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1. IntrodutionWith the enormously growing relevane of soial networks, the protetion ofprivay when releasing underlying data sets has beome an important and ative�eld of researh [3℄. If a graph ontains only few verties with some distinguishedfeature, then this might allow the identi�ation (and violation of privay) of theunderlying real-world entities with that partiular feature. Hene, in order toensure pretty good privay and anonymity, every vertex should share its featurewith many other verties. In a landmark paper, Liu and Terzi [4℄ onsideredthe vertex degrees as feature; see Wu et al. [3℄ for other features onsideredin the literature. Correspondingly, a graph is alled k-anonymous if for eahvertex there are at least k − 1 other verties of same degree. Therein, di�erentvalues of k re�et di�erent privay demands and the natural omputational taskarises, given some �xed k, to perform few hanges to a graph in order to makeit k-anonymous. Liu and Terzi [4℄ proposed a heuristi algorithm for the taskof making a graph k-anonymous by adding edges. We refer to Wu et al. [3℄ fora survey of anonymization models and a disussion about the pros and ons ofthe k-anonymity onept. Here, we study the vertex and edge deletion variantsof Degree Anonymity. We start our investigations with the vertex deletionvariant whih is de�ned as follows.Degree Anonymity by Vertex Deletion (Anonym V-Del)Input: An undireted graph G = (V,E) and two integers k, s ∈ N.Question: Is there a vertex subset S ⊆ V of size at most s suh that G−Sis k-anonymous?Input: k = 4
s = 2

Solution:
Considering vertex deletions seems to be a promising approah on pratialinstanes, espeially on soial networks. In these networks, the degree distribu-tion of the underlying graphs often follows a so-alled power law distribution [5℄,implying that there are only few high-degree verties and most verties are ofmoderate degree; this suggests that only few verties have to be removed in or-der to obtain a k-anonymous graph. For instane, onsider the DBLP o-authorgraph3 (generated in Feb. 2012) with ≈ 715 thousand verties orresponding toauthors and ≈ 2.5 million edges indiating whenever two authors have a ommonsienti� paper: This graph has maximum degree 804 but only 208 verties are3The urrent dataset and a orresponding doumentation are available online(http://dblp.uni-trier.de/xml/). 2
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y6Figure 1: Left: A graph where a onstant fration of the verties has to be removed in orderto obtain a 3-anonymous graph. Right: A minimum size solution to make the graph on theleft side 3-anonymous. See Example 2 for a detailed explanation.of degree larger than 208, whereas the average degree is 7. Interestingly, a heuris-ti that simply removes verties violating the k-anonymous property shows thatone has to remove at most 338 verties to make it 5-anonymous and even tomake it 10-anonymous requires at most 635 vertex deletions.In Setion 3, we will show that already the simple and highly speialized pri-vay model of Anonym V-Del is omputationally hard from the parameterizedas well as from the approximation point of view. A variety of hardness resultsholds even for very restrited graph lasses, as for instane trees, ographs, andsplit graphs.One reason of this hardness is that being k-anonymous is not a heredi-tary property: Simply deleting one vertex in a three-regular graph, that is,an n-anonymous graph, results in an only 3-anonymous graph. Another reasonis shown in the following two examples illustrating that the number s of allowedremovals and the anonymity level k are independent of eah other, and that asmall hange in one of these parameter values might lead to a large jump of theother parameter value.Example 1. Let G be a graph on n ≥ 5 verties that onsists of two onnetedomponents: a lique of size n − 2 and an isolated edge. This 2-anonymousgraph annot be transformed into a 3-anonymous graph by deleting only onevertex, however, deleting the two degree-one verties makes it (n−2)-anonymous.Hene, by slightly inreasing s from 1 to 2 the reahable anonymity level jumpsfrom k = 2 to k = n− 2.Example 2. Let G = (V,E) be a bipartite graph with the vertex sets X :=
{x1, x2, . . . , xℓ} and Y := {y1, y2, . . . , yℓ}, V = X ∪ Y , and there is an edgebetween xi and yj if i + j > ℓ, see Figure 1 for a visualization. Clearly, xiand yi are of degree i implying that G is 2-anonymous. Sine N(xi) ⊆ N(xi+1)for all i, deleting any subset of Y preserves the invariant deg(x1) ≤ deg(x2) ≤
. . . ≤ deg(xℓ). As the previous argument is symmetri, one an observe thatto make G 3-anonymous one has to remove 2/3 of the �jumps� in the initialsequenes deg(x1) < deg(x2) < . . . < deg(xℓ) and deg(y1) < deg(y2) < . . . <
deg(yℓ). Sine removing one vertex in X (Y ) removes only one jump in thesequene of X (Y ) and only one in Y (X), it follows that at least 2(ℓ− 1) · 2/3 ·
1/2 ≈ (2ℓ)/3 = |V |/3 verties have to be deleted in order to get a 3-anonymousgraph. Summarizing, by requiring anonymity level k = 3 instead of anonymity3



level k = 2, the number of verties that need to be removed jumps from zero toa onstant fration of the verties.The seond part of this work deals with the edge deletion variant whih isde�ned as follows:Degree Anonymity by Edge Deletion (Anonym E-Del)Input: An undireted graph G = (V,E) and two integers k, s ∈ N.Question: Is there an edge subset S ⊆ E of size at most s suh that G−Sis k-anonymous?Input: k = 4
s = 4

Solution:
Considering soial networks, their power law degree distribution suggests thatthe solution size in the edge deletion variant is signi�antly larger than in thevertex deletion variant. However, in the edge deletion variant the resulting graphontains, by de�nition, all verties of the input graph, whih might be importantin some appliations. Furthermore, deleting a vertex with high degree reduesthe degree of many other verties whereas deleting an edge redues the degreeof only two verties. Hene, although requiring more edge deletions than vertexdeletions, deleting edges might result in a graph that is atually �loser� to theoriginal graph.In Setion 4, we transfer most hardness results from Anonym V-Del toAnonym E-Del, showing strong intratability results onerning parameterizedomplexity and approximability. Similarly to the vertex deletion variant, a smallhange in one of the two parameters k and s might lead to a large jump of theother parameter as demonstrated in the following two examples.Example 3. Let G be an n-vertex yle with two hords, that is, two additionaledges within the yle. As G ontains four degree-three verties and n − 4degree-two verties, G is 4-anonymous. Deleting one edge does not inrease theanonymity level k; however, deleting the two hords results in an n-anonymousgraph�a yle. Hene, by slightly inreasing s from one to two the reahableanonymity level jumps from k = 4 to k = n.Example 4. Let G = (V,E) be a disjoint union of a lique and an independentset, eah ontaining n/2 verties. Thus, G is n/2-anonymous. However, in orderto obtain an (n/2 + 1)-anonymous graph, all edges have to be removed. Hene,by slightly inreasing k from n/2 to n/2+ 1 the number of edges that have to beremoved jumps from zero to |E| =

(
n/2
2

).Related work. Hartung et al. [6℄ studied the Anonym E-Ins problem as pro-posed by Liu and Terzi [4℄. Given a graph and two positive integers k and s,4



Anonym E-Ins asks whether there exists a set of at most s edges whose additionmakes the graph k-anonymous. The main result of Hartung et al. [6℄ is a poly-nomial problem kernel with respet to the parameter maximum degree ∆ of theinput graph. Furthermore, they showed that an heuristi algorithm proposedby Liu and Terzi [4℄ is optimal for Anonym E-Ins solutions larger than ∆4.Building on Liu and Terzi's work, Hartung et al. [7℄ enhaned their heuristiapproah with the fous on improving lower and upper bounds on the solutionsize. Chester et al. [8℄ investigated the omputational omplexity of AnonymE-Ins and variants with edge labels. They showed NP-hardness for the on-sidered variants and a polynomial time algorithm for bipartite graphs. Chesteret al. [9℄ investigated the variant of adding verties instead of edges; Bredereket al. [10℄ provided �rst parameterized omplexity results in this diretion.Conerning the vertex deletion variant, the work whih is probably los-est to ours is by Moser and Thilikos [11℄. They studied the parameterizedomplexity of the Regular-Degree-d Vertex Deletion problem, wheregiven an undireted graph G and an integer s ∈ N, the task is to deidewhether G an be made d-regular by at most s vertex deletions. Moser and Thi-likos [11℄ showed that Regular-Degree-d Vertex Deletion an be solvedin O(n(s + d) + (d + 2)s) time and presented a polynomial problem kernel ofsize O(sd(d + s)2). Observe that for k > n/2 the problem of Anonym V-Delasks whether at most s verties an be deleted to obtain a regular graph.Our ontributions. While every graph is trivially 1-anonymous, we will showthat the ombinatorial struture of 2-anonymous graphs is already rih andompliated: Anonym V-Del for k = 2 is NP-omplete, even for strongly re-strited graph lasses like trees, interval graphs, split graphs, trivially perfetgraphs, and bipartite permutation graphs. All these hardness results are estab-lished by means of a general framework. Furthermore, we show that AnonymV-Del is NP-omplete even on graphs with maximum degree three.On the positive side, we present (polynomial-time) dynami programming ap-proahes forAnonym V-Del on three graph lasses: graphs of maximum degreetwo, luster graphs, and threshold graphs. We frankly admit that these threegraph lasses arry an extremely onstraining ombinatorial struture: AnonymV-Del is suh a viious problem that without these heavily onstraining stru-tures there is basially no hope for polynomial-time algorithms. Figure 2 sum-marizes the onsidered graph lasses and their ontainment relations.For Anonym E-Del, we show NP-ompleteness on aterpillars and ongraphs with maximum degree seven; this later result is in stark ontrast with the�xed-parameter tratability of Anonym E-Ins with respet to the maximumdegree ∆ [6℄.We analyze the parameterized omplexity of Anonym V-Del and AnonymE-Del, see Table 1 for an overview. One again, both problems show a di�ultand hallenging behavior: They are intratable with respet to eah of the three(single) parameters s, k, and ∆. Even worse, they are intratable with respetto the ombined parameter (s, k). The only positive parameterized results omewith the ombined parameters (∆, s) and (∆, k). The latter result is based on5



bipartite planarpermutation treebipartitepermutationintervalographs triviallyperfet unitinterval bipartitehainsplit
luster graphthreshold

NP-omplete
polynomial-time solvableFigure 2: The omplexity landsape of Anonym V-Del for various graph lasses. Theresults for lasses with thik frames are disussed in this work and they imply the results forlasses with thin frames. The omplexity of Anonym V-Del on unit interval graphs and onbipartite hain graphs remains open.Table 1: Overview on the omputational omplexity lassi�ation of Anonym V-Del andAnonym E-Del.Parameter Anonym V-Del Anonym E-Del

k NP-omplete for k = 2 NP-omplete for k = 2(Theorem 3) (Theorem 18)
(s, k) W[2℄-hard W[1℄-hard(Corollary 7) (Corollary 23)
∆ NP-omplete for ∆ = 3 NP-omplete for ∆ = 7(Theorem 2) (Theorem 20)

(s,∆) FPT (Theorem 24)
(k,∆) FPT (Corollary 27)bounding the number s of deleted verties in terms of ∆ and k.Finally, studying the approximability of the optimization problems naturallyassoiated with Anonym E-Del or Anonym V-Del, we obtain hardness re-sults showing that none of the onsidered problems an be approximated inpolynomial time better than within a fator of n1/2. Furthermore, for the opti-mization variants where the solution size s is given and the task is to maximizethe anonymity level k, this inapproximability even holds if we allow a runningtime of f(s)nO(1) for any omputable f . Again, this result holds for the edgedeletion and the vertex deletion variant, see Table 2 for an overview.Organization. We �rst introdue the neessary notation and onepts in Setion 2.We then provide our results for Anonym V-Del in Setion 3, starting with theNP-ompleteness results. To this end, we present in Subsetion 3.1 a redu-tion showing NP-hardness on trees. This redution serves in Subsetion 3.26



