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{bazgan, laurent.gourves, monnot}�lamsade.dauphine.fr, fanny.pasual�lip6.frAbstratWe mainly study Max TSP with two objetive funtions. We propose an algorithmwhih returns a single Hamiltonian yle with performane guarantee on both objetives.The algorithm is analysed in three ases. When both (resp. at least one) objetivefuntion(s) ful�ll(s) the triangle inequality, the approximation ratio is 5

12
− ε ≈ 0.41(resp. 3

8
− ε). When the triangle inequality is not assumed on any objetive funtion, thealgorithm is 1+2

√

2

14
− ε ≈ 0.27-approximate.1 IntrodutionThe traveling salesman problem (TSP) is one of the most studied problems in ombinatorialoptimization. Given an undireted omplete graph with weights on the edges, the problemonsists of �nding a Hamiltonian yle (also alled tour) of maximum or minimum total weight,de�ned as the sum of its edges' weight. In this paper we mainly study the approximation ofthe biobjetive maximization version, Biobjetive Max TSP. In this ase every edge has twoweights and the total weight of a tour is a ouple de�ned as the omponentwise sum of itsedges' weights. We are interested in the existene and the omputation in polynomial timeof a single tour with simultaneous performane guarantees on the two objetives. Our workfalls into a reent stream of researh on the approximability of multiobjetive optimizationproblems [21, 20, 18, 10, 5, 11, 3, 1, 6℄ where multiobjetive TSP takes a prominent plae[2, 4, 16, 7, 13, 14℄.In many real optimization problems not only one objetive funtion is onsidered butseveral ones (see [9℄ about multiobjetive ombinatorial optimization). This is also the asefor TSP where we might want to minimize the travel time, the ost or to maximize thepro�t, the number of viewpoints along the way et. This gives rise to Multiobjetive TSP.Unfortunately it is unlikely that optimality is met simultaneously by a single feasible solutionon all objetives. However there always exists a set of e�ient (also alled Pareto optimal)
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solutions for whih any improvement on an objetive indues a deterioration of (at least)another one.Generating the whole set of e�ient solutions is a major hallenge in multiobjetive om-binatorial optimization. However, even for moderately-sized problems, it is usually ompu-tationally prohibitive to identify the e�ient set for two major reasons. First, the numberof e�ient solutions an be very large. Seond, the assoiated deision version is often NP-omplete, even if the underlying single objetive problem is polynomial time solvable. Tohandle these two di�ulties, researhers have been interested in developing approximationalgorithms with a priori provable performane guarantees.Given a positive real ρ ≤ 1, and onsidering that all objetives have to be maximized, a
ρ-approximation of the set of e�ient solutions is a set of solutions that inludes, for eahe�ient solution, a solution that approximates it within a fator ρ on all objetives. The
ρ-approximation typially ontains several inomparable solutions and it is assumed that onesolution is seleted with the help of a, yet unkown, a posteriori deision proess.One of the most important results onerning the approximation of multiobjetive prob-lems was given by Papadimitriou and Yannakakis [18℄: under ertain general assumptions,multiobjetive optimization problems always have at least one (1 − ε)-approximation of sizepolynomial in the size of the instane and 1/ε, for any given auray ε > 0. This resultmakes the omputation of approximate e�ient sets of multiobjetive problems aessible topolynomial time algorithms.Nevertheless the e�ient set is not the unique objet that one an approximate. A popularapproah in multiobjetive optimization onsists in optimizing only one objetive while theothers are turned into budget onstraints [21, 20, 11, 6℄. Budget onstraints ome from an apriori deision proess whih restrits the set of desired solutions. It is noteworthy that thee�ient set approah and the budget approah are essentially the same [18℄.In another popular approah, no deision proess is sought. The goal is to ompute a singlesolution whih approximates a vetor omposed of the optimal values on every objetive takenseparately [22, 19, 3, 1℄. Contrasting with the previous approahes, this framework aims atapproximating an ideal point whih is the image of a not neessarily feasible solution. Heneno ρ-approximation for every ρ is guaranteed to exist. Note that the ideal point approahand the e�ient set approah restrited to sets of size 1 oinide. The former is a partiularase of the latter. Sine generating several solutions allows better approximations than whata single solution an ahieve, approximation ratios under the respetive approahes are notdiretly omparable.Previous results for the multiobjetive TSP are known; most of them follow the e�ientset approah, approximating the Pareto set with two or more solutions, but some of themuse the ideal point approah. In this artile we exlusively follow the ideal point approahand provide deterministi approximation algorithms whose performane guarantees improveon previous results.Previous results. Multiobjetive TSP is well studied from the approximation point of view.Manthey and Ram [16℄ follow the e�ient set approah for several variants of multiobjetiveMin TSP. In partiular they generalize the well known tree doubling algorithm to provide a
(2 + ǫ)-approximation of the e�ient set. The other results of [16℄ deal with multiobjetiveMin TSP with the sharpened triangle inequality and multiobjetive Min TSP with distane 1or 2. This latter problem is investigated in [2, 4℄ under the e�ient set approah.More renently Bläser et al. [7℄ study the multiobjetive Max TSP with k objetive fun-2



tions. Using the e�ient set approah they devise randomized approximation algorithms withratios 1
k −ǫ and 1

k+1 −ǫ for the symmetri and asymmetri versions respetively. Subsequentlythese results were signi�antly improved by Manthey [14℄ who provides randomized approxi-mation algorithms, using the e�ient set approah, with ratios 2
3−ǫ and 1

2−ǫ for the symmetriand asymmetri versions respetively. These algorithms use as a blak box the randomizedPTAS for min-weight mathing given by Papadimitriou and Yannakakis [18℄. Reently, Man-they [15℄ establishes deterministi approximation algorithms, using the e�ient set approah,with ratios 1
2k − ǫ and 1

4k−2 − ǫ for the symmetri and asymmetri versions respetively thatan be improved for the biobjetive ase to ratios 3
8 − ǫ and 1

4 − ǫ respetively.Manthey also investigates the approximation of Biobjetive Max TSP under the ideal pointapproah [14, 15℄, i.e. approximate e�ient sets of size one. If the single objetive Max TSPproblem is ρ-approximable then Biobjetive Max TSP is ρ
3 -approximable with one solution [14℄.Taking the best polynomial time approximation algorithms known so far for the symmetriMax TSP, he derives a 61

243 -approximate (resp. 7
24 -approximate) tour without (resp. with) thetriangle inequality. The ratios ome from a 61

81 -approximation and a 7/8-approximation givenin [8℄ and [12℄ respetively. As mentioned very reently in [15℄, using a new 7
9 -approximation[17℄, the �rst ratio beomes 7

27 instead of 61
243 . Another positive onsequene of the generaltehnique is that every biobjetive instane admits a single 1

3 -approximate tour. From thenegative side, Manthey [14℄ gives a 5 node non metri instane in whih no single tour anbe (1/3 + ǫ)-approximate (ǫ > 0), thus meeting the previous bound. To our best knowledge,no suh upper bound is known for metri instanes so it is still possible that a single ρ-approximate tour exists in biobjetive Max TSP for some ρ > 1/3. Finally one an observethat known inapproximability results on the single objetive Max TSP imply that the generaltehnique is limited to provide biobjetive (1/3−ǫ)-approximation in polynomial time (ǫ > 0).New results. In this paper, we establish a general algorithm whih omputes a maximumvalue mathing on eah objetive taken separately and ombines them into a single Hamil-tonian yle having a performane guarantee on both objetives. The algorithm is analyzedin three ases. When both objetive funtions ful�ll the triangle inequality, we obtain a
5
12 − ǫ ≈ 0.41-approximate algorithm whih improves the aforementioned 7

