s
i), (ar,s

i , as
i), (a

r,s
i , a r,s

i)}.

The sets JB and JC are defined in a similar way. Each (bj , r, s) ∈ JB defines a linking
gadget inducing a ‘claw’ in G(I), with vertices br

j , b
s
j , b

r,s
j , b

r,s
j , b r,s

j and edges (br
j , b

r,s
j), (br,s

j , bs
j),

4

(br,s
j , b r,s

j), (br,s
j , b

r,s
j). For their union we denote

VB =
⋃

(bj ,r,s)∈JB

{br,s
j , b r,s

j , br,s
j } and

EB =
⋃

(bj ,r,s)∈JB

{(br
j , b

r,s
j), (br,s

j , bs
j), (b

r,s
j , b r,s

j), (b r,s
j , b

r,s
j)}.

The same is done for the set C in complete analogy to B, hence introducing the linking
gadgets (ck, r, s) ∈ JC and obtaining vertex set VC and edge set EC .

After all these preparations, let the graph G(I) = (V,E) has vertex set V = VT ∪ VA ∪
VB ∪ VC and edge set E = ET ∪ EA ∪ EB ∪ EC . Since an element of A ∪ B ∪C appearing in
h triplets has h copies and h− 1 linking gadgets in G(I), we can see that the total number of
vertices is precisely 12|T |− 8q. Hence, the transformation is linear with respect to input size.

c
2,3

1

c
2,3

1

b
2,5

1

b
2,5

1

b
2,5

1

b
2

1

b
5,6

1

b
5,6

1

b
5,6

1

a
4,5

1

a
4,5

1

c
4,6

3

c
4,6

3

c
4,6

3

a
6

3 b
6

1

d
6

c
6

3

b
3,4

3

b
3,4

3

b
3,4

3

d
3

b
3

3

a
3

2

c
3

1

a
2,4

1

a
2,4

1

c
4

3

d
4

b
4

3 d
5

d
1

d
2

a
4

1

c
1,5

2

c
1,5

2

c
1,5

2

b
5

1a
5

1

c
5

2

c
1

2

b
1

2

a
1,2

1

a
1

1
a
1,2

1a
2

1

c
2,3

1

c
2

1

Figure 1: Graph G(I) derived from instance I = (A,B,C,T) of 3DM with A = {a1, a2, a3},
B = {b1, b2, b3}, C = {c1, c2, c3}, and T = {T1, . . . , T6} with T1 = (a1, b2, c2), T2 = (a1, b1, c1),
T3 = (a2, b3, c1), T4 = (a1, b3, c3), T5 = (a1, b1, c2), T6 = (a3, b1, c3).

We are going to show that I contains a perfect matching if and only if G(I) contains a forest
of weight at most 9|T | − 6q in which every tree component is of order at least 4.

5

Suppose first that M is a perfect matching of I. For a Tℓ = (ai, bj , ck) ∈ M we write
fM(ai) = fM(bj) = fM(ck) = ℓ, and further denote by FT the set of edges of the star gadgets
corresponding to triplets of M:

FT =
⋃

Tℓ=(ai,bj ,ck)∈M

{(aℓ
i , d

ℓ), (bℓ
j , d

ℓ), (cℓ
k, dℓ)}

and
Fai

=
⋃

r<fM(ai)
(ai,r,s)∈JA

{(dr, ar
i), (a

r
i , a

r,s
i), (ar,s

i , a r,s
i)} ∪

⋃

s>fM(ai)
(ai,r,s)∈JA

{(ds, as
i), (a

s
i , a

r,s
i), (ar,s

i , a r,s
i)},

Fbj
=

⋃

r<fM(bj)
(bj ,r,s)∈JB

{(br
j , b

r,s
j), (br,s

j , b r,s
j), (br,s

j , b
r,s
j)} ∪

⋃

s>fM(bj)
(bj ,r,s)∈JB

{(bs
j , b

r,s
j), (br,s

j , b r,s
j), (br,s

j , b
r,s
j)}.

The set Fck
is defined like Fbj

. Let FM =
⋃

e∈A∪B∪C Fe ∪ FT . Forest FM covers G(I) with
trees of order 4. Thus, it is a forest of weight 9|T | − 6q.

