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tWe mainly study Max TSP with two obje
tive fun
tions. We propose an algorithmwhi
h returns a single Hamiltonian 
y
le with performan
e guarantee on both obje
tives.The algorithm is analysed in three 
ases. When both (resp. at least one) obje
tivefun
tion(s) ful�ll(s) the triangle inequality, the approximation ratio is 5

12
− ε ≈ 0.41(resp. 3

8
− ε). When the triangle inequality is not assumed on any obje
tive fun
tion, thealgorithm is 1+2

√

2

14
− ε ≈ 0.27-approximate.1 Introdu
tionThe traveling salesman problem (TSP) is one of the most studied problems in 
ombinatorialoptimization. Given an undire
ted 
omplete graph with weights on the edges, the problem
onsists of �nding a Hamiltonian 
y
le (also 
alled tour) of maximum or minimum total weight,de�ned as the sum of its edges' weight. In this paper we mainly study the approximation ofthe biobje
tive maximization version, Biobje
tive Max TSP. In this 
ase every edge has twoweights and the total weight of a tour is a 
ouple de�ned as the 
omponentwise sum of itsedges' weights. We are interested in the existen
e and the 
omputation in polynomial timeof a single tour with simultaneous performan
e guarantees on the two obje
tives. Our workfalls into a re
ent stream of resear
h on the approximability of multiobje
tive optimizationproblems [21, 20, 18, 10, 5, 11, 3, 1, 6℄ where multiobje
tive TSP takes a prominent pla
e[2, 4, 16, 7, 13, 14℄.In many real optimization problems not only one obje
tive fun
tion is 
onsidered butseveral ones (see [9℄ about multiobje
tive 
ombinatorial optimization). This is also the 
asefor TSP where we might want to minimize the travel time, the 
ost or to maximize thepro�t, the number of viewpoints along the way et
. This gives rise to Multiobje
tive TSP.Unfortunately it is unlikely that optimality is met simultaneously by a single feasible solutionon all obje
tives. However there always exists a set of e�
ient (also 
alled Pareto optimal)
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solutions for whi
h any improvement on an obje
tive indu
es a deterioration of (at least)another one.Generating the whole set of e�
ient solutions is a major 
hallenge in multiobje
tive 
om-binatorial optimization. However, even for moderately-sized problems, it is usually 
ompu-tationally prohibitive to identify the e�
ient set for two major reasons. First, the numberof e�
ient solutions 
an be very large. Se
ond, the asso
iated de
ision version is often NP-
omplete, even if the underlying single obje
tive problem is polynomial time solvable. Tohandle these two di�
ulties, resear
hers have been interested in developing approximationalgorithms with a priori provable performan
e guarantees.Given a positive real ρ ≤ 1, and 
onsidering that all obje
tives have to be maximized, a
ρ-approximation of the set of e�
ient solutions is a set of solutions that in
ludes, for ea
he�
ient solution, a solution that approximates it within a fa
tor ρ on all obje
tives. The
ρ-approximation typi
ally 
ontains several in
omparable solutions and it is assumed that onesolution is sele
ted with the help of a, yet unkown, a posteriori de
ision pro
ess.One of the most important results 
on
erning the approximation of multiobje
tive prob-lems was given by Papadimitriou and Yannakakis [18℄: under 
ertain general assumptions,multiobje
tive optimization problems always have at least one (1 − ε)-approximation of sizepolynomial in the size of the instan
e and 1/ε, for any given a

ura
y ε > 0. This resultmakes the 
omputation of approximate e�
ient sets of multiobje
tive problems a

essible topolynomial time algorithms.Nevertheless the e�
ient set is not the unique obje
t that one 
an approximate. A popularapproa
h in multiobje
tive optimization 
onsists in optimizing only one obje
tive while theothers are turned into budget 
onstraints [21, 20, 11, 6℄. Budget 
onstraints 
ome from an apriori de
ision pro
ess whi
h restri
ts the set of desired solutions. It is noteworthy that thee�
ient set approa
h and the budget approa
h are essentially the same [18℄.In another popular approa
h, no de
ision pro
ess is sought. The goal is to 
ompute a singlesolution whi
h approximates a ve
tor 
omposed of the optimal values on every obje
tive takenseparately [22, 19, 3, 1℄. Contrasting with the previous approa
hes, this framework aims atapproximating an ideal point whi
h is the image of a not ne
essarily feasible solution. Hen
eno ρ-approximation for every ρ is guaranteed to exist. Note that the ideal point approa
hand the e�
ient set approa
h restri
ted to sets of size 1 
oin
ide. The former is a parti
ular
ase of the latter. Sin
e generating several solutions allows better approximations than whata single solution 
an a
hieve, approximation ratios under the respe
tive approa
hes are notdire
tly 
omparable.Previous results for the multiobje
tive TSP are known; most of them follow the e�
ientset approa
h, approximating the Pareto set with two or more solutions, but some of themuse the ideal point approa
h. In this arti
le we ex
lusively follow the ideal point approa
hand provide deterministi
 approximation algorithms whose performan
e guarantees improveon previous results.Previous results. Multiobje
tive TSP is well studied from the approximation point of view.Manthey and Ram [16℄ follow the e�
ient set approa
h for several variants of multiobje
tiveMin TSP. In parti
ular they generalize the well known tree doubling algorithm to provide a
(2 + ǫ)-approximation of the e�
ient set. The other results of [16℄ deal with multiobje
tiveMin TSP with the sharpened triangle inequality and multiobje
tive Min TSP with distan
e 1or 2. This latter problem is investigated in [2, 4℄ under the e�
ient set approa
h.More ren
ently Bläser et al. [7℄ study the multiobje
tive Max TSP with k obje
tive fun
-2



tions. Using the e�
ient set approa
h they devise randomized approximation algorithms withratios 1
k −ǫ and 1

k+1 −ǫ for the symmetri
 and asymmetri
 versions respe
tively. Subsequentlythese results were signi�
antly improved by Manthey [14℄ who provides randomized approxi-mation algorithms, using the e�
ient set approa
h, with ratios 2
3−ǫ and 1

2−ǫ for the symmetri
and asymmetri
 versions respe
tively. These algorithms use as a bla
k box the randomizedPTAS for min-weight mat
hing given by Papadimitriou and Yannakakis [18℄. Re
ently, Man-they [15℄ establishes deterministi
 approximation algorithms, using the e�
ient set approa
h,with ratios 1
2k − ǫ and 1

4k−2 − ǫ for the symmetri
 and asymmetri
 versions respe
tively that
an be improved for the biobje
tive 
ase to ratios 3
8 − ǫ and 1

4 − ǫ respe
tively.Manthey also investigates the approximation of Biobje
tive Max TSP under the ideal pointapproa
h [14, 15℄, i.e. approximate e�
ient sets of size one. If the single obje
tive Max TSPproblem is ρ-approximable then Biobje
tive Max TSP is ρ
3 -approximable with one solution [14℄.Taking the best polynomial time approximation algorithms known so far for the symmetri
Max TSP, he derives a 61

243 -approximate (resp. 7
24 -approximate) tour without (resp. with) thetriangle inequality. The ratios 
ome from a 61

81 -approximation and a 7/8-approximation givenin [8℄ and [12℄ respe
tively. As mentioned very re
ently in [15℄, using a new 7
9 -approximation[17℄, the �rst ratio be
omes 7

27 instead of 61
243 . Another positive 
onsequen
e of the generalte
hnique is that every biobje
tive instan
e admits a single 1

3 -approximate tour. From thenegative side, Manthey [14℄ gives a 5 node non metri
 instan
e in whi
h no single tour 
anbe (1/3 + ǫ)-approximate (ǫ > 0), thus meeting the previous bound. To our best knowledge,no su
h upper bound is known for metri
 instan
es so it is still possible that a single ρ-approximate tour exists in biobje
tive Max TSP for some ρ > 1/3. Finally one 
an observethat known inapproximability results on the single obje
tive Max TSP imply that the generalte
hnique is limited to provide biobje
tive (1/3−ǫ)-approximation in polynomial time (ǫ > 0).New results. In this paper, we establish a general algorithm whi
h 
omputes a maximumvalue mat
hing on ea
h obje
tive taken separately and 
ombines them into a single Hamil-tonian 
y
le having a performan
e guarantee on both obje
tives. The algorithm is analyzedin three 
ases. When both obje
tive fun
tions ful�ll the triangle inequality, we obtain a
5
12 − ǫ ≈ 0.41-approximate algorithm whi
h improves the aforementioned 7

24 − ǫ ≈ 0.291-approximation. In this 
ase, we also propose a 4-node instan
e without any single (1
2 + ǫ)-approximate solution and a family of instan
es without any single (3