24 − ǫ ≈ 0.291-approximation. In this ase, we also propose a 4-node instane without any single (1
2 + ǫ)-approximate solution and a family of instanes without any single (3

4 +ǫ)-approximate solutionwhen the number of nodes tends to in�nity. If only one objetive funtion ful�lls the triangleinequality, we obtain a (3
8 −ǫ)-approximate algorithm. In the ase where no objetive funtionsatis�es the triangle inequality, a quik analysis gives a ratio 1/4 − ǫ but in a more auratease analysis, we an show that the algorithm is 1+2

√
2

14 − ǫ ≈ 0.27-approximate, improvingthe aforementioned 7
27 ≈ 0.259-approximation. An extension of Manthey's instane to anynumber of verties preludes any (1

3 + ǫ)-approximate algorithm returning one solution.We onlude our work by onsidering the ase of an unbounded number of objetives. Wedenote by n and k the number of verties and objetives respetively. If all objetive funtionssatisfy the triangle inequality, we show that every tour is 2
n -approximate, and this ratio is tightfor k su�iently large.The following table gives a summary of mentioned results on the biobjetive Max TSP(k = 2). Approximations ahieved with several solutions follow the Pareto set approah whilethose limited to one solution follow the ideal point approah.
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Biobjetive Max TSPrandomized algo. deterministi algo. this paper (deterministi)general 2/3 − ǫ [14℄ 7/27 ≈ 0.259 1+2
√

2
14 − ǫ ≈ 0.27ase several solutions one solution [14, 17℄ one solution

3/8 − ǫseveral solutions [15℄metri 2/3 − ǫ [14℄ 7/24 ≈ 0.291 5/12 − ǫ ≈ 0.41ase several solutions one solution [14, 12℄ one solutionOrganization of the artile. In Setion 2 we give de�nitions on the problems and oneptsused throughout the artile. In Setion 3 we establish some non existene results whihgive upper bounds on possible approximation ratios under the ideal point approah. Setion 4presents a general algorithm for Biobjetive Max TSP and its analysis in three ases dependingon the (non) metri nature of the objetive funtions. In Setion 5 we improve the analysisof the previous algorithm in the non metri ase. In Setion 6 we onsider the ase of anunbounded number of objetive funtions. Future works are provided in a �nal setion.2 PreliminariesLet G = (V,E) be a omplete undireted graph with a nonnegative weight w(e) on everyedge e ∈ E and n = |V | verties. The weight of a set of edges E′ ⊆ E is the sum of theweights of the edges in E′ and is denoted by w(E′). An instane is metri if its weights satisfythe triangle inequality, namely w(x, z) ≤ w(x, y) + w(y, z) for all distint verties x, y, z ∈ V .Max TSP is to �nd a Hamiltonian yle or tour (i.e. a yle that visits every vertexof the graph exatly one) of maximum weight in a omplete graph. In the multiobjetiveMaximum Traveling Salesman Problem every edge is endowed with k nonnegative values.For the biobjetive ase (k = 2), eah edge e ∈ E has a nonnegative weight w(e) and anonnegative length ℓ(e). Similarly the length of a set of edges E′, denoted by ℓ(E′), is thesum of the lengths of its elements.Eah feasible tour T is represented in the objetive spae by its orresponding objetivevetor (w(T ), ℓ(T )). A tour T dominates a tour T ′ if and only if w(T ) ≥ w(T ′) and ℓ(T ) ≥
ℓ(T ′) with at least one strit inequality. A tour T is e�ient if and only if no other tour T ′dominates T , and (w(T ), ℓ(T )) is said to be non-dominated. An e�ient set ontains, for eahnon-dominated vetor, a orresponding e�ient solution (no need to keep two tours havingthe same objetive vetor).Unfortunately omputing the e�ient set of multiobjetive Max TSP annot be done inpolynomial time, unless P = NP , so we are interested in its polynomial time omputableapproximations. For any 0 < ρ ≤ 1, a tour T ρ-approximates another tour T ∗ if and onlyif w(T ) ≥ ρw(T ∗) and ℓ(T ) ≥ ρℓ(T ∗). A set of feasible tours A is a ρ-approximation of thee�ient set P if for every T ∗ ∈ P, there exists T ∈ A suh that T ρ-approximates T ∗. If A isredued to a single tour, we say that we follow the ideal point approah.De�ne optw (resp. optℓ) as maxT∈F w(T ) (resp. maxT∈F ℓ(T )) where F denotes the setof feasible tours. Under the ideal point approah, a tour T is a ρ-approximation if and only if
w(T ) ≥ ρ optw and ℓ(T ) ≥ ρ optℓ. 4
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Figure 1: (Left) There is no (0.5 + ǫ)-approximate solution in this instane where everyobjetive funtion satis�es the triangle inequality. (Right) Instane with r = 5 where nonrepresented edges have value (1, 1).3 Non existene of a single ρ-approximate solutionIt is unlikely that every instane admits a single solution whih is nearly optimal for wand ℓ at the same time. Thus instanes without any ρ-approximate solution imply that nodeterministi ρ-approximate algorithm (even exponential) exists.If the triangle inequality is satis�ed on both objetives, the example given in Figure 1(left) shows that there does not always exist a (1
2 + ǫ)-approximate solution, for all ǫ > 0.The three possible tours in this instane are indeed (a, b, c, d, a), (a, c, d, b, a), and (a, c, b, d, a)whose values are (2, 2), (2, 4), and (4, 2). However this instane only ontains 4 nodes so itdoes not prevent an algorithm to provide a (0.5 + ǫ)-approximate solution for 5 nodes andmore.However one an build an instane whih does not ontain any (3

4 +ǫ)-approximate solutionfor n su�iently large. The instane ontains 2r nodes {v1, · · · , vr} ∪ {u1, · · · , ur}. Edges
(ui, vi) have value (2, 1) for i = 2, · · · r, see Figure 1 (right). Edges (ui, vi+1) have value (2, 1)for i = 1, · · · r − 1. Edges (ui, ui+1) and (vi, vi+1) have value (1, 2) for i = 1, · · · r − 1. Edges
(u1, v1) and (ur, v1) have value (1, 2) and (2, 1) respetively. Any other edge has value (1, 1).The oordinates being 1 or 2, the triangle inequality is satis�ed. The tour ontaining alledges of value (2, 1) (resp. (1, 2)) has value (4r − 1, 2r) (resp. (2r, 4r − 1)) so the optimalweight/length is 4r − 1. Any given tour uses α edges with value (2, 1), β edges with value
(1, 2) whereas α + β ≤ 2r. Its value is then (2α + β, 2β + α) ≤ (2r + α, 2r + β). Observe that
min{2r + α, 2r + β} = 2r + min{α, β} ≤ 3r. Hene any tour is at most 3r

4r−1 -approximate.If the objetive funtions do not neessarily ful�ll the triangle inequality, Manthey [14℄proved that for a K5 there does not exist a (1
3 + ǫ)-approximate algorithm, for all ǫ > 0. Wean easily generalize his result to Kn with n ≥ 5 in order to obtain an asymptoti result.For every n ≥ 5, onsider Kn where a �xed K4 is deomposable into 2 Hamiltonian paths