Conversely, let F be a covering forest of G(I) of weight at most 9|T | − 6q, where each
tree is of order at least 4. Remark that since the graph G(I) has exactly 12|T | − 8q vertices,
a covering forest where each connected component has at least 4 vertices is of weight at least
9|T | − 6q. Thus, every tree in F is of order exactly 4, and F is of weight 9|T | − 6q. All
edges (ar,s

i , a r,s
i) are in F since this is the only edge incident to a r,s

i . Since F has only trees
of order 4, just one of the edges (ar,s

i , ar
i) and (ar,s

i , as
i) is in F . Therefore in the family {aℓ

i}ℓ

there exists exactly one vertex that is not incident to a linking gadget in F . Since forest
F is of weight 9|T | − 6q, it contains 3|T | − 2q trees. Since for any element of A,B,C the
number of linking gadgets associated is equal to the number of occurrences of this element in
T minus 1, there are 3|T | − 3q linking gadgets in G(I). It means that there are q trees of F
which do not cover any linking gadget. Each of these remaining trees therefore covers a star
gadget of the form aℓ

i , b
ℓ
j , c

ℓ
k, d

ℓ. From these star gadgets we extract a collection of q triplets
(ai, bj , ck), which is a valid solution in I since every triplet appears in T by construction and
every element of the triplets appears in exactly one occurrence.

Since 3DM is NP -hard even on planar instances [5] and the previous reduction preserves
planarity, we can restrict Min CF(4) to planar bipartite graphs of maximum degree 3. This
completes the proof for p = 4.

In order to prove the theorem for p > 4, we also construct a reduction from 3DM to
Min CF(p). Given an instance I of 3DM, the graph G′(I) instance of Min CF(p) is obtained
from the previous G(I) by replacing the edges between aℓ

i and dℓ, b r,s
j and b

r,s
j , and c r,s

j and
c r,s
j by a path of length p − 3 (see Figure 2). More precisely, we add to G(I) the following

vertices and edges:

VT (p) =
⋃

aℓ
i∈VT

{aℓ
i(1), . . . , a

ℓ
i(p − 4)}

6

ET (p) =
⋃

aℓ
i∈VT

{(aℓ
i , a

ℓ
i(1)), (a

ℓ
i (1), a

ℓ
i (2)), . . . , (a

ℓ
i(p − 4), dℓ)}

VB(p) =
⋃

br,s
j ∈VB

{br,s
j (1), . . . , br,s

j (p − 4)}

EB(p) =
⋃

br,s
j ∈VA

{(b r,s
j , br,s

j (1)), (br,s
j (1), br,s

j (2)), . . . , (br,s
j (p − 4), b

r,s
j)}

The sets VC(p) and EC(p) are defined analogously.

Figure 2: Graph G′(I) derived from instance I described in Figure 1. Double lines represent
paths of length p − 3.

We show next that I contains a perfect matching if and only if G′(I) contains a forest
of weight at most (p − 1)(3|T | − 2q) where every tree is of order at least p. Given a perfect
matching M on the instance I, in addition to the edges chosen for such a solution in G(I) for
p = 4, we take every edge in EB(p), EC(p) and ET (p). Thus we obtain a forest with the same
number of trees 3|T |− 2q and all these trees are of order at least p. Conversely, given a forest
F of weight (p− 1)(3|T | − 2q) on the instance G′(I), we can consider the trees which are not
covering vertices of linking gadgets. Such a collection of trees describes a perfect matching of
size q on I, which is therefore optimal.

3.2 APX -hardness for p ≥ 3, unweighted bipartite graphs

Applying L-reduction from Max 3DM2, the following result can be obtained.

7

Theorem 2. For any p ≥ 3, Min CF(p) is APX-hard. Moreover, Min CF(p) for p ≥ 3 is

not 95(8p−7)+1
95(8p−7) -approximable on bipartite graphs of maximum degree 3, unless P=NP.

Proof. We first give a detailed argument for p = 4. For this, we construct an L-reduction
from Max 3DM2 to Min CF(4). For any instance I of Max 3DM2 we construct G(I) as in
Theorem 1. Since any element of A,B,C appears exactly twice in T , for any ai there exist
only one vertex of the form ar,s

i and one of a r,s
i ; locally in this proof we rename them as ai

and ai. We shall use bj , bj , bj , ck, ck, ck in an analogous meaning. Note that the number of
vertices in G(I) is exactly 16q.

