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1. Introdu
tionWith the enormously growing relevan
e of so
ial networks, the prote
tion ofpriva
y when releasing underlying data sets has be
ome an important and a
tive�eld of resear
h [3℄. If a graph 
ontains only few verti
es with some distinguishedfeature, then this might allow the identi�
ation (and violation of priva
y) of theunderlying real-world entities with that parti
ular feature. Hen
e, in order toensure pretty good priva
y and anonymity, every vertex should share its featurewith many other verti
es. In a landmark paper, Liu and Terzi [4℄ 
onsideredthe vertex degrees as feature; see Wu et al. [3℄ for other features 
onsideredin the literature. Correspondingly, a graph is 
alled k-anonymous if for ea
hvertex there are at least k − 1 other verti
es of same degree. Therein, di�erentvalues of k re�e
t di�erent priva
y demands and the natural 
omputational taskarises, given some �xed k, to perform few 
hanges to a graph in order to makeit k-anonymous. Liu and Terzi [4℄ proposed a heuristi
 algorithm for the taskof making a graph k-anonymous by adding edges. We refer to Wu et al. [3℄ fora survey of anonymization models and a dis
ussion about the pros and 
ons ofthe k-anonymity 
on
ept. Here, we study the vertex and edge deletion variantsof Degree Anonymity. We start our investigations with the vertex deletionvariant whi
h is de�ned as follows.Degree Anonymity by Vertex Deletion (Anonym V-Del)Input: An undire
ted graph G = (V,E) and two integers k, s ∈ N.Question: Is there a vertex subset S ⊆ V of size at most s su
h that G−Sis k-anonymous?Input: k = 4
s = 2

Solution:
Considering vertex deletions seems to be a promising approa
h on pra
ti
alinstan
es, espe
ially on so
ial networks. In these networks, the degree distribu-tion of the underlying graphs often follows a so-
alled power law distribution [5℄,implying that there are only few high-degree verti
es and most verti
es are ofmoderate degree; this suggests that only few verti
es have to be removed in or-der to obtain a k-anonymous graph. For instan
e, 
onsider the DBLP 
o-authorgraph3 (generated in Feb. 2012) with ≈ 715 thousand verti
es 
orresponding toauthors and ≈ 2.5 million edges indi
ating whenever two authors have a 
ommons
ienti�
 paper: This graph has maximum degree 804 but only 208 verti
es are3The 
urrent dataset and a 
orresponding do
umentation are available online(http://dblp.uni-trier.de/xml/). 2
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y6Figure 1: Left: A graph where a 
onstant fra
tion of the verti
es has to be removed in orderto obtain a 3-anonymous graph. Right: A minimum size solution to make the graph on theleft side 3-anonymous. See Example 2 for a detailed explanation.of degree larger than 208, whereas the average degree is 7. Interestingly, a heuris-ti
 that simply removes verti
es violating the k-anonymous property shows thatone has to remove at most 338 verti
es to make it 5-anonymous and even tomake it 10-anonymous requires at most 635 vertex deletions.In Se
tion 3, we will show that already the simple and highly spe
ialized pri-va
y model of Anonym V-Del is 
omputationally hard from the parameterizedas well as from the approximation point of view. A variety of hardness resultsholds even for very restri
ted graph 
lasses, as for instan
e trees, 
ographs, andsplit graphs.One reason of this hardness is that being k-anonymous is not a heredi-tary property: Simply deleting one vertex in a three-regular graph, that is,an n-anonymous graph, results in an only 3-anonymous graph. Another reasonis shown in the following two examples illustrating that the number s of allowedremovals and the anonymity level k are independent of ea
h other, and that asmall 
hange in one of these parameter values might lead to a large jump of theother parameter value.Example 1. Let G be a graph on n ≥ 5 verti
es that 
onsists of two 
onne
ted
omponents: a 
lique of size n − 2 and an isolated edge. This 2-anonymousgraph 
annot be transformed into a 3-anonymous graph by deleting only onevertex, however, deleting the two degree-one verti
es makes it (n−2)-anonymous.Hen
e, by slightly in
reasing s from 1 to 2 the rea
hable anonymity level jumpsfrom k = 2 to k = n− 2.Example 2. Let G = (V,E) be a bipartite graph with the vertex sets X :=
{x1, x2, . . . , xℓ} and Y := {y1, y2, . . . , yℓ}, V = X ∪ Y , and there is an edgebetween xi and yj if i + j > ℓ, see Figure 1 for a visualization. Clearly, xiand yi are of degree i implying that G is 2-anonymous. Sin
e N(xi) ⊆ N(xi+1)for all i, deleting any subset of Y preserves the invariant deg(x1) ≤ deg(x2) ≤
. . . ≤ deg(xℓ). As the previous argument is symmetri
, one 
an observe thatto make G 3-anonymous one has to remove 2/3 of the �jumps� in the initialsequen
es deg(x1) < deg(x2) < . . . < deg(xℓ) and deg(y1) < deg(y2) < . . . <
deg(yℓ). Sin
e removing one vertex in X (Y ) removes only one jump in thesequen
e of X (Y ) and only one in Y (X), it follows that at least 2(ℓ− 1) · 2/3 ·
1/2 ≈ (2ℓ)/3 = |V |/3 verti
es have to be deleted in order to get a 3-anonymousgraph. Summarizing, by requiring anonymity level k = 3 instead of anonymity3



level k = 2, the number of verti
es that need to be removed jumps from zero toa 
onstant fra
tion of the verti
es.The se
ond part of this work deals with the edge deletion variant whi
h isde�ned as follows:Degree Anonymity by Edge Deletion (Anonym E-Del)Input: An undire
ted graph G = (V,E) and two integers k, s ∈ N.Question: Is there an edge subset S ⊆ E of size at most s su
h that G−Sis k-anonymous?Input: k = 4
s = 4

Solution:
Considering so
ial networks, their power law degree distribution suggests thatthe solution size in the edge deletion variant is signi�
antly larger than in thevertex deletion variant. However, in the edge deletion variant the resulting graph
ontains, by de�nition, all verti
es of the input graph, whi
h might be importantin some appli
ations. Furthermore, deleting a vertex with high degree redu
esthe degree of many other verti
es whereas deleting an edge redu
es the degreeof only two verti
es. Hen
e, although requiring more edge deletions than vertexdeletions, deleting edges might result in a graph that is a
tually �
loser� to theoriginal graph.In Se
tion 4, we transfer most hardness results from Anonym V-Del toAnonym E-Del, showing strong intra
tability results 
on
erning parameterized
omplexity and approximability. Similarly to the vertex deletion variant, a small
hange in one of the two parameters k and s might lead to a large jump of theother parameter as demonstrated in the following two examples.Example 3. Let G be an n-vertex 
y
le with two 
hords, that is, two additionaledges within the 
y
le. As G 
ontains four degree-three verti
es and n − 4degree-two verti
es, G is 4-anonymous. Deleting one edge does not in
rease theanonymity level k; however, deleting the two 
hords results in an n-anonymousgraph�a 
y
le. Hen
e, by slightly in
reasing s from one to two the rea
hableanonymity level jumps from k = 4 to k = n.Example 4. Let G = (V,E) be a disjoint union of a 
lique and an independentset, ea
h 
ontaining n/2 verti
es. Thus, G is n/2-anonymous. However, in orderto obtain an (n/2 + 1)-anonymous graph, all edges have to be removed. Hen
e,by slightly in
reasing k from n/2 to n/2+ 1 the number of edges that have to beremoved jumps from zero to |E| =

(
n/2
2

).Related work. Hartung et al. [6℄ studied the Anonym E-Ins problem as pro-posed by Liu and Terzi [4℄. Given a graph and two positive integers k and s,4