Pw and Pℓ. For every edge e ∈ E(Kn), set w(e) = 1 and ℓ(e) = 0 if e ∈ Pw, w(e) = 0 and
ℓ(e) = 1 if e ∈ Pℓ and w(e) = 0 and ℓ(e) = 0 if e /∈ Pw ∪ Pℓ. We an hek that thereare four non-dominated tours Ti, i = 1, . . . , 4 with w(T1) = w(Pw) = 3, ℓ(T1) = ℓ(Pw) = 0,
w(T2) = w(Pℓ) = 0, ℓ(T2) = ℓ(Pℓ) = 3, w(T3) = 2, ℓ(T3) = 1 and w(T4) = 1, ℓ(T4) = 2. Inonlusion, a single solution never approximates the Pareto set of the biobjetive Max TSPwith ratio better than 1/3 for Kn with n ≥ 5.
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4 A generi algorithm for Biobjetive Max TSPIn this setion, we present an algorithm for the Biobjetive Max TSP. This algorithm isbased on the ombination of the edges of a maximum weight mathing for the objetive wand a maximum weight mathing for the objetive ℓ. The algorithm is as follows :1. Build a maximum weight (resp. length) mathing of G and denote it by Mw (resp. Mℓ).The set of edges Mw ∪Mℓ is made of p onneted omponents C1, . . . , Cp. Eah Ci is ayle of even size, or a path of length at least one. Note that there is at most one pathof length at least two in Mw ∪ Mℓ (beause the graph is omplete and we an assumethat Mw are Mℓ are of maximum size). Likewise, eah path of length one is in Mw ∩Mℓ.2. For eah omponent Ci whih is a yle, remove the edge in Ci ∩ Mw whih has aminimum weight.We thus obtain a set of paths, whih is alled a partial tour.3. Add edges in order to onnet these paths and obtain an Hamiltonian yle of Kn (edgesare added arbitrarily unless otherwise noted. This step is detailled inside the proofs whenneeded).Let us now show that the Hamiltonian yle obtained with this algorithm has a weightlarger than or equal to αw(Mw) and a length larger than or equal to αℓ(Mℓ), where 0 < α ≤ 1.We will determine the value of α in a general graph (f. Lemma 1), in a graph where oneobjetive funtion (w.l.o.g. w) ful�lls the triangle inequality (f. Lemma 2), and in a graphwhere both objetive funtions ful�ll the triangle inequality (f. Lemma 3).Lemma 1 Step 1 and 2 of the algorithm build in polynomial time a partial tour on Kn withweight at least 1
2w(Mw) and length at least 1

2ℓ(Mℓ).Proof : For eah omponent Ci whih is a yle, step 2 of the algorithm removes the edge in
Ci∩Mw with minimum weight. Sine |Ci∩Mw| ≥ 2 the loss in weight is at most w(Ci∩Mw)/2.The resulting set of edges is a partial tour of weight at least 1

2

∑p
i=1 w(Ci ∩ Mw) = 1

2w(Mw)and length ∑p
i=1 ℓ(Ci ∩ Mℓ) = ℓ(Mℓ). 2In the following Lemmas we onsider two ases:

• Case 1: at the end of Step 1 of the algorithm, every omponent Ci is a yle
• Case 2: at the end of Step 1 of the algorithm, at least one omponent Ci is a yle andat least one omponent Ci′ is not a yle.If no omponent is a yle then we are already done sine the set of edges is then a partialtour of weight w(Mw) and length ℓ(Mℓ).Lemma 2 Assuming that w satis�es the triangle inequality, we an build in polynomial timea partial tour on Kn with weight at least 3

4w(Mw) and length at least 3
4ℓ(Mℓ).Proof : We distinguish two ases depending on the value of p that is the number of onnetedomponents of Mw ∪ Mℓ. If p = 1 then C1 is either a tour or a yle on n − 1 nodes (in thisase n is odd) with weight at least w(Mw) and length at least ℓ(Mℓ). If C1 is a yle on n− 1nodes, let x be the isolated node. Then by replaing any edge (u, v) ∈ Mw by (u, x), (x, v),6



we get a tour C ′ of Kn satisfying w(C ′) ≥ w(C1) ≥ w(Mw) due to the triangle inequality and
ℓ(C ′) ≥ ℓ(Mℓ).Let us now onsider the ase where p ≥ 2. Assume that ase 1 ours, that is eahomponent Ci is a yle and thus it ontains at least four edges. Sine p ≥ 2 and |Mℓ∩Ci| ≥ 2for eah Ci we have |Mℓ| ≥ 4. It follows that if e ∈ Mℓ is an edge of minimum length amongthe edges of Mℓ, then ℓ(e) ≤ ℓ(Mℓ)/4. Thus, by deleting e, we are in ase 2 sine ∪p

i=1Ci \ {e}ontain at least one yle and at least one path with w(∪p
i=1Ci \ {e}) ≥ w(Mw) and

ℓ(∪p
i=1Ci \ {e}) ≥ 3ℓ(Mℓ)/4 (1)Now, assume that ase 2 ours. By renaming the onneted omponents, we an assumethat there is an integer r ∈ {1, . . . , p} suh that Ci for i ≥ r is not a yle whereas Ci for

1 ≤ i < r is a yle. Let x and y be the two extremities of Cr. Proeed repeatedly as follows,for i = r − 1 down to 1. Remove an edge of minimum weight in Mw ∩ Ci and all it (vi
1, v

i
2).Add the edge with maximum weight between (vi

1, x) and (vi
2, x). If w(vi

1, x) ≥ w(vi
2, x) then

x := vi
2, otherwise x := vi

1. By this way the proedure maintains a path with extremities
x and y, while reduing the number of yles. At the end of the proedure we get a partialtour that is the union between a path and ∪p

i=rCi. Using the triangle inequality we knowthat max{w(vi
1, x), w(vi

2, x)} ≥ (w(vi
1, x) + w(vi

2, x))/2 ≥ w(vi
1, v

i
2)/2, meaning that eah timean edge (vi

1, v
i
2) is removed (i ∈ {1, . . . , r − 1}), another one with at least half its weight isadded so, in total, the loss in weight is bounded by 1

2

∑r−1
i=1 w(vi

1, v
i
2). Sine |Mw ∩Ci| ≥ 2 wededue that w(vi

1, v
i
2) ≤ w(Mw ∩Ci)/2. Summing up the previous inequality, we dedue that

∑r−1
i=1 w(vi

1, v
i
2) ≤ w(∪r−1

i=1 Ci ∩ Mw)/2 ≤ w(Mw)/2. Thus the total loss in weight is boundedby w(Mw)/4.In onlusion the partial tour has weight at least 3w(Mw)/4 and length at least 3ℓ(Mℓ)/4by inequality (1). 2Lemma 3 Assuming that w and ℓ satisfy the triangle inequality, we an build in polynomialtime a partial tour on Kn with weight at least 5
6w(Mw) and length at least (5

6 − ε(n))ℓ(Mℓ).Here ε(n) = 2/(n − 1) and then tends to 0 when n tends to ∞.Proof : As it is done in Lemma 2, we transform ase 1 into ase 2. Thus, suppose thatwe are in ase 1 that is eah omponent Ci is a yle and w.l.o.g. that the edge of Mℓ withminimum length is e. Remove this edge e to reate a path with endpoints denoted by x and
y. When n is even (resp. odd) this deletion indues a loss of at most 2ℓ(Mℓ)/n = ε(n)ℓ(Mℓ)(resp. 2ℓ(Mℓ)/(n − 1) = ε(n)ℓ(Mℓ)). Note that ε(n) tends to 0 when n tends to ∞.Suppose now that we are in the ase 2. As it is done in Lemma 2 we an assume that thereis an integer r ∈ {1, . . . , p} suh that Ci for i ≥ r is not a yle whereas Ci for 1 ≤ i < r is ayle. We are going to path the yles to Cr, one by one. We explain how to path C1, andthe proedure is repeated for the yles C2, · · · , Cr−1. Let x and y be the two extremities of
Cr. If |C1 ∩ Mw| ≥ 3 then delete an edge of minimum weight and all it (v1