Let M be any solution, say of size t, on I ; that is, M is a matching but not necessarily
a perfect matching. From M we construct a forest F of G(I). Let

FT =
⋃

xℓ=(ai,bj ,ck)∈M

{(aℓ
i , d

ℓ), (bℓ
j , d

ℓ), (cℓ
k, dℓ)}

FR =
⋃

xℓ=(ai,bj ,ck)/∈M

{(aℓ
i , d

ℓ), (aℓ
i , ai), (b

ℓ
j , bj), (c

ℓ
k , ck)}

FA =
⋃

ai∈A

{(ai, ai)}, FB =
⋃

bj∈B

{(bj , bj), (bj, bj)}, FC =
⋃

ck∈C

{(ck, ck), (ck, ck)}.

Then, let F = FT ∪ FR ∪ FA ∪ FB ∪ FC . We note that the trees occurring in F are of orders
at least 4. In fact, F contains t trees on the star gadgets corresponding to M, and one tree
of order four on each linking gadget. Therefore F contains t + 3q trees, and then the weight
of F is 13q − t. Thus, opt(G(I)) ≤ 13q − opt(I).

Let F be a forest of weight v, covering G(I) with trees of orders at least 4. We consider, as
solution M for I, the triplets corresponding to those tree components of F which have order 4
and so cover star gadgets. Since F contains 16q − v trees and at most 3q of these trees cover
linking gadgets, we obtain that opt(I) ≥ |M| ≥ 13q − v. Thus, v(M, I) ≥ 9q − v(F,G(I))
and opt(G(I)) = 13q − opt(I).

Since I contains 2q triplets and each of them shares an element with at most three triplets,
we have opt(I) ≥ q

2 (a lower bound valid for every inclusion-wise maximal solution), and
consequently opt(G(I)) ≤ 25opt(I). Moreover, by the observations above, we also obtain
opt(I) + opt(G(I)) = 13q ≤ v(F,G(I)) + v(M, I) and so opt(I) − v(M, I) ≤ v(F,G(I)) −
opt(G(I)).

It is NP -hard to achieve an approximation factor of 95
94 for Max 3DM2 [3], and conse-

quently Min CF(4) is not 2376
2375 -approximable if P 6= NP.

The proof for p > 4 applies the same modifications as it has been done in Theorem 1 for
NP-hardness, replacing some edges by paths of length p − 3.

For p = 3, we essentially replace the star gadget by a path of length 3 (bℓ
j , a

ℓ
i , c

ℓ
k), by

removing the vertex dℓ and we also remove the vertices bj , cj (see an illustration in Figure 3
with a particular instance I of Max 3DM2).

4 Efficient algorithms

In this section we design efficient algorithms for some restricted classes of graphs.

8

b
1

1 b
2

2

c
3

2 c
4

1

a
1

1 a
2

1

a
3

2

a
4

2

c
1

1 c
2

2

b
3

1 b
4

2

a1

a1

a2

a2

b1

b1

c1

c1

b2

b2

c2

c2

Figure 3: Graph obtained from instance I = (A,B,C,T) of Max 3DM2 with A = {a1, a2},
B = {b1, b2}, C = {c1, c2}, and T = {T1, . . . , T4} with T1 = (a1, b1, c1), T2 = (a1, b2, c2),
T3 = (a2, b1, c2), T4 = (a2, b2, c1).

4.1 Exact algorithms for bounded treewidth graphs

In the following we present an efficient algorithm solving Min WCF(p) on graph classes of
bounded treewidth. For undefined details on tree decomposition we refer to [11].

Theorem 3. The problem Min WCF(p) on graphs with treewidth bounded by k can be solved
in time O(kckp2k+2n) for some constant c, where n is the number of vertices.

Remark 4. The time bound is polynomial in n whenever k(log k + log p) = O(log n) and in

particular if k = O
(

log n
log log n

)

and p = O(log n).