4 +ǫ)-approximate solutionwhen the number of nodes tends to in�nity. If only one obje
tive fun
tion ful�lls the triangleinequality, we obtain a (3
8 −ǫ)-approximate algorithm. In the 
ase where no obje
tive fun
tionsatis�es the triangle inequality, a qui
k analysis gives a ratio 1/4 − ǫ but in a more a

urate
ase analysis, we 
an show that the algorithm is 1+2

√
2

14 − ǫ ≈ 0.27-approximate, improvingthe aforementioned 7
27 ≈ 0.259-approximation. An extension of Manthey's instan
e to anynumber of verti
es pre
ludes any (1

3 + ǫ)-approximate algorithm returning one solution.We 
on
lude our work by 
onsidering the 
ase of an unbounded number of obje
tives. Wedenote by n and k the number of verti
es and obje
tives respe
tively. If all obje
tive fun
tionssatisfy the triangle inequality, we show that every tour is 2
n -approximate, and this ratio is tightfor k su�
iently large.The following table gives a summary of mentioned results on the biobje
tive Max TSP(k = 2). Approximations a
hieved with several solutions follow the Pareto set approa
h whilethose limited to one solution follow the ideal point approa
h.
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Biobje
tive Max TSPrandomized algo. deterministi
 algo. this paper (deterministi
)general 2/3 − ǫ [14℄ 7/27 ≈ 0.259 1+2
√

2
14 − ǫ ≈ 0.27
ase several solutions one solution [14, 17℄ one solution

3/8 − ǫseveral solutions [15℄metri
 2/3 − ǫ [14℄ 7/24 ≈ 0.291 5/12 − ǫ ≈ 0.41
ase several solutions one solution [14, 12℄ one solutionOrganization of the arti
le. In Se
tion 2 we give de�nitions on the problems and 
on
eptsused throughout the arti
le. In Se
tion 3 we establish some non existen
e results whi
hgive upper bounds on possible approximation ratios under the ideal point approa
h. Se
tion 4presents a general algorithm for Biobje
tive Max TSP and its analysis in three 
ases dependingon the (non) metri
 nature of the obje
tive fun
tions. In Se
tion 5 we improve the analysisof the previous algorithm in the non metri
 
ase. In Se
tion 6 we 
onsider the 
ase of anunbounded number of obje
tive fun
tions. Future works are provided in a �nal se
tion.2 PreliminariesLet G = (V,E) be a 
omplete undire
ted graph with a nonnegative weight w(e) on everyedge e ∈ E and n = |V | verti
es. The weight of a set of edges E′ ⊆ E is the sum of theweights of the edges in E′ and is denoted by w(E′). An instan
e is metri
 if its weights satisfythe triangle inequality, namely w(x, z) ≤ w(x, y) + w(y, z) for all distin
t verti
es x, y, z ∈ V .Max TSP is to �nd a Hamiltonian 
y
le or tour (i.e. a 
y
le that visits every vertexof the graph exa
tly on
e) of maximum weight in a 
omplete graph. In the multiobje
tiveMaximum Traveling Salesman Problem every edge is endowed with k nonnegative values.For the biobje
tive 
ase (k = 2), ea
h edge e ∈ E has a nonnegative weight w(e) and anonnegative length ℓ(e). Similarly the length of a set of edges E′, denoted by ℓ(E′), is thesum of the lengths of its elements.Ea
h feasible tour T is represented in the obje
tive spa
e by its 
orresponding obje
tiveve
tor (w(T ), ℓ(T )). A tour T dominates a tour T ′ if and only if w(T ) ≥ w(T ′) and ℓ(T ) ≥
ℓ(T ′) with at least one stri
t inequality. A tour T is e�
ient if and only if no other tour T ′dominates T , and (w(T ), ℓ(T )) is said to be non-dominated. An e�
ient set 
ontains, for ea
hnon-dominated ve
tor, a 
orresponding e�
ient solution (no need to keep two tours havingthe same obje
tive ve
tor).Unfortunately 
omputing the e�
ient set of multiobje
tive Max TSP 
annot be done inpolynomial time, unless P = NP , so we are interested in its polynomial time 
omputableapproximations. For any 0 < ρ ≤ 1, a tour T ρ-approximates another tour T ∗ if and onlyif w(T ) ≥ ρw(T ∗) and ℓ(T ) ≥ ρℓ(T ∗). A set of feasible tours A is a ρ-approximation of thee�
ient set P if for every T ∗ ∈ P, there exists T ∈ A su
h that T ρ-approximates T ∗. If A isredu
ed to a single tour, we say that we follow the ideal point approa
h.De�ne optw (resp. optℓ) as maxT∈F w(T ) (resp. maxT∈F ℓ(T )) where F denotes the setof feasible tours. Under the ideal point approa
h, a tour T is a ρ-approximation if and only if
w(T ) ≥ ρ optw and ℓ(T ) ≥ ρ optℓ. 4
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Figure 1: (Left) There is no (0.5 + ǫ)-approximate solution in this instan
e where everyobje
tive fun
tion satis�es the triangle inequality. (Right) Instan
e with r = 5 where nonrepresented edges have value (1, 1).3 Non existen
e of a single ρ-approximate solutionIt is unlikely that every instan
e admits a single solution whi
h is nearly optimal for wand ℓ at the same time. Thus instan
es without any ρ-approximate solution imply that nodeterministi
 ρ-approximate algorithm (even exponential) exists.If the triangle inequality is satis�ed on both obje
tives, the example given in Figure 1(left) shows that there does not always exist a (1
2 + ǫ)-approximate solution, for all ǫ > 0.The three possible tours in this instan
e are indeed (a, b, c, d, a), (a, c, d, b, a), and (a, c, b, d, a)whose values are (2, 2), (2, 4), and (4, 2). However this instan
e only 
ontains 4 nodes so itdoes not prevent an algorithm to provide a (0.5 + ǫ)-approximate solution for 5 nodes andmore.However one 
an build an instan
e whi
h does not 
ontain any (3

4 +ǫ)-approximate solutionfor n su�
iently large. The instan
e 
ontains 2r nodes {v1, · · · , vr} ∪ {u1, · · · , ur}. Edges
(ui, vi) have value (2, 1) for i = 2, · · · r, see Figure 1 (right). Edges (ui, vi+1) have value (2, 1)for i = 1, · · · r − 1. Edges (ui, ui+1) and (vi, vi+1) have value (1, 2) for i = 1, · · · r − 1. Edges
(u1, v1) and (ur, v1) have value (1, 2) and (2, 1) respe
tively. Any other edge has value (1, 1).The 
oordinates being 1 or 2, the triangle inequality is satis�ed. The tour 
ontaining alledges of value (2, 1) (resp. (1, 2)) has value (4r − 1, 2r) (resp. (2r, 4r − 1)) so the optimalweight/length is 4r − 1. Any given tour uses α edges with value (2, 1), β edges with value
(1, 2) whereas α + β ≤ 2r. Its value is then (2α + β, 2β + α) ≤ (2r + α, 2r + β). Observe that
min{2r + α, 2r + β} = 2r + min{α, β} ≤ 3r. Hen
e any tour is at most 3r

4r−1 -approximate.If the obje
tive fun
tions do not ne
essarily ful�ll the triangle inequality, Manthey [14℄proved that for a K5 there does not exist a (1
3 + ǫ)-approximate algorithm, for all ǫ > 0. We
an easily generalize his result to Kn with n ≥ 5 in order to obtain an asymptoti
 result.For every n ≥ 5, 
onsider Kn where a �xed K4 is de
omposable into 2 Hamiltonian paths