1 , v
1
2). We get that

w(v1
1 , v1

2) ≤ 1
3w(C1 ∩ Mw). Add the edge with maximum weight between (v1

1 , x) and (v1
2 , x).By the triangle inequality, max{w(v1

1 , x), w(v1
2 , x)} ≥ w(v1

1 , v1
2)/2. If w(v1

1 , x) ≥ w(v1
2 , x) then

x := v1
2 , otherwise x := v1

1 . Disregarding the weight of the edges in C1 ∩Mℓ, the modi�ationauses a loss in weight of at most w(v1
1 , v1

2) − w(v1
1 , v1

2)/2 = w(v1
1 , v

1
2)/2 ≤ 1

6w(C1 ∩ Mw).Sine no edge from Mℓ was removed, and disregarding the length of the edges in C1∩Mw, the7



modi�ation does not ause any loss in length. Hene the pathing guarantees that the newpath P satis�es w(P ) ≥ w(Cr) + 5w(C1 ∩ Mw)/6 and ℓ(P ) ≥ ℓ(Cr) + ℓ(C1 ∩ Mℓ).Now suppose that C1 is a yle on 4 nodes and ontains four edges (a, b), (b, c), (c, d),
(d, a) suh that C1 ∩ Mw = {(a, b), (c, d)} and C1 ∩ Mℓ = {(b, c), (a, d)}. Using the triangleinequality we get that

w(a, c) + w(b, d) + w(C1 ∩ Mℓ) ≥ w(C1 ∩ Mw) (2)
ℓ(a, c) + ℓ(b, d) + ℓ(C1 ∩ Mw) ≥ ℓ(C1 ∩ Mℓ) (3)

• Suppose that ℓ(C1 ∩ Mw) ≥ ℓ(C1 ∩ Mℓ)/8. W.l.o.g., assume ℓ(a, d) ≥ ℓ(b, c). Re-move (b, c) and add the edge with maximum length between (b, x) and (x, c). Sine
max{ℓ(b, x), ℓ(x, c)} ≥ ℓ(b, c)/2 by the triangle inequality, we get that the new path
P satis�es ℓ(P ) ≥ ℓ(Cr) + ℓ(C1 ∩ Mw) + ℓ(a, d) + ℓ(b, c)/2 ≥ ℓ(Cr) + ℓ(C1 ∩ Mℓ)/8 +
ℓ(C1 ∩ Mℓ)/2 + ℓ(a, d)/2 ≥ ℓ(Cr) + ℓ(C1 ∩ Mℓ)/8 + ℓ(C1 ∩ Mℓ)/2 + ℓ(C1 ∩ Mℓ)/4 =
ℓ(Cr) + 7ℓ(C1 ∩ Mℓ)/8.

• Suppose that w(C1 ∩ Mℓ) ≥ w(C1 ∩ Mw)/8. W.l.o.g., assume w(a, b) ≥ w(c, d). Re-move (c, d) and add the edge with maximum length between (c, x) and (x, d). Sine
max{w(c, x), w(x, d)} ≥ w(c, d)/2 by the triangle inequality, we get as in the previousase that w(P ) ≥ w(Cr) + w(C1 ∩Mℓ) + w(a, b) + w(c, d)/2 ≥ w(Cr) + 7w(C1 ∩Mw)/8.

• Now suppose that ℓ(C1 ∩ Mw) < ℓ(C1 ∩ Mℓ)/8 and w(C1 ∩ Mℓ) < w(C1 ∩ Mw)/8.Using Inequalities (2) and (3) we get that w(a, c) + w(b, d) > 7w(C1 ∩ Mw)/8 and
ℓ(a, c) + ℓ(b, d) > 7ℓ(C1 ∩ Mℓ)/8. In this ase the new path P obtained by addingany two edges to (a, c), (b, d) and Cr satis�es w(P ) ≥ w(Cr) + 7w(C1 ∩ Mw)/8 and
ℓ(P ) ≥ ℓ(Cr) + 7ℓ(C1 ∩ Mℓ)/8.In onlusion, when C1 ontains four nodes, we an always path it to Cr so that the lossin weight (resp. length) is at most w(C1 ∩ Mw)/8 (resp. ℓ(C1 ∩ Mℓ)/8).We have seen that this loss is of (at most) 1/6 on both objetive funtions when C1 ontainsat least six nodes. We dedue that after the pathing of all yles Ci for i < r, the urrentsolution is a path P and its weight (resp. length) is at least w(Cr) + 5

6w
(
⋃r−1

i=1 Ci ∩ Mw

)(resp. ℓ(Cr) + 5
6ℓ

(
⋃r−1

i=1 Ci ∩ Mℓ

)). Adding ∪p
i=r+1Ci to P , we get a partial tour P ′. Using

w(Cr) ≥ w(Cr ∩ Mw) and ℓ(Cr) ≥ ℓ(Cr ∩ Mℓ) − ε(n)ℓ(Mℓ) we get that the solution P ′ hasweight (resp. length) at least 5
6w(Mw) (resp. (5

6 − ε(n))ℓ(Mℓ)). 2Theorem 1 We an build in polynomial time a single tour on Kn whih onstitutes a (ρ −
ξ(n))-approximate Pareto set for the biobjetive Max TSP where ρ = 5/12 when w and ℓ satisfythe triangle inequality, ρ = 3/8 when only w satis�es the triangle inequality and ρ = 1/4 whenneither w nor ℓ satis�es the triangle inequality. Here ξ(n) = Θ(1/n) and then tends to 0 when
n tends to ∞.Proof : Consider �rst the ase when x and ℓ satisfy the triangle inequality. Lemma 3 statesthat we an build a partial tour with weight (resp. length) at least 5w(Mw)/6 (resp. (5

6 −
ε(n))ℓ(Mℓ)) where ε(n) = 2

n−1 . If the partial tour is not a tour then onnet its omponents toreate a tour. Using the fat that every edge weight (resp. length) is nonnegative, the weight(resp. length) annot derease. Denote by optw (resp. optℓ) the optimal weight (resp. length)of a tour. It is well known that w(Mw) ≥ (1
2 − ε′(n))optw and ℓ(Mℓ) ≥ (1

2 − ε′(n))optℓ where8



ε′(n) = 0 when n is even, otherwise ε′(n) = 1
2n . Let ξ(n) = ε(n)

2 + 5ε′(n)
6 − ε′(n)ε(n). We getthat the tour onstruted has weight at least 5

6w(Mw) ≥ 5
6(1

2 − ε′(n))optw > ( 5
12 − ξ(n))optw.The length is at least (5

6 − ε(n))ℓ(Mℓ) ≥ (5
6 − ε(n))(1

2 − ε′(n))optℓ = ( 5
12 − ξ(n))optℓ. UseLemmas 2 and 3 and similar arguments for the other ases. 25 An improved analysisIn this setion, we re�ne the analysis of our approximation algorithm when the triangleinequality is not assumed on any objetive funtion. We show that the tour returned by ouralgorithm is an asymptoti 1+2

√
2

14 ≈ 0.273 approximation of the ideal point. Reall that someinstanes of the problem do not admit any (1
3 + ǫ)-approximate solution, for all ǫ > 0 [14℄.The intuition behind the improved analysis is the following. The ratio 1/4 of Theorem 1follows from two observations: the tour returned by the approximation algorithm is a 1/2-approximation of the maximum weight/length mathing, and this latter is an asymptoti

1/2-approximation of the maximum weight/length tour. Taken separately both observationsare tight but we exploit the fat that they annot our simultaneously.Theorem 2 We an build in polynomial time a (1+2
√

2
14 − ξ(n))-approximate Pareto set on-taining a single tour on Kn for Biobjetive Max TSP. Here ξ(n) = Θ(1/n) and then, tends to

0 when n tends to ∞.Proof : De�ne δ as 4
√

2−5
14 ≈ 0.0469. Atually, δ is the positive root of equation −1 + 20x +

28x2 = 0. We an show that every instane Kn of the problem satis�es one of the followingstatements:
(i) a partial tour P ′ on Kn with weight at least (1

2 +δ)w(Mw) and, at the same time, lengthat least (1
2 + δ)ℓ(Mℓ) exists and an be omputed in polynomial time.