Anonym E-Ins asks whether there exists a set of at most s edges whose additionmakes the graph k-anonymous. The main result of Hartung et al. [6℄ is a poly-nomial problem kernel with respe
t to the parameter maximum degree ∆ of theinput graph. Furthermore, they showed that an heuristi
 algorithm proposedby Liu and Terzi [4℄ is optimal for Anonym E-Ins solutions larger than ∆4.Building on Liu and Terzi's work, Hartung et al. [7℄ enhan
ed their heuristi
approa
h with the fo
us on improving lower and upper bounds on the solutionsize. Chester et al. [8℄ investigated the 
omputational 
omplexity of AnonymE-Ins and variants with edge labels. They showed NP-hardness for the 
on-sidered variants and a polynomial time algorithm for bipartite graphs. Chesteret al. [9℄ investigated the variant of adding verti
es instead of edges; Bredere
ket al. [10℄ provided �rst parameterized 
omplexity results in this dire
tion.Con
erning the vertex deletion variant, the work whi
h is probably 
los-est to ours is by Moser and Thilikos [11℄. They studied the parameterized
omplexity of the Regular-Degree-d Vertex Deletion problem, wheregiven an undire
ted graph G and an integer s ∈ N, the task is to de
idewhether G 
an be made d-regular by at most s vertex deletions. Moser and Thi-likos [11℄ showed that Regular-Degree-d Vertex Deletion 
an be solvedin O(n(s + d) + (d + 2)s) time and presented a polynomial problem kernel ofsize O(sd(d + s)2). Observe that for k > n/2 the problem of Anonym V-Delasks whether at most s verti
es 
an be deleted to obtain a regular graph.Our 
ontributions. While every graph is trivially 1-anonymous, we will showthat the 
ombinatorial stru
ture of 2-anonymous graphs is already ri
h and
ompli
ated: Anonym V-Del for k = 2 is NP-
omplete, even for strongly re-stri
ted graph 
lasses like trees, interval graphs, split graphs, trivially perfe
tgraphs, and bipartite permutation graphs. All these hardness results are estab-lished by means of a general framework. Furthermore, we show that AnonymV-Del is NP-
omplete even on graphs with maximum degree three.On the positive side, we present (polynomial-time) dynami
 programming ap-proa
hes forAnonym V-Del on three graph 
lasses: graphs of maximum degreetwo, 
luster graphs, and threshold graphs. We frankly admit that these threegraph 
lasses 
arry an extremely 
onstraining 
ombinatorial stru
ture: AnonymV-Del is su
h a vi
ious problem that without these heavily 
onstraining stru
-tures there is basi
ally no hope for polynomial-time algorithms. Figure 2 sum-marizes the 
onsidered graph 
lasses and their 
ontainment relations.For Anonym E-Del, we show NP-
ompleteness on 
aterpillars and ongraphs with maximum degree seven; this later result is in stark 
ontrast with the�xed-parameter tra
tability of Anonym E-Ins with respe
t to the maximumdegree ∆ [6℄.We analyze the parameterized 
omplexity of Anonym V-Del and AnonymE-Del, see Table 1 for an overview. On
e again, both problems show a di�
ultand 
hallenging behavior: They are intra
table with respe
t to ea
h of the three(single) parameters s, k, and ∆. Even worse, they are intra
table with respe
tto the 
ombined parameter (s, k). The only positive parameterized results 
omewith the 
ombined parameters (∆, s) and (∆, k). The latter result is based on5



bipartite planarpermutation treebipartitepermutationinterval
ographs triviallyperfe
t unitinterval bipartite
hainsplit

luster graphthreshold

NP-
omplete
polynomial-time solvableFigure 2: The 
omplexity lands
ape of Anonym V-Del for various graph 
lasses. Theresults for 
lasses with thi
k frames are dis
ussed in this work and they imply the results for
lasses with thin frames. The 
omplexity of Anonym V-Del on unit interval graphs and onbipartite 
hain graphs remains open.Table 1: Overview on the 
omputational 
omplexity 
lassi�
ation of Anonym V-Del andAnonym E-Del.Parameter Anonym V-Del Anonym E-Del

k NP-
omplete for k = 2 NP-
omplete for k = 2(Theorem 3) (Theorem 18)
(s, k) W[2℄-hard W[1℄-hard(Corollary 7) (Corollary 23)
∆ NP-
omplete for ∆ = 3 NP-
omplete for ∆ = 7(Theorem 2) (Theorem 20)

(s,∆) FPT (Theorem 24)
(k,∆) FPT (Corollary 27)bounding the number s of deleted verti
es in terms of ∆ and k.Finally, studying the approximability of the optimization problems naturallyasso
iated with Anonym E-Del or Anonym V-Del, we obtain hardness re-sults showing that none of the 
onsidered problems 
an be approximated inpolynomial time better than within a fa
tor of n1/2. Furthermore, for the opti-mization variants where the solution size s is given and the task is to maximizethe anonymity level k, this inapproximability even holds if we allow a runningtime of f(s)nO(1) for any 
omputable f . Again, this result holds for the edgedeletion and the vertex deletion variant, see Table 2 for an overview.Organization. We �rst introdu
e the ne
essary notation and 
on
epts in Se
tion 2.We then provide our results for Anonym V-Del in Se
tion 3, starting with theNP-
ompleteness results. To this end, we present in Subse
tion 3.1 a redu
-tion showing NP-hardness on trees. This redu
tion serves in Subse
tion 3.26



Table 2: Overview on the inapproximability of the optimization variants asso
iated withAnonym V-Del and Anonym E-Del.vertex deletion Anonym Min-V-Del Max-Anonym V-Delrunning time (�xed k, minimize s) (�xed s, maximize k)polynomial time no n1−ε-approximation no n1/2−ε-approximation(Theorem 11) (Theorem 13)
f(s) · nO(1) open no n

1/2−ε-approximation(Theorem 12)edge deletion Anonym Min-E-Del Max-Anonym E-Delrunning time (�xed k, minimize s) (�xed s, maximize k)polynomial time no n1−ε-approximation no n1−ε-approximation(Theorem 21) (Theorem 20)
f(s) · nO(1) open no n1−ε-approximation(Theorem 22)as blueprint for a generi
 redu
tion yielding NP-hardness on several restri
tedgraph 
lasses. In Subse
tion 3.3, we then adjust this redu
tion in order to provethe inapproximability results for Anonym V-Del. We present the polynomial-time solvable 
ases of Anonym V-Del in Subse
tion 3.4. In Se
tion 4, we trans-fer the 
entral intra
tability results forAnonym V-Del to Anonym E-Del. Inparti
ular, we show in Subse
tion 4.1 that Anonym E-Del is NP-
omplete on
aterpillars. In Subse
tion 4.2, we then give the inapproximability results. Fi-nally, we show in Se
tion 5 the �xed-parameter tra
tability of Anonym V-Deland Anonym E-Del with respe
t to the 
ombined parameters (s,∆) and (s, k).2. PreliminariesAll graphs in this paper are undire
ted, loopless, and simple (that is, withoutmultiple edges). Throughout we use n to denote the number of verti
es inthe 
onsidered graph. The maximum vertex degree of a graph G = (V,E) isdenoted by ∆G. A vertex subset S ⊆ V is 
alled k-deletion set if G[V \ S] is

k-anonymous. For ea
h vertex v ∈ V we denote by NG(v) the set of neighborsof v and by NG[v] = NG(v) ∪ {v} the 
losed neighborhood. Correspondingly,for a vertex subset V ′ we set NG[V
′] =

⋃

v∈V ′ NG[v] and NG(V
′) = NG[V

′]\V ′.For 0 ≤ α ≤ ∆, the blo
k of degree α is the set DG(α) ⊆ V of all verti
es withdegree α in G. Clearly, a graph is k-anonymous if and only if ea
h blo
k iseither of size zero or at least k. We omit subs
ripts if the 
orresponding graphis 
lear from the 
ontext.Parameterized Complexity. The 
on
ept of parameterized 
omplexity was pi-oneered by Downey and Fellows [12℄ (see Flum and Grohe [13℄ and Nieder-meier [14℄ for further monographs on parameterized 
omplexity). Herein, a7