Pw and Pℓ. For every edge e ∈ E(Kn), set w(e) = 1 and ℓ(e) = 0 if e ∈ Pw, w(e) = 0 and
ℓ(e) = 1 if e ∈ Pℓ and w(e) = 0 and ℓ(e) = 0 if e /∈ Pw ∪ Pℓ. We 
an 
he
k that thereare four non-dominated tours Ti, i = 1, . . . , 4 with w(T1) = w(Pw) = 3, ℓ(T1) = ℓ(Pw) = 0,
w(T2) = w(Pℓ) = 0, ℓ(T2) = ℓ(Pℓ) = 3, w(T3) = 2, ℓ(T3) = 1 and w(T4) = 1, ℓ(T4) = 2. In
on
lusion, a single solution never approximates the Pareto set of the biobje
tive Max TSPwith ratio better than 1/3 for Kn with n ≥ 5.
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4 A generi
 algorithm for Biobje
tive Max TSPIn this se
tion, we present an algorithm for the Biobje
tive Max TSP. This algorithm isbased on the 
ombination of the edges of a maximum weight mat
hing for the obje
tive wand a maximum weight mat
hing for the obje
tive ℓ. The algorithm is as follows :1. Build a maximum weight (resp. length) mat
hing of G and denote it by Mw (resp. Mℓ).The set of edges Mw ∪Mℓ is made of p 
onne
ted 
omponents C1, . . . , Cp. Ea
h Ci is a
y
le of even size, or a path of length at least one. Note that there is at most one pathof length at least two in Mw ∪ Mℓ (be
ause the graph is 
omplete and we 
an assumethat Mw are Mℓ are of maximum size). Likewise, ea
h path of length one is in Mw ∩Mℓ.2. For ea
h 
omponent Ci whi
h is a 
y
le, remove the edge in Ci ∩ Mw whi
h has aminimum weight.We thus obtain a set of paths, whi
h is 
alled a partial tour.3. Add edges in order to 
onne
t these paths and obtain an Hamiltonian 
y
le of Kn (edgesare added arbitrarily unless otherwise noted. This step is detailled inside the proofs whenneeded).Let us now show that the Hamiltonian 
y
le obtained with this algorithm has a weightlarger than or equal to αw(Mw) and a length larger than or equal to αℓ(Mℓ), where 0 < α ≤ 1.We will determine the value of α in a general graph (
f. Lemma 1), in a graph where oneobje
tive fun
tion (w.l.o.g. w) ful�lls the triangle inequality (
f. Lemma 2), and in a graphwhere both obje
tive fun
tions ful�ll the triangle inequality (
f. Lemma 3).Lemma 1 Step 1 and 2 of the algorithm build in polynomial time a partial tour on Kn withweight at least 1
2w(Mw) and length at least 1

2ℓ(Mℓ).Proof : For ea
h 
omponent Ci whi
h is a 
y
le, step 2 of the algorithm removes the edge in
Ci∩Mw with minimum weight. Sin
e |Ci∩Mw| ≥ 2 the loss in weight is at most w(Ci∩Mw)/2.The resulting set of edges is a partial tour of weight at least 1

2

∑p
i=1 w(Ci ∩ Mw) = 1

2w(Mw)and length ∑p
i=1 ℓ(Ci ∩ Mℓ) = ℓ(Mℓ). 2In the following Lemmas we 
onsider two 
ases:

• Case 1: at the end of Step 1 of the algorithm, every 
omponent Ci is a 
y
le
• Case 2: at the end of Step 1 of the algorithm, at least one 
omponent Ci is a 
y
le andat least one 
omponent Ci′ is not a 
y
le.If no 
omponent is a 
y
le then we are already done sin
e the set of edges is then a partialtour of weight w(Mw) and length ℓ(Mℓ).Lemma 2 Assuming that w satis�es the triangle inequality, we 
an build in polynomial timea partial tour on Kn with weight at least 3

4w(Mw) and length at least 3
4ℓ(Mℓ).Proof : We distinguish two 
ases depending on the value of p that is the number of 
onne
ted
omponents of Mw ∪ Mℓ. If p = 1 then C1 is either a tour or a 
y
le on n − 1 nodes (in this
ase n is odd) with weight at least w(Mw) and length at least ℓ(Mℓ). If C1 is a 
y
le on n− 1nodes, let x be the isolated node. Then by repla
ing any edge (u, v) ∈ Mw by (u, x), (x, v),6



we get a tour C ′ of Kn satisfying w(C ′) ≥ w(C1) ≥ w(Mw) due to the triangle inequality and
ℓ(C ′) ≥ ℓ(Mℓ).Let us now 
onsider the 
ase where p ≥ 2. Assume that 
ase 1 o

urs, that is ea
h
omponent Ci is a 
y
le and thus it 
ontains at least four edges. Sin
e p ≥ 2 and |Mℓ∩Ci| ≥ 2for ea
h Ci we have |Mℓ| ≥ 4. It follows that if e ∈ Mℓ is an edge of minimum length amongthe edges of Mℓ, then ℓ(e) ≤ ℓ(Mℓ)/4. Thus, by deleting e, we are in 
ase 2 sin
e ∪p

i=1Ci \ {e}
ontain at least one 
y
le and at least one path with w(∪p
i=1Ci \ {e}) ≥ w(Mw) and

ℓ(∪p
i=1Ci \ {e}) ≥ 3ℓ(Mℓ)/4 (1)Now, assume that 
ase 2 o

urs. By renaming the 
onne
ted 
omponents, we 
an assumethat there is an integer r ∈ {1, . . . , p} su
h that Ci for i ≥ r is not a 
y
le whereas Ci for

1 ≤ i < r is a 
y
le. Let x and y be the two extremities of Cr. Pro
eed repeatedly as follows,for i = r − 1 down to 1. Remove an edge of minimum weight in Mw ∩ Ci and 
all it (vi
1, v

i
2).Add the edge with maximum weight between (vi

1, x) and (vi
2, x). If w(vi

1, x) ≥ w(vi
2, x) then

x := vi
2, otherwise x := vi

1. By this way the pro
edure maintains a path with extremities
x and y, while redu
ing the number of 
y
les. At the end of the pro
edure we get a partialtour that is the union between a path and ∪p

i=rCi. Using the triangle inequality we knowthat max{w(vi
1, x), w(vi

2, x)} ≥ (w(vi
1, x) + w(vi

2, x))/2 ≥ w(vi
1, v

i
2)/2, meaning that ea
h timean edge (vi

1, v
i
2) is removed (i ∈ {1, . . . , r − 1}), another one with at least half its weight isadded so, in total, the loss in weight is bounded by 1

2

∑r−1
i=1 w(vi

1, v
i
2). Sin
e |Mw ∩Ci| ≥ 2 wededu
e that w(vi

1, v
i
2) ≤ w(Mw ∩Ci)/2. Summing up the previous inequality, we dedu
e that

∑r−1
i=1 w(vi

1, v
i
2) ≤ w(∪r−1

i=1 Ci ∩ Mw)/2 ≤ w(Mw)/2. Thus the total loss in weight is boundedby w(Mw)/4.In 
on
lusion the partial tour has weight at least 3w(Mw)/4 and length at least 3ℓ(Mℓ)/4by inequality (1). 2Lemma 3 Assuming that w and ℓ satisfy the triangle inequality, we 
an build in polynomialtime a partial tour on Kn with weight at least 5
6w(Mw) and length at least (5

6 − ε(n))ℓ(Mℓ).Here ε(n) = 2/(n − 1) and then tends to 0 when n tends to ∞.Proof : As it is done in Lemma 2, we transform 
ase 1 into 
ase 2. Thus, suppose thatwe are in 
ase 1 that is ea
h 
omponent Ci is a 
y
le and w.l.o.g. that the edge of Mℓ withminimum length is e. Remove this edge e to 
reate a path with endpoints denoted by x and
y. When n is even (resp. odd) this deletion indu
es a loss of at most 2ℓ(Mℓ)/n = ε(n)ℓ(Mℓ)(resp. 2ℓ(Mℓ)/(n − 1) = ε(n)ℓ(Mℓ)). Note that ε(n) tends to 0 when n tends to ∞.Suppose now that we are in the 
ase 2. As it is done in Lemma 2 we 
an assume that thereis an integer r ∈ {1, . . . , p} su
h that Ci for i ≥ r is not a 
y
le whereas Ci for 1 ≤ i < r is a
y
le. We are going to pat
h the 
y
les to Cr, one by one. We explain how to pat
h C1, andthe pro
edure is repeated for the 
y
les C2, · · · , Cr−1. Let x and y be the two extremities of
Cr. If |C1 ∩ Mw| ≥ 3 then delete an edge of minimum weight and 
all it (v1

1 , v
1
2). We get that

w(v1
1 , v1

2) ≤ 1
3w(C1 ∩ Mw). Add the edge with maximum weight between (v1

1 , x) and (v1
2 , x).By the triangle inequality, max{w(v1

1 , x), w(v1
2 , x)} ≥ w(v1

1 , v1
2)/2. If w(v1

1 , x) ≥ w(v1
2 , x) then

x := v1
2 , otherwise x := v1

1 . Disregarding the weight of the edges in C1 ∩Mℓ, the modi�
ation
auses a loss in weight of at most w(v1
1 , v1

2) − w(v1
1 , v1

2)/2 = w(v1
1 , v

1
2)/2 ≤ 1

6w(C1 ∩ Mw).Sin
e no edge from Mℓ was removed, and disregarding the length of the edges in C1∩Mw, the7



modi�
ation does not 
ause any loss in length. Hen
e the pat
hing guarantees that the newpath P satis�es w(P ) ≥ w(Cr) + 5w(C1 ∩ Mw)/6 and ℓ(P ) ≥ ℓ(Cr) + ℓ(C1 ∩ Mℓ).Now suppose that C1 is a 
y
le on 4 nodes and 
ontains four edges (a, b), (b, c), (c, d),
(d, a) su
h that C1 ∩ Mw = {(a, b), (c, d)} and C1 ∩ Mℓ = {(b, c), (a, d)}. Using the triangleinequality we get that

w(a, c) + w(b, d) + w(C1 ∩ Mℓ) ≥ w(C1 ∩ Mw) (2)
ℓ(a, c) + ℓ(b, d) + ℓ(C1 ∩ Mw) ≥ ℓ(C1 ∩ Mℓ) (3)