Proof. Let G be a graph of treewidth k, and (TG, {X | x ∈ V (TG)}) a tree decomposition of
G with width k. As a notational convention, the vertex subset of G associated with node x of
TG is denoted by the corresponding upper-case letter X, and we shall use the same subscript
for them where necessary. We view TG as a rooted tree. By assumption, the set X associated
with any node x of TG contains at most k + 1 vertices of V (G). We shall assume further that
every node x is of one of the following types:

• a start node that has no children (a leaf in TG),

• a join node that has two children x1, x2 and X1 = X2 = X,

• an introduce node that has one child x1 and X1 = X \ {v} for some v ∈ V (G),

• a forget node that has one child x1 and X1 = X ∪ {v} for some v ∈ V (G).

This is called a “nice tree decomposition” in the literature, see pp. 149–150 of [11]. As it is
well known, every graph admits a tree decomposition of size O(n) satisfying these conditions.

9

It is also easy to see that any tree decomposition of width k can be modified to one with the
properties above in O(kn) time.

For any node x of TG, let TG(x) be the rooted subtree of TG containing exactly the node x
and its descendants. The vertices of G which appear in the sets associated with the nodes of
TG(x) define a subgraph of G, denoted by G(x). Remark that TG(x) is a tree decomposition
of G(x).

Consider any node x of TG. For each spanning forest F (possibly with many vertices
of degree zero in F) of the subgraph G[X] induced by X in G, we consider all partitions
P = (C1, . . . , Cℓ) of X and all ℓ-tuples I = (i1, . . . , iℓ) ∈ {1, . . . , p}ℓ such that the following
conditions are met:

• if vi, vj ∈ X are in the same tree component of F , then vi, vj belong to the same partition
class Cr,

• if |Cr| ≤ p, then |Cr| ≤ ir ≤ p, and otherwise ir = p.

Let f(x, F,P, I) be defined as the value of a minimum-weight spanning forest of G(x) in which
X induces precisely F , and in which two vertices belong to the same tree component if and
only if they are in the same class of P.

Lemma 5. For any vertex x of TG, for any forest F over the subgraph G[X], for any
partition P of X, and for any ℓ-tuple I of integers satisfying the conditions above, we can
determine f(x, F,P, I) in O(kckp2k+2) time if the corresponding values f are available for
the child(ren) of x.

Proof. One has to consider each type of nodes separately.
If x is a start node, then the entire set of values f(x, F,P, I) can be determined for x in

O(k) time. Indeed, in this case G(x) has at most k + 1 vertices, the classes of P are exactly
the vertex sets of the connected components of F which can be found in O(k) time, and
ir = min{|Cr|, p} holds for every class Cr of P.

If x is a join node, then P has to be generated from two finer partitions over X, one for
X1 and the other for X2. We can do this by artificially completing F with sets Eblue, Ered

of blue and red edges (not necessarily edges of G) to obtain a forest, each tree component of
which spans a class of P. We then consider the forests Fblue and Fred which are respectively
the forests defined by F ∪ Eblue and F ∪ Ered. The tree components of these forests define
the partitions Pblue and Pred over the vertices of X. The vectors I1 and I2 are such that, for
every partition class Cj of P, ij is equal to the minimum of p and the sum of the values of
the blue and red classes included in Cj minus |Cj|. Then,

f(x, F,P, I) = min
Fblue,Fred,I1,I2

f(x1, F,Pblue, I1) + f(x2, F,Pred, I2) − w(F).

The number of relevant blue-red forests is not larger than the number Bk+1 of partitions
of a (k + 1)-element set, where Bk is the kth Bell number. For each of them, processing
all combinations of O(pk+1) records at X1 and the same amount of data at X2 may need
O(p2k+2) time. This yields the upper bound Bk+1 · O(p2k+2) altogether.

If x is an introduce node, let Ev be the set of edges incident to v in F . Let Fv = F − v
be the forest without the vertex v; the removal of v may have divided a tree component of
F into several components. We consider all possible partitions Pv over the elements of X1,
such that every class of P which does not contain v is a class in Pv, too; and the class Cs

10

which contains v is divided into q classes where q is the number of components created by the
removal of v and such that every remaining component is in a different class. The i-values
associated with those q classes must sum up to is − 1. Then

f(x, F,P, I) = min
Pv,Iv

f(x1, Fv ,Pv, Iv) + w(Ev).