parameterized problem is 
alled �xed-parameter tra
table if there is an algo-rithm that de
ides any instan
e (I, p), 
onsisting of the �
lassi
al� instan
e Iand a parameter p ∈ N, in f(p) · |I|O(1) time, for some 
omputable fun
tion fsolely depending on p.A 
ore tool in the development of �xed-parameter algorithms is polynomial-time prepro
essing by data redu
tion, 
alled kernelization4 [15, 16℄. Here, thegoal is to transform a given problem instan
e (I, k) in polynomial time into anequivalent instan
e (I ′, k′) whose size is upper-bounded by a fun
tion of k. Thatis, (I, k) is a yes-instan
e if and only if (I ′, k′), k′ ≤ g(k), and |I ′| ≤ g(k) for somefun
tion g. Thus, su
h a transformation is a polynomial-time self-redu
tion withthe 
onstraint that the redu
ed instan
e is �small� (measured by g(k)). In 
asethat su
h a transformation exists, I ′ is 
alled kernel of size g(k). Furthermore,if g is a polynomial, then it I ′ is 
alled a polynomial kernel.The parameterized 
omplexity hierar
hy is 
omposed of the 
lasses FPT ⊆W[1℄ ⊆ W[2℄ ⊆ . . . ⊆ W[P]. A W[1℄-hard problem is not �xed-parametertra
table (unless FPT = W[1℄) and one 
an prove the W[1℄-hardness by means ofa parameterized redu
tion from a W[1℄-hard problem. Su
h a redu
tion betweentwo parameterized problems P and P ′ is a mapping of any instan
e (I, p) of Pin g(p) · |I|O(1) time (for some 
omputable fun
tion g) into an instan
e (I ′, p′)for P ′ su
h that (I, p) ∈ P ⇔ (I ′, p′) ∈ P and p′ ≤ h(p) for some 
omputablefun
tion h.Approximation. Let Σ be a �nite alphabet. Given an optimization problem Q ⊆
Σ∗ and an instan
e I of Q, we denote by opt(I) the value of an optimum solutionfor I and by val(I, S) the value of a feasible solution S of I. The performan
eratio of S (or approximation fa
tor) is r(I, S) = max

{
val(I,S)
opt(I) , opt(I)

val(I,S)

}

. For afun
tion ρ, an algorithm is a ρ(n)-approximation, if for every instan
e I of Q,it returns a solution S su
h that r(I, S) ≤ ρ(|I|). An optimization problem is
ρ(n)-approximable in polynomial time if there exists a ρ(n)-approximation algo-rithm running in time |I|O(1) for any instan
e I. A parameterized optimizationproblem Q ⊆ Σ∗ × N is ρ(n)-approximable in fpt-time w.r.t. the parameter pif there exists a ρ(n)-approximation algorithm running in time f(p) · |I|O(1) forany instan
e (I, p) and f is a 
omputable fun
tion [17℄. It is worth pointingthat in this 
ase, p is not related to the optimization value.In this paper we use a gap-redu
tion between a de
ision problem and a mini-mization or maximization problem. A de
ision problem P is 
alled gap-redu
ibleto a maximization problem Q with gap ρ ≥ 1 if there exists a polynomial-time
omputable fun
tion that maps any instan
e I of A to an instan
e I ′ of Q, whilesatisfying the following properties:

• if I is a yes-instan
e, then opt(I ′) ≥ ξ(|I ′|) · ρ(|I ′|), and
• if I is a no-instan
e, then opt(I ′) < ξ(|I ′|),4It is well-known that a parameterized problem is �xed-parameter tra
table if and only ifit has a kernelization. 8



where ξ and ρ are two 
omputable fun
tions. If A is NP-hard, then Q is not
ρ-approximable in polynomial time, unless P = NP [18℄. In this paper we alsouse a variant of this notion, 
alled fpt gap-redu
tion.De�nition 1 (fpt gap-redu
tion). A parameterized problem P is 
alled fptgap-redu
ible to a parameterized maximization problem Q with gap ρ ≥ 1 if anyinstan
e (I, p) of P 
an be mapped to an instan
e (I ′, p′) of Q in f(p) · |I|O(1)time while satisfying the following properties:(i) p′ ≤ g(p) for some 
omputable fun
tion g,(ii) if I is a yes-instan
e, then opt(I ′) ≥ ξ(|I ′|) · ρ(|I ′|), and(iii) if I is a no-instan
e, then opt(I ′) < ξ(|I ′|),where ξ and ρ are two 
omputable fun
tions.The interest of the fpt gap-redu
tion is the next result that follows from theprevious de�nition:Lemma 1. If a parameterized problem P is C-hard, fpt gap-redu
ible to a pa-rameterized optimization problem Q with gap ρ, and Q is ρ-approximable infpt-time, then FPT = C, where C is any 
lass of the W-hierar
hy.Proof. We give a �xed-parameter algorithm for the parameterized problem P asfollows: Sin
e P is fpt gap-redu
ible to Q = (I, sol, cost,max) with gap ρ, thereexists an algorithm mapping the input (I, p) of P to an instan
e (I ′, p′) ∈ Iof Q in f(p) · |I|O(1) time su
h that the properties (i) to (iii) of De�nition 1 aresatis�ed. We then apply the �xed-parameter ρ-approximation algorithm for Qon the instan
e (I ′, p′). Due to property (i), this algorithm runs in g(p) · |I|O(1)time for some 
omputable fun
tion g. Let x ∈ sol(I ′) be the solution produ
edby the �xed-parameter ρ-approximation algorithm forQ. Assume that (I, p) wasa no-instan
e. Hen
e, we have cost(x) ≤ opt(I ′) and by property (iii) it followsthat cost(x) < ξ(I ′). Now assume that (I, p) was a yes-instan
e. Hen
e, wehave opt(I ′)/ cost(x) ≤ ρ(I ′) and thus cost(x) ≥ opt(I ′)/ρ(I ′). By property (ii)it follows that cost(x) ≥ opt(I ′)/ρ(I ′) ≥ (ξ(I ′) · ρ(I ′))/ρ(I ′) = ξ(I ′). Hen
e, bydistinguishing the two 
ases cost(x) < ξ(I ′) and cost(x) ≥ ξ(I ′) we 
an de
idethe instan
e (I, p) of P in (g(p)+f(p)) · |I|O(1) time. Thus P is �xed-parametertra
table and sin
e P is C-hard, it follows that FPT = C.3. Vertex DeletionIn this se
tion, we provide various hardness results for Anonym V-Del onseveral restri
ted graph 
lasses su
h as trees, split graphs, and trivially perfe
tgraphs. In a �rst subse
tion (see Subse
tion 3.1), we show thatAnonym V-Delremains NP-hard even on trees. Extra
ting the basi
 ideas of this result, subse-quently we provide a generi
 redu
tion to show NP-hardness on trivially perfe
tgraphs, bipartite permutation graphs, and split graphs (see Subse
tion 3.2) and9



strong inapproximability results for the two natural optimization problems as-so
iated with Anonym V-Del (see Subse
tion 3.3). We also identify several
lasses of graphs for whi
h Anonym V-Del is polynomial-time solvable (seeSubse
tion 3.4).As a warm up, we �rst prove thatAnonym V-Del is NP-
omplete on graphswith maximum degree three.Theorem 2. Anonym V-Del is NP-
omplete on graphs with maximum degreethree.Proof. Sin
e 
ontainment in NP is easy to see, we fo
us on showing NP-hardness.To this end, we give a redu
tion from the Vertex Cover problem whi
h isknown to be NP-
omplete even in three-regular graphs [19, GT1℄ and is formallyde�ned as follows.Vertex Cover [19, GT1℄Input: An undire
ted graph G = (V,E) and h ∈ N.Question: Is there a vertex subset V ′ ⊆ V , |V ′| ≤ h, su
h that every edgehas an endpoint in V ′?Input: h = 3 Solution:
Given a Vertex Cover instan
e (G = (V,E), h) with G being three-regular,start by 
opying G into a new graph G′. Finally, add h+1 degree-zero verti
esto G′, set s := h, and k := |V |+ 1.If G 
ontains a vertex 
over V ′ of size h, then deleting V ′ in G′ 
learlyresults in an edgeless graph with |V |+1 = k verti
es, implying that (G′, s, k) isa yes-instan
e of Anonym V-Del. In the reverse dire
tion, for any k-deletionset S, sin
e 2k > n+h+1 and G′ 
ontains s+1 degree-zero verti
es, all verti
esin G′ − S have degree zero. Thus, S ∩ V is a vertex 
over in G.3.1. NP-Hardness on TreesIn this subse
tion, we show that Anonym V-Del remains NP-hard evenon trees. This result and many further hardness results will be obtained usingredu
tions from the NP-
omplete Set Cover problem, whi
h is de�ned asfollows:Set Cover [19, SP5℄Input: A universe A = {a1, a2, . . . , aα}, a 
olle
tion B =

{B1, B2, . . . , Bβ} of subsets of A, and h ∈ N.Question: Is there an index set J ⊆ {1, 2, . . . , β} with |J | ≤ h, su
hthat ⋃j∈J Bj = A? 10