• Suppose that ℓ(C1 ∩ Mw) ≥ ℓ(C1 ∩ Mℓ)/8. W.l.o.g., assume ℓ(a, d) ≥ ℓ(b, c). Re-move (b, c) and add the edge with maximum length between (b, x) and (x, c). Sin
e
max{ℓ(b, x), ℓ(x, c)} ≥ ℓ(b, c)/2 by the triangle inequality, we get that the new path
P satis�es ℓ(P ) ≥ ℓ(Cr) + ℓ(C1 ∩ Mw) + ℓ(a, d) + ℓ(b, c)/2 ≥ ℓ(Cr) + ℓ(C1 ∩ Mℓ)/8 +
ℓ(C1 ∩ Mℓ)/2 + ℓ(a, d)/2 ≥ ℓ(Cr) + ℓ(C1 ∩ Mℓ)/8 + ℓ(C1 ∩ Mℓ)/2 + ℓ(C1 ∩ Mℓ)/4 =
ℓ(Cr) + 7ℓ(C1 ∩ Mℓ)/8.

• Suppose that w(C1 ∩ Mℓ) ≥ w(C1 ∩ Mw)/8. W.l.o.g., assume w(a, b) ≥ w(c, d). Re-move (c, d) and add the edge with maximum length between (c, x) and (x, d). Sin
e
max{w(c, x), w(x, d)} ≥ w(c, d)/2 by the triangle inequality, we get as in the previous
ase that w(P ) ≥ w(Cr) + w(C1 ∩Mℓ) + w(a, b) + w(c, d)/2 ≥ w(Cr) + 7w(C1 ∩Mw)/8.

• Now suppose that ℓ(C1 ∩ Mw) < ℓ(C1 ∩ Mℓ)/8 and w(C1 ∩ Mℓ) < w(C1 ∩ Mw)/8.Using Inequalities (2) and (3) we get that w(a, c) + w(b, d) > 7w(C1 ∩ Mw)/8 and
ℓ(a, c) + ℓ(b, d) > 7ℓ(C1 ∩ Mℓ)/8. In this 
ase the new path P obtained by addingany two edges to (a, c), (b, d) and Cr satis�es w(P ) ≥ w(Cr) + 7w(C1 ∩ Mw)/8 and
ℓ(P ) ≥ ℓ(Cr) + 7ℓ(C1 ∩ Mℓ)/8.In 
on
lusion, when C1 
ontains four nodes, we 
an always pat
h it to Cr so that the lossin weight (resp. length) is at most w(C1 ∩ Mw)/8 (resp. ℓ(C1 ∩ Mℓ)/8).We have seen that this loss is of (at most) 1/6 on both obje
tive fun
tions when C1 
ontainsat least six nodes. We dedu
e that after the pat
hing of all 
y
les Ci for i < r, the 
urrentsolution is a path P and its weight (resp. length) is at least w(Cr) + 5

6w
(
⋃r−1

i=1 Ci ∩ Mw

)(resp. ℓ(Cr) + 5
6ℓ

(
⋃r−1

i=1 Ci ∩ Mℓ

)). Adding ∪p
i=r+1Ci to P , we get a partial tour P ′. Using

w(Cr) ≥ w(Cr ∩ Mw) and ℓ(Cr) ≥ ℓ(Cr ∩ Mℓ) − ε(n)ℓ(Mℓ) we get that the solution P ′ hasweight (resp. length) at least 5
6w(Mw) (resp. (5

6 − ε(n))ℓ(Mℓ)). 2Theorem 1 We 
an build in polynomial time a single tour on Kn whi
h 
onstitutes a (ρ −
ξ(n))-approximate Pareto set for the biobje
tive Max TSP where ρ = 5/12 when w and ℓ satisfythe triangle inequality, ρ = 3/8 when only w satis�es the triangle inequality and ρ = 1/4 whenneither w nor ℓ satis�es the triangle inequality. Here ξ(n) = Θ(1/n) and then tends to 0 when
n tends to ∞.Proof : Consider �rst the 
ase when x and ℓ satisfy the triangle inequality. Lemma 3 statesthat we 
an build a partial tour with weight (resp. length) at least 5w(Mw)/6 (resp. (5

6 −
ε(n))ℓ(Mℓ)) where ε(n) = 2

n−1 . If the partial tour is not a tour then 
onne
t its 
omponents to
reate a tour. Using the fa
t that every edge weight (resp. length) is nonnegative, the weight(resp. length) 
annot de
rease. Denote by optw (resp. optℓ) the optimal weight (resp. length)of a tour. It is well known that w(Mw) ≥ (1
2 − ε′(n))optw and ℓ(Mℓ) ≥ (1

2 − ε′(n))optℓ where8



ε′(n) = 0 when n is even, otherwise ε′(n) = 1
2n . Let ξ(n) = ε(n)

2 + 5ε′(n)
6 − ε′(n)ε(n). We getthat the tour 
onstru
ted has weight at least 5

6w(Mw) ≥ 5
6(1

2 − ε′(n))optw > ( 5
12 − ξ(n))optw.The length is at least (5

6 − ε(n))ℓ(Mℓ) ≥ (5
6 − ε(n))(1

2 − ε′(n))optℓ = ( 5
12 − ξ(n))optℓ. UseLemmas 2 and 3 and similar arguments for the other 
ases. 25 An improved analysisIn this se
tion, we re�ne the analysis of our approximation algorithm when the triangleinequality is not assumed on any obje
tive fun
tion. We show that the tour returned by ouralgorithm is an asymptoti
 1+2

√
2

14 ≈ 0.273 approximation of the ideal point. Re
all that someinstan
es of the problem do not admit any (1
3 + ǫ)-approximate solution, for all ǫ > 0 [14℄.The intuition behind the improved analysis is the following. The ratio 1/4 of Theorem 1follows from two observations: the tour returned by the approximation algorithm is a 1/2-approximation of the maximum weight/length mat
hing, and this latter is an asymptoti


1/2-approximation of the maximum weight/length tour. Taken separately both observationsare tight but we exploit the fa
t that they 
annot o

ur simultaneously.Theorem 2 We 
an build in polynomial time a (1+2
√

2
14 − ξ(n))-approximate Pareto set 
on-taining a single tour on Kn for Biobje
tive Max TSP. Here ξ(n) = Θ(1/n) and then, tends to

0 when n tends to ∞.Proof : De�ne δ as 4
√

2−5
14 ≈ 0.0469. A
tually, δ is the positive root of equation −1 + 20x +

28x2 = 0. We 
an show that every instan
e Kn of the problem satis�es one of the followingstatements:
(i) a partial tour P ′ on Kn with weight at least (1

2 +δ)w(Mw) and, at the same time, lengthat least (1
2 + δ)ℓ(Mℓ) exists and 
an be 
omputed in polynomial time.

(ii) every Hamiltonian 
y
le has weight at most (3
2 + 7δ)w(Mw) and, at the same time, itslength is at most (3

2 + 7δ)ℓ(Mℓ).Re
all that w(Mw) ≥ (1
2 − ε′(n))optw, ℓ(Mℓ) ≥ (1

2 − ε′(n))optℓ where ε′(n) = 0 when nis even, otherwise ε′(n) = 1/2n. If Kn satis�es (i), then by hypothesis the partial tour P ′has weight (resp. length) at least (1/4 + δ/2 − ξ(n))optw (resp. (1/4 + δ/2 − ξ(n))optℓ)with ξ(n) = ε′(n)(1/2 + δ). If Kn satis�es (ii), then starting from Mw ∪ Mℓ as it is donein previous se
tion and using Lemma 1, a partial solution P with weight (resp. length) atleast w(Mw)/2 (resp. ℓ(Mℓ)/2) 
an be built in polynomial time. Now, sin
e by hypothesis
optw ≤ (3

2 + 7δ)w(Mw), and optℓ ≤ (3
2 + 7δ)ℓ(Mℓ), the partial solution P has a weight (resp.length) at least 1

2
optw

( 3

2
+7δ)

(resp. 1
2

optℓ
( 3

2
+7δ)

).Finally remark that on the one hand, a tour 
an be obtained by 
onne
ting the 
ompo-nents of a partial tour without de
reasing the weight/length sin
e every edge weight/lengthis nonnegative and on the other hand, 1
2