This step needs at most Bk · O(pk+1) time.
If x is a forget node, let Fv be obtained through the addition of v to F such that all

components of Fv which are adjacent to v in F belong to the same class of P. Assume further
that Pv has the same classes as P except that we add v to the class which contains the vertices
it is connected to in Fv ; if there is none, then we add the class {v} to P as a singleton. Now
Iv is either I if v is not alone in its class in Pv, or I ∪ {p}. Then

f(x, F,P, I) = min
Fv

f(x1, Fv ,Pv , Iv).

This needs at most Bk · O(pk+1) time.

To conclude the proof of Theorem 3, we traverse TG in postorder, and compute f(x, F,P, I)
for all possible choices of node x, spanning forest F of G[X], partition P of X, and se-
quence I satisfying the conditions given at the beginning of the proof. Then the solution
of Min WCF(p) on G is equal to the smallest value of f occurring at the root of TG for a
sequence I = (p, . . . , p) of any length.

The overall upper bound is obtained by the facts that for any k, the number of choices
for P is bounded above by Bk+1, the number of vertex-labeled trees of order t is tt−2 (this
puts a bound on the choices for F), and the number of sequences I at x is at most pk+1. The
most time-consuming step is to compute f at a join node; it can be organized by taking all
combinations of the values stored at x1 and x2. 2

Remark 6. The same method can be applied to solve the more general problem where, instead
of a uniform condition p for the constrained forest, the input graph G = (V,E) on vertex set
V = {v1, . . . , vn} is given together with a vector (p1, . . . , pn) of natural numbers pi ≤ p, and
it is required that each vi be contained in a tree component which has at least pi vertices in
the spanning forest. The steps of the algorithm above can be adjusted for this variant.

4.2 Ptas for planar graphs

In the following we propose ptas on the class of planar graphs, using the polynomial time
algorithm for graphs of bounded treewidth.

Theorem 7. For p = O
(

log n
log log n

)

, Min WCF(p) on planar graphs admits a ptas.

Proof. Given a planar embedding of an input graph, we consider the set of the vertices which
are on the exterior face, they will be called level 1 vertices. By induction we define level k
as the vertices which are on the exterior face when we have removed the vertices of levels
smaller than k [1]. A planar embedding is k-level if it has no nodes of level greater than k.
If a planar graph is k-level, it has a k-outerplanar embedding.

If we want to achieve an approximation within 1 + ǫ, let us consider k =
⌈

4(p−1)
ǫ

⌉

. Let

Xt be the set of vertices of level t and let Hi, 0 ≤ i ≤ k − 1, be the graph obtained from

11

G by deleting all edges between the vertices Xt and Xt+1 for all t such that t ≡ i (mod k).
The set of vertices

⋃

t+1≤j≤t+k Xj, for t ≡ i (mod k) is therefore a component in Hi since we
have deleted all edges from this set of vertices to the other vertices of the graph. Hence, the
subgraph containing exactly

⋃

t+1≤j≤t+k Xj is k-outerplanar, and so is Hi, too.
Since Hi is k-outerplanar, it has treewidth at most 3k−1 [2]. We construct graph H ′

i from
Hi by attaching p− 1 pendant edges to each vertex on the boundary (that means vertices in
Xt+1,Xt+k with t ≡ i (mod k)), and put weights 0 on these edges. On applying Theorem 3,
we can efficiently determine an optimal forest Si on H ′

i which is a solution on Hi such that
each vertex is either in a tree that contains a boundary vertex or in a tree of size at least p.
We complete this solution obtained on Hi into a feasible solution Fi on G by choosing the
useful edges of smallest cost greedily within the edges of G until every tree is of order at least
p.

We are going to prove that the best forest among F0, . . . , Fk−1 is an (1+ ǫ)-approximation
of the optimal value on G. We will use two lemmas and some notation for the proof. For
any subset of edges that forms a tree T of G, let wmax(T) denote the maximum weight of the
edges of T :

wmax(T) = max
e∈E(T)

w(e).

Let g : V → R be defined as

g(v) = min
T tree, |V (T)|=p, v∈V (T)

wmax(T).

Lemma 8. Let F be a spanning forest of G, and V ′ = {v1, . . . , vr} a set of vertices such
that any tree T of F which is not of order at least p contains a vertex vi ∈ V ′. Then we
can construct a forest of G in which every tree component has order at least p and the total
weight is at most w(F) +

∑

v∈V ′ g(v).