Table 2: Overview on the inapproximability of the optimization variants assoiated withAnonym V-Del and Anonym E-Del.vertex deletion Anonym Min-V-Del Max-Anonym V-Delrunning time (�xed k, minimize s) (�xed s, maximize k)polynomial time no n1−ε-approximation no n1/2−ε-approximation(Theorem 11) (Theorem 13)
f(s) · nO(1) open no n

1/2−ε-approximation(Theorem 12)edge deletion Anonym Min-E-Del Max-Anonym E-Delrunning time (�xed k, minimize s) (�xed s, maximize k)polynomial time no n1−ε-approximation no n1−ε-approximation(Theorem 21) (Theorem 20)
f(s) · nO(1) open no n1−ε-approximation(Theorem 22)as blueprint for a generi redution yielding NP-hardness on several restritedgraph lasses. In Subsetion 3.3, we then adjust this redution in order to provethe inapproximability results for Anonym V-Del. We present the polynomial-time solvable ases of Anonym V-Del in Subsetion 3.4. In Setion 4, we trans-fer the entral intratability results forAnonym V-Del to Anonym E-Del. Inpartiular, we show in Subsetion 4.1 that Anonym E-Del is NP-omplete onaterpillars. In Subsetion 4.2, we then give the inapproximability results. Fi-nally, we show in Setion 5 the �xed-parameter tratability of Anonym V-Deland Anonym E-Del with respet to the ombined parameters (s,∆) and (s, k).2. PreliminariesAll graphs in this paper are undireted, loopless, and simple (that is, withoutmultiple edges). Throughout we use n to denote the number of verties inthe onsidered graph. The maximum vertex degree of a graph G = (V,E) isdenoted by ∆G. A vertex subset S ⊆ V is alled k-deletion set if G[V \ S] is

k-anonymous. For eah vertex v ∈ V we denote by NG(v) the set of neighborsof v and by NG[v] = NG(v) ∪ {v} the losed neighborhood. Correspondingly,for a vertex subset V ′ we set NG[V
′] =

⋃

v∈V ′ NG[v] and NG(V
′) = NG[V

′]\V ′.For 0 ≤ α ≤ ∆, the blok of degree α is the set DG(α) ⊆ V of all verties withdegree α in G. Clearly, a graph is k-anonymous if and only if eah blok iseither of size zero or at least k. We omit subsripts if the orresponding graphis lear from the ontext.Parameterized Complexity. The onept of parameterized omplexity was pi-oneered by Downey and Fellows [12℄ (see Flum and Grohe [13℄ and Nieder-meier [14℄ for further monographs on parameterized omplexity). Herein, a7



parameterized problem is alled �xed-parameter tratable if there is an algo-rithm that deides any instane (I, p), onsisting of the �lassial� instane Iand a parameter p ∈ N, in f(p) · |I|O(1) time, for some omputable funtion fsolely depending on p.A ore tool in the development of �xed-parameter algorithms is polynomial-time preproessing by data redution, alled kernelization4 [15, 16℄. Here, thegoal is to transform a given problem instane (I, k) in polynomial time into anequivalent instane (I ′, k′) whose size is upper-bounded by a funtion of k. Thatis, (I, k) is a yes-instane if and only if (I ′, k′), k′ ≤ g(k), and |I ′| ≤ g(k) for somefuntion g. Thus, suh a transformation is a polynomial-time self-redution withthe onstraint that the redued instane is �small� (measured by g(k)). In asethat suh a transformation exists, I ′ is alled kernel of size g(k). Furthermore,if g is a polynomial, then it I ′ is alled a polynomial kernel.The parameterized omplexity hierarhy is omposed of the lasses FPT ⊆W[1℄ ⊆ W[2℄ ⊆ . . . ⊆ W[P]. A W[1℄-hard problem is not �xed-parametertratable (unless FPT = W[1℄) and one an prove the W[1℄-hardness by means ofa parameterized redution from a W[1℄-hard problem. Suh a redution betweentwo parameterized problems P and P ′ is a mapping of any instane (I, p) of Pin g(p) · |I|O(1) time (for some omputable funtion g) into an instane (I ′, p′)for P ′ suh that (I, p) ∈ P ⇔ (I ′, p′) ∈ P and p′ ≤ h(p) for some omputablefuntion h.Approximation. Let Σ be a �nite alphabet. Given an optimization problem Q ⊆
Σ∗ and an instane I of Q, we denote by opt(I) the value of an optimum solutionfor I and by val(I, S) the value of a feasible solution S of I. The performaneratio of S (or approximation fator) is r(I, S) = max

{
val(I,S)
opt(I) , opt(I)

val(I,S)

}

. For afuntion ρ, an algorithm is a ρ(n)-approximation, if for every instane I of Q,it returns a solution S suh that r(I, S) ≤ ρ(|I|). An optimization problem is
ρ(n)-approximable in polynomial time if there exists a ρ(n)-approximation algo-rithm running in time |I|O(1) for any instane I. A parameterized optimizationproblem Q ⊆ Σ∗ × N is ρ(n)-approximable in fpt-time w.r.t. the parameter pif there exists a ρ(n)-approximation algorithm running in time f(p) · |I|O(1) forany instane (I, p) and f is a omputable funtion [17℄. It is worth pointingthat in this ase, p is not related to the optimization value.In this paper we use a gap-redution between a deision problem and a mini-mization or maximization problem. A deision problem P is alled gap-reduibleto a maximization problem Q with gap ρ ≥ 1 if there exists a polynomial-timeomputable funtion that maps any instane I of A to an instane I ′ of Q, whilesatisfying the following properties:

• if I is a yes-instane, then opt(I ′) ≥ ξ(|I ′|) · ρ(|I ′|), and
• if I is a no-instane, then opt(I ′) < ξ(|I ′|),4It is well-known that a parameterized problem is �xed-parameter tratable if and only ifit has a kernelization. 8



where ξ and ρ are two omputable funtions. If A is NP-hard, then Q is not
ρ-approximable in polynomial time, unless P = NP [18℄. In this paper we alsouse a variant of this notion, alled fpt gap-redution.De�nition 1 (fpt gap-redution). A parameterized problem P is alled fptgap-reduible to a parameterized maximization problem Q with gap ρ ≥ 1 if anyinstane (I, p) of P an be mapped to an instane (I ′, p′) of Q in f(p) · |I|O(1)time while satisfying the following properties:(i) p′ ≤ g(p) for some omputable funtion g,(ii) if I is a yes-instane, then opt(I ′) ≥ ξ(|I ′|) · ρ(|I ′|), and(iii) if I is a no-instane, then opt(I ′) < ξ(|I ′|),where ξ and ρ are two omputable funtions.The interest of the fpt gap-redution is the next result that follows from theprevious de�nition:Lemma 1. If a parameterized problem P is C-hard, fpt gap-reduible to a pa-rameterized optimization problem Q with gap ρ, and Q is ρ-approximable infpt-time, then FPT = C, where C is any lass of the W-hierarhy.Proof. We give a �xed-parameter algorithm for the parameterized problem P asfollows: Sine P is fpt gap-reduible to Q = (I, sol, cost,max) with gap ρ, thereexists an algorithm mapping the input (I, p) of P to an instane (I ′, p′) ∈ Iof Q in f(p) · |I|O(1) time suh that the properties (i) to (iii) of De�nition 1 aresatis�ed. We then apply the �xed-parameter ρ-approximation algorithm for Qon the instane (I ′, p′). Due to property (i), this algorithm runs in g(p) · |I|O(1)time for some omputable funtion g. Let x ∈ sol(I ′) be the solution produedby the �xed-parameter ρ-approximation algorithm forQ. Assume that (I, p) wasa no-instane. Hene, we have cost(x) ≤ opt(I ′) and by property (iii) it followsthat cost(x) < ξ(I ′). Now assume that (I, p) was a yes-instane. Hene, wehave opt(I ′)/ cost(x) ≤ ρ(I ′) and thus cost(x) ≥ opt(I ′)/ρ(I ′). By property (ii)it follows that cost(x) ≥ opt(I ′)/ρ(I ′) ≥ (ξ(I ′) · ρ(I ′))/ρ(I ′) = ξ(I ′). Hene, bydistinguishing the two ases cost(x) < ξ(I ′) and cost(x) ≥ ξ(I ′) we an deidethe instane (I, p) of P in (g(p)+f(p)) · |I|O(1) time. Thus P is �xed-parametertratable and sine P is C-hard, it follows that FPT = C.3. Vertex DeletionIn this setion, we provide various hardness results for Anonym V-Del onseveral restrited graph lasses suh as trees, split graphs, and trivially perfetgraphs. In a �rst subsetion (see Subsetion 3.1), we show thatAnonym V-Delremains NP-hard even on trees. Extrating the basi ideas of this result, subse-quently we provide a generi redution to show NP-hardness on trivially perfetgraphs, bipartite permutation graphs, and split graphs (see Subsetion 3.2) and9



strong inapproximability results for the two natural optimization problems as-soiated with Anonym V-Del (see Subsetion 3.3). We also identify severallasses of graphs for whih Anonym V-Del is polynomial-time solvable (seeSubsetion 3.4).As a warm up, we �rst prove thatAnonym V-Del is NP-omplete on graphswith maximum degree three.Theorem 2. Anonym V-Del is NP-omplete on graphs with maximum degreethree.Proof. Sine ontainment in NP is easy to see, we fous on showing NP-hardness.To this end, we give a redution from the Vertex Cover problem whih isknown to be NP-omplete even in three-regular graphs [19, GT1℄ and is formallyde�ned as follows.Vertex Cover [19, GT1℄Input: An undireted graph G = (V,E) and h ∈ N.Question: Is there a vertex subset V ′ ⊆ V , |V ′| ≤ h, suh that every edgehas an endpoint in V ′?Input: h = 3 Solution:
Given a Vertex Cover instane (G = (V,E), h) with G being three-regular,start by opying G into a new graph G′. Finally, add h+1 degree-zero vertiesto G′, set s := h, and k := |V |+ 1.If G ontains a vertex over V ′ of size h, then deleting V ′ in G′ learlyresults in an edgeless graph with |V |+1 = k verties, implying that (G′, s, k) isa yes-instane of Anonym V-Del. In the reverse diretion, for any k-deletionset S, sine 2k > n+h+1 and G′ ontains s+1 degree-zero verties, all vertiesin G′ − S have degree zero. Thus, S ∩ V is a vertex over in G.3.1. NP-Hardness on TreesIn this subsetion, we show that Anonym V-Del remains NP-hard evenon trees. This result and many further hardness results will be obtained usingredutions from the NP-omplete Set Cover problem, whih is de�ned asfollows:Set Cover [19, SP5℄Input: A universe A = {a1, a2, . . . , aα}, a olletion B =

{B1, B2, . . . , Bβ} of subsets of A, and h ∈ N.Question: Is there an index set J ⊆ {1, 2, . . . , β} with |J | ≤ h, suhthat ⋃j∈J Bj = A? 10