1
( 3

2
+7δ)

= 1/4 + δ/2 = 1+2
√

2
14 be
ause δ is the positiveroot of equation −1 + 20x + 28x2 = 0.We assume n ≥ 5, sin
e otherwise the partial solution P given in Lemma 1 has weight(resp. length) at least optw/2 (resp. optℓ)/2).We 
onsider three distin
t 
ases whi
h 
an be distinguished in polynomial time.9



PSfrag repla
ements
a b

cd

Edges of MℓEdges of MwA third mat
hingFigure 2: The 
y
le C1. Bold edges belong to Mℓ and dashed edges belong to Mw; theremaining edges form a third mat
hing Mr = {(a, c), (b, d)}.Case 1. Let us suppose that there exists a 
y
le, say C1 w.l.o.g., su
h that the edge withminimum weight in C1 ∩ Mw has weight at least (1
2 − δ)w(Mw) and, at the same time, theedge with minimum length in C1 ∩Mℓ has length at least (1

2 − δ)ℓ(Mℓ). Sin
e 1/2 − δ > 1/3,
C1 must be a 
y
le on four nodes, i.e. C1 ∩Mw = {(a, b), (c, d)} and C1 ∩Mℓ = {(b, c), (a, d)}(see Figure 2 for an illustration).We dedu
e that max{w(a, b), w(c, d)} = w(Mw)−w(

⋃p
i=2 Ci∩Mw)−min{w(a, b), w(c, d)}and max{ℓ(a, d), ℓ(b, c)} = ℓ(Mℓ)−ℓ(

⋃p
i=2 Ci∩Mℓ)−min{ℓ(a, d), ℓ(b, c)}. Using min{w(a, b), w(c, d)} ≥

(1/2 − δ)w(Mw) and min{ℓ(b, c), ℓ(a, d)} ≥ (1/2 − δ)ℓ(Mℓ) in the previous equalities gives
max{w(a, b), w(c, d)} ≤ (1/2 + δ)w(Mw) − w(

p
⋃

i=2

Ci ∩ Mw) (4)
max{ℓ(b, c), ℓ(a, d)} ≤ (1/2 + δ)ℓ(Mℓ) − ℓ(

p
⋃

i=2

Ci ∩ Mℓ) (5)In addition we dedu
e that
w(

p
⋃

i=2

Ci ∩ Mw) ≤ 2δw(Mw) and ℓ(

p
⋃

i=2

Ci ∩ Mℓ) ≤ 2δℓ(Mℓ) (6)We 
ondu
t a sub
ase analysis depending on the weight or the length of the edges having atleast one endpoint in V (C1): 
ase (1.1.w) max{w(e) : e ∈ C1 ∩ Mℓ} > 2δw(Mw), 
ase (1.1.ℓ)
max{ℓ(e) : e ∈ C1 ∩ Mw} > 2δℓ(Mℓ), 
ase (1.2.w) max{w(a, c), w(b, d)} > (1

2 + δ)w(Mw),
ase (1.2.ℓ) max{ℓ(a, c), ℓ(b, d)} > (1
2 + δ)ℓ(Mℓ), 
ase (1.3.w) max{w(i, j) : i ∈ V (C1), j /∈

V (C1)} > 2δw(Mw), 
ase (1.3.ℓ) max{ℓ(i, j) : i ∈ V (C1), j /∈ V (C1)} > 2δℓ(Mℓ) and
ase (1.4) max{w(e) : e ∈ C1 ∩ Mℓ} ≤ 2δw(Mw), max{ℓ(e) : e ∈ C1 ∩ Mw} ≤ 2δℓ(Mℓ),
max{w(a, c), w(b, d)} ≤ (1

2 + δ)w(Mw), max{ℓ(a, c), ℓ(b, d)} ≤ (1
2 + δ)ℓ(Mℓ), max{w(i, j) : i ∈

V (C1), j /∈ V (C1)} ≤ 2δw(Mw) and max{ℓ(i, j) : i ∈ V (C1), j /∈ V (C1)} ≤ 2δℓ(Mℓ).We 
an prove that in 
ase (1.4) the instan
e Kn satis�es (ii) whereas in other 
ases theinstan
e Kn satis�es (i).
(1.1.w) If w(a, d) > 2δw(Mw) or w(b, c) > 2δw(Mw) then remove (c, d). We get that w(a, b) +

w(b, c) + w(a, d) > (1
2 + δ)w(Mw) and ℓ(a, b) + ℓ(b, c) + ℓ(a, d) ≥ (1 − 2δ)ℓ(Mℓ) ≥

(1/2 + δ)ℓ(Mℓ).
(1.1.ℓ) If ℓ(a, b) > 2δℓ(Mℓ) or ℓ(c, d) > 2δℓ(Mℓ) then remove (b, c). We get that ℓ(a, d)+ℓ(a, b)+

ℓ(c, d) > (1
2 +δ)ℓ(Mℓ) and w(a, d)+w(a, b)+w(c, d) ≥ (1−2δ)w(Mw) ≥ (1/2+δ)w(Mw).10



(1.2.w) If max{w(a, c), w(b, d)} > (1
2 + δ)w(Mw) then remove {(a, b), (c, d)} and add the edgewith maximum weight between (a, c) and (b, d), say (a, c) without loss of generality.We get that w(a, c) + w(b, c) + w(a, d) > (1

2 + δ)w(Mw) and ℓ(a, d) + ℓ(a, c) + ℓ(b, c) ≥
(1 − 2δ)ℓ(Mℓ) ≥ (1/2 + δ)ℓ(Mℓ).

(1.2.ℓ) If max{ℓ(a, c), ℓ(b, d)} > (1
2 + δ)ℓ(Mℓ) then remove {(a, d), (b, c)} and add the edge withmaximum length between (a, c) and (b, d), say (a, c) without loss of generality. We getthat w(a, c)+w(a, b)+w(c, d) > (1−2δ)w(Mw) > (1/2+δ)w(Mw) and ℓ(a, c)+ℓ(a, b)+

ℓ(c, d) ≥ (1
2 + δ)ℓ(Mℓ).

(1.3.w) Suppose there exists an edge (i, j) su
h that i ∈ {a, b, c, d}, j ∈ V \ {a, b, c, d} and
w(i, j) > 2δw(Mw). If i ∈ {a, b} (resp. i ∈ {c, d}) then only keep the edges {(i, j), (b, c), (c, d), (a, d)}(resp. {(i, j), (b, c), (a, b), (a, d)}) while any other edge is deleted. Suppose w.l.o.g. that
i ∈ {a, b}, the 
ase i ∈ {c, d} being treated similarly. Using w(c, d) ≥ (1

2 − δ)w(Mw) and
ℓ(C1 ∩ Mℓ) ≥ 2(1/2 − δ)ℓ(Mℓ) by hypothesis, we get that w(i, j) + w(b, c) + w(c, d) +
w(a, d) ≥ w(i, j)+w(c, d) > (1/2+δ)w(Mw). At the same time ℓ(i, j)+ℓ(b, c)+ℓ(c, d)+
ℓ(a, d) ≥ ℓ(a, d) + ℓ(b, c) ≥ 2(1/2 − δ)ℓ(Mℓ) ≥ (1/2 + δ)ℓ(Mℓ).

(1.3.ℓ) Suppose there exists an edge (i, j) su
h that i ∈ {a, b, c, d}, j ∈ V \{a, b, c, d} and ℓ(i, j) >
2δℓ(Mℓ). If i ∈ {a, d} (resp. i ∈ {b, c}) then only keep the edges {(i, j), (a, b), (b, c), (c, d)}(resp. {(i, j), (a, b), (c, d), (a, d)}) while any other edge is deleted. Suppose w.l.o.g. that
i ∈ {a, d}, the 
ase i ∈ {b, c} being treated similarly. Using ℓ(b, c) ≥ (1

2 − δ)ℓ(Mℓ) and
w(C1 ∩ Mw) ≥ 2(1/2 − δ)w(Mw) by hypothesis, we get that ℓ(i, j) + ℓ(a, b) + ℓ(b, c) +
ℓ(c, d) ≥ ℓ(i, j) + ℓ(b, c) > (1/2 + δ)ℓ(Mℓ). At the same time w(i, j) + w(a, b) + w(b, c) +
w(c, d) ≥ w(a, b) + w(c, d) ≥ 2(1/2 − δ)w(Mw) ≥ (1/2 + δ)w(Mw).