Proof. For short, let us call a tree component small if it has fewer than p vertices, and call
it large otherwise. By induction we suppose that the assertion is true when we have at most
r small trees in the forest (the case r = 0 is trivial). Let F be a forest with r + 1 small
components, such that some vertices v1, . . . , vr+1 belong to distinct small trees; and let Tr+1

be the small tree in F containing vr+1. Let Ar+1 be the tree which realizes the optimum of
g(vr+1). Since Tr+1 is small and Ar+1 is large, and vr+1 belongs to both trees, there exists an
edge of Ar+1 which has exactly one endpoint in Tr+1. We add this edge to forest F in order
to obtain F ′. Forest F ′ is of weight at most w(F) + g(vr+1) since the added edge belongs
to Ar+1. Thus, in F ′, tree Tr+1 is linked to another tree which implies that the number of
small trees has decreased at least by one (either by joining two small trees to become just
one component of any size, or by joining Tr+1 to a large component). Moreover v1, . . . , vr are
sufficient to cover the remaining small trees. Therefore we can construct a covering forest in
which each tree is of order at least p, and which has weight at most

w(F ′) +
∑

v∈V ′\{vr+1}

g(v) ≤ w(F) + g(vr+1) +
∑

v∈V ′\{vr+1}

g(v)

= w(F) +
∑

v∈V ′

g(v)

12

Lemma 9.
∑

v∈V g(v) ≤ 2(p − 1) opt(G).

Proof. Suppose, for simplicity, that all weights are distinct. (This can be achieved by a slight
modification of the weights, by adding ε, 2ε, 3ε, . . . to them with a very small ε such that
the increase of sum on each tree of order p is smaller than the smallest positive edge-weight
difference.)

Let F ∗ be an optimal solution on G. For v ∈ V , let T ∗(v) ⊂ F ∗ be a subtree of order
exactly p which contains v and minimizes the largest weight of its edges. Let e∗(v) be the
edge of maximum weight in T ∗(v). Remark that w(e∗(v)) ≥ g(v). For any edge e ∈ F ∗, let

T (e) =
⋃

e∗(v)=e

T ∗(v).

By definition, T (e) is a tree since it is included in F ∗. Moreover, wmax(T (e)) = w(e) if T (e)
is not empty. If |V (T (e))| ≥ 2p−1 then, if we remove e from T (e), we obtain two trees and at
least one of them, say T ′, is large. Therefore T ′ is in F ∗ and wmax(T ′) < wmax(T (e)) which
is a contradiction with e∗(v) = e for any vertex in T ′. Thus |(e∗)−1(e)| ≤ 2(p − 1).

Consequently,
∑

v∈V

g(v) ≤
∑

v∈V

w(e∗(v))

=
∑

e∈F ∗

|(e∗)−1(e)|w(e)

≤ 2(p − 1)
∑

e∈F ∗

w(e)

= 2(p − 1)opt(G)

Now we are in a position to complete the proof the theorem. Let Vi =
⋃

t≡i (mod k)(Xt+1 ∪
Xt+k). By Lemma 8, starting from Si we can construct a forest Fi satisfying the property
that every tree component is as large as required, moreover

w(Si) +
∑

v∈Vi

g(v) ≥ w(Fi).

Since Si is an optimal solution of a relaxed problem, we have w(Si) ≤ opt(G) and so

opt(G) +
∑

v∈Vi

g(v) ≥ w(Fi).

Moreover, using Lemma 9 we obtain the following inequality:
∑

1≤i≤k

g(Vi) = 2
∑

v∈V

g(v) ≤ 4(p − 1) opt(G).

Hence, there exists an i0 such that
∑

v∈Vi0
g(v) ≤ 4(p−1)

k opt(G), which implies

min
1≤i≤k

w(Fi) ≤ w(Fi0) ≤

(

1 +
4(p − 1)

k

)

opt(G) ≤ (1 + ǫ) opt(G).

The overall running time of the algorithm is k times what we need for graphs of treewidth

at most k, that is O(n(4p
ε)dp/ε), where d is a constant. Hence, since p = O

(

log n
log log n

)

we have

a ptas. 2

13

4.3 Speeding up the ptas for planar graphs

Planar graphs of bounded treewidth allow to organize dynamic programming more efficiently
than the method described in Section 4.1. In the following result we give such a speed-up in

the running time, although it does not improve the O
(

log n
log log n

)

bound for p from Theorem 7.