Input: A = {a1, a2, . . . , a7}
B = {B1, B2, B3, B4}, h = 2

B1 = {a1, a2, a4, a5} B2 = {a2, a4, a6}
B3 = {a3, a5, a6, a7} B4 = {a4, a5, a7}

B1 B2 B3 B4

a1 a2 a3 a4 a5 a6 a7

Solution:
J = {1, 3}

B1 B2 B3 B4

a1 a2 a3 a4 a5 a6 a7If a Set Cover instan
e I = (A,B, h) 
ontains su
h an index set J , then werefer to the set {Bj | j ∈ J} as a set 
over for I.Redu
tion 1. The redu
tion showing NP-hardness of Anonym V-Del on treesis as follows: Let (A,B, h) be an instan
e of Set Cover. We assume withoutloss of generality that for ea
h element a ∈ A there exists a set B ∈ B with a ∈ B.Furthermore, we assume without loss of generality that ea
h set B ∈ B o

ursat least three times in B. To de
rease the amount of indi
es in the 
onstru
tiongiven below we introdu
e the fun
tion f : N→ N with f(i) = α+ (h+ 1)i.The redu
tion for trees is as follows, see Figure 3 for an example. Set k :=
2 and s := h. To obtain an equivalent Anonym V-Del-instan
e (G, k, s),
onstru
t G = (V,E) as follows: For ea
h element ai ∈ A add an element gadget
onsisting of a star K1,f(i) with the 
enter vertex v(ai). Denote with VA :=
{v(a1), v(a2), . . . , v(aα)} the set of all these 
enter verti
es.For ea
h set Bj ∈ B add a set gadget whi
h is a tree rooted in a vertex v(Bj).The root has |Bj | 
hild verti
es where ea
h element ai ∈ Bj 
orresponds toexa
tly one of the 
hildren of v(Bj), denoted by v(ai, Bj). Additionally, we addto v(ai, Bj) exa
tly f(i) degree-one neighbors. Hen
e, the set gadget is a treeof depth two rooted in v(Bj). We denote with VB := {v(B1), v(B2), . . . , v(Bβ)}the set of all root verti
es. Observe that, as ea
h set Bj ∈ B o

urs at leastthree times, the set gadgets are 2-anonymous. Finally, to end up with one treeinstead of a forest, repeatedly add edges between any degree-one-verti
es ofdi�erent 
onne
ted 
omponents.Corre
tness of Redu
tion 1. Observe that for ea
h element ai ∈ A the only ver-tex of degree f(i) is v(ai) and there are no other verti
es violating the 2-anony-mous property. The key point in the 
onstru
tion is that, in order to get a
2-anonymous graph, one has to delete verti
es of VB: Let ai ∈ A be an ele-ment and v(Bj) a root vertex su
h that ai ∈ Bj . By 
onstru
tion the 
hildvertex v(ai, Bj) of v(Bj) 
orresponds to ai and therefore has f(i) 
hild verti
es.Thus, deleting v(Bj) lowers the degree of v(ai, Bj) to f(i) and, hen
e, v(ai) nolonger violates the 2-anonymous property. Furthermore, as ea
h set Bj ∈ Bo

urs at least three times, the verti
es VB are 2-anonymous. Hen
e, given aset 
over one 
an 
onstru
t a 
orresponding k-deletion set of the same size and,thus, if (A,B, h) is a yes-instan
e, then (G, k, s) is a yes-instan
e. The basi
idea in the 
onverse dire
tion is that if there is a k-deletion set S, then, due to11



B1 B2 B3 B4

a1 a2 a3 a4 a5 a6 a7

h: set 
over size
s: number of deleted verti
es

k: anonymity level
f : N→ N with
∀1 ≤ i < j ≤ n :
f(j)− f(i) > s

k = 2s = h

v(B1)

v(B3)

v(a1, B1)

· · ·

v(a2, B1)

· · ·

v(a4, B1)

· · ·

v(a5, B1)

· · ·

v(a3, B3)

· · ·

v(a5, B3)

· · ·

v(a6, B3)

· · ·

v(a7, B3)

· · ·

set-gadget v(B2)

v(B4)

v(a2, B2)

· · ·

v(a4, B2)

· · ·

v(a6, B2)

· · ·

v(a4, B4)

· · ·

v(a5, B4)

· · ·

v(a7, B4)

· · ·

v(a1)

· · ·

v(a2)

· · ·

v(a3)

· · ·

v(a4)

· · ·

v(a5)

· · ·

v(a6)

· · ·

v(a7)

· · ·

deg(v(ai, Bj)) = f(i) + 1

deg(v(ai)) = f(i)Figure 3: Example of the redu
tion for trees. Above the Set Cover instan
e with twelvesets (ea
h set Bi , i = 1, . . . , 4 appears three times) and seven elements is graphi
ally displayed(for example, the set B1 
ontains the elements a1, a2, a4, and a5, and {B1, B3} forms a set
over). In our redu
tion, we assume without loss of generality that ea
h set o

urs at leasttimes. However, to keep the �gure 
learly arranged, we omit these 
opies in the �gure. Beloware the four di�erent set gadgets and the element gadgets are at the bottom of the pi
ture.Observe that by the 
hoi
e of f , the degrees of the verti
es in the set-gadgets and vertex-gadgets are ensured to not interfere, even if s verti
es are removed. The e�e
t of these 
opiesto the 
onstru
tion is that ea
h of the four set-gadgets appears three times. Thus, deletingthe verti
es v(B1) and v(B3) makes the displayed graph 2-anonymous.the 
hoi
e of f , there is also a k-deletion set S′ ⊆ VB that is not larger than S.The formal proof whi
h implies the following theorem will be given later (seeLemma 5), after introdu
ing the generi
 redu
tion.Theorem 3. Anonym V-Del is NP-
omplete on trees even if k = 2.3.2. Generi
 Redu
tionIn this se
tion, we generalize Redu
tion 1 given in the previous subse
tion.More spe
i�
ally, we will de�ne properties su
h that a graph G ful�lling themtogether with s := h and k := 2 forms a yes-instan
e of Anonym V-Del if12



and only if the given Set Cover instan
e (A,B, h) is a yes-instan
e. Based onthat, we then des
ribe the 
onstru
tion of several graphs 
ontained in di�erentgraph 
lasses and ful�lling the properties. Formally, we require the 
onstru
tedgraph G = (V,E) to ful�ll the following:1. Element-gadgets:(a) For ea
h element ai ∈ A there is a 
orresponding vertex, denotedby v(ai), in G and the vertex set VA := {v(a1), v(a2), . . . , v(aα)} isexa
tly the set of verti
es not being 2-anonymous in G.(b) For ea
h vertex v ∈ V it holds that |N [v] ∩ VA| ≤ 1.2. Set-gadgets:(a) For ea
h set Bj ∈ B there is a 
orresponding vertex v(Bj) in G andfor ea
h element ai ∈ Bj the vertex v(Bj) has a neighbor v(ai, Bj)with deg(v(ai, Bj)) = deg(v(ai)) + 1.Set VB := {v(B1), v(B2), . . . , v(Bβ)} and ABj
:= {v(ai, Bj) | ai ∈ Bj}.Set AB :=

⋃

Bj∈B ABj
.(b) For all Bj ∈ B it holds that N(ABj

) ∩ VB = {v(Bj)}(
) For ea
h vertex v ∈ V there is a vertex u ∈ VB su
h that N(v)∩AB ⊆
N(u).3. Intera
tion between these gadgets:(a) The vertex subsets VA, VB, and AB1 , AB2 , . . . , ABβ

are pairwise dis-joint.(b) It holds that N(VA) ∩ (VB ∪ AB) = ∅.(
) For ea
h D ⊆ VB, |D| ≤ h, the set of verti
es violating the 2-anony-mous property in G−D is a subset of VA.(d) Any two verti
es u ∈ VA and v /∈ AB satisfy | deg(u)− deg(v)| > s.It is not hard to verify that the graph 
onstru
ted in the redu
tion in theprevious paragraph has the above properties. Before proving the 
orre
tness ofthe generi
 redu
tion we make the following observation.Observation 4. For ea
h D ⊆ VB, |D| ≤ h, the set VA \ {v(ai) | ∃v(Bj) ∈
D : ai ∈ Bj} is exa
tly the set of verti
es not being 2-anonymous in G−D.Proof. By Property 1a only the verti
es in VA are not 2-anonymous inG. Property 3
ensures that the set of verti
es X violating the 2-anonymous property in G−Dis a subset of VA.Be
ause of Property 3b (N(VA)∩VB = ∅) it holds that degG(v) = degG−D(v)for all v ∈ X . Moreover, be
ause N(ABj