(1.4) Suppose that w(a, d) ≤ 2δw(Mw), w(b, c) ≤ 2δw(Mw), ℓ(a, b) ≤ 2δℓ(Mℓ), ℓ(c, d) ≤
2δℓ(Mℓ), max{w(a, c), w(b, d)} ≤ (1

2 +δ)w(Mw) and max{ℓ(a, c), ℓ(b, d)} ≤ (1
2 +δ)ℓ(Mℓ).In addition suppose that for all (i, j) su
h that i ∈ {a, b, c, d} and j ∈ V \ {a, b, c, d},we have w(i, j) ≤ 2δw(Mw) and ℓ(i, j) ≤ 2δℓ(Mℓ). We 
laim that the weight of anytour is bounded above by (3

2 + 7δ)w(Mw) while its length is at most (3
2 + 7δ)ℓ(Mℓ).The edge set of the graph is partitioned into three sets E1 = {(i, j) : i, j ∈ {a, b, c, d}},

E2 = {(i, j) : i ∈ {a, b, c, d} and j /∈ {a, b, c, d}} and E3 = {(i, j) : i, j /∈ {a, b, c, d}}. Atour T is a set of edges partitioned in three sets Ti = T ∩ Ei for i = 1, 2, 3.First observe that T3 is a set of paths whi
h 
an be de
omposed into two mat
hings
M and M ′ (alternate edges in M and edges in M ′). If w(M) ≥ w(M ′) and w(M) >
w(

⋃p
i=2 Ci ∩Mw) then M ∪ {(a, b), (c, d)} is a mat
hing on the whole graph with largerweight than w(Mw), 
ontradi
tion. Using this argument and a similar one for the lengthwe get that

w(T3) ≤ 2w(

p
⋃

i=2

Ci ∩ Mw) and ℓ(T3) ≤ 2ℓ(

p
⋃

i=2

Ci ∩ Mℓ) (7)We get that w(C1 ∩ Mw) = w(Mw) − w(
⋃p

i=2 Ci ∩ Mw) and ℓ(C1 ∩ Mℓ) = ℓ(Mℓ) −
ℓ(

⋃p
i=2 Ci ∩ Mℓ). Thus, using inequality (7), we dedu
e that w(C1 ∩ Mw) + w(T3) ≤

w(Mw) + w(
⋃p

i=2 Ci ∩ Mw) and ℓ(C1 ∩ Mℓ) + ℓ(T3) ≤ ℓ(Mℓ) + ℓ(
⋃p

i=2 Ci ∩ Mℓ); usinginequality (6), we obtain 11



w(C1 ∩ Mw) + w(T3) ≤ (1 + 2δ)w(Mw) and ℓ(C1 ∩ Mℓ) + ℓ(T3) ≤ (1 + 2δ)ℓ(Mℓ) (8)Be
ause min{w(a, b), w(c, d)} ≥ (1
2 − δ)w(Mw) and min{ℓ(b, c), ℓ(a, d)} ≥ (1

2 − δ)ℓ(Mℓ),we also dedu
e from inequality (8) that:
max{w(a, b), w(c, d)} + w(T3) ≤ (

1

2
+ 3δ)w(Mw) (9)

max{ℓ(b, c), ℓ(a, d)} + ℓ(T3) ≤ (
1

2
+ 3δ)ℓ(Mℓ) (10)Sin
e Mr = {(a, c), (b, d)} is a mat
hing on V (C1) (see Figure 2), we get that w(Mr) ≤

w(C1 ∩ Mw) and ℓ(Mr) ≤ ℓ(C1 ∩ Mℓ). Thus, using inequality (8) we get that:
w(Mr) + w(T3) ≤ (1 + 2δ)w(Mw) and ℓ(Mr) + ℓ(T3) ≤ (1 + 2δ)ℓ(Mℓ) (11)We also get that w(Mr) ≤ w(C1 ∩ Mw) = w(Mw) − w(

⋃p
i=2 Ci ∩ Mw) and ℓ(Mr) ≤

ℓ(C1 ∩ Mℓ) = ℓ(Mℓ) − ℓ(
⋃p

i=2 Ci ∩ Mℓ). Thus, on the one hand, using inequalities (4)(resp., (5)) and (7), we dedu
e:
w(Mr) + max{w(a, b), w(c, d)} + w(T3) ≤ (

3

2
+ δ)w(Mw) (12)

ℓ(Mr) + max{ℓ(b, c), ℓ(a, d)} + ℓ(T3) ≤ (
3

2
+ δ)ℓ(Mℓ) (13)Inequalities (7) and (6) also give

w(T3) ≤ 4δw(Mw) and ℓ(T3) ≤ 4δℓ(Mℓ) (14)By hypothesis every edge in E2 has weight (resp. length) at most 2δw(Mw) (resp.
2δℓ(Mℓ)). It follows that

w(T2) ≤ 2|T2|δw(Mw) and ℓ(T2) ≤ 2|T2|δℓ(Mℓ) (15)Now we argue on T ∩ E1. Note that |T ∩ E1| ≤ 3 sin
e n ≥ 5. Then, if� T ∩ E1 = {(a, c), (b, d), (a, b)}. The tour must 
ontain 2 edges in E2. Thus, usinginequalities (12) and (15) with |T2| = 2, we get w(T ) = w(Mr) + w(a, b) + w(T3) +
w(T2) ≤

(

3
2 + δ + 4δ

)

w(Mw) ≤ (3
2 + 7δ)w(Mw) and using inequality (11) ℓ(T ) =

ℓ(Mr) + ℓ(T3) + ℓ(a, b) + ℓ(T2) ≤ (1 + 2δ + 2δ + 4δ) ℓ(Mℓ) = (1 + 8δ)ℓ(Mℓ) <
(3
2 + 7δ)ℓ(Mℓ).� T ∩ E1 = {(a, c), (a, b), (c, d)}. The tour must 
ontain 2 edges in E2. Thus, usinginequalities (8) and (15) with |T2| = 2, we get that w(T ) = w(a, c)+w(C1 ∩Mw)+

w(T3)+w(T2) ≤ (1/2+δ+1+2δ+4δ)w(Mw) = (3
2 +7δ)w(Mw) and using inequality(14) ℓ(T ) = ℓ(a, c) + ℓ(a, b) + ℓ(c, d) + ℓ(T2) + ℓ(T3) ≤ (1/2 + δ + 2δ + 2δ + 4δ +

4δ)ℓ(Mℓ) = (1/2 + 13δ)ℓ(Mℓ) < (3
2 + 7δ)ℓ(Mℓ).12



� T ∩ E1 = {(a, b), (b, c), (c, d)}. The tour must 
ontain 2 edges in E2. Thus, usinginequalities (8) and (15) with |T2| = 2, we get that w(T ) = w(C1 ∩Mw) + w(T3) +
w(b, c) + w(T2) ≤ (1 + 2δ + 2δ + 4δ)w(Mw) = (1 + 8δ)w(Mw) < (3

2 + 7δ)w(Mw).Using inequality (10) we get that ℓ(T ) = ℓ(a, b) + ℓ(c, d) + ℓ(b, c) + ℓ(T2) + ℓ(T3) ≤
(2δ + 2δ + 1/2 + 3δ + 4δ)ℓ(Mℓ) = (1/2 + 11δ) < (3

2 + 7δ)ℓ(Mℓ)� T ∩ E1 = {(a, c), (b, d)}. The tour must 
ontain 4 edges in E2. Thus, usinginequalities (11) and (15) with |T2| = 4, w(T ) = w(Mr)+w(T3)+w(T2) ≤ (1+2δ+
8δ)w(Mw) = (1+10δ)w(Mw) < (3

2 +7δ)w(Mw) and ℓ(T ) = ℓ(Mr)+ℓ(T3)+ℓ(T2) =
(1 + 10δ)ℓ(Mℓ) ≤ (3

2 + 7δ)ℓ(Mℓ).� T ∩ E1 = {(a, b), (a, c)}. The tour must 
ontain 4 edges in E2. Thus, usinginequalities (9) and (15) with |T2| = 4, we get that w(T ) = w(a, b) + w(T3) +
w(a, c)+w(T2) ≤ (1/2+3δ+1/2+δ+8δ)w(Mw) = (1+12δ)w(Mw) ≤ (3

2+7δ)w(Mw)and using inequality (14) ℓ(T ) = ℓ(a, b) + ℓ(a, c) + ℓ(T2) + ℓ(T3) ≤ (2δ + 1/2 + δ +
8δ + 4δ)ℓ(Mℓ) = (1/2 + 15δ)ℓ(Mℓ) ≤ (3

2 + 7δ)ℓ(Mℓ).� T ∩ E1 = {(a, b), (c, d)}. The tour must 
ontain 4 edges in E2. Thus, usinginequalities (8) and (15) with |T2| = 4, w(T ) = w(C1 ∩ Mw) + w(T3) + w(T2) ≤
(1+2δ +8δ)w(Mw) = (1+10δ)w(Mw) ≤ (3