Theorem 10. On planar graphs, for any ǫ > 0, there exists an algorithm that returns a
(1 + ǫ)-approximation in O(1

εnp4(16p3)4p/ε) time.

Proof. It is known [16] that for any planar graph G with treewidth at most k there exists a
branch decomposition of width at most k. A branch decomposition of G is a couple (T, µ)
such that T is a tree with all internal nodes of degree 3 and µ is a bijection from the edges of
G to the leaves of T . For any edge e of T , the removal of e creates two trees T1(e) and T2(e).
Let (E1(e), E2(e)) be the partition of the edge set of G naturally defined by µ in the way that
e′ ∈ Ei(e) if and only if µ(e′) is a leaf of Ti(e), i ∈ {1, 2}. Denote by mid(e) the set of vertices
of G which are incident with an edge from E1(e) and also from E2(e). The maximum size of
mid(e) over all e ∈ E(T) is called the width of the branch decomposition.

Given a planar embedding of G, the result of Dorn et. al. [6] enables us to obtain a
sphere-cut decomposition of width at most k from this branch decomposition. A sphere-cut
decomposition is a branch decomposition (T, µ) such that for any edge e ∈ E(T) there exists
a closed Jordan curve (not intersecting itself), called noose, which passes through all vertices
of mid(e) and does not cross any edge of G, moreover in the planar embedding of G every
edge of E1(e) is in the interior of the noose and every edge of E2(e) is in the exterior of the
noose. We view the noose as a virtual cycle on mid(e), whose edges are embedded inside the
faces which contain any two consecutive members of mid(e) on their boundaries.

Figure 4: The straight lines and the dashed lines are the edges of E1(e) and E2(e), respectively;
the dotted closed curve indicates the virtual cycle of the noose

Consider any internal node in the tree of the sphere-cut decomposition. It has degree 3,
and the cycles associated to its incident edges will look as shown in Figure 5.

For any node x of T , denote C(x) = mid(e1) ∪ mid(e2) ∪ mid(e3) where e1, e2, e3 are the
three incident edges at x in T . The tree decomposition will be built on the same tree T what
we are using for the sphere-cut decomposition. The sets associated with the nodes of the tree
decomposition are defined as follows:

• to any internal node x of T we associate the set of vertices of C(x),

• to any leaf x of T we associate the endpoints of the edge µ−1(x).

14

Figure 5: The structure for a node of T , composed of three nooses: dashed and straight lines
form the virtual cycle of the father edge, dashed and double lines for one child edge, and
straight and double lines for the other child edge

If two vertices u, v of G are adjacent, they appear together in the set associated with the
leaf node µ(u, v). Moreover, the occurrences of any v ∈ V (G) in the sets associated with the
nodes of T form a subtree in T , because if v ∈ mid(e) then v appears in the sets at both
ends of e, thus the set of occurrences of v is precisely the subtree of T whose set of leaves is
{µ(v, v′) | (v, v′) ∈ E(G)}. Moreover, each C(x) is composed of three cycles of length at most
k each, and each virtual edge of those cycles occurs exactly twice in the union, as indicated
in Figure 5. Consequently, each C(x) contains fewer than 3k/2 vertices. Therefore a tree
decomposition of G is obtained with width less than 3k/2.

Consider now any virtual cycle C(x) associated with a noose. While determining the
table for the corresponding node of T in the dynamic programming computation, we need to
consider each partition on C(x) which extends the partial partitions having been determined
in the interior and exterior of C(x). Consider one from the exterior, for instance. An extended
partition is obtained by inserting a forest in the interior of C(x). If the inserted edges cross
inside C(x), however, then due to planarity it implies that the two connected partition classes
intersect in the exterior, hence could not be parts of separate extended classes. Consequently
we only need to consider spanning forests on C(x) with non-crossing edges. The number
of such forests on k nodes is expressed by the Catalan number Ck = 1

k+1

(2k
k

)

, which is
substantially smaller than the Bell number Bk.

All rows in the table for a node are determined by the combinations of the table(s) of its
child(ren). Hence combining the partial partitions of the interior and exterior, we need to
consider no more than (Ck+1)

2 cases for each pair of non-crossing subforests. Therefore the
minimum constrained forest problem on a planar graph with treewidth less than k can be
solved in O(42k × p3k+3) time. This improvement speeds up our previous algorithm to obtain
complexity O(1

εnp4(16p3)4p/ε).