Input: A = {a1, a2, . . . , a7}
B = {B1, B2, B3, B4}, h = 2

B1 = {a1, a2, a4, a5} B2 = {a2, a4, a6}
B3 = {a3, a5, a6, a7} B4 = {a4, a5, a7}

B1 B2 B3 B4

a1 a2 a3 a4 a5 a6 a7

Solution:
J = {1, 3}

B1 B2 B3 B4

a1 a2 a3 a4 a5 a6 a7If a Set Cover instane I = (A,B, h) ontains suh an index set J , then werefer to the set {Bj | j ∈ J} as a set over for I.Redution 1. The redution showing NP-hardness of Anonym V-Del on treesis as follows: Let (A,B, h) be an instane of Set Cover. We assume withoutloss of generality that for eah element a ∈ A there exists a set B ∈ B with a ∈ B.Furthermore, we assume without loss of generality that eah set B ∈ B oursat least three times in B. To derease the amount of indies in the onstrutiongiven below we introdue the funtion f : N→ N with f(i) = α+ (h+ 1)i.The redution for trees is as follows, see Figure 3 for an example. Set k :=
2 and s := h. To obtain an equivalent Anonym V-Del-instane (G, k, s),onstrut G = (V,E) as follows: For eah element ai ∈ A add an element gadgetonsisting of a star K1,f(i) with the enter vertex v(ai). Denote with VA :=
{v(a1), v(a2), . . . , v(aα)} the set of all these enter verties.For eah set Bj ∈ B add a set gadget whih is a tree rooted in a vertex v(Bj).The root has |Bj | hild verties where eah element ai ∈ Bj orresponds toexatly one of the hildren of v(Bj), denoted by v(ai, Bj). Additionally, we addto v(ai, Bj) exatly f(i) degree-one neighbors. Hene, the set gadget is a treeof depth two rooted in v(Bj). We denote with VB := {v(B1), v(B2), . . . , v(Bβ)}the set of all root verties. Observe that, as eah set Bj ∈ B ours at leastthree times, the set gadgets are 2-anonymous. Finally, to end up with one treeinstead of a forest, repeatedly add edges between any degree-one-verties ofdi�erent onneted omponents.Corretness of Redution 1. Observe that for eah element ai ∈ A the only ver-tex of degree f(i) is v(ai) and there are no other verties violating the 2-anony-mous property. The key point in the onstrution is that, in order to get a
2-anonymous graph, one has to delete verties of VB: Let ai ∈ A be an ele-ment and v(Bj) a root vertex suh that ai ∈ Bj . By onstrution the hildvertex v(ai, Bj) of v(Bj) orresponds to ai and therefore has f(i) hild verties.Thus, deleting v(Bj) lowers the degree of v(ai, Bj) to f(i) and, hene, v(ai) nolonger violates the 2-anonymous property. Furthermore, as eah set Bj ∈ Bours at least three times, the verties VB are 2-anonymous. Hene, given aset over one an onstrut a orresponding k-deletion set of the same size and,thus, if (A,B, h) is a yes-instane, then (G, k, s) is a yes-instane. The basiidea in the onverse diretion is that if there is a k-deletion set S, then, due to11
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f(j)− f(i) > s
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deg(v(ai, Bj)) = f(i) + 1

deg(v(ai)) = f(i)Figure 3: Example of the redution for trees. Above the Set Cover instane with twelvesets (eah set Bi , i = 1, . . . , 4 appears three times) and seven elements is graphially displayed(for example, the set B1 ontains the elements a1, a2, a4, and a5, and {B1, B3} forms a setover). In our redution, we assume without loss of generality that eah set ours at leasttimes. However, to keep the �gure learly arranged, we omit these opies in the �gure. Beloware the four di�erent set gadgets and the element gadgets are at the bottom of the piture.Observe that by the hoie of f , the degrees of the verties in the set-gadgets and vertex-gadgets are ensured to not interfere, even if s verties are removed. The e�et of these opiesto the onstrution is that eah of the four set-gadgets appears three times. Thus, deletingthe verties v(B1) and v(B3) makes the displayed graph 2-anonymous.the hoie of f , there is also a k-deletion set S′ ⊆ VB that is not larger than S.The formal proof whih implies the following theorem will be given later (seeLemma 5), after introduing the generi redution.Theorem 3. Anonym V-Del is NP-omplete on trees even if k = 2.3.2. Generi RedutionIn this setion, we generalize Redution 1 given in the previous subsetion.More spei�ally, we will de�ne properties suh that a graph G ful�lling themtogether with s := h and k := 2 forms a yes-instane of Anonym V-Del if12



and only if the given Set Cover instane (A,B, h) is a yes-instane. Based onthat, we then desribe the onstrution of several graphs ontained in di�erentgraph lasses and ful�lling the properties. Formally, we require the onstrutedgraph G = (V,E) to ful�ll the following:1. Element-gadgets:(a) For eah element ai ∈ A there is a orresponding vertex, denotedby v(ai), in G and the vertex set VA := {v(a1), v(a2), . . . , v(aα)} isexatly the set of verties not being 2-anonymous in G.(b) For eah vertex v ∈ V it holds that |N [v] ∩ VA| ≤ 1.2. Set-gadgets:(a) For eah set Bj ∈ B there is a orresponding vertex v(Bj) in G andfor eah element ai ∈ Bj the vertex v(Bj) has a neighbor v(ai, Bj)with deg(v(ai, Bj)) = deg(v(ai)) + 1.Set VB := {v(B1), v(B2), . . . , v(Bβ)} and ABj
:= {v(ai, Bj) | ai ∈ Bj}.Set AB :=

⋃

Bj∈B ABj
.(b) For all Bj ∈ B it holds that N(ABj

) ∩ VB = {v(Bj)}() For eah vertex v ∈ V there is a vertex u ∈ VB suh that N(v)∩AB ⊆
N(u).3. Interation between these gadgets:(a) The vertex subsets VA, VB, and AB1 , AB2 , . . . , ABβ

are pairwise dis-joint.(b) It holds that N(VA) ∩ (VB ∪ AB) = ∅.() For eah D ⊆ VB, |D| ≤ h, the set of verties violating the 2-anony-mous property in G−D is a subset of VA.(d) Any two verties u ∈ VA and v /∈ AB satisfy | deg(u)− deg(v)| > s.It is not hard to verify that the graph onstruted in the redution in theprevious paragraph has the above properties. Before proving the orretness ofthe generi redution we make the following observation.Observation 4. For eah D ⊆ VB, |D| ≤ h, the set VA \ {v(ai) | ∃v(Bj) ∈
D : ai ∈ Bj} is exatly the set of verties not being 2-anonymous in G−D.Proof. By Property 1a only the verties in VA are not 2-anonymous inG. Property 3ensures that the set of verties X violating the 2-anonymous property in G−Dis a subset of VA.Beause of Property 3b (N(VA)∩VB = ∅) it holds that degG(v) = degG−D(v)for all v ∈ X . Moreover, beause N(ABj

) ∩ VB = {v(Bj)} (Property 2b)it holds for all Bj ∈ B and all v(ai, Bj) ∈ ABj
that degG−D(v(ai, Bj)) =

degG(v(ai, Bj)) − x where x is one if v(Bj) ∈ D and otherwise zero. Thisimplies with Property 2a that X ⊆ VA \ {v(ai) | ∃v(Bj) ∈ D : ai ∈ Bj}.13



By Property 3a it follows that VA ⊆ V \ D. To show that VA \ {v(ai) |
∃v(Bj) ∈ D : ai ∈ Bj} ⊆ X , assume by ontradition that there is a ver-tex v(ai) ∈ VA \X but for all v(Bj) ∈ D it holds that ai /∈ Bj . By Property 3bit holds that degG(v(ai)) = degG−D(v(ai)) and hene by Property 3d it followsthat there is some vertex v ∈ AB with degG−D(v) = degG−D(v(ai)). Thus,sine D ⊆ VB and N(ABj

) ∩ VB = {v(Bj)} (Property 2b), by Property 2a itfollows that there is some v(Bj) ∈ D with ai ∈ Bj , a ontradition.Lemma 5. Let G be a graph satisfying Properties 1a to 3d for a given in-stane (A,B, h) of Set Cover. Then (G, 2, h) is a yes-instane of AnonymV-Del if and only if (A,B, h) is a yes-instane of Set Cover.Proof. If there is a set over B′ ⊆ B, |B′| ≤ h, suh that ⋃Bj∈B′ Bj = A, thenby Observation 4 the set S = {v(Bj) | Bj ∈ B′} ⊆ VB, |S| = |B′|, is a 2-deletionset for G. It remains to prove the reverse diretion.Let S be a 2-deletion set of size at most s = h for G = (V,E). We onstruta set over B′, |B′| ≤ |S|, for the Set Cover instane. First, initialize B′ := ∅.Then, onsider eah vertex v ∈ S: If v = v(Bj) ∈ VB, then add Bj to B′ (Case1). If v ∈ N [VA], then by Property 1b there is only one ai suh that v ∈ N [v(ai)]and we add any Bj with ai ∈ Bj to B′ (Case 2). Finally, if v ∈ N [AB], then byProperty 2 there is a vertex v(Bj) ∈ VB with N(v) ∩ AB ⊆ N(v(Bj)) and weadd Bj to B′ (Case 3).We next prove that B′ is indeed a set over for the Set Cover instane (A,B, h).Assume towards a ontradition that B′ is not a set over, that is, there is an el-ement ai ∈ A suh that for eah B ∈ B′ we have ai /∈ B. Observe that in G, thevertex v(ai) violates the 2-anonymous property, that is, there is no other vertexwith the degree of v(ai). Furthermore, from the onstrution of B′ (see Case 2),it follows that v(ai) /∈ S and that degG(v(ai)) = degG−S(v(ai)). Hene, thereis a vertex v ∈ V suh that degG(v(ai)) = degG−S(v) and thus, by Property 3d,it follows that v ∈ N [AB], that is, v = v(ai, Bj) for some Bj with ai ∈ Bj . ByCase 1 and Case 3 of the onstrution of B′, this implies that B′ ontains a set Bj,a ontradition to the fat that ai ∈ A for eah B ∈ B′ we have ai /∈ B.Using this generi redution we now show NP-hardness on several graphlasses whih are de�ned as follows (see Brandstädt et al. [20℄): Trivially perfetgraphs are the {P4, C4}-free graphs, that is, they do not ontain an induedpath or yle on four verties. A graph G is a bipartite permutation graph if Gis bipartite and does not ontain an asteroidal triple (is AT-free). Three vertiesof a graph form an asteroidal triple if every two of them are onneted by a pathavoiding the neighborhood of the third. A graph is a split graph if it an bepartitioned into a lique and an independent set.Theorem 6. Anonym V-Del is NP-omplete on trivially perfet graphs, bi-partite permutation graphs, and split graphs, even if k = 2.Proof. Sine ontainment in NP is easy to see, we fous on showing NP-hardness.Let B = {B1, B2, . . . , Bβ} be a olletion of subsets of some universe A =14



v(B1)

v(a1, B1) v(a2, B1) v(a4, B1) v(a5, B1)

· · · U(B1)

AB1

C(B1)

Figure 4: The set-gadget C(B1) for the onstruted bipartite permutation graph. The givenSet Cover instane is the same as in Figure 3 where B1 = {a, a2, a4, a5}.
{a1, a2, . . . , aα} whih form together with some h ∈ N an instane of SetCover. As in Redution 1, we assume without loss of generality that for eahelement a ∈ A there exists a set B ∈ B with a ∈ B. Furthermore, we assumewithout loss of generality that eah set B ∈ B ours at least three times in B.We �rst desribe the redutions for eah the three graph lasses and then,due to the similarities in the onstruted graphs, we show for all three graphstogether that the above properties are satis�ed. Let f : N → N be f(i) =
i(h+ 1) + α.Bipartite permutation graphs: Analogously to the redution for trees add foreah set ai ∈ A an element-gadget onsisting of star K1,f(i) with a enter vertexdenoted by v(ai). Clearly, a star is a bipartite permutation graph.For eah set Bj ∈ B we add a set-gadget as follows: First, add a vertex v(Bj)to G. For eah element ai ∈ Bj add a hild vertex, denoted by v(ai, Bj),to v(Bj). Let imax := maxai∈Bj