2 +7δ)w(Mw) and using inequality (14)
ℓ(T ) = ℓ(a, b) + ℓ(c, d) + ℓ(T2) + ℓ(T3) ≤ (2δ + 2δ + 8δ + 4δ)ℓ(Mℓ) = 16δℓ(Mℓ) ≤
(3
2 + 7δ)ℓ(Mℓ).� T ∩ E1 = {(a, c)}. The tour must 
ontain 6 edges in E2. Thus, using inequalities(14) and (15) with |T2| = 6, w(T ) = w(a, c) + w(T2) + w(T3) ≤ (1/2 + δ + 12δ +

4δ)w(Mw) = (1/2 + 17δ)w(Mw) ≤ (3
2 + 7δ)w(Mw) and ℓ(T ) = ℓ(a, c) + ℓ(T2) +

ℓ(T3) ≤ (1/2 + δ + 12δ + 4δ)ℓ(Mℓ) = (1/2 + 17δ)ℓ(Mℓ) ≤ (3
2 + 7δ)ℓ(Mℓ).� T ∩E1 = {(a, b)}. The tour must 
ontain 6 edges in E2. Thus, using inequalities (9)and (15) with |T2| = 6, w(T ) = w(a, b)+w(T3)+w(T2) ≤ (1/2+3δ+12δ)w(Mw ) =

(1/2 + 15δ)w(Mw) ≤ (3
2 + 7δ)w(Mw) and using inequality (14) ℓ(T ) = ℓ(a, b) +

ℓ(T2) + ℓ(T3) ≤ (2δ + 12δ + 4δ)ℓ(Mℓ) = 18δℓ(Mℓ) ≤ (3
2 + 7δ)ℓ(Mℓ).� T ∩ E1 = ∅. To 
over a, b, c and d, the tour must 
ontain 8 edges in E2. Thus,using inequalities (14) and (15) with |T2| = 8, w(T ) = w(T2) + w(T3) ≤ (16δ +

4δ)w(Mw) = 20δw(Mw) ≤ (3
2 + 7δ)w(Mw) and ℓ(T ) = ℓ(T2) + ℓ(T3) ≤ (16δ +

4δ)ℓ(Mℓ) = 20δℓ(Mℓ) ≤ (3
2 + 7δ)ℓ(Mℓ).� Any other sub
ase is isomorphi
 to a previously analyzed sub
ase by �ipping wand ℓ.The 
on
lusion is that every tour T is su
h that w(T ) ≤ (3

2 + 7δ)w(Mw) and ℓ(T ) ≤
(3
2 + 7δ)ℓ(Mℓ).Case 2. Suppose that there exists a 
y
le, say C1 w.l.o.g., su
h that the edge with minimumweight in C1 ∩ Mw has weight at most (1

2 − δ)w(Mw) and, at the same time, the edge withminimum length in C1 ∩Mℓ has length at least (1
2 − δ)ℓ(Mℓ). We will prove that the instan
e

Kn satis�es (i). Again, sin
e 1/2 − δ > 1/3, C1 must be a 
y
le on four nodes. Again wesuppose that C1 ∩ Mw = {(a, b), (c, d)} and C1 ∩ Mℓ = {(b, c), (a, d)}.Remove the edge in C1 ∩Mw with minimum weight and for any other 
y
le Ci remove oneedge in Ci ∩ Mℓ arbitrarily. We get a partial tour. Sin
e w(Mw) − min{w(a, b), w(c, d)} ≥
(1
2 + δ)w(Mw) and ℓ(C1 ∩Mℓ) = ℓ(a, d) + ℓ(b, c) ≥ 2(1

2 − δ)ℓ(Mℓ) ≥ (1
2 + δ)ℓ(Mℓ), the partialtour has weight (resp. length) at least (1

2 + δ)w(Mw) (resp. (1
2 + δ)ℓ(Mℓ)).13



The 
ase where there exists a 
y
le C1 su
h that the edge with minimum weight in C1∩Mwhas weight at least (1
2 − δ)w(Mw) and, at the same time, the edge with minimum length in

C1 ∩Mℓ has length at most (1
2 − δ)ℓ(Mℓ) is dealt with similar arguments by �ipping w and ℓ.Case 3. Denote by ew

i (resp. eℓ
i) the edge in Ci ∩ Mw (resp. Ci ∩ Mℓ) with minimumweight (resp. length). We deal with the remaining 
ase where w(ew

i ) ≤ (1
2 − δ)w(Mw) and

ℓ(eℓ
i) ≤ (1

2 − δ)ℓ(Mℓ) for all i ∈ {1, . . . , p}. We will prove that the instan
e Kn satis�es (i).Sin
e every 
y
le 
ontains at least two edges of Mw and also two edges of Mℓ we dedu
e that
p

∑

i=1

w(ew
i ) ≤ w(Mw)/2 and p

∑

i=1

ℓ(eℓ
i) ≤ ℓ(Mℓ)/2 (16)

• Suppose there is an index i∗ su
h that w(ew
i∗) ≥ δw(Mw). Then for every 
y
le Ci ex
ept

Ci∗ remove ew
i . Remove eℓ

i∗ . Using the �rst part of inequality (16) we get a partial tourwith weight at least w(Mw) −
∑p

i=1 w(ew
i ) + w(ew

i∗) ≥ (1/2 + δ)w(Mw) and length atleast ℓ(Mℓ) − ℓ(eℓ
i∗) ≥ (1/2 + δ)ℓ(Mℓ).

• Suppose there is an index i∗ su
h that ℓ(eℓ
i∗) ≥ δℓ(Mℓ). With similar arguments we 
anbuild a partial tour with weight at least (1/2 + δ)w(Mw) and length at least (1/2 +

δ)ℓ(Mℓ).
• Suppose that w(ew

i ) < δw(Mw) and ℓ(eℓ
i) < δℓ(Mℓ) for all i. If ∑p

i=1 w(ew
i ) ≤ (1

2 −
δ)w(Mw), then by removing ew

i for i = 1, . . . , p we get a partial tour P with weight atleast (1/2+ δ)w(Mw) and length at least ℓ(Mℓ). Otherwise, there exists an index i∗ < psu
h that
i∗

∑

i=1

w(ew
i ) ≤ (

1

2
− δ)w(Mw) and i∗+1

∑

i=1

w(ew
i ) > (

1

2
− δ)w(Mw) (17)Using inequalities (16), (17) and w(ew

i∗+1) < δw(Mw) we get that
i∗+1
∑

i=1

w(ew
i ) +

p
∑

i=i∗+2

w(ew
i ) ≤ w(Mw)/2

p
∑

i=i∗+2

w(ew
i ) < δw(Mw)

p
∑

i=i∗+1

w(ew
i ) < 2δw(Mw) ≤ (

1

2
− δ)w(Mw) (18)Now remark that

min{
i∗

∑

i=1

ℓ(eℓ
i),

p
∑

i=i∗+1

ℓ(eℓ
i)} ≤

1

2

p
∑

i=1

ℓ(eℓ
i) ≤

1

4
ℓ(Mℓ) (19)where the right part of inequality (16) is used. If ∑i∗

i=1 ℓ(eℓ
i) ≤

∑p
i=i∗+1 ℓ(eℓ

i) then remove eℓ
ifor i = 1, . . . , i∗ and remove ew

i for i = i∗ + 1, . . . , p. We get a partial tour with weight at14



least (1/2 + δ)w(Mw) by inequality (18) and length at least 3ℓ(Mℓ)/4 ≥ (1/2 + δ)ℓ(Mℓ) byinequality (19). If ∑i∗

i=1 ℓ(eℓ
i) >

∑p
i=i∗+1 ℓ(eℓ

i) then remove ew
i for i = 1, . . . , i∗ and remove eℓ

ifor i = i∗ + 1, . . . , p. We get a partial tour with weight at least (1/2 + δ)w(Mw) by inequality(17) and length at least 3ℓ(Mℓ)/4 ≥ (1/2 + δ)ℓ(Mℓ) by inequality (19). 26 Dealing with many obje
tivesAs mentioned by Manthey [14℄, when we 
onsider more than two obje
tives, and thetriangle inequality is not assumed, there is no ρ-approximate tour, for any ρ > 0. This 
an beseen on a 3-obje
tive instan
e where a given node is adja
ent to three edges of weight (1, 0, 0),
(0, 1, 0) and (0, 0, 1) respe
tively while any other edge has weight (0, 0, 0). Any tour must beof weight 0 on a 
oordinate. Then we 
onsider now k obje
tives w1, . . . , wk, whi
h all ful�llthe triangle inequality.Theorem 3 Suppose that every obje
tive fun
tion satis�es the triangle inequality. Then, anytour is a 2

n-approximate Pareto set for k-obje
tive Max TSP. Moreover, there exists a familyof instan
es for whi
h no ( 2
n + ε)-approximate Pareto set 
ontaining a single tour exists, if kis not �xed.Proof : We show that ea
h possible tour is at least a 2

n -approximation of the Pareto set. Let
T ∗

i be an optimal tour for the obje
tive wi, and let wi(T
∗
i ) be the weight of T ∗

i on obje
tive
wi. Let (u, v) be the maximum weight edge of T ∗

i with respe
t to obje
tive wi. The weight ofthis edge is at least wi(T ∗

i
)

n . Let T be any tour. There are two paths between verti
es u and vin T , and the weight of ea
h of these paths on obje
tive wi is at least wi(T ∗

i
)

n be
ause wi ful�llsthe triangle inequality. This tour is thus a 2
n -approximation for obje
tive wi.Let us show the tightness of this result. Consider a graph G = (V,E) with n ≥ 4 verti
es,where n is an even number. Consider that there are k =