) ∩ VB = {v(Bj)} (Property 2b)it holds for all Bj ∈ B and all v(ai, Bj) ∈ ABj
that degG−D(v(ai, Bj)) =

degG(v(ai, Bj)) − x where x is one if v(Bj) ∈ D and otherwise zero. Thisimplies with Property 2a that X ⊆ VA \ {v(ai) | ∃v(Bj) ∈ D : ai ∈ Bj}.13



By Property 3a it follows that VA ⊆ V \ D. To show that VA \ {v(ai) |
∃v(Bj) ∈ D : ai ∈ Bj} ⊆ X , assume by 
ontradi
tion that there is a ver-tex v(ai) ∈ VA \X but for all v(Bj) ∈ D it holds that ai /∈ Bj . By Property 3bit holds that degG(v(ai)) = degG−D(v(ai)) and hen
e by Property 3d it followsthat there is some vertex v ∈ AB with degG−D(v) = degG−D(v(ai)). Thus,sin
e D ⊆ VB and N(ABj

) ∩ VB = {v(Bj)} (Property 2b), by Property 2a itfollows that there is some v(Bj) ∈ D with ai ∈ Bj , a 
ontradi
tion.Lemma 5. Let G be a graph satisfying Properties 1a to 3d for a given in-stan
e (A,B, h) of Set Cover. Then (G, 2, h) is a yes-instan
e of AnonymV-Del if and only if (A,B, h) is a yes-instan
e of Set Cover.Proof. If there is a set 
over B′ ⊆ B, |B′| ≤ h, su
h that ⋃Bj∈B′ Bj = A, thenby Observation 4 the set S = {v(Bj) | Bj ∈ B′} ⊆ VB, |S| = |B′|, is a 2-deletionset for G. It remains to prove the reverse dire
tion.Let S be a 2-deletion set of size at most s = h for G = (V,E). We 
onstru
ta set 
over B′, |B′| ≤ |S|, for the Set Cover instan
e. First, initialize B′ := ∅.Then, 
onsider ea
h vertex v ∈ S: If v = v(Bj) ∈ VB, then add Bj to B′ (Case1). If v ∈ N [VA], then by Property 1b there is only one ai su
h that v ∈ N [v(ai)]and we add any Bj with ai ∈ Bj to B′ (Case 2). Finally, if v ∈ N [AB], then byProperty 2
 there is a vertex v(Bj) ∈ VB with N(v) ∩ AB ⊆ N(v(Bj)) and weadd Bj to B′ (Case 3).We next prove that B′ is indeed a set 
over for the Set Cover instan
e (A,B, h).Assume towards a 
ontradi
tion that B′ is not a set 
over, that is, there is an el-ement ai ∈ A su
h that for ea
h B ∈ B′ we have ai /∈ B. Observe that in G, thevertex v(ai) violates the 2-anonymous property, that is, there is no other vertexwith the degree of v(ai). Furthermore, from the 
onstru
tion of B′ (see Case 2),it follows that v(ai) /∈ S and that degG(v(ai)) = degG−S(v(ai)). Hen
e, thereis a vertex v ∈ V su
h that degG(v(ai)) = degG−S(v) and thus, by Property 3d,it follows that v ∈ N [AB], that is, v = v(ai, Bj) for some Bj with ai ∈ Bj . ByCase 1 and Case 3 of the 
onstru
tion of B′, this implies that B′ 
ontains a set Bj,a 
ontradi
tion to the fa
t that ai ∈ A for ea
h B ∈ B′ we have ai /∈ B.Using this generi
 redu
tion we now show NP-hardness on several graph
lasses whi
h are de�ned as follows (see Brandstädt et al. [20℄): Trivially perfe
tgraphs are the {P4, C4}-free graphs, that is, they do not 
ontain an indu
edpath or 
y
le on four verti
es. A graph G is a bipartite permutation graph if Gis bipartite and does not 
ontain an asteroidal triple (is AT-free). Three verti
esof a graph form an asteroidal triple if every two of them are 
onne
ted by a pathavoiding the neighborhood of the third. A graph is a split graph if it 
an bepartitioned into a 
lique and an independent set.Theorem 6. Anonym V-Del is NP-
omplete on trivially perfe
t graphs, bi-partite permutation graphs, and split graphs, even if k = 2.Proof. Sin
e 
ontainment in NP is easy to see, we fo
us on showing NP-hardness.Let B = {B1, B2, . . . , Bβ} be a 
olle
tion of subsets of some universe A =14



v(B1)

v(a1, B1) v(a2, B1) v(a4, B1) v(a5, B1)

· · · U(B1)

AB1

C(B1)

Figure 4: The set-gadget C(B1) for the 
onstru
ted bipartite permutation graph. The givenSet Cover instan
e is the same as in Figure 3 where B1 = {a, a2, a4, a5}.
{a1, a2, . . . , aα} whi
h form together with some h ∈ N an instan
e of SetCover. As in Redu
tion 1, we assume without loss of generality that for ea
helement a ∈ A there exists a set B ∈ B with a ∈ B. Furthermore, we assumewithout loss of generality that ea
h set B ∈ B o

urs at least three times in B.We �rst des
ribe the redu
tions for ea
h the three graph 
lasses and then,due to the similarities in the 
onstru
ted graphs, we show for all three graphstogether that the above properties are satis�ed. Let f : N → N be f(i) =
i(h+ 1) + α.Bipartite permutation graphs: Analogously to the redu
tion for trees add forea
h set ai ∈ A an element-gadget 
onsisting of star K1,f(i) with a 
enter vertexdenoted by v(ai). Clearly, a star is a bipartite permutation graph.For ea
h set Bj ∈ B we add a set-gadget as follows: First, add a vertex v(Bj)to G. For ea
h element ai ∈ Bj add a 
hild vertex, denoted by v(ai, Bj),to v(Bj). Let imax := maxai∈Bj

{i}, ℓ := |Bj |, and ABj
:= {v(ai, Bj) | ai ∈ Bj}.Next, add the vertex set U(Bj) := {u1(Bj), u2(Bj), . . . , uf(imax)(Bj)} and forea
h ai ∈ Bj the edge set {(ur(Bj), v(ai, Bj)) | 1 ≤ r ≤ f(i)}.Note that deg(v(ai, Bj)) = deg(v(ai)) + 1. Denote with C(Bj) the set-gadget, that is, the 
onne
ted 
omponent 
ontaining v(Bj) whi
h 
onsists ofthe verti
es {v(Bj)} ∪ ABj

∪ U(Bj); see Figure 4 for an example.Furthermore, observe that N(u1(Bj)) ⊇ N(u2(Bj)) ⊇ . . . ⊇ N(uiℓ(Bj)) andthus, in 
ontrast to the previous redu
tion for trees, C(Bj) is AT-free.Overall, the 
onstru
ted graph is AT-free and 
learly bipartite.Trivially perfe
t graphs: First, 
onstru
t the graph as des
ribed above for the
ase of bipartite permutation graphs. Next for ea
h Bj ∈ B apply the following
hanges to C(Bj), see Figure 5 for an illustration: Add edges so that the verti
esin ABj
form a 
lique. To ensure that the degree of the verti
es in ABj

does not
hange by the previous �
lique operation�, remove the �rst |Bj | − 1 verti
esfrom U(Bj) whi
h are all adja
ent to ea
h vertex in ABj
due to the de�nitionof f and |Bj | ≤ α. 15



v(B1)

v(a1, B1) v(a2, B1) v(a4, B1) v(a5, B1)

· · · U(B1)

AB1

C(B1)