5 Conclusion

In this paper we considered a natural generalization, Min WCF(p), of the fundamental
problem of minimum-weight edge cover in graphs. The task is to find, for an edge-weighted
input graph, a spanning forest in which every tree component has at least p vertices and the
sum of weights is as small as possible.

On the negative side, up to now Min CF(3) and Min WCF(p) for p ≥ 4 were proved
NP -hard. We extended this, by proving that even the unweighted Min CF(p) is APX -hard
for all p ≥ 3. This result remains valid for restricted classes of graphs (e.g., bipartite graphs
of maximum degree 3).

15

We also considered the positive side to some extent, by designing an exact algorithm for
graph classes where treewidth may slowly tend to infinity, and efficient approximations for
planar graphs where p may slowly grow with the number of vertices. The latter results are
of interest since Min CF(p) is NP -hard also on planar instances with p = 3 and assuming
maximum degree 3.

Perhaps the most challenging problem that remains open is to design a (2−c)-approxima-
tion for Min WCF(p) for some constant c > 0 and p ≥ 3. For the unweighted case, however,

it is easy to get a
(

1 + 1
p−1

)

-approximation in linear time.

References

[1] B. S. Baker. Approximation algorithms for NP -complete problems on planar graphs.
Journal of the Association for Computing Machinery , 41(1):153–180, 1994.

[2] H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theoretical
Computer Science, 209:1–45, 1998.

[3] M. Chlebik and J. Clebikova. Complexity of approximating bounded variants of opti-
mizationproblems. Theoretical Computer Science, 354:320–338, 2006.

[4] B. Courcelle. The monadic second-order logic of graphs. III. Tree-decompositions, minors
and complexity issues. RAIRO Informatique Théorique Appliquée, 26:257–286, 1992.

[5] M. E. Dyer and A. M. Frieze. Planar 3DM is NP -complete. Journal of Algorithms,
7:174–184, 1986.

[6] F. Dorn, E. Penninkx, H. L. Bodlaender, and F. Fomin. Efficient Exact Algorithms on
Planar Graphs: Exploiting Sphere Cut Branch Decompositions. Proceedings of the 13th
Annual European Symposium (ESA 2005), LNCS 3669, 95–106.

[7] J. Edmonds and E. L. Johnson. Matching, Euler tours and the Chinese postman. Math-
ematical Programming , 5:88–124, 1973.

[8] T. Gallai. Über extreme Punkt- und Kantenmengen. Annales Universitatis Scientiarum
Budapestinensis de Rolando Eötvös Nominatae, Sectio Mathematica, 2:133–138, 1959.

[9] M. X. Goemans and D. P. Williamson. A general approximation technique for constrained
forest problems. SIAM Journal of Computing , 24:296–317, 1995.

[10] C. Imielinska, B. Kalantari and L. Khachiyan. A greedy heristic for a minmum-weight
forest problem. Operations Research Letters, 14:65–71, 1993.

[11] T. Kloks. Treewidth. computations and approximations. Lecture Notes in Computer
Science, 842, 1994.

[12] M. Laszlo and S. Mukherjee. Another greedy heuristic for the constrained forest problem.
Operations Research Letters, 33:629–633, 2005.

[13] M. Laszlo and S. Mukherjee. A class of heuristics for the constrained forest problem.
Discrete Applied Mathematics, 154:6–14, 2006.

16

[14] J. Monnot and S. Toulouse. The path partition problem and related problems in bipartite
graphs. Operations Research Letters, 35:677–684, 2007.

[15] C. Papadimitriou and M. Yannakakis. Optimization, approximation and complexity
classes. Journal of Computer and System Science, 43:425–440, 1991.

[16] N. Robertson and P. Seymour. Graph minors X. Obstructions to treedecomposition.
Journal of Combinatorial Theory Series B, 52:153–190, 1991.

[17] A. Schrijver. Combinatorial Optimization. Springer, 2003.

[18] Zs. Tuza. Extensions of Gallai’s graph covering theorems for uniform hypergraphs. Jour-
nal of Combinatorial Theory Series B , 52:92–96, 1991.

17