( n
n/2

)

/2− (n/2−1) obje
tives. Thereare ( n
n/2

)

/2 possible ways to separate the verti
es of V into two sets of equal size, V1 and V2.We 
onsider a set S 
ontaining ( n
n/2

)

/2 − (n/2 − 1) of these partitions. To ea
h 
onsideredpartition (V1, V2), we asso
iate an obje
tive for whi
h the weight of ea
h edge (u, v) with u ∈ V1and v ∈ V1 is 0, the weight of ea
h edge (u, v) with u ∈ V2 and v ∈ V2 is 0, and the weight ofea
h edge (u, v) with u ∈ V1 and v ∈ V2 is 1. The optimal tour for this obje
tive alternatesverti
es of V1 and V2 so its weight is n. Let us 
onsider an algorithm A whi
h outputs onlyone tour T = (x1, x2, . . . , xn, x1). There are n
2 pairs (xi, xi+n/2) (for i ∈ {1, . . . , n

2}). Givena pair (xi, xi+n/2), we denote by Vi the set of verti
es {xi, . . . , xi+n/2−1}. There must be anindex i ∈ {1, . . . , n
2 } su
h that (Vi, V \ Vi) ∈ S. Tour T has a weight of 2 with respe
t to theobje
tive asso
iated with partition (Vi, V \ Vi). Thus there is no ε > 0 su
h that Algorithm

A outputs a ( 2
n + ε)-approximate tour. 2This proposition is also true if all ex
ept one obje
tive ck ful�ll the triangular inequality:the optimal tour for ck is optimal for ck and 2

n -approximate for the other obje
tives, whi
hful�ll the triangle inequality.7 Future workWe 
onsidered the biobje
tive Max TSP. It would be interesting to study the 
ases wherethere is a �xed number k ≥ 3 of obje
tives. There are still gaps between positive and negative15



results given in this arti
le. For example, when both obje
tive fun
tions are metri
, we providea polynomial time ( 5
12 − ǫ)-approximation and an upper bound of 3

4 . Maybe both results 
anbe improved. An interesting future work would be to investigate randomized algorithms.Another dire
t extension of our work is to 
onsider the multiobje
tive asymmetri
 Max TSP.Referen
es[1℄ Eri
 Angel, Evripidis Bampis, and Aleksei V. Fishkin. A note on s
heduling to meet twomin-sum obje
tives. Operations Resear
h Letters, 35(1):69�73, 2007.[2℄ Eri
 Angel, Evripidis Bampis, and Laurent Gourvès. Approximating the Pareto 
urvewith lo
al sear
h for the bi
riteria TSP(1,2) problem. Theoreti
al Computer S
ien
e,310(1-3):135�146, 2004.[3℄ Eri
 Angel, Evripidis Bampis, and Laurent Gourvès. Approximation algorithms for thebi-
riteria weighted max-
ut problem. Dis
rete Applied Mathemati
s, 154(12):1685�1692,2006.[4℄ Eri
 Angel, Evripidis Bampis, Laurent Gourvès, and Jér�me Monnot. (Non)-approximability for the multi-
riteria TSP(1,2). In Pro
eeding of the 15th InternationalSymposium on Fundamentals of Computation Theory (FCT 2005), LNCS 3623, pages329�340, 2005.[5℄ Eri
 Angel, Evripidis Bampis, and Alexander Kononov. On the approximate tradeo�for bi
riteria bat
hing and parallel ma
hine s
heduling problems. Theoreti
al ComputerS
ien
e, 306(1-3):319�338, 2003.[6℄ André Berger, Vin
enzo Bonifa
i, Fabrizio Grandoni, and Guido S
häfer. Budgetedmat
hing and budgeted matroid interse
tion via the gasoline puzzle. Mathemati
al Pro-gramming, 128(1-2):355�372, 2011.[7℄ Markus Bläser, Bodo Manthey, and Oliver Putz. Approximating multi-
riteria Max-TSP.In Pro
eedings of the 16th Annual European Symposium (ESA 2008), LNCS 5193, pages185�197, 2008.[8℄ Zhi-Zhong Chen, Yuusuke Okamoto, and Lusheng Wang. Improved deterministi
 ap-proximation algorithms for max TSP. Information Pro
essing Letters, 95(2):333�342,2005.[9℄ Mathias. Ehrgott. Multi
riteria optimization. LNEMS, Springer-Verlag, 2005.[10℄ Thomas Erleba
h, Hans Kellerer, and Ulri
h Pfers
hy. Approximating multiobje
tiveknapsa
k problems. Management S
ien
e, 48(12):1603�1612, 2002.[11℄ Sung-Pil Hong, Sung-Jin Chung, and Bum Hwan Park. A fully polynomial bi
riteriaapproximation s
heme for the 
onstrained spanning tree problem. Operations Resear
hLetters, 32(3):233�239, 2004.[12℄ Lukasz Kowalik and Mar
in Mu
ha. Deterministi
 7/8-approximation for the metri
maximum TSP. Theoreti
al Computer S
ien
e, 410(47-49):5000�5009, 2009.16



[13℄ Bodo Manthey. Multi-
riteria TSP: Min and max 
ombined. In Pro
eedings of the 7thInternational Workshop on Approximation and Online Algorithms (WAOA 2009), LNCS5893, pages 205�216, 2009.[14℄ Bodo Manthey. On approximating multi-
riteria TSP. In Pro
eedings of the 26th Inter-national Symposium on Theoreti
al Aspe
ts of Computer S
ien
e (STACS 2009), pages637�648, 2009.[15℄ Bodo Manthey. Deterministi
 algorithms for multi-
riteria TSP. In Pro
eedings of the8th Annual Conferen
e on Theory and Appli
ations of Models of Computation (TAMC2011), LNCS 6648, pages 264�275, 2011.[16℄ Bodo Manthey and L. Shankar Ram. Approximation algorithms for multi-
riteria Trav-eling Salesman Problems. Algorithmi
a, 53(1):69�88, 2009.[17℄ Katarzyna E. Palu
h, Mar
in Mu
ha, and Aleksander Madry. A 7/9 - approximationalgorithm for the maximum traveling salesman problem. In Pro
eedings of the 12th Inter-national Workshop on Approximation, Randomization, and Combinatorial Optimization.Algorithms and Te
hniques (APPROX-RANDOM 2009), LNCS 5687, pages 298�311,2009.[18℄ Christos H. Papadimitriou and Mihalis Yannakakis. On the approximability of trade-o�sand optimal a

ess of web sour
es. In Pro
eedings of the 41st Annual Symposium onFoundations of Computer S
ien
e (FOCS 2000), pages 86�92, 2000.[19℄ April Rasala, Cli�ord Stein, Eri
 Torng, and Pat
hrawat Uthaisombut. Existen
e theo-rems, lower bounds and algorithms for s
heduling to meet two obje
tives. In Pro
eedingsof the 13th Annual ACM-SIAM Symposium on Dis
rete Algorithms (SODA 2002), pages723�731, 2002.[20℄ R. Ravi and Mi
hel X. Goemans. The 
onstrained minimum spanning tree problem. InPro
eeding of the 5th S
andinavian Workshop on Algorithm Theory (SWAT 1996), LNCS1097, pages 66�75, 1996.[21℄ R. Ravi, Madhav V. Marathe, S. S. Ravi, Daniel J. Rosenkrantz, and Harry B. Hunt III.Many birds with one stone: multi-obje
tive approximation algorithms. In Pro
eedings ofthe 23rd Annual ACM Symposium on Theory of Computing (STOC 1993), pages 438�447,1993.[22℄ Cli�ord Stein and Joel Wein. On the existen
e of s
hedules that are near-optimal for bothmakespan and total weighted 
ompletion time. Operations Resear
h Letters, 21(3):115�122, 1997.
17