Figure 5: The set-gadget C(B1) for the 
onstru
ted trivially perfe
t graphs. The given SetCover instan
e is the same as in Figure 3 where B1 = {a, a2, a4, a5}.Clearly, the star 
omponents 
ontaining the verti
es from VA are triviallyperfe
t. Furthermore, note that ea
h C(Bj) is trivially perfe
t: sin
e {v(Bj)}∪
ABj

is a 
lique, the remaining verti
es in U(Bj) form an independent set, andsin
e N(u|Bj |(Bj)) ⊇ N(u|Bj |+1(Bj)) ⊇ . . . ⊇ N(uiℓ(Bj)) it is easy to verifythat C(Bj) is indeed a threshold graph whi
h is a spe
ial form of a triviallyperfe
t graph [20℄.Note that sin
e the 
onne
ted 
omponents 
ontaining the verti
es in VA arealso threshold graphs, by the redu
tion above we have proven that Anonym V-Del is indeed NP-hard on graphs whose 
onne
ted 
omponents are thresholdgraphs. However, in Theorem 17 we prove that Anonym V-Del is polynomial-time solvable on threshold graphs.Split graphs: First, 
onstru
t the graph G as des
ribed above for the 
ase ofbipartite permutation graphs. For ea
h set Bj ∈ B set W (Bj) := {v(Bj)} ∪
U(Bj). Then, set WB :=

⋃

B∈B W (B). Finally, add edges to make the vertexsubset N(VA) ∪ WB to a 
lique. Observe that the remaining verti
es form anindependent set and, hen
e, the graph is a split graph.Corre
tness: We now show that the 
onstru
ted graphs satisfy Properties 1ato 3d. To this end, observe that, due to assumption that ea
h set o

urs threetimes in B, ea
h vertex in C(Bj) is 2-anonymous. Hen
e, the verti
es in VAare exa
tly the ones that are not 2-anonymous. Thus, Property 1a is satis�ed.Properties 2a and 3a are 
learly satis�ed. Sin
e for ea
h vertex v(ai) ∈ VAthe vertex set N [v(ai)] indu
es a star (a 
lique in the split graph 
ase) and forea
h j 6= i we have N [v(ai)] ∩ N [v(aj)] = ∅, Property 1b is ful�lled. Observethat ABj
⊆ N(v(Bj)) for ea
h Bj ∈ B. Furthermore, the verti
es in VA and VBare pairwise in di�erent 
onne
ted 
omponents in the 
ase for trivially perfe
tgraphs and bipartite permutation graphs. Thus, Properties 2b and 3b are ful-�lled for these 
ases. For the 
ase of split graphs, observe that we started withthe 
onstru
tion for the bipartite permutation graphs and the verti
es of VAand AB remained un
hanged. Hen
e, Properties 2b and 3b are also ful�lled for16



the 
ase of split graphs. In the 
onstru
ted graphs for ea
h Bj , Bj′ ∈ B, j 6= j′,we have N(ABj
) ∩ N(ABj′

) = ∅. From this and ABj
⊆ N(v(Bj)), it followsthat Property 2
 is satis�ed. Sin
e AB ⊆ N(VB) this implies that Property 3
is ful�lled. Finally, sin
e ea
h vertex in V \ (VA ∪AB) has degree at most α (atleast |N(VA) ∪WB| in the split graph 
ase), it follows from the de�nition of fthat Property 3d is satis�ed.Sin
e Set Cover is W[2℄-
omplete with respe
t to the solution size h [12℄and the solution size s in the 
onstru
ted instan
e was s := h, we have thefollowing.Corollary 7. Anonym V-Del is W[2℄-hard with respe
t to parameter s, evenif k = 2 and if the input graph is a tree, a bipartite permutation graph, a splitgraph, or a trivially perfe
t graph.Set Cover is �xed-parameter tra
table with respe
t to the 
ombined pa-rameter (α, h) [21℄ but does not admit a polynomial kernel with respe
t to (α, h) [22℄,unless NP ⊆ 
oNP/poly. Observe that in all 
onstru
tions for Theorem 6 ex
eptthe one for split graphs we 
an bound s and ∆ in a polynomial in α and h.Corollary 8. Anonym V-Del on trees, bipartite permutation graphs or triv-ially perfe
t graphs does not admit a polynomial kernel with respe
t to the 
om-bined parameter (k, s,∆), unless NP ⊆ 
oNP/poly.There are two natural optimization versions asso
iated with Anonym V-Del: in one version (
alled Max-Anonym V-Del) the goal is to maximize theanonymity k subje
t to the 
onstraint that the number s of deleted verti
es doesnot ex
eed a given bound; in the other version (
alled Anonym Min-V-Del)the goal is to minimize the number s of deleted verti
es subje
t to the 
onstraintthat the anonymity does not go below a 
ertain given bound. As Set Coveris NP-hard to approximate within a ratio o(logn) [23, 24℄, the above redu
tionyields the following inapproximability result.Corollary 9. Anonym Min-V-Del 
annot be approximated within a fa
torof o(log n) in polynomial-time, even if k = 2 and if the input graph is a tree, abipartite permutation graph, a split graph, or a trivially perfe
t graph, unless P =NP.Sin
e the above redu
tion gives NP-hardness for k = 2 and the input graphis 1-anonymous, we immediately get inapproximability within a fa
tor of twofor Max-Anonym V-Del.Corollary 10. For every 0 < ε < 1, Max-Anonym V-Del 
annot be approxi-mated within a fa
tor of 2− ε in polynomial time, unless P = NP. Furthermore,if Max-Anonym V-Del admits for any 0 < ε ≤ 1 a �xed-parameter (2 − ε)-approximation algorithm with respe
t to parameter s, then FPT = W[2℄.In the next se
tion, we show that we 
an strengthen these inapproximabilityresults. 17



3.3. Inapproximability ResultsCorollaries 9 and 10 give �rst lower bounds on the polynomial-time ap-proximability of the two optimization problems asso
iated to Anonym V-Del,namely Anonym Min-V-Del and Max-Anonym V-Del. For general graphs,these results, however, 
an be strengthened 
onsiderably in terms of the a
hiev-able approximation fa
tor and, in 
ase of Max-Anonym V-Del, also in termsof the allowed running time. Spe
i�
ally, we prove that Anonym Min-V-Delis not n1−ε-approximable in polynomial time, while Max-Anonym V-Del isnot n
1/2−ε-approximable in fpt-time with respe
t to the parameter s, even ontrees.To this end, for the polynomial-time inapproximability of Anonym Min-V-Del, we slightly adjust the redu
tion given in the proof of Theorem 2.Theorem 11. For every 0 < ε ≤ 1/2, Anonym Min-V-Del is not n1−ε-approximable in polynomial time, even on graphs with maximum degree three,unless P = NP.Proof. Let 0 < ε ≤ 1 be a 
onstant. We establish a gap-redu
tion with gap n1−εfrom the Vertex Cover problem whi
h is known to be NP-
omplete even inthree-regular graphs [19, GT1℄.Given aVertex Cover instan
e (G = (V,E), h) we 
onstru
t an instan
e I ′ =

(G′ = (V ′, E′), k) of Anonym Min-V-Del. Start by 
opying G into a newgraph G′. Next, set x :=
⌈
n1/ε

⌉
− n + h. Finally, add x degree-zero verti
esto G′ and set k := n− h + x. Denote by n′ the number of verti
es of G′, thus

n′ = n+ x.We now show that if I is a yes-instan
e, then opt(I ′) ≥ h and if I is ano-instan
e, then opt(I ′) = n+ x.Suppose that G 
ontains a vertex 
over S of size h. Then, deleting S in G′
learly results in an edgeless graph with n − h + x = k verti
es, implying that
opt(I ′) ≤ h.Suppose thatG′ 
ontains a k-deletion set S of size at most |V ′|−1. Sin
e 2k >
n− h+ x and G′ 
ontains x > h degree-zero verti
es, all verti
es in G′ −S havedegree zero. Furthermore, at least k = n − h + x degree-zero verti
es are 
on-tained in G′ − S and hen
e, |S| ≤ h and S ∩ V is a vertex 
over in G. Thus,if G does not 
ontain a vertex 
over of size h, then opt(I ′) = |V ′| = n+ x.We obtain a gap-redu
tion with the gap at least

n+ x

h
=

⌈n
1
ε ⌉+ h

h
=

(⌈n
1
ε ⌉+ h)(ε+1−ε)

h
≥

n · (⌈n
1
ε ⌉+ h)(1−ε)