(ii) every Hamiltonian yle has weight at most (3
2 + 7δ)w(Mw) and, at the same time, itslength is at most (3

2 + 7δ)ℓ(Mℓ).Reall that w(Mw) ≥ (1
2 − ε′(n))optw, ℓ(Mℓ) ≥ (1

2 − ε′(n))optℓ where ε′(n) = 0 when nis even, otherwise ε′(n) = 1/2n. If Kn satis�es (i), then by hypothesis the partial tour P ′has weight (resp. length) at least (1/4 + δ/2 − ξ(n))optw (resp. (1/4 + δ/2 − ξ(n))optℓ)with ξ(n) = ε′(n)(1/2 + δ). If Kn satis�es (ii), then starting from Mw ∪ Mℓ as it is donein previous setion and using Lemma 1, a partial solution P with weight (resp. length) atleast w(Mw)/2 (resp. ℓ(Mℓ)/2) an be built in polynomial time. Now, sine by hypothesis
optw ≤ (3

2 + 7δ)w(Mw), and optℓ ≤ (3
2 + 7δ)ℓ(Mℓ), the partial solution P has a weight (resp.length) at least 1

2
optw

( 3

2
+7δ)

(resp. 1
2

optℓ
( 3

2
+7δ)

).Finally remark that on the one hand, a tour an be obtained by onneting the ompo-nents of a partial tour without dereasing the weight/length sine every edge weight/lengthis nonnegative and on the other hand, 1
2

1
( 3

2
+7δ)

= 1/4 + δ/2 = 1+2
√

2
14 beause δ is the positiveroot of equation −1 + 20x + 28x2 = 0.We assume n ≥ 5, sine otherwise the partial solution P given in Lemma 1 has weight(resp. length) at least optw/2 (resp. optℓ)/2).We onsider three distint ases whih an be distinguished in polynomial time.9



PSfrag replaements
a b

cd

Edges of MℓEdges of MwA third mathingFigure 2: The yle C1. Bold edges belong to Mℓ and dashed edges belong to Mw; theremaining edges form a third mathing Mr = {(a, c), (b, d)}.Case 1. Let us suppose that there exists a yle, say C1 w.l.o.g., suh that the edge withminimum weight in C1 ∩ Mw has weight at least (1
2 − δ)w(Mw) and, at the same time, theedge with minimum length in C1 ∩Mℓ has length at least (1

2 − δ)ℓ(Mℓ). Sine 1/2 − δ > 1/3,
C1 must be a yle on four nodes, i.e. C1 ∩Mw = {(a, b), (c, d)} and C1 ∩Mℓ = {(b, c), (a, d)}(see Figure 2 for an illustration).We dedue that max{w(a, b), w(c, d)} = w(Mw)−w(

⋃p
i=2 Ci∩Mw)−min{w(a, b), w(c, d)}and max{ℓ(a, d), ℓ(b, c)} = ℓ(Mℓ)−ℓ(

⋃p
i=2 Ci∩Mℓ)−min{ℓ(a, d), ℓ(b, c)}. Using min{w(a, b), w(c, d)} ≥

(1/2 − δ)w(Mw) and min{ℓ(b, c), ℓ(a, d)} ≥ (1/2 − δ)ℓ(Mℓ) in the previous equalities gives
max{w(a, b), w(c, d)} ≤ (1/2 + δ)w(Mw) − w(

p
⋃

i=2

Ci ∩ Mw) (4)
max{ℓ(b, c), ℓ(a, d)} ≤ (1/2 + δ)ℓ(Mℓ) − ℓ(

p
⋃

i=2

Ci ∩ Mℓ) (5)In addition we dedue that
w(

p
⋃

i=2

Ci ∩ Mw) ≤ 2δw(Mw) and ℓ(

p
⋃

i=2

Ci ∩ Mℓ) ≤ 2δℓ(Mℓ) (6)We ondut a subase analysis depending on the weight or the length of the edges having atleast one endpoint in V (C1): ase (1.1.w) max{w(e) : e ∈ C1 ∩ Mℓ} > 2δw(Mw), ase (1.1.ℓ)
max{ℓ(e) : e ∈ C1 ∩ Mw} > 2δℓ(Mℓ), ase (1.2.w) max{w(a, c), w(b, d)} > (1

2 + δ)w(Mw),ase (1.2.ℓ) max{ℓ(a, c), ℓ(b, d)} > (1
2 + δ)ℓ(Mℓ), ase (1.3.w) max{w(i, j) : i ∈ V (C1), j /∈

V (C1)} > 2δw(Mw), ase (1.3.ℓ) max{ℓ(i, j) : i ∈ V (C1), j /∈ V (C1)} > 2δℓ(Mℓ) andase (1.4) max{w(e) : e ∈ C1 ∩ Mℓ} ≤ 2δw(Mw), max{ℓ(e) : e ∈ C1 ∩ Mw} ≤ 2δℓ(Mℓ),
max{w(a, c), w(b, d)} ≤ (1

2 + δ)w(Mw), max{ℓ(a, c), ℓ(b, d)} ≤ (1
2 + δ)ℓ(Mℓ), max{w(i, j) : i ∈

V (C1), j /∈ V (C1)} ≤ 2δw(Mw) and max{ℓ(i, j) : i ∈ V (C1), j /∈ V (C1)} ≤ 2δℓ(Mℓ).We an prove that in ase (1.4) the instane Kn satis�es (ii) whereas in other ases theinstane Kn satis�es (i).
(1.1.w) If w(a, d) > 2δw(Mw) or w(b, c) > 2δw(Mw) then remove (c, d). We get that w(a, b) +

w(b, c) + w(a, d) > (1
2 + δ)w(Mw) and ℓ(a, b) + ℓ(b, c) + ℓ(a, d) ≥ (1 − 2δ)ℓ(Mℓ) ≥

(1/2 + δ)ℓ(Mℓ).
(1.1.ℓ) If ℓ(a, b) > 2δℓ(Mℓ) or ℓ(c, d) > 2δℓ(Mℓ) then remove (b, c). We get that ℓ(a, d)+ℓ(a, b)+

ℓ(c, d) > (1
2 +δ)ℓ(Mℓ) and w(a, d)+w(a, b)+w(c, d) ≥ (1−2δ)w(Mw) ≥ (1/2+δ)w(Mw).10



(1.2.w) If max{w(a, c), w(b, d)} > (1
2 + δ)w(Mw) then remove {(a, b), (c, d)} and add the edgewith maximum weight between (a, c) and (b, d), say (a, c) without loss of generality.We get that w(a, c) + w(b, c) + w(a, d) > (1

2 + δ)w(Mw) and ℓ(a, d) + ℓ(a, c) + ℓ(b, c) ≥
(1 − 2δ)ℓ(Mℓ) ≥ (1/2 + δ)ℓ(Mℓ).