{i}, ℓ := |Bj |, and ABj
:= {v(ai, Bj) | ai ∈ Bj}.Next, add the vertex set U(Bj) := {u1(Bj), u2(Bj), . . . , uf(imax)(Bj)} and foreah ai ∈ Bj the edge set {(ur(Bj), v(ai, Bj)) | 1 ≤ r ≤ f(i)}.Note that deg(v(ai, Bj)) = deg(v(ai)) + 1. Denote with C(Bj) the set-gadget, that is, the onneted omponent ontaining v(Bj) whih onsists ofthe verties {v(Bj)} ∪ ABj

∪ U(Bj); see Figure 4 for an example.Furthermore, observe that N(u1(Bj)) ⊇ N(u2(Bj)) ⊇ . . . ⊇ N(uiℓ(Bj)) andthus, in ontrast to the previous redution for trees, C(Bj) is AT-free.Overall, the onstruted graph is AT-free and learly bipartite.Trivially perfet graphs: First, onstrut the graph as desribed above for thease of bipartite permutation graphs. Next for eah Bj ∈ B apply the followinghanges to C(Bj), see Figure 5 for an illustration: Add edges so that the vertiesin ABj
form a lique. To ensure that the degree of the verties in ABj

does nothange by the previous �lique operation�, remove the �rst |Bj | − 1 vertiesfrom U(Bj) whih are all adjaent to eah vertex in ABj
due to the de�nitionof f and |Bj | ≤ α. 15



v(B1)

v(a1, B1) v(a2, B1) v(a4, B1) v(a5, B1)

· · · U(B1)

AB1

C(B1)

Figure 5: The set-gadget C(B1) for the onstruted trivially perfet graphs. The given SetCover instane is the same as in Figure 3 where B1 = {a, a2, a4, a5}.Clearly, the star omponents ontaining the verties from VA are triviallyperfet. Furthermore, note that eah C(Bj) is trivially perfet: sine {v(Bj)}∪
ABj

is a lique, the remaining verties in U(Bj) form an independent set, andsine N(u|Bj |(Bj)) ⊇ N(u|Bj |+1(Bj)) ⊇ . . . ⊇ N(uiℓ(Bj)) it is easy to verifythat C(Bj) is indeed a threshold graph whih is a speial form of a triviallyperfet graph [20℄.Note that sine the onneted omponents ontaining the verties in VA arealso threshold graphs, by the redution above we have proven that Anonym V-Del is indeed NP-hard on graphs whose onneted omponents are thresholdgraphs. However, in Theorem 17 we prove that Anonym V-Del is polynomial-time solvable on threshold graphs.Split graphs: First, onstrut the graph G as desribed above for the ase ofbipartite permutation graphs. For eah set Bj ∈ B set W (Bj) := {v(Bj)} ∪
U(Bj). Then, set WB :=

⋃

B∈B W (B). Finally, add edges to make the vertexsubset N(VA) ∪ WB to a lique. Observe that the remaining verties form anindependent set and, hene, the graph is a split graph.Corretness: We now show that the onstruted graphs satisfy Properties 1ato 3d. To this end, observe that, due to assumption that eah set ours threetimes in B, eah vertex in C(Bj) is 2-anonymous. Hene, the verties in VAare exatly the ones that are not 2-anonymous. Thus, Property 1a is satis�ed.Properties 2a and 3a are learly satis�ed. Sine for eah vertex v(ai) ∈ VAthe vertex set N [v(ai)] indues a star (a lique in the split graph ase) and foreah j 6= i we have N [v(ai)] ∩ N [v(aj)] = ∅, Property 1b is ful�lled. Observethat ABj
⊆ N(v(Bj)) for eah Bj ∈ B. Furthermore, the verties in VA and VBare pairwise in di�erent onneted omponents in the ase for trivially perfetgraphs and bipartite permutation graphs. Thus, Properties 2b and 3b are ful-�lled for these ases. For the ase of split graphs, observe that we started withthe onstrution for the bipartite permutation graphs and the verties of VAand AB remained unhanged. Hene, Properties 2b and 3b are also ful�lled for16



the ase of split graphs. In the onstruted graphs for eah Bj , Bj′ ∈ B, j 6= j′,we have N(ABj
) ∩ N(ABj′

) = ∅. From this and ABj
⊆ N(v(Bj)), it followsthat Property 2 is satis�ed. Sine AB ⊆ N(VB) this implies that Property 3is ful�lled. Finally, sine eah vertex in V \ (VA ∪AB) has degree at most α (atleast |N(VA) ∪WB| in the split graph ase), it follows from the de�nition of fthat Property 3d is satis�ed.Sine Set Cover is W[2℄-omplete with respet to the solution size h [12℄and the solution size s in the onstruted instane was s := h, we have thefollowing.Corollary 7. Anonym V-Del is W[2℄-hard with respet to parameter s, evenif k = 2 and if the input graph is a tree, a bipartite permutation graph, a splitgraph, or a trivially perfet graph.Set Cover is �xed-parameter tratable with respet to the ombined pa-rameter (α, h) [21℄ but does not admit a polynomial kernel with respet to (α, h) [22℄,unless NP ⊆ oNP/poly. Observe that in all onstrutions for Theorem 6 exeptthe one for split graphs we an bound s and ∆ in a polynomial in α and h.Corollary 8. Anonym V-Del on trees, bipartite permutation graphs or triv-ially perfet graphs does not admit a polynomial kernel with respet to the om-bined parameter (k, s,∆), unless NP ⊆ oNP/poly.There are two natural optimization versions assoiated with Anonym V-Del: in one version (alled Max-Anonym V-Del) the goal is to maximize theanonymity k subjet to the onstraint that the number s of deleted verties doesnot exeed a given bound; in the other version (alled Anonym Min-V-Del)the goal is to minimize the number s of deleted verties subjet to the onstraintthat the anonymity does not go below a ertain given bound. As Set Coveris NP-hard to approximate within a ratio o(logn) [23, 24℄, the above redutionyields the following inapproximability result.Corollary 9. Anonym Min-V-Del annot be approximated within a fatorof o(log n) in polynomial-time, even if k = 2 and if the input graph is a tree, abipartite permutation graph, a split graph, or a trivially perfet graph, unless P =NP.Sine the above redution gives NP-hardness for k = 2 and the input graphis 1-anonymous, we immediately get inapproximability within a fator of twofor Max-Anonym V-Del.Corollary 10. For every 0 < ε < 1, Max-Anonym V-Del annot be approxi-mated within a fator of 2− ε in polynomial time, unless P = NP. Furthermore,if Max-Anonym V-Del admits for any 0 < ε ≤ 1 a �xed-parameter (2 − ε)-approximation algorithm with respet to parameter s, then FPT = W[2℄.In the next setion, we show that we an strengthen these inapproximabilityresults. 17



3.3. Inapproximability ResultsCorollaries 9 and 10 give �rst lower bounds on the polynomial-time ap-proximability of the two optimization problems assoiated to Anonym V-Del,namely Anonym Min-V-Del and Max-Anonym V-Del. For general graphs,these results, however, an be strengthened onsiderably in terms of the ahiev-able approximation fator and, in ase of Max-Anonym V-Del, also in termsof the allowed running time. Spei�ally, we prove that Anonym Min-V-Delis not n1−ε-approximable in polynomial time, while Max-Anonym V-Del isnot n
1/2−ε-approximable in fpt-time with respet to the parameter s, even ontrees.To this end, for the polynomial-time inapproximability of Anonym Min-V-Del, we slightly adjust the redution given in the proof of Theorem 2.Theorem 11. For every 0 < ε ≤ 1/2, Anonym Min-V-Del is not n1−ε-approximable in polynomial time, even on graphs with maximum degree three,unless P = NP.Proof. Let 0 < ε ≤ 1 be a onstant. We establish a gap-redution with gap n1−εfrom the Vertex Cover problem whih is known to be NP-omplete even inthree-regular graphs [19, GT1℄.Given aVertex Cover instane (G = (V,E), h) we onstrut an instane I ′ =

(G′ = (V ′, E′), k) of Anonym Min-V-Del. Start by opying G into a newgraph G′. Next, set x :=
⌈
n1/ε

⌉
− n + h. Finally, add x degree-zero vertiesto G′ and set k := n− h + x. Denote by n′ the number of verties of G′, thus

n′ = n+ x.We now show that if I is a yes-instane, then opt(I ′) ≥ h and if I is ano-instane, then opt(I ′) = n+ x.Suppose that G ontains a vertex over S of size h. Then, deleting S in G′learly results in an edgeless graph with n − h + x = k verties, implying that
opt(I ′) ≤ h.Suppose thatG′ ontains a k-deletion set S of size at most |V ′|−1. Sine 2k >
n− h+ x and G′ ontains x > h degree-zero verties, all verties in G′ −S havedegree zero. Furthermore, at least k = n − h + x degree-zero verties are on-tained in G′ − S and hene, |S| ≤ h and S ∩ V is a vertex over in G. Thus,if G does not ontain a vertex over of size h, then opt(I ′) = |V ′| = n+ x.We obtain a gap-redution with the gap at least

n+ x

h
=

⌈n
1
ε ⌉+ h

h
=

(⌈n
1
ε ⌉+ h)(ε+1−ε)

h
≥

n · (⌈n
1
ε ⌉+ h)(1−ε)

h

≥ (⌈n
1
ε ⌉+ h)(1−ε) = (n+ x)(1−ε) = (n′)1−ε.Next we show strong parameterized inapproximability results forMax-AnonymV-Del. To this end, we adjust Redution 1 in order to obtain an fpt gap-redution. 18
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Figure 6: The set-gadget for the set B1 in the fpt gap-redution of Theorem 12. Thegiven Set Cover instane is the same as in Figure 3 where B1 = {a, a2, a4, a5}. The fpt gap-redution is an extension of Redution 1 (depited in Figure 3). The main di�erene is that thefpt gap-redution introdues a lot of opies of ertain verties to inrease the anonymity level.This an be seen in the set-gadget above: While in Redution 1 only one vertex orresponds tothe ombination (a1, B1) with a1 ∈ B1, namely v(a1, B1), in the fpt gap-redution t vertiesorrespond to the ombination, namely v1(a1, B1), v2(a1, B1), . . . , vt(a1, B1).Theorem 12. For every 0 < ε ≤ 1/2, Max-Anonym V-Del is not �xed-parameter n
1/2−ε-approximable with respet to parameter s, even on trees, un-less FPT = W[2℄.Proof. Let 0 < ε ≤ 1/2 be a onstant. We provide an fpt gap-redution withgap n1/2−ε from the W[2℄-hard Set Cover problem [12℄ parameterized by thesolution size h. Let I = (A,B, h) be an instane of Set Cover. We assumewithout loss of generality that for eah element ai ∈ A there exists a set Bj ∈ Bwith ai ∈ Bj . Let f : N→ N be f(i) = (h+ 4)i. Set t := ⌈

(αβ)(1−2ε)/(2ε)
⌉. Wewill aim for making the onstruted graph t-anonymous.The instane I ′ of Max-Anonym V-Del is de�ned by s = h and a graphG =