h

≥ (⌈n
1
ε ⌉+ h)(1−ε) = (n+ x)(1−ε) = (n′)1−ε.Next we show strong parameterized inapproximability results forMax-AnonymV-Del. To this end, we adjust Redu
tion 1 in order to obtain an fpt gap-redu
tion. 18
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Figure 6: The set-gadget for the set B1 in the fpt gap-redu
tion of Theorem 12. Thegiven Set Cover instan
e is the same as in Figure 3 where B1 = {a, a2, a4, a5}. The fpt gap-redu
tion is an extension of Redu
tion 1 (depi
ted in Figure 3). The main di�eren
e is that thefpt gap-redu
tion introdu
es a lot of 
opies of 
ertain verti
es to in
rease the anonymity level.This 
an be seen in the set-gadget above: While in Redu
tion 1 only one vertex 
orresponds tothe 
ombination (a1, B1) with a1 ∈ B1, namely v(a1, B1), in the fpt gap-redu
tion t verti
es
orrespond to the 
ombination, namely v1(a1, B1), v2(a1, B1), . . . , vt(a1, B1).Theorem 12. For every 0 < ε ≤ 1/2, Max-Anonym V-Del is not �xed-parameter n
1/2−ε-approximable with respe
t to parameter s, even on trees, un-less FPT = W[2℄.Proof. Let 0 < ε ≤ 1/2 be a 
onstant. We provide an fpt gap-redu
tion withgap n1/2−ε from the W[2℄-hard Set Cover problem [12℄ parameterized by thesolution size h. Let I = (A,B, h) be an instan
e of Set Cover. We assumewithout loss of generality that for ea
h element ai ∈ A there exists a set Bj ∈ Bwith ai ∈ Bj . Let f : N→ N be f(i) = (h+ 4)i. Set t := ⌈

(αβ)(1−2ε)/(2ε)
⌉. Wewill aim for making the 
onstru
ted graph t-anonymous.The instan
e I ′ of Max-Anonym V-Del is de�ned by s = h and a graphG =

(V,E) 
onstru
ted as follows: For ea
h element ai ∈ A add a star K1,f(i) withthe 
enter vertex v(ai). Denote with VA = {v(a1), v(a2), . . . , v(aα)} the set of allthese 
enter verti
es. Furthermore, for ea
h element ai ∈ A add t starsK1,f(i)+1.For ea
h set Bj ∈ B add a set-gadget whi
h will 
onsist of a tree rooted in avertex v(Bj), see Figure 6 for an illustration. The root has |Bj | · t 
hild verti
eswhere ea
h element ai ∈ Bj 
orresponds to exa
tly t of these 
hildren, denotedby v1(ai, Bj), v2(ai, Bj), . . ., vt(ai, Bj). Additionally, for ea
h ℓ ∈ {1, 2, . . . , t}we add to vℓ(ai, Bj) exa
tly f(i) degree-one neighbors. Hen
e, the set gadget19



is a tree of depth two rooted in v(Bj). To ensure that the root v(Bj) doesnot violate the t-anonymous property we add t stars K1,deg(v(Bj)). We denotewith VB = {v(B1), v(B2), . . . , v(Bβ)} the set of all root verti
es. Finally, to endup with one tree instead of a forest, repeatedly add edges between any degree-one-verti
es of di�erent 
onne
ted 
omponents. Denoting by n the number ofverti
es in G it holds that
n ≤ tβα2

︸ ︷︷ ︸verti
es for elements+ t(βα)2 + tβα
︸ ︷︷ ︸verti
es for sets < (tβα)2.We now show that if I is a yes-instan
e, then opt(I ′) ≥ t and if I is ano-instan
e, then opt(I ′) = 1.Suppose that I has a set 
over of size h. Observe that for ea
h element ai ∈ Athe only vertex of degree f(i) is v(ai), and there are no other verti
es violatingthe t-anonymous property. The key point in the 
onstru
tion is that, in orderto get a t-anonymous graph, one has to delete verti
es of VB. Indeed, let ai ∈ Abe an element and v(ai) a root vertex su
h that ai ∈ Bj . By 
onstru
tion,for ea
h 1 ≤ ℓ ≤ t the 
hild vertex vℓ(ai, Bj) of v(Bj) has f(i) 
hild verti
esand hen
e a degree of f(i) + 1. Thus, deleting v(Bj) lowers the degree ofea
h vℓ(ai, Bj) to f(i) and, hen
e, v(ai) no longer violates the t-anonymousproperty. Hen
e, given a set 
over of size h one 
an 
onstru
t a 
orresponding t-deletion set for G.Conversely, we show that if there exists a 2-deletion set of size at most hin G, then (A,B, h) is a yes-instan
e of Set Cover. Let S ⊆ V be a 2-deletionset of size at most h. We 
onstru
t a set 
over B′ of size at most |S| at follows.First, initialize B′ := ∅. Then, add for ea
h vertex v(Bj) ∈ S ∩ VB the set Bjto B′ (Step 1). Next, as long as there is an element ai with ai /∈

⋃

B∈B′ B, add aset Bj with ai ∈ Bj to B′ (Step 2). It is 
lear that B′ is a set 
over for (A,B, h).It remains to prove that |B′| ≤ |S|. To this end, partition the set S into S1 ∩S2where S1 
ontains exa
tly the verti
es in VB, that is S1 := S ∩ VB and S2 :=
S \ S1. Observe that the number of sets added to B′ in Step 1 is exa
tly |S1|.Furthermore, observe that all verti
es in VA violate the 2-anonymous propertyand ea
h of these verti
es is a 
enter of an isolated star with more than twoleaves. Sin
e the only verti
es in G that are adja
ent to more than one vertex ofdegree at least three are the verti
es in VB, it follows, ea
h vertex in S2 ��xes� forat most one vertex in VA the 2-anonymous property. Hen
e, the number of setsadded in Step 2 is at most |S2|. Thus |B′| ≤ |S| and (A,B, h) is a yes-instan
eof Set Cover.We obtain an fpt gap-redu
tion with the gap

t = (t2)
1/2+ε−ε = t2ε(t2)

1/2−ε = (αβ)1−2ε(t2)
1/2−ε

= (α2β2)
1/2−ε(t2)

1/2−ε = (α2β2t2)
1/2−ε > n

1/2−εsin
e n < t2α2β2. Thus, the statement of the theorem follows from Lemma 1.Sin
e the fpt gap-redu
tion provided in the proof of Theorem 12 
an be
onstru
ted in polynomial time and sin
e Set Cover is NP-
omplete, we also20



obtain polynomial-time inapproximability under the stronger assumption P =NP.Theorem 13. For every 0 < ε ≤ 1/2, Max-Anonym V-Del is not n
1/2−ε-approximable in polynomial time, even on trees, unless P = NP.3.4. Polynomially-Time Solvable CasesWe 
omplement our intra
tability results for Anonym V-Del from the pre-vious se
tions by showing that Anonym V-Del is polynomial-time solvable ongraphs with maximum degree two, on graphs that are disjoint unions of 
liques,and on threshold graphs.3.4.1. Graphs with Maximum Degree TwoIn 
ontrast to graphs of maximum degree three (see Theorem 2), we observethatAnonym V-Del is polynomial-time solvable on graphs of maximum degreetwo. Note that a graph of maximum degree two is just a 
olle
tion of pathsand 
y
les. Given �ve integers d0, d1, d2, x, y, it is easy to de
ide whether itis possible to remove x verti
es from a path of length y (respe
tively, from a
y
le of length y) su
h that there survive pre
isely d0 verti
es of degree zero, d1verti
es of degree one, and d2 verti
es of degree two. A straight-forward dynami
programming approa
h based on this observation leads to the following.Theorem 14. On graphs of maximum degree two, Anonym V-Del is polynomial-time solvable.3.4.2. Disjoint Union of CliquesNote that Anonym V-Del is trivial on 
liques: either the 
lique size is atleast k, or otherwise one has to delete all the verti
es. The following theoremshows that polynomial-time solvability also 
arries over to the 
ase where thegraph is the disjoint union of several 
liques, that is, a 
luster graph. A graphis a 
luster graph if and only if it does not 
ontain the 3-vertex path P3 as anindu
ed subgraph.Theorem 15. On a 
luster graph G with maximum degree ∆, Anonym V-Del
an be solved in O(n2∆) time.Proof. Note that removing any number of verti
es from a 
luster graph yieldsanother 
luster graph. For an integer c ≥ 1, we denote by #comp(G, c) thenumber of 
omponents of size c in G. For integers x, y ≥ 1, we denote by G(x, y)the graph that 
onsists of all 
omponents of G of size up to x, together with ynew 
omponents (
liques) of size exa
tly x.We design a dynami
 program that solves Anonym V-Del for all su
hgraphs G(x, y). We denote by f(x, y) the smallest possible number of verti
eswhose removal from G(x, y) yields a k-anonymous graph, and we store all thesevalues in the dynami
 programming table. In the initialization phase of thedynami
 program we handle the 
ases with x = 1. Note that the graph G(1, y)21