(1.2.ℓ) If max{ℓ(a, c), ℓ(b, d)} > (1
2 + δ)ℓ(Mℓ) then remove {(a, d), (b, c)} and add the edge withmaximum length between (a, c) and (b, d), say (a, c) without loss of generality. We getthat w(a, c)+w(a, b)+w(c, d) > (1−2δ)w(Mw) > (1/2+δ)w(Mw) and ℓ(a, c)+ℓ(a, b)+

ℓ(c, d) ≥ (1
2 + δ)ℓ(Mℓ).

(1.3.w) Suppose there exists an edge (i, j) suh that i ∈ {a, b, c, d}, j ∈ V \ {a, b, c, d} and
w(i, j) > 2δw(Mw). If i ∈ {a, b} (resp. i ∈ {c, d}) then only keep the edges {(i, j), (b, c), (c, d), (a, d)}(resp. {(i, j), (b, c), (a, b), (a, d)}) while any other edge is deleted. Suppose w.l.o.g. that
i ∈ {a, b}, the ase i ∈ {c, d} being treated similarly. Using w(c, d) ≥ (1

2 − δ)w(Mw) and
ℓ(C1 ∩ Mℓ) ≥ 2(1/2 − δ)ℓ(Mℓ) by hypothesis, we get that w(i, j) + w(b, c) + w(c, d) +
w(a, d) ≥ w(i, j)+w(c, d) > (1/2+δ)w(Mw). At the same time ℓ(i, j)+ℓ(b, c)+ℓ(c, d)+
ℓ(a, d) ≥ ℓ(a, d) + ℓ(b, c) ≥ 2(1/2 − δ)ℓ(Mℓ) ≥ (1/2 + δ)ℓ(Mℓ).

(1.3.ℓ) Suppose there exists an edge (i, j) suh that i ∈ {a, b, c, d}, j ∈ V \{a, b, c, d} and ℓ(i, j) >
2δℓ(Mℓ). If i ∈ {a, d} (resp. i ∈ {b, c}) then only keep the edges {(i, j), (a, b), (b, c), (c, d)}(resp. {(i, j), (a, b), (c, d), (a, d)}) while any other edge is deleted. Suppose w.l.o.g. that
i ∈ {a, d}, the ase i ∈ {b, c} being treated similarly. Using ℓ(b, c) ≥ (1

2 − δ)ℓ(Mℓ) and
w(C1 ∩ Mw) ≥ 2(1/2 − δ)w(Mw) by hypothesis, we get that ℓ(i, j) + ℓ(a, b) + ℓ(b, c) +
ℓ(c, d) ≥ ℓ(i, j) + ℓ(b, c) > (1/2 + δ)ℓ(Mℓ). At the same time w(i, j) + w(a, b) + w(b, c) +
w(c, d) ≥ w(a, b) + w(c, d) ≥ 2(1/2 − δ)w(Mw) ≥ (1/2 + δ)w(Mw).

(1.4) Suppose that w(a, d) ≤ 2δw(Mw), w(b, c) ≤ 2δw(Mw), ℓ(a, b) ≤ 2δℓ(Mℓ), ℓ(c, d) ≤
2δℓ(Mℓ), max{w(a, c), w(b, d)} ≤ (1

2 +δ)w(Mw) and max{ℓ(a, c), ℓ(b, d)} ≤ (1
2 +δ)ℓ(Mℓ).In addition suppose that for all (i, j) suh that i ∈ {a, b, c, d} and j ∈ V \ {a, b, c, d},we have w(i, j) ≤ 2δw(Mw) and ℓ(i, j) ≤ 2δℓ(Mℓ). We laim that the weight of anytour is bounded above by (3

2 + 7δ)w(Mw) while its length is at most (3
2 + 7δ)ℓ(Mℓ).The edge set of the graph is partitioned into three sets E1 = {(i, j) : i, j ∈ {a, b, c, d}},

E2 = {(i, j) : i ∈ {a, b, c, d} and j /∈ {a, b, c, d}} and E3 = {(i, j) : i, j /∈ {a, b, c, d}}. Atour T is a set of edges partitioned in three sets Ti = T ∩ Ei for i = 1, 2, 3.First observe that T3 is a set of paths whih an be deomposed into two mathings
M and M ′ (alternate edges in M and edges in M ′). If w(M) ≥ w(M ′) and w(M) >
w(

⋃p
i=2 Ci ∩Mw) then M ∪ {(a, b), (c, d)} is a mathing on the whole graph with largerweight than w(Mw), ontradition. Using this argument and a similar one for the lengthwe get that

w(T3) ≤ 2w(

p
⋃

i=2

Ci ∩ Mw) and ℓ(T3) ≤ 2ℓ(

p
⋃

i=2

Ci ∩ Mℓ) (7)We get that w(C1 ∩ Mw) = w(Mw) − w(
⋃p

i=2 Ci ∩ Mw) and ℓ(C1 ∩ Mℓ) = ℓ(Mℓ) −
ℓ(

⋃p
i=2 Ci ∩ Mℓ). Thus, using inequality (7), we dedue that w(C1 ∩ Mw) + w(T3) ≤

w(Mw) + w(
⋃p

i=2 Ci ∩ Mw) and ℓ(C1 ∩ Mℓ) + ℓ(T3) ≤ ℓ(Mℓ) + ℓ(
⋃p

i=2 Ci ∩ Mℓ); usinginequality (6), we obtain 11



w(C1 ∩ Mw) + w(T3) ≤ (1 + 2δ)w(Mw) and ℓ(C1 ∩ Mℓ) + ℓ(T3) ≤ (1 + 2δ)ℓ(Mℓ) (8)Beause min{w(a, b), w(c, d)} ≥ (1
2 − δ)w(Mw) and min{ℓ(b, c), ℓ(a, d)} ≥ (1

2 − δ)ℓ(Mℓ),we also dedue from inequality (8) that:
max{w(a, b), w(c, d)} + w(T3) ≤ (

1

2
+ 3δ)w(Mw) (9)

max{ℓ(b, c), ℓ(a, d)} + ℓ(T3) ≤ (
1

2
+ 3δ)ℓ(Mℓ) (10)Sine Mr = {(a, c), (b, d)} is a mathing on V (C1) (see Figure 2), we get that w(Mr) ≤

w(C1 ∩ Mw) and ℓ(Mr) ≤ ℓ(C1 ∩ Mℓ). Thus, using inequality (8) we get that:
w(Mr) + w(T3) ≤ (1 + 2δ)w(Mw) and ℓ(Mr) + ℓ(T3) ≤ (1 + 2δ)ℓ(Mℓ) (11)We also get that w(Mr) ≤ w(C1 ∩ Mw) = w(Mw) − w(

⋃p
i=2 Ci ∩ Mw) and ℓ(Mr) ≤

ℓ(C1 ∩ Mℓ) = ℓ(Mℓ) − ℓ(
⋃p

i=2 Ci ∩ Mℓ). Thus, on the one hand, using inequalities (4)(resp., (5)) and (7), we dedue:
w(Mr) + max{w(a, b), w(c, d)} + w(T3) ≤ (

3

2
+ δ)w(Mw) (12)

ℓ(Mr) + max{ℓ(b, c), ℓ(a, d)} + ℓ(T3) ≤ (
3

2
+ δ)ℓ(Mℓ) (13)Inequalities (7) and (6) also give

w(T3) ≤ 4δw(Mw) and ℓ(T3) ≤ 4δℓ(Mℓ) (14)By hypothesis every edge in E2 has weight (resp. length) at most 2δw(Mw) (resp.
2δℓ(Mℓ)). It follows that

w(T2) ≤ 2|T2|δw(Mw) and ℓ(T2) ≤ 2|T2|δℓ(Mℓ) (15)Now we argue on T ∩ E1. Note that |T ∩ E1| ≤ 3 sine n ≥ 5. Then, if� T ∩ E1 = {(a, c), (b, d), (a, b)}. The tour must ontain 2 edges in E2. Thus, usinginequalities (12) and (15) with |T2| = 2, we get w(T ) = w(Mr) + w(a, b) + w(T3) +
w(T2) ≤