(V,E) onstruted as follows: For eah element ai ∈ A add a star K1,f(i) withthe enter vertex v(ai). Denote with VA = {v(a1), v(a2), . . . , v(aα)} the set of allthese enter verties. Furthermore, for eah element ai ∈ A add t starsK1,f(i)+1.For eah set Bj ∈ B add a set-gadget whih will onsist of a tree rooted in avertex v(Bj), see Figure 6 for an illustration. The root has |Bj | · t hild vertieswhere eah element ai ∈ Bj orresponds to exatly t of these hildren, denotedby v1(ai, Bj), v2(ai, Bj), . . ., vt(ai, Bj). Additionally, for eah ℓ ∈ {1, 2, . . . , t}we add to vℓ(ai, Bj) exatly f(i) degree-one neighbors. Hene, the set gadget19



is a tree of depth two rooted in v(Bj). To ensure that the root v(Bj) doesnot violate the t-anonymous property we add t stars K1,deg(v(Bj)). We denotewith VB = {v(B1), v(B2), . . . , v(Bβ)} the set of all root verties. Finally, to endup with one tree instead of a forest, repeatedly add edges between any degree-one-verties of di�erent onneted omponents. Denoting by n the number ofverties in G it holds that
n ≤ tβα2

︸ ︷︷ ︸verties for elements+ t(βα)2 + tβα
︸ ︷︷ ︸verties for sets < (tβα)2.We now show that if I is a yes-instane, then opt(I ′) ≥ t and if I is ano-instane, then opt(I ′) = 1.Suppose that I has a set over of size h. Observe that for eah element ai ∈ Athe only vertex of degree f(i) is v(ai), and there are no other verties violatingthe t-anonymous property. The key point in the onstrution is that, in orderto get a t-anonymous graph, one has to delete verties of VB. Indeed, let ai ∈ Abe an element and v(ai) a root vertex suh that ai ∈ Bj . By onstrution,for eah 1 ≤ ℓ ≤ t the hild vertex vℓ(ai, Bj) of v(Bj) has f(i) hild vertiesand hene a degree of f(i) + 1. Thus, deleting v(Bj) lowers the degree ofeah vℓ(ai, Bj) to f(i) and, hene, v(ai) no longer violates the t-anonymousproperty. Hene, given a set over of size h one an onstrut a orresponding t-deletion set for G.Conversely, we show that if there exists a 2-deletion set of size at most hin G, then (A,B, h) is a yes-instane of Set Cover. Let S ⊆ V be a 2-deletionset of size at most h. We onstrut a set over B′ of size at most |S| at follows.First, initialize B′ := ∅. Then, add for eah vertex v(Bj) ∈ S ∩ VB the set Bjto B′ (Step 1). Next, as long as there is an element ai with ai /∈

⋃

B∈B′ B, add aset Bj with ai ∈ Bj to B′ (Step 2). It is lear that B′ is a set over for (A,B, h).It remains to prove that |B′| ≤ |S|. To this end, partition the set S into S1 ∩S2where S1 ontains exatly the verties in VB, that is S1 := S ∩ VB and S2 :=
S \ S1. Observe that the number of sets added to B′ in Step 1 is exatly |S1|.Furthermore, observe that all verties in VA violate the 2-anonymous propertyand eah of these verties is a enter of an isolated star with more than twoleaves. Sine the only verties in G that are adjaent to more than one vertex ofdegree at least three are the verties in VB, it follows, eah vertex in S2 ��xes� forat most one vertex in VA the 2-anonymous property. Hene, the number of setsadded in Step 2 is at most |S2|. Thus |B′| ≤ |S| and (A,B, h) is a yes-instaneof Set Cover.We obtain an fpt gap-redution with the gap

t = (t2)
1/2+ε−ε = t2ε(t2)

1/2−ε = (αβ)1−2ε(t2)
1/2−ε

= (α2β2)
1/2−ε(t2)

1/2−ε = (α2β2t2)
1/2−ε > n

1/2−εsine n < t2α2β2. Thus, the statement of the theorem follows from Lemma 1.Sine the fpt gap-redution provided in the proof of Theorem 12 an beonstruted in polynomial time and sine Set Cover is NP-omplete, we also20



obtain polynomial-time inapproximability under the stronger assumption P =NP.Theorem 13. For every 0 < ε ≤ 1/2, Max-Anonym V-Del is not n
1/2−ε-approximable in polynomial time, even on trees, unless P = NP.3.4. Polynomially-Time Solvable CasesWe omplement our intratability results for Anonym V-Del from the pre-vious setions by showing that Anonym V-Del is polynomial-time solvable ongraphs with maximum degree two, on graphs that are disjoint unions of liques,and on threshold graphs.3.4.1. Graphs with Maximum Degree TwoIn ontrast to graphs of maximum degree three (see Theorem 2), we observethatAnonym V-Del is polynomial-time solvable on graphs of maximum degreetwo. Note that a graph of maximum degree two is just a olletion of pathsand yles. Given �ve integers d0, d1, d2, x, y, it is easy to deide whether itis possible to remove x verties from a path of length y (respetively, from ayle of length y) suh that there survive preisely d0 verties of degree zero, d1verties of degree one, and d2 verties of degree two. A straight-forward dynamiprogramming approah based on this observation leads to the following.Theorem 14. On graphs of maximum degree two, Anonym V-Del is polynomial-time solvable.3.4.2. Disjoint Union of CliquesNote that Anonym V-Del is trivial on liques: either the lique size is atleast k, or otherwise one has to delete all the verties. The following theoremshows that polynomial-time solvability also arries over to the ase where thegraph is the disjoint union of several liques, that is, a luster graph. A graphis a luster graph if and only if it does not ontain the 3-vertex path P3 as anindued subgraph.Theorem 15. On a luster graph G with maximum degree ∆, Anonym V-Delan be solved in O(n2∆) time.Proof. Note that removing any number of verties from a luster graph yieldsanother luster graph. For an integer c ≥ 1, we denote by #comp(G, c) thenumber of omponents of size c in G. For integers x, y ≥ 1, we denote by G(x, y)the graph that onsists of all omponents of G of size up to x, together with ynew omponents (liques) of size exatly x.We design a dynami program that solves Anonym V-Del for all suhgraphs G(x, y). We denote by f(x, y) the smallest possible number of vertieswhose removal from G(x, y) yields a k-anonymous graph, and we store all thesevalues in the dynami programming table. In the initialization phase of thedynami program we handle the ases with x = 1. Note that the graph G(1, y)21



onsists of t := #comp(G, 1)+y isolated verties. Then f(1, y) = 0 whenever t ≥
k, and f(1, y) = t whenever t < k.The ases with x ≥ 2 are handled as follows. Consider a graph G(x, y) thatontains t := #comp(G, x) + y omponents of size x. A k-anonymous subgraphof G(x, y) will ontain a ertain number z of these omponents, while from eahof the remaining t− z omponents (at least) one vertex is to be removed; notethat this requires x · z ≥ k whenever z 6= 0. This yields the formula

f(x, y) = min {f(x− 1, t− z) + t− z | z = 0 or k/x ≤ z ≤ t} .As the largest lique in G ontains ∆ + 1 verties, the dynami programmingtable has O(n∆) entries. We preompute all the values #comp, and then de-termine every value f(x, y) in O(n) time per entry. All in all, this yields thelaimed running time of O(n2∆). The �nal answer for the graph G is givenby f(∆ + 1, 0).3.4.3. Threshold GraphsWe reall that a graph G = (V,E) is a threshold graph if there are positivereal vertex weights w(v) for v ∈ V suh that {v1, v2} ∈ E if and only if w(v1) +
w(v2) ≥ 1; see Brandstädt et al. [20℄ for more information. Without loss ofgenerality we will assume that the vertex weights satisfy the following onditions:

• The vertex weights are pairwise distint, and satisfy 0 < w(v) < 1.
• Any v1, v2 ∈ V satisfy w(v1) + w(v2) 6= 1; in partiular w(v1) 6= 1/2.Note that the losed neighborhoods in a threshold graph are totally orderedby inlusion: whenever w(v1) < w(v2), then NG[v1] ⊆ NG[v2] and onse-quently deg(v1) ≤ deg(v2).Lemma 16. Let U ⊆ V be a subset of verties with |U | ≥ 2, let wmin =

minu∈U w(u) and wmax = maxu∈U w(u), and let u0, u1 ∈ U be the vertieswith w(u0) = wmin and w(u1) = wmax. All verties in U have idential degree ifand only if there is no vertex v ∈ V \ {u0, u1} with 1−wmax < w(v) < 1−wmin.Proof. Note that all verties in U have idential degree if and only if NG[u0] =
NG[u1]. The latter ondition in turn holds if and only if there is no vertex v inthe graph (with v 6= u0 and v 6= u1) that is adjaent to u1 but not to u0, andthis is equivalent to the stated ondition 1− wmax < w(v) < 1− wmin.Theorem 17. Anonym V-Del on threshold graphs is solvable in O(n2) time.Proof. We provide a dynami program to solve the problem in the laimedrunning time. To this end, we �rst need some further notation: Reall thata blok BG(d) of degree d ontains all degree-d verties of G. Now onsidersome blok BG(d) of onstant degree d in an optimal subgraph for AnonymV-Del, and let u0, u1 ∈ BG(d) and wmin and wmax be de�ned as in the lemma.The territory of this blok is de�ned as the union of the two losed inter-vals [wmin, wmax] and [1 − wmax, 1 − wmin]; note that these two intervals will22



overlap if wmin < 1/2 < wmax. The anonial superset U∗ ⊆ V onsists of u0and u1, together with all verties v ∈ V that satisfy wmin ≤ w(v) ≤ wmax butnot 1 − wmax < w(v) < 1 − wmin. One message of Lemma 16 is that distintbloks in an optimal subgraph must have disjoint territories. Another messageof the Lemma 16 is that we may as well replae every blok BG(d) by its anon-ial superset U∗: By adding these verties, the degree in every blok eitherremains the same or is uniformly inreased by |U∗| − |BG(d)|. And if the terri-tories of distint bloks were disjoint before the replaement, then they will alsobe disjoint after the replaement. In other words, suh a replaement does notviolate k-anonymity but simpli�es the ombinatorial struture of the onsideredsubgraph.This suggests the following dynami programming approah. For every realnumber r with 0 ≤ r ≤ 1/2, we onsider the threshold graph Gr that is induedby the verties v ∈ V with r ≤ w(v) ≤ 1 − r; note that the only ruial valuesfor r are theO(n) values w(v) and 1−w(v) that fall between the bounds 0 and 1/2.The goal is to ompute for every graph Gr a largest k-anonymous subgraph. Westart our omputations with r = 1/2 and work downwards towards r = 0.The initialization step of the dynami program handles subgraphs that on-sist of a single blok whose territory ontains the number 1/2. Suh a blokwill either be empty, or it is a anonial superset spei�ed by two values wminand wmax. All in all, this only yields a polynomial number of ases to handle.In the main omputation phase of the dynami program, we onsider a generalgraph Gr and hek all possibilities for the outermost blok, whih is the blokwhose territory is farthest away from the enter point 1/2. Sine this territory isthe union of two intervals [r, q] and [1− q, 1− r], we may simply hek all possi-bilities for the interval boundary q, and then ombine the orresponding blokwith the (previously omputed) largest k-anonymous subgraph for graph Gq.Sine there is only a linear number O(n) of andidate values for q, the largest
k-anonymous subgraph of Gr an be found in linear time.4. Edge DeletionIn this setion, we transfer the entral intratability results from Setion 3to the setting where instead of verties edges are removed; see Setion 1 for adisussion about vertex deletions versus edge deletions. To this end, we �rstshow in Subsetion 4.1 that Anonym E-Del is NP-omplete on aterpillars, asublass of trees. Compared to the NP-ompleteness of Anonym V-Del ontrees (see Subsetion 3.1) this gives a slightly stronger intratability result forAnonym E-Del. The employed redution is, however, more ompliated thanthe one given in Subsetion 3.1 and we ould not ome up with a general re-dution sheme as provided in the vertex deletion ase in Subsetion 3.2. Wethen provide in Subsetion 4.2 polynomial-time inapproximability results forAnonym Min-E-Del and Max-Anonym E-Del for bounded-degree graphsand parameterized inapproximability results for Max-Anonym E-Del on gen-eral graphs. 23