(

3
2 + δ + 4δ

)

w(Mw) ≤ (3
2 + 7δ)w(Mw) and using inequality (11) ℓ(T ) =

ℓ(Mr) + ℓ(T3) + ℓ(a, b) + ℓ(T2) ≤ (1 + 2δ + 2δ + 4δ) ℓ(Mℓ) = (1 + 8δ)ℓ(Mℓ) <
(3
2 + 7δ)ℓ(Mℓ).� T ∩ E1 = {(a, c), (a, b), (c, d)}. The tour must ontain 2 edges in E2. Thus, usinginequalities (8) and (15) with |T2| = 2, we get that w(T ) = w(a, c)+w(C1 ∩Mw)+

w(T3)+w(T2) ≤ (1/2+δ+1+2δ+4δ)w(Mw) = (3
2 +7δ)w(Mw) and using inequality(14) ℓ(T ) = ℓ(a, c) + ℓ(a, b) + ℓ(c, d) + ℓ(T2) + ℓ(T3) ≤ (1/2 + δ + 2δ + 2δ + 4δ +

4δ)ℓ(Mℓ) = (1/2 + 13δ)ℓ(Mℓ) < (3
2 + 7δ)ℓ(Mℓ).12



� T ∩ E1 = {(a, b), (b, c), (c, d)}. The tour must ontain 2 edges in E2. Thus, usinginequalities (8) and (15) with |T2| = 2, we get that w(T ) = w(C1 ∩Mw) + w(T3) +
w(b, c) + w(T2) ≤ (1 + 2δ + 2δ + 4δ)w(Mw) = (1 + 8δ)w(Mw) < (3

2 + 7δ)w(Mw).Using inequality (10) we get that ℓ(T ) = ℓ(a, b) + ℓ(c, d) + ℓ(b, c) + ℓ(T2) + ℓ(T3) ≤
(2δ + 2δ + 1/2 + 3δ + 4δ)ℓ(Mℓ) = (1/2 + 11δ) < (3

2 + 7δ)ℓ(Mℓ)� T ∩ E1 = {(a, c), (b, d)}. The tour must ontain 4 edges in E2. Thus, usinginequalities (11) and (15) with |T2| = 4, w(T ) = w(Mr)+w(T3)+w(T2) ≤ (1+2δ+
8δ)w(Mw) = (1+10δ)w(Mw) < (3

2 +7δ)w(Mw) and ℓ(T ) = ℓ(Mr)+ℓ(T3)+ℓ(T2) =
(1 + 10δ)ℓ(Mℓ) ≤ (3

2 + 7δ)ℓ(Mℓ).� T ∩ E1 = {(a, b), (a, c)}. The tour must ontain 4 edges in E2. Thus, usinginequalities (9) and (15) with |T2| = 4, we get that w(T ) = w(a, b) + w(T3) +
w(a, c)+w(T2) ≤ (1/2+3δ+1/2+δ+8δ)w(Mw) = (1+12δ)w(Mw) ≤ (3

2+7δ)w(Mw)and using inequality (14) ℓ(T ) = ℓ(a, b) + ℓ(a, c) + ℓ(T2) + ℓ(T3) ≤ (2δ + 1/2 + δ +
8δ + 4δ)ℓ(Mℓ) = (1/2 + 15δ)ℓ(Mℓ) ≤ (3

2 + 7δ)ℓ(Mℓ).� T ∩ E1 = {(a, b), (c, d)}. The tour must ontain 4 edges in E2. Thus, usinginequalities (8) and (15) with |T2| = 4, w(T ) = w(C1 ∩ Mw) + w(T3) + w(T2) ≤
(1+2δ +8δ)w(Mw) = (1+10δ)w(Mw) ≤ (3

2 +7δ)w(Mw) and using inequality (14)
ℓ(T ) = ℓ(a, b) + ℓ(c, d) + ℓ(T2) + ℓ(T3) ≤ (2δ + 2δ + 8δ + 4δ)ℓ(Mℓ) = 16δℓ(Mℓ) ≤
(3
2 + 7δ)ℓ(Mℓ).� T ∩ E1 = {(a, c)}. The tour must ontain 6 edges in E2. Thus, using inequalities(14) and (15) with |T2| = 6, w(T ) = w(a, c) + w(T2) + w(T3) ≤ (1/2 + δ + 12δ +

4δ)w(Mw) = (1/2 + 17δ)w(Mw) ≤ (3
2 + 7δ)w(Mw) and ℓ(T ) = ℓ(a, c) + ℓ(T2) +

ℓ(T3) ≤ (1/2 + δ + 12δ + 4δ)ℓ(Mℓ) = (1/2 + 17δ)ℓ(Mℓ) ≤ (3
2 + 7δ)ℓ(Mℓ).� T ∩E1 = {(a, b)}. The tour must ontain 6 edges in E2. Thus, using inequalities (9)and (15) with |T2| = 6, w(T ) = w(a, b)+w(T3)+w(T2) ≤ (1/2+3δ+12δ)w(Mw ) =

(1/2 + 15δ)w(Mw) ≤ (3
2 + 7δ)w(Mw) and using inequality (14) ℓ(T ) = ℓ(a, b) +

ℓ(T2) + ℓ(T3) ≤ (2δ + 12δ + 4δ)ℓ(Mℓ) = 18δℓ(Mℓ) ≤ (3
2 + 7δ)ℓ(Mℓ).� T ∩ E1 = ∅. To over a, b, c and d, the tour must ontain 8 edges in E2. Thus,using inequalities (14) and (15) with |T2| = 8, w(T ) = w(T2) + w(T3) ≤ (16δ +

4δ)w(Mw) = 20δw(Mw) ≤ (3
2 + 7δ)w(Mw) and ℓ(T ) = ℓ(T2) + ℓ(T3) ≤ (16δ +

4δ)ℓ(Mℓ) = 20δℓ(Mℓ) ≤ (3
2 + 7δ)ℓ(Mℓ).� Any other subase is isomorphi to a previously analyzed subase by �ipping wand ℓ.The onlusion is that every tour T is suh that w(T ) ≤ (3

2 + 7δ)w(Mw) and ℓ(T ) ≤
(3
2 + 7δ)ℓ(Mℓ).Case 2. Suppose that there exists a yle, say C1 w.l.o.g., suh that the edge with minimumweight in C1 ∩ Mw has weight at most (1

2 − δ)w(Mw) and, at the same time, the edge withminimum length in C1 ∩Mℓ has length at least (1
2 − δ)ℓ(Mℓ). We will prove that the instane

Kn satis�es (i). Again, sine 1/2 − δ > 1/3, C1 must be a yle on four nodes. Again wesuppose that C1 ∩ Mw = {(a, b), (c, d)} and C1 ∩ Mℓ = {(b, c), (a, d)}.Remove the edge in C1 ∩Mw with minimum weight and for any other yle Ci remove oneedge in Ci ∩ Mℓ arbitrarily. We get a partial tour. Sine w(Mw) − min{w(a, b), w(c, d)} ≥
(1
2 + δ)w(Mw) and ℓ(C1 ∩Mℓ) = ℓ(a, d) + ℓ(b, c) ≥ 2(1

2 − δ)ℓ(Mℓ) ≥ (1
2 + δ)ℓ(Mℓ), the partialtour has weight (resp. length) at least (1