4.1. NP-Hardness on CaterpillarsIn this setion, we establish a polynomial-time redution from the NP-ompleteExat Cover by 3-Sets problem, whih is de�ned as follows:Exat Cover by 3-Sets [19, SP2℄Input: A universe A = {a1, a2, . . . , a3h}, a olletion B =
{B1, B2, . . . , Bβ} of 3-element sets over A, and h ∈ N.Question: Is there an index set J ⊆ {1, 2, . . . , β} with |J | = h, suhthat ⋃j∈J Bj = A?Input: A = {a1, a2, . . . , a6}

B = {B1, B2, B3, B4}, h = 2
B1 = {a1, a2, a4} B2 = {a2, a4, a6}
B3 = {a3, a5, a6} B4 = {a2, a4, a5}

B1 B2 B3 B4

a1 a2 a3 a4 a5 a6

Solution:
J = {1, 3}

B1 B2 B3 B4

a1 a2 a3 a4 a5 a6If an Exat Cover by 3-Sets instane I = (A,B, h) ontains suh an indexset J , then we refer to the set {Bj | j ∈ J} as an exat over for I.The redution in the following proof, showing that Anonym E-Del is NP-omplete on aterpillars, is an adaption of the redution provided in Subsetion 3.1.A aterpillar is a tree that has a dominating path [20℄, that is, a aterpillar is atree suh that deleting all leaves results in a path.Theorem 18. Anonym E-Del is NP-omplete on aterpillars, even if k = 2.Proof. Sine ontainment in NP is easy to see, we fous on showing NP-hardness.To this end, we provide a polynomial-time redution from Exat Cover by3-Sets. Let I = (A,B, h) be an instane of Exat Cover by 3-Sets. Weassume without loss of generality that for eah element ai ∈ A there exists aset Bj ∈ B with ai ∈ Bj. Let f : N→ N be f(i) = (2h+ 3)i.The instane I ′ of Anonym E-Del is de�ned on a graph G = (V,E) on-struted as follows. For eah element ai ∈ A add a star K1,f(i) with the entervertex v(ai). Denote with VA = {v(a1), v(a2), . . . , v(a3h)} the set of all theseenter verties. Furthermore, for eah element ai ∈ A add two stars K1,f(i)+1and two stars K1,f(i)+2.For eah set Bj ∈ B with Bj = {aj1 , aj2 , aj3} add a set-gadget ontainingthe stars K1,f(j1), K1,f(j2), and K1,f(j3). See Figure 7 for the di�erene ofthe set-gadget in this redution and the redution in Subsetion 3.1. Denotewith v(aj1 , Bj), v(aj2 , Bj), and v(aj3 , Bj) the enter verties of these stars anddenote with VB the set of all these enter verties, formally VB = {v(ai, Bj) |
1 ≤ i ≤ 3h ∧ 1 ≤ j ≤ β ∧ ai ∈ Bj}. Next, add the edges {v(aj1 , Bj), v(aj2 , Bj)}and {v(aj2 , Bj), v(aj3 , Bj)} to E. Observe that deg(v(aj1 , Bj)) = f(j1) + 1,24



v(B2)

v(a2, B2)

· · ·

v(a4, B2)

· · ·

v(a6, B2)

· · ·set-gadget used in Redution 1 v(a2, B2)

· · ·

v(a4, B2)

· · ·

v(a6, B2)

· · ·set-gadget used in theredution for aterpillarsFigure 7: The di�erene between the set-gadgets used in Redution 1 and the redution show-ing NP-hardness of Anonym E-Del on aterpillars. Deleting the vertex v(B2) orrespondsto deleting the two edges {v(a2, B2), v(a4 , B2)} and {v(a4 , B2), v(a6, B2)}.
deg(v(aj2 , Bj)) = f(j2) + 2, and deg(v(aj3 , Bj)) = f(j3) + 1. To end up withone aterpillar instead of a forest of aterpillars, do the following:1. Take two di�erent onneted omponents (aterpillars) C1 and C2, let v1be an endpoint of a dominating path in C1, and let v2 be an endpoint ofa dominating path in C2, suh that degG(v1) = degG(v2) = 1.2. Then, add the edge {v1, v2} to redue the number of onneted ompo-nents by one.3. If there exists more than one onneted omponent, goto Step 1.The resulting graph is learly a aterpillar. We omplete the onstrution of I ′by setting s = 2h and k = 2.We now prove that I is a yes-instane of Exat Cover by 3-Sets if andonly if I ′ = (G, k, s) is a yes-instane of Anonym E-Del.�⇒:� Let B′ ⊆ B be an exat over of size h. Then we onstrut a 2-deletionset S ⊆ E of size 2h as follows: For eah set Bj ∈ B′ with Bj = {aj1 , aj2 , aj3}insert the edges {v(aj1 , Bj), v(aj2 , Bj)} and {v(aj2 , Bj), v(aj3 , Bj)} into S. First,observe that |S| = 2h. Next, we show that S is indeed a 2-deletion set. Supposetowards a ontradition that there exists a vertex v ∈ V suh that there is nofurther vertex of the same degree in G − S. Then, by onstrution of G, itfollows that v = v(ai) ∈ VA for some i ∈ {1, 2, . . . , 3h} and, by onstrutionof S, it follows that ai /∈

⋃

Bj∈B′ Bj , a ontradition.�⇐:� Let S be a 2-deletion set of edges of size at most 2h. Observe thatthe only verties in G that violate the 2-anonymous property are the vertiesin VA. Furthermore, for eah ai ∈ A there is exatly one vertex in G with adegree d between f(i) − 2h ≤ d ≤ f(i), namely v(ai). Sine S is a 2-deletionset, it follows that for eah v(ai) ∈ VA there is a vertex v ∈ V (S) having thesame degree as v(ai) in G−S. Sine |VA| = 3h and | deg(v(ai))−deg(v(ai′ ))| >
2h for all i, i′ ∈ {1, 2, . . . , 3h}, it follows that |V (S)| ≥ 3h. For the furtherargumentation we need some notation. A vertex v ∈ V is a type-ℓ vertex,
ℓ ∈ N, if there exists a vertex v(ai) ∈ VA suh that degG(v) = degG(v(ai)) + ℓ.25



Now, observe that in G the type-1 verties are all pairwise non-adjaent andhave pairwise disjoint neighborhood sets. Thus, V (S) ontains at most 2h type-1 verties. Furthermore, sine |V (S)| ≥ 3h, this implies that V (S) ontainsexatly 2h type-1 verties and exatly h type-2 verties and that |V (S)| = 3h.Thus, for eah edge in S it follows that one endpoint is a type-1 vertex andthe other endpoint is a type-2 vertex. Note that the only edges ful�lling thisrequirement are the ones making two verties in VB adjaent and, thus, V (S) ⊆
VB. Thus, eah type-2 vertex of V (S) is ontained in some set-gadget. Denotewith B′ the set of h sets orresponding to the set-gadgets that ontain the h type-2 verties in V (S). We now prove that B′ is an exat over. Suppose towardsa ontradition that there is an element ai /∈

⋃

Bj∈B′ Bj . This implies, that novertex v(ai, Bj) suh that j ∈ {1, 2, . . . , n} and ai ∈ Bj is ontained in V (S).However, as V (S) ⊆ VB, this means that v(ai) has a unique degree in G − S,a ontradition to the fat that S is a 2-deletion set. Finally, sine |B′| = h,
⋃

Bj∈B′ Bj = A, eah set ontains exatly three elements, and |A| = 3h, itfollows that no element is overed twie. Hene, B′ is an exat over and, thus,
I is a yes-instane.Note that Exat Cover by 3-Sets is �xed-parameter tratable with re-spet to the solution size h: There is a simple polynomial kernel whih anbe obtained by removing for eah set all opies from the olletion B. Afterthis deletion of the opies, the number of sets in the olletion is boundedby |B| ≤ |A|3 = (3h)3.Hene, we annot state an equivalent of Corollary 9. However, sine weestablished NP-ompleteness for k = 2, we obtain the following equivalent ofthe polynomial-time inapproximability result in Corollary 10.Corollary 19. For every 0 < ε < 1, Max-Anonym V-Del on aterpillarsannot be approximated within a fator of 2− ε in polynomial time, unless P =NP.4.2. Inapproximability ResultsAs in Subsetion 3.3, we an state strong inapproximability results forAnonymMin-E-Del and Max-Anonym E-Del. We remark that these inapproxima-bility results transfer modulo the bounded-degree restrition to Anonym Min-E-Ins and Max-Anonym E-Ins, sine the edge insertion variant is equivalentto the edge deletion variant in the omplement graph.Two very similar gap-redutions from Exat Cover by 3-Sets yield thatMax-Anonym E-Del as well asAnonym Min-E-Del are not n1−ε-approximablein polynomial-time on bounded degree graphs.Theorem 20. For every 0 < ε ≤ 1, Max-Anonym E-Del is not n1−ε-approximable in polynomial time, even on bounded degree graphs, unless P =NP.Proof. Let 0 < ε ≤ 1 be a onstant. We provide a gap-redution with gap n1−εfrom Exat Cover by 3-Sets whih remains NP-omplete even when no26



element ours in more than three subsets [19, SP2℄. For these instanes wehave h ≤ β ≤ 3h.Let I = (A,B, h) be an instane of Exat Cover by 3-Sets where noelement ours in more than three subsets. Construt an instane I ′ = (G, s) ofMax-Anonym E-Del as follows. The graph G = (V,E) ontains an element-vertex v(ai) for eah element ai from A and a set-vertex v(Bj) for eah subset Bjfrom B. There is an edge in G between v(ai) and v(Bj) if Bj ontains ai. Foreah vertex v(Bj) add four degree-one verties that are adjaent to v(Bj), thusthe degree of eah vertex v(Bj) is seven. For eah vertex v(ai) add up tothree degree-one verties that are adjaent to v(ai) suh that the degree of v(ai)is three (observe that eah element ours in at most three sets). Set x :=
⌈
(6h171−ε)1/ε

⌉. Next, add x stars K1,7 and x stars K1,4 to G. If the number ofdegree-one verties is odd, then add one further star K1,7 to G to ensure thatthe number of degree-one verties is even. Now, add a perfet mathing on thedegree-one verties to inrease their degrees to two. Finally set s := 3h. Thusthe graph G has β+x or β+ x+1 degree-seven verties, x degree-four verties,
3h degree-three verties, and between 4β + 11x and 4β + 9h+ 11x + 7 degree-two verties. Hene, G is 3h-anonymous. Overall, G is a graph with maximumdegree seven and at most 12x+12h+5β+7 verties. Observe, that x ≥ 6h ≥ 2βand thus |V | ≤ 17x.We now show that if I is a yes-instane, then opt(I ′) ≥ x and if I is ano-instane, then opt(I ′) ≤ 6h.Suppose that I ontains an exat over B′ ⊆ B of size h. Then removingfrom G the 3h edges between v(Bj) ∈ B′ and v(ai) ∈ A, we obtain an x-anony-mous graph G′, sine all verties from the blok of degree three from G are in G′in the blok of degree two.Suppose that S ⊆ E is a (6h + 1)-deletion set of size |S| ≤ s = 3h, thatis, G − S is (6h + 1)-anonymous. First, observe that V (S) does not ontain avertex having degree two in G: Sine |S| ≤ 3h, at most 6h degree-two vertiesan be ontained in V (S). Sine G− S is (6h+ 1)-anonymous and G does notontain any degree-zero or degree-one verties, this implies that V (S) does notontain any degree-two vertex. Next, observe that the only edges in G thathave no degree-two vertex as endpoint are edges with one set-vertex and oneelement-vertex as endpoints. Sine eah set-vertex is, by onstrution, adjaentto at most three element-verties, this implies that all set-verties in G−S havedegree at least four. Furthermore, sine the 3h element-verties are the onlyverties in G having degree three and S is a (6h+ 1)-deletion set, this impliesthat V (S) ontains all element-verties. Hene, |S| = 3h and eah element-vertex is inident to exatly one edge in S. Observe that G ontains no vertexof degree �ve or six. Sine S is a (6h + 1)-deletion set, this implies that eahset-vertex in V (S) has degree four in G − S and is inident to exatly threeedges in S. Hene, V (S) ontains exatly h set-verties and the orrespondingsets form an exat over of size h for I. Thus, if I does not ontain any exatover of size h, then there exists no (6h + 1)-deletion set of size h for G and,hene, opt(I ′) ≤ 6h. 27