2 + δ)w(Mw) (resp. (1
2 + δ)ℓ(Mℓ)).13



The ase where there exists a yle C1 suh that the edge with minimum weight in C1∩Mwhas weight at least (1
2 − δ)w(Mw) and, at the same time, the edge with minimum length in

C1 ∩Mℓ has length at most (1
2 − δ)ℓ(Mℓ) is dealt with similar arguments by �ipping w and ℓ.Case 3. Denote by ew

i (resp. eℓ
i) the edge in Ci ∩ Mw (resp. Ci ∩ Mℓ) with minimumweight (resp. length). We deal with the remaining ase where w(ew

i ) ≤ (1
2 − δ)w(Mw) and

ℓ(eℓ
i) ≤ (1

2 − δ)ℓ(Mℓ) for all i ∈ {1, . . . , p}. We will prove that the instane Kn satis�es (i).Sine every yle ontains at least two edges of Mw and also two edges of Mℓ we dedue that
p

∑

i=1

w(ew
i ) ≤ w(Mw)/2 and p

∑

i=1

ℓ(eℓ
i) ≤ ℓ(Mℓ)/2 (16)

• Suppose there is an index i∗ suh that w(ew
i∗) ≥ δw(Mw). Then for every yle Ci exept

Ci∗ remove ew
i . Remove eℓ

i∗ . Using the �rst part of inequality (16) we get a partial tourwith weight at least w(Mw) −
∑p

i=1 w(ew
i ) + w(ew

i∗) ≥ (1/2 + δ)w(Mw) and length atleast ℓ(Mℓ) − ℓ(eℓ
i∗) ≥ (1/2 + δ)ℓ(Mℓ).

• Suppose there is an index i∗ suh that ℓ(eℓ
i∗) ≥ δℓ(Mℓ). With similar arguments we anbuild a partial tour with weight at least (1/2 + δ)w(Mw) and length at least (1/2 +

δ)ℓ(Mℓ).
• Suppose that w(ew

i ) < δw(Mw) and ℓ(eℓ
i) < δℓ(Mℓ) for all i. If ∑p

i=1 w(ew
i ) ≤ (1

2 −
δ)w(Mw), then by removing ew

i for i = 1, . . . , p we get a partial tour P with weight atleast (1/2+ δ)w(Mw) and length at least ℓ(Mℓ). Otherwise, there exists an index i∗ < psuh that
i∗

∑

i=1

w(ew
i ) ≤ (

1

2
− δ)w(Mw) and i∗+1

∑

i=1

w(ew
i ) > (

1

2
− δ)w(Mw) (17)Using inequalities (16), (17) and w(ew

i∗+1) < δw(Mw) we get that
i∗+1
∑

i=1

w(ew
i ) +

p
∑

i=i∗+2

w(ew
i ) ≤ w(Mw)/2

p
∑

i=i∗+2

w(ew
i ) < δw(Mw)

p
∑

i=i∗+1

w(ew
i ) < 2δw(Mw) ≤ (

1

2
− δ)w(Mw) (18)Now remark that

min{
i∗

∑

i=1

ℓ(eℓ
i),

p
∑

i=i∗+1

ℓ(eℓ
i)} ≤

1

2

p
∑

i=1

ℓ(eℓ
i) ≤

1

4
ℓ(Mℓ) (19)where the right part of inequality (16) is used. If ∑i∗

i=1 ℓ(eℓ
i) ≤

∑p
i=i∗+1 ℓ(eℓ

i) then remove eℓ
ifor i = 1, . . . , i∗ and remove ew

i for i = i∗ + 1, . . . , p. We get a partial tour with weight at14



least (1/2 + δ)w(Mw) by inequality (18) and length at least 3ℓ(Mℓ)/4 ≥ (1/2 + δ)ℓ(Mℓ) byinequality (19). If ∑i∗

i=1 ℓ(eℓ
i) >

∑p
i=i∗+1 ℓ(eℓ

i) then remove ew
i for i = 1, . . . , i∗ and remove eℓ

ifor i = i∗ + 1, . . . , p. We get a partial tour with weight at least (1/2 + δ)w(Mw) by inequality(17) and length at least 3ℓ(Mℓ)/4 ≥ (1/2 + δ)ℓ(Mℓ) by inequality (19). 26 Dealing with many objetivesAs mentioned by Manthey [14℄, when we onsider more than two objetives, and thetriangle inequality is not assumed, there is no ρ-approximate tour, for any ρ > 0. This an beseen on a 3-objetive instane where a given node is adjaent to three edges of weight (1, 0, 0),
(0, 1, 0) and (0, 0, 1) respetively while any other edge has weight (0, 0, 0). Any tour must beof weight 0 on a oordinate. Then we onsider now k objetives w1, . . . , wk, whih all ful�llthe triangle inequality.Theorem 3 Suppose that every objetive funtion satis�es the triangle inequality. Then, anytour is a 2

n-approximate Pareto set for k-objetive Max TSP. Moreover, there exists a familyof instanes for whih no ( 2
n + ε)-approximate Pareto set ontaining a single tour exists, if kis not �xed.Proof : We show that eah possible tour is at least a 2

n -approximation of the Pareto set. Let
T ∗

i be an optimal tour for the objetive wi, and let wi(T
∗
i ) be the weight of T ∗

i on objetive
wi. Let (u, v) be the maximum weight edge of T ∗

i with respet to objetive wi. The weight ofthis edge is at least wi(T ∗

i
)

n . Let T be any tour. There are two paths between verties u and vin T , and the weight of eah of these paths on objetive wi is at least wi(T ∗

i
)

n beause wi ful�llsthe triangle inequality. This tour is thus a 2
n -approximation for objetive wi.Let us show the tightness of this result. Consider a graph G = (V,E) with n ≥ 4 verties,where n is an even number. Consider that there are k =

( n
n/2

)

/2− (n/2−1) objetives. Thereare ( n
n/2

)

/2 possible ways to separate the verties of V into two sets of equal size, V1 and V2.We onsider a set S ontaining ( n
n/2

)

/2 − (n/2 − 1) of these partitions. To eah onsideredpartition (V1, V2), we assoiate an objetive for whih the weight of eah edge (u, v) with u ∈ V1and v ∈ V1 is 0, the weight of eah edge (u, v) with u ∈ V2 and v ∈ V2 is 0, and the weight ofeah edge (u, v) with u ∈ V1 and v ∈ V2 is 1. The optimal tour for this objetive alternatesverties of V1 and V2 so its weight is n. Let us onsider an algorithm A whih outputs onlyone tour T = (x1, x2, . . . , xn, x1). There are n
2 pairs (xi, xi+n/2) (for i ∈ {1, . . . , n

2}). Givena pair (xi, xi+n/2), we denote by Vi the set of verties {xi, . . . , xi+n/2−1}. There must be anindex i ∈ {1, . . . , n
2 } suh that (Vi, V \ Vi) ∈ S. Tour T has a weight of 2 with respet to theobjetive assoiated with partition (Vi, V \ Vi). Thus there is no ε > 0 suh that Algorithm

A outputs a ( 2
n + ε)-approximate tour. 2This proposition is also true if all exept one objetive ck ful�ll the triangular inequality:the optimal tour for ck is optimal for ck and 2

n -approximate for the other objetives, whihful�ll the triangle inequality.7 Future workWe onsidered the biobjetive Max TSP. It would be interesting to study the ases wherethere is a �xed number k ≥ 3 of objetives. There are still gaps between positive and negative15



results given in this artile. For example, when both objetive funtions are metri, we providea polynomial time ( 5
12 − ǫ)-approximation and an upper bound of 3
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