Thus we obtain a gap-redution with the gap
x

6h
=

xεx1−ε

6h
=

6h · 171−ε · x1−ε

3h
≥ (17x)1−ε ≥ |V |1−ε.Adjusting the gap-redution above a little bit yields the following result.Theorem 21. For every 0 < ε ≤ 1, Anonym Min-E-Del is not n1−ε-approximable in polynomial time, even on bounded degree graphs, unless P =NP.Proof. Let 0 < ε ≤ 1 be a onstant. We provide a gap-redution with gap n1−εfrom Exat Cover by 3-Sets to Anonym Min-E-Del. This redution isvery similar to the gap-redution provided in the proof of Theorem 20. Let I =

(A,B, h) be an instane of Exat Cover by 3-Sets where no element ours inmore than three subsets. We provide an instane I ′ = (G, k) of Anonym Min-E-Del where the graph is onstruted as in the proof of Theorem 20 and k := x.We now show that if I is a yes-instane then opt(I ′) = 3h and if I is ano-instane then opt(I ′) ≥ x/2.Suppose that I ontains an exat over B′ ⊆ B of size h. Then removingfrom G the 3h edges between v(Bj) ∈ B′ and v(ai) ∈ A, we obtain a k-anony-mous graph G′, sine all verties from the blok of degree three from G are in G′in the blok of degree two.Suppose that G has a k-deletion set S of size at most x/2− 1. First, observethat V (S) does not ontain a vertex having degree two in G: Sine |S| ≤ x/2−1,at most x − 2 degree-two verties an be ontained in V (S). Sine G − S is
k-anonymous, k = x, and G does not ontain any degree-zero or degree-onevertex, this implies that V (S) does not ontain any degree-two vertex. Next,observe that the only edges in G that have no degree-two vertex as endpointare edges with one set-vertex and one element-vertex as endpoints. Sine eahset-vertex is, by onstrution, adjaent to at most three element-verties, thisimplies that all set-verties in G − S have degree at least four. Furthermore,sine the 3h element-verties are the only verties in G having degree threeand S is a k-deletion set with k = x > 3h, this implies that V (S) ontainsall element-verties. Furthermore, as G does not ontain any degree-zero ordegree-two vertex, it follows that eah element-vertex is inident to exatly oneedge in S. Observe that G ontains no vertex of degree �ve or six. Sine S is a
k-deletion set of size at most x/2 − 1, this implies that eah set-vertex in V (S)has degree four in G − S and is inident to exatly three edges in S. Hene,
V (S) ontains exatly h set-verties and the orresponding sets form an exatover of size h for I. Thus, if I does not ontain any exat over of size h, thenthere exists no k-deletion set of size x/2 − 1 for G and, hene, opt(I ′) ≥ x/2.Thus we obtain a gap-redution with the gap at least x/(2·3h) ≥ |V |1−ε (seethe proof of Theorem 20 for intermediate steps in the inequality).28



Similarly to Max-Anonym V-Del, we now show strong inapproximabilityof Max-Anonym E-Del, even when allowing fpt-time instead of polynomialtime. Note that, in ontrast to the vertex deletion ase in Subsetion 3.3, weobtain the same inapproximability result as in the minimization variant in termsof the approximation fator. Unlike the previous redutions and the redutionsin Subsetion 3.3, we redue from the W[1℄-omplete Clique problem, thusbuilding on a slightly stronger assumption.Theorem 22. For every 0 < ε ≤ 1, Max-Anonym E-Del is not �xed-parameter n1−ε-approximable with respet to parameter s, unless FPT = W[1℄.Proof. Let 0 < ε ≤ 1 be a onstant. We provide an fpt gap-redution withgap n1−ε from the W[1℄-omplete Clique problem [12℄ parameterized by thesolution size h.Clique [19, GT19℄Input: An undireted graph G = (V,E) and an integer h ∈ N.Question: Is there a subset V ′ ⊆ V of at least h pairwise adjaent verties?Input:
h = 4

Solution:
Let I = (G, h) be an instane of Clique. Assume without loss of generalitythat ∆G + 2h+ 1 ≤ n, where n = |V |. If this is not the ase, then one an addisolated verties to G until the bound holds.We onstrut an instane I ′ = (G′ = (V ′, E′), s) of Max-Anonym E-Delas follows: First, opy G into G′. Then, add a vertex u and onnet it to the nverties in G′. Next, for eah vertex v ∈ V add to G′ degree-one verties thatare adjaent only to v suh that degG′(v) = n − h. This is always possiblesine we assumed ∆G + 2h+ 1 ≤ n. Observe that in this way at most n(n− h)degree-one verties are added. Now, set x := ⌈(4n)3/ε⌉ and add liques withtwo, n− 2h+ 1, and n− h+ 1 verties suh that after adding these liques thenumber of degree-d verties in G′, for eah d ∈ {1, n−2h, n−h}, is between x+hand x + h+ n, that is, x + h ≤ |BG′(d)| ≤ x + h+ n; reall that BG′(d) is theset of verties having degree d in G′. After inserting these liques, the graphonsists of four bloks: of degree one, n−h, n− 2h, and n, where the �rst threebloks are roughly of the same size (between x+h and x+h+n verties) and thelast blok of degree n ontains exatly one vertex. To �nish the onstrution,set s := (

h
2

)
+ h.Now we show that if I is a yes-instane, then opt(I ′) ≥ x, and if I is ano-instane, then opt(I ′) < 2s.Suppose that I ontains a lique C ⊆ V of size h. Then, deleting the (h2) edgeswithin C and the h edges between the verties in C and u does not exeed thebudget s and results in an x-anonymous graph G′′: Sine h edges inident to u29



are deleted, it follows that degG′′(u) = n − h. Furthermore, for eah lique-vertex v ∈ C also h inident edges are deleted (h − 1 edges to other lique-verties and the edge to u), thus it follows that degG′′(v) = n − 2h. Sine thedegrees of the remaining verties remain unhanged, and |BG′(n− h)| ≥ x+ h,it follows that eah of the three bloks in G′′ has size at least x. Hene, G′′ is
x-anonymous.For the reverse diretion, suppose that there is a 2s-deletion set S of sizeat most s in G′. Sine u is the only vertex in G′ with degree n, and all otherverties in G′ have degree at most n − h, it follows that S ontains at least hedges that are inident to u. Sine NG′(u) = V , it follows that the degree ofat least h verties of the blok BG′(n − h) is dereased by one. Denote theseverties by C. Sine |S| ≤ s and h edges inident to u are ontained in S, itfollows that at most 2s−h+1 verties are inident to an edge in S. Furthermore,sine S is a 2s-deletion set, it follows that the verties in C have in G′−S eitherdegree one or degree n− 2h. Thus, by deleting the at most (h2) remaining edgesin S, the degree of eah of the h verties in C is dereased by at least h − 1.Hene, these (

h
2

) edges in S form a lique on the verties in C and thus I isa yes-instane. Therefore, it follows that if I is a no-instane, then there is no
2s-deletion set of size s in G′′ and hene opt(I ′) < 2s.Altogether, we obtain a gap-redution with the gap at least x/(2s). Set n′ :=
|V ′|. By onstrution we have 3x ≤ n′ ≤ n2 + 3x+ 3h+ 3n+ 1. By the hoieof x it follows that x > n′/4, sine

n′

4
≤

1

4
(n2 + 3x+ 3h+ 3n+ 1) = x+

1

4
(n2 + 3h+ 3n+ 1− x)

︸ ︷︷ ︸
<0

< x.Hene the gap is
x

2s
>

(n′)1−ε+ε

4(h2 + h)
≥ n′1−ε (n

′)ε

8h2
> (n′)1−ε xε

8n2
= (n′)1−ε (4n)

3ε/ε

8n2
> (n′)1−ε.Thus, the statement of the theorem follows from Lemma 1.Note that the redution above also shows that Anonym E-Del is W[1℄-hard with respet to the ombined parameter (s, k): It is shown that if theinput graph G ontains a lique of size h, then there exists an x-deletion set Sof size s =

(
h
2

)
+ h in G′. Sine x > 2s it follows that S is also a 2s-deletionset of size s. We also proved that if G′ ontains a 2s-deletion set of size s, thenthere exists a size-h lique in G. Hene, we obtain the following: (G, h) is ayes-instane of Clique if and only if (G′, 2s, s) is a yes-instane of AnonymE-Del. Thus, we arrive at the following orollary.Corollary 23. Anonym E-Del is W[1℄-hard with respet to the ombinedparameter (s, k). 30



5. Fixed-Parameter Tratable CasesTheorem 2 and Corollaries 7 and 23 show thatAnonym E-Del andAnonymE-Del are �xed-parameter intratable for the eah of single parameters s, k,and ∆ as well as for the ombined parameter (s, k). Here we show �xed-parameter tratability with respet to the ombined parameter (s,∆) for thefollowing general problem variant where one might insert and delete spei�ednumbers of verties and edges.Degree Anonymity Editing (Anonym-Edt)Input: An undireted graph G = (V,E) and �ve positive inte-gers s1, s2, s3, s4, and k.Question: Is it possible to obtain a graph G′ = (V ′, E′) from G using atmost s1 vertex deletions, s2 vertex insertions, s3 edge deletions,and s4 edge insertions suh that G′ is k-anonymous?Input: k = 5

s4 = 2
s1 = s2 = s3 = 1

Solution:
Observe that here we require that the inserted verties have degree zero and wehave to �pay� for making the inserted verties adjaent to the existing ones. Inpartiular, if s4 = 0, then all inserted verties are isolated in the target graph.Note that there are other models where the added verties an be made adjaentto an arbitrary number of verties [9, 10℄. Our ideas, however, do not diretlytransfer to this variant.For onveniene, we set s := s1 + s2 + s3 + s4 to be the number of allowedgraph modi�ation operations.Theorem 24. Anonym-Edt is �xed-parameter tratable with respet to theombined parameter (s,∆).Proof. Let I = (G = (V,E), k, s1, s2, s3, s4) be an instane of Anonym-Edt. Inthe following we desribe an algorithm �nding a solution if it exists. Intuitively,the algorithm �rst guesses a �solution struture� and then heks whether thegraph modi�ation operations assoiated to this solution struture an be per-formed in G. A solution struture is a graph S with at most s(∆ + 1) vertieswhere1. eah vertex is equipped with an olor from {0, 1, . . . ,∆} indiating thedegree of the vertex in G and2. eah edge and eah vertex is marked either as �to be deleted�, �to beinserted�, or �not to be hanged� suh that31



(a) all edges inident to a vertex marked as �to be inserted� are alsomarked as �to be inserted�,(b) at most s1 verties and at most s3 edges are marked as �to be deleted�,and() at most s2 verties and at most s4 edges are marked as �to be in-serted�.The intuition behind this de�nition is that a solution struture S ontains allgraph modi�ation operations in a solution and the verties that are a�etedby the modi�ation operations, that is, the verties whose degree is hangedwhen performing these modi�ation operations. Observe that any solution for Ide�nes suh a solution struture with at most s(∆ + 1) verties as eah graphmodi�ation a�ets at most ∆ + 1 verties. This bound is tight in the sensethat deleting a vertex v a�ets v and its up to ∆ neighbors. Furthermore,observe that one given suh a solution struture, we an hek in polynomialtime whether performing the marked edge/vertex insertions/deletions results ina k-anonymous graph G′ sine the oloring of the vertex indiates the degreesof the verties that are a�eted by the graph modi�ation operations.Our algorithm works as follows: First it branhes into all possibilities forthe solution struture S. In eah branh it heks whether performing thegraph modi�ation operations indiated by the marks in S indeed result ina k-anonymous graph. If yes, then the algorithm heks whether the graphmodi�ation operations assoiated to S an be performed in G. To this end, alledges and verties marked as �to be inserted� are removed from S and the marksat the remaining verties and edges are also removed and the resulting �leaned�graph is alled S′. Finally the algorithm tries to �nd S′ as an indued subgraphof G suh that the vertex degrees oinide with the vertex-oloring in S′. Ifthe algorithm sueeds and �nds S′ as an indued subgraph, then the graphmodi�ation operations enoded in S an be performed whih proves that I is ayes-instane. If the algorithm fails in every branh, then, due to the exhaustivesearh over all possibilities for S, it follows that I is a no-instane. Thus, thealgorithm is orret.As to the running time: There are s(∆ + 1) possibilities for the numberof verties in the solution struture. Hene, there are at most s(∆ + 1) ·

2(
s(∆+1)

2 ) < 2(s(∆+1))2 graphs with s(∆ + 1) verties. Furthermore, there are atmost (∆ + 1)s(∆+1) possibilities to equip the verties with olors {0, 1, . . . ,∆}and 3s(∆+1)+(s(∆+1)
2 ) possibilities to mark the verties and edges.Overall, the algorithm branhes into 2O((s∆)2) possibilities for the solutionstruture S. As mentioned above, heking whether performing the graph mod-i�ation operations indiated by S indeed results in a k-anonymous graph anbe done in polynomial time.Next, the algorithm heks for eah S that may lead to a k-anonymous graphwhether the leaned graph S′ ours as an indued subgraph in G suh that de-gree onstraints given by the vertex oloring are ful�lled. Observe that sineour input graph G has maximum degree ∆ it also has a loal tree-width of at32



most ∆ [25℄. Thus, for �nding S′ as indued subgraph, we an use a generalresult of Frik and Grohe [25, Theorem 1.2℄ showing that deiding whether agraph H of loal tree-width at most ℓ satis�es a property φ de�nable in �rst-order logi is �xed-parameter tratable with respet to the ombined parame-ter (|φ|, ℓ). The subgraph isomorphism problem an be solved with this resulton graphs with bounded loal tree-width [25℄. Thus it remains to speify thepart of the formula φ that ensures the degree onstraints. To this end, Frikand Grohe [25℄ gave as example the formula
x ∈ V ∧ ¬∃y∃z(¬(y = z) ∧ (x, y) ∈ E ∧ (x, z) ∈ E)to express that a vertex x ∈ V has degree at most one. This formula an beextended to express that x ∈ V has degree at most ℓ for some 1 ≤ ℓ ≤ ∆ andthe size of the formula is upper-bounded in a funtion of ∆. Similarly, removingthe �rst negation symbol yields the statement that x ∈ V has a degree of atleast two (degree at least ℓ+1 in the extended version). Hene, we an expressthe degree onstraints and the formula size is still bounded by a funtion of sand ∆ (as there are up to s(∆ + 1) verties in S′). Hene, applying the resultsof Frik and Grohe [25℄ shows that the overall algorithm runs in fpt-time withrespet to (s,∆).We remark that Theorem 24 is a mere lassi�ation result. We laim with-out proof by slightly adapting the olor-oding approah used by Cai et al. [26℄and Golovah [27℄ one an obtain a running time of 2(s∆)O(1)

nO(1): The ideais to randomly olor the verties in the graph with green and red. Then thesubgraph G′ = (V ′, E′) we are looking for is with probability 2(∆+1)|V ′| om-pletely ontained within the green verties and NG(V \ V ′) are olored red. Bybrute-fore, one an determine in O(|V ′|!) whether a green omponent �ts witha onneted omponent of the sought subgraph suh that the degree onstraintsare ful�lled. Thus, using a knapsak dynami program over the green ompo-nents, one an ompute the whole subgraph G′ in the laimed running time.As the running time would be still impratial, we refrain from giving a formalproof.Next, we show that onsidering Anonym V-Del we an assume that s <
f(∆, k) for some funtion f . This implies that the above �xed-parametertratability results transfers to the parameter (k,∆).Lemma 25. For every yes-instane (G = (V,E), k, s) of Anonym V-Delwith ∆ denoting the maximum degree of G, there is a subset S ⊆ V with |S| <
2∆+1∆3k suh that G− S is k-anonymous.Proof. Let (G = (V,E), k, s) be a yes-instane of Anonym V-Del and let S ⊆
V be a k-deletion set. We show that if |S| ≥ 2∆∆32k, then we get a smaller
k-deletion set by removing a subset of k verties from S.Let D = {0, 1, . . . ,∆} be the set of possible vertex degrees in G − S. Wesay a vertex v ∈ S is of type (D′, d′) with D′ ⊆ D and 0 ≤ d′ ≤ ∆ if D′ =
{degG−S(v

′) | v′ ∈ NG−S(v)} and d′ = degG[(V \S)∪{v}](v). If |S| ≥ 2∆∆32k,33



then S ontains a set S′ of ∆2 · 2k verties whih are of the type (D′, d′) forsomeD′ ⊆ D and 0 ≤ d′ ≤ ∆. Note that eah vertex has at most∆ verties in its�rst and at most∆(∆−1) verties in its seond neighborhood. Hene, there mustbe a set S′′ ⊂ S′ of 2k independent verties with pairwise disjoint neighborhoods.Let S+, S− ⊆ S′′ be any two sets of size k eah suh that S+∪S− = S′′. Considerthe graphs G1 = G − S and G2 = G − (S \ S+), that is, S+ is the subset ofverties from S′′ that remains in G2 and S− is the subset of verties from S′′that is not in G2.We show that if G1 is k-anonymous then G2 is also k-anonymous. Ev-ery vertex from S+ has degree d′ in G2 beause S+ is an independent set.Sine |S+| = k, there are at least k verties of degree d′, that is, the vertiesfrom S+ are k-anonymous. Every vertex v that is in G1 and in G2 satis�esthat either degG2
(v) = degG1

(v) or degG2
(v) = degG1

(v) + 1, beause the ver-ties from S+ have pairwise disjoint neighborhoods. Now, there are two asesfor d′′ = degG1
(v): If d′′ /∈ D′, then degG2

(v) = d′′. Furthermore, there are atleast as many verties of degree d′′ in G1 as in G2, beause no vertex from S+is adjaent to any vertex of degree d′′ in G1. If d′′ ∈ D′, then a vertex withdegree d′′ in G1 may have degree d′′ + 1 in G2 beause it is adjaent to somevertex in S+. However, sine the verties from S+ have pairwise disjoint neigh-borhoods, for eah of the k verties from S+ there is at least one vertex thathas degree d′′ in G1 and degree d′′ +1 in G2 Furthermore, for eah of the k ver-ties from S− there is at least one vertex that has degree d′′ in G1 and G2. Ineah ase, there are at least k verties with degree degG2
(v) in G2. Thus, G2 is

k-anonymous.By ombining Theorem 24 and Lemma 25 we obtain �xed-parameter tratabil-ity with respet to the parameter (k,∆). For an instane (G, k, s) of Anonym V-Del simply run the algorithm from Theorem 24 on the instane (G, k,min{s, 2∆∆32k}).The ideas behind Lemma 25 an be easily transferred to the edge deletionvariant.Lemma 26. For every yes-instane (G = (V,E), k, s) of Anonym E-Delwith ∆ denoting the maximum degree of G there is a subset S ⊆ E with |S| <
2∆32k suh that G− S is k-anonymous.Proof. Let (G = (V,E), k, s) be a yes-instane of Anonym E-Del and let S ⊆
E be a k-deletion set. We show that if |S| ≥ 2∆32k, then we get a smaller
k-deletion set by removing a subset of k edges from S.We say an edge e = {u, v} ∈ S is of type (d1, d2) with 1 ≤ d1, d2 ≤ ∆if d1 = degG−S(u) and d2 = degG−S(v). If |S| ≥ 2∆32k, then S ontains aset S′ of 2∆ · 2k edges whih are of the type (d1, d2) for some 0 ≤ d1, d2 ≤ ∆.Sine eah vertex has, by de�nition of ∆, at most ∆ neighbors, there must be aset S′′ ⊂ S′ of 2k pairwise disjoint edges. Let S+ ⊆ S′′ be a set of size k. Now,similarly to proof of Lemma 25, it follows that G− (S \S+) is also k-anonymousas it ontains at least k verties of degree d1, d1+1, d2, and d2+1, respetivelyand the other verties remain untouhed.34



By ombining Theorem 24 and Lemma 26 we also obtain �xed-parametertratability for Anonym E-Del with respet to the parameter (k,∆). Thus,we arrive at the following lassi�ation result.Corollary 27. Anonym V-Del and Anonym E-Del are �xed-parametertratable with respet to the ombined parameter (k,∆).6. ConlusionIn this work, we provided a thorough overview on the omputational om-plexity of the Degree Anonymity problem when onsidering vertex or edgedeletions. We obtained various hardness results from the viewpoints of approx-imation and parameterized omplexity, even in restrited graph lasses. Be-sides this large amount of hardness results we obtained a few positive results(polynomial-time solvable ases) on highly strutured graph lasses.Despite this (in terms of algorithmi tratability) disouraging piture of theomputational omplexity, a number of open questions remains that still mayraise hope for broader positive results. In partiular, these questions are:1. Are Anonym Min-E-Del or Anonym Min-V-Del onstant-fator ap-proximable in polynomial time when k is a onstant?2. Are the two optimization variants of Anonym E-Edt onstant-fatorapproximable in polynomial time?3. What is the omplexity of Anonym V-Del on unit interval graphs andon bipartite hain graphs?4. Do all our NP-ompleteness results for Anonym V-Del on speial graphlasses (see Subsetion 3.2) also arry over to Anonym E-Del?Despite serious e�orts, we failed to extend the polynomial-time inapproxima-bility results for Anonym Min-E-Del and Anonym Min-V-Del to exludeapproximation algorithms running in fpt-time with respet to the parameter k.The reason is that all our gap-redutions relied on k being in the order of n.This restrition made it easy to ontrol the possibilities for the solutions in theonstruted graph, but leaves Question 1 as hallenge for future researh. Ques-tion 2 seems to be losely related to Question 1 as we failed to answer bothquestions for the same reason: The variant of editing edges allows to �repair� asuboptimal deisions by reverting the degree of a vertex with one further oper-ation (edge deletion or insertion). In the ase of edge deletions with onstantvalues of k it might be possible to �repair� suboptimal deision by dereasing thedegrees of just a few other verties. We found no way of dealing even with oneof these two possibilities to repair suboptimal deisions. As to Question 4, our�ndings so far support the onjeture that the hardness results mostly transfer,but the redutions to prove this will beome messy.35
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