onsists of t := #comp(G, 1)+y isolated verti
es. Then f(1, y) = 0 whenever t ≥
k, and f(1, y) = t whenever t < k.The 
ases with x ≥ 2 are handled as follows. Consider a graph G(x, y) that
ontains t := #comp(G, x) + y 
omponents of size x. A k-anonymous subgraphof G(x, y) will 
ontain a 
ertain number z of these 
omponents, while from ea
hof the remaining t− z 
omponents (at least) one vertex is to be removed; notethat this requires x · z ≥ k whenever z 6= 0. This yields the formula

f(x, y) = min {f(x− 1, t− z) + t− z | z = 0 or k/x ≤ z ≤ t} .As the largest 
lique in G 
ontains ∆ + 1 verti
es, the dynami
 programmingtable has O(n∆) entries. We pre
ompute all the values #comp, and then de-termine every value f(x, y) in O(n) time per entry. All in all, this yields the
laimed running time of O(n2∆). The �nal answer for the graph G is givenby f(∆ + 1, 0).3.4.3. Threshold GraphsWe re
all that a graph G = (V,E) is a threshold graph if there are positivereal vertex weights w(v) for v ∈ V su
h that {v1, v2} ∈ E if and only if w(v1) +
w(v2) ≥ 1; see Brandstädt et al. [20℄ for more information. Without loss ofgenerality we will assume that the vertex weights satisfy the following 
onditions:

• The vertex weights are pairwise distin
t, and satisfy 0 < w(v) < 1.
• Any v1, v2 ∈ V satisfy w(v1) + w(v2) 6= 1; in parti
ular w(v1) 6= 1/2.Note that the 
losed neighborhoods in a threshold graph are totally orderedby in
lusion: whenever w(v1) < w(v2), then NG[v1] ⊆ NG[v2] and 
onse-quently deg(v1) ≤ deg(v2).Lemma 16. Let U ⊆ V be a subset of verti
es with |U | ≥ 2, let wmin =

minu∈U w(u) and wmax = maxu∈U w(u), and let u0, u1 ∈ U be the verti
eswith w(u0) = wmin and w(u1) = wmax. All verti
es in U have identi
al degree ifand only if there is no vertex v ∈ V \ {u0, u1} with 1−wmax < w(v) < 1−wmin.Proof. Note that all verti
es in U have identi
al degree if and only if NG[u0] =
NG[u1]. The latter 
ondition in turn holds if and only if there is no vertex v inthe graph (with v 6= u0 and v 6= u1) that is adja
ent to u1 but not to u0, andthis is equivalent to the stated 
ondition 1− wmax < w(v) < 1− wmin.Theorem 17. Anonym V-Del on threshold graphs is solvable in O(n2) time.Proof. We provide a dynami
 program to solve the problem in the 
laimedrunning time. To this end, we �rst need some further notation: Re
all thata blo
k BG(d) of degree d 
ontains all degree-d verti
es of G. Now 
onsidersome blo
k BG(d) of 
onstant degree d in an optimal subgraph for AnonymV-Del, and let u0, u1 ∈ BG(d) and wmin and wmax be de�ned as in the lemma.The territory of this blo
k is de�ned as the union of the two 
losed inter-vals [wmin, wmax] and [1 − wmax, 1 − wmin]; note that these two intervals will22



overlap if wmin < 1/2 < wmax. The 
anoni
al superset U∗ ⊆ V 
onsists of u0and u1, together with all verti
es v ∈ V that satisfy wmin ≤ w(v) ≤ wmax butnot 1 − wmax < w(v) < 1 − wmin. One message of Lemma 16 is that distin
tblo
ks in an optimal subgraph must have disjoint territories. Another messageof the Lemma 16 is that we may as well repla
e every blo
k BG(d) by its 
anon-i
al superset U∗: By adding these verti
es, the degree in every blo
k eitherremains the same or is uniformly in
reased by |U∗| − |BG(d)|. And if the terri-tories of distin
t blo
ks were disjoint before the repla
ement, then they will alsobe disjoint after the repla
ement. In other words, su
h a repla
ement does notviolate k-anonymity but simpli�es the 
ombinatorial stru
ture of the 
onsideredsubgraph.This suggests the following dynami
 programming approa
h. For every realnumber r with 0 ≤ r ≤ 1/2, we 
onsider the threshold graph Gr that is indu
edby the verti
es v ∈ V with r ≤ w(v) ≤ 1 − r; note that the only 
ru
ial valuesfor r are theO(n) values w(v) and 1−w(v) that fall between the bounds 0 and 1/2.The goal is to 
ompute for every graph Gr a largest k-anonymous subgraph. Westart our 
omputations with r = 1/2 and work downwards towards r = 0.The initialization step of the dynami
 program handles subgraphs that 
on-sist of a single blo
k whose territory 
ontains the number 1/2. Su
h a blo
kwill either be empty, or it is a 
anoni
al superset spe
i�ed by two values wminand wmax. All in all, this only yields a polynomial number of 
ases to handle.In the main 
omputation phase of the dynami
 program, we 
onsider a generalgraph Gr and 
he
k all possibilities for the outermost blo
k, whi
h is the blo
kwhose territory is farthest away from the 
enter point 1/2. Sin
e this territory isthe union of two intervals [r, q] and [1− q, 1− r], we may simply 
he
k all possi-bilities for the interval boundary q, and then 
ombine the 
orresponding blo
kwith the (previously 
omputed) largest k-anonymous subgraph for graph Gq.Sin
e there is only a linear number O(n) of 
andidate values for q, the largest
k-anonymous subgraph of Gr 
an be found in linear time.4. Edge DeletionIn this se
tion, we transfer the 
entral intra
tability results from Se
tion 3to the setting where instead of verti
es edges are removed; see Se
tion 1 for adis
ussion about vertex deletions versus edge deletions. To this end, we �rstshow in Subse
tion 4.1 that Anonym E-Del is NP-
omplete on 
aterpillars, asub
lass of trees. Compared to the NP-
ompleteness of Anonym V-Del ontrees (see Subse
tion 3.1) this gives a slightly stronger intra
tability result forAnonym E-Del. The employed redu
tion is, however, more 
ompli
ated thanthe one given in Subse
tion 3.1 and we 
ould not 
ome up with a general re-du
tion s
heme as provided in the vertex deletion 
ase in Subse
tion 3.2. Wethen provide in Subse
tion 4.2 polynomial-time inapproximability results forAnonym Min-E-Del and Max-Anonym E-Del for bounded-degree graphsand parameterized inapproximability results for Max-Anonym E-Del on gen-eral graphs. 23



4.1. NP-Hardness on CaterpillarsIn this se
tion, we establish a polynomial-time redu
tion from the NP-
ompleteExa
t Cover by 3-Sets problem, whi
h is de�ned as follows:Exa
t Cover by 3-Sets [19, SP2℄Input: A universe A = {a1, a2, . . . , a3h}, a 
olle
tion B =
{B1, B2, . . . , Bβ} of 3-element sets over A, and h ∈ N.Question: Is there an index set J ⊆ {1, 2, . . . , β} with |J | = h, su
hthat ⋃j∈J Bj = A?Input: A = {a1, a2, . . . , a6}

B = {B1, B2, B3, B4}, h = 2
B1 = {a1, a2, a4} B2 = {a2, a4, a6}
B3 = {a3, a5, a6} B4 = {a2, a4, a5}

B1 B2 B3 B4

a1 a2 a3 a4 a5 a6

Solution:
J = {1, 3}

B1 B2 B3 B4

a1 a2 a3 a4 a5 a6If an Exa
t Cover by 3-Sets instan
e I = (A,B, h) 
ontains su
h an indexset J , then we refer to the set {Bj | j ∈ J} as an exa
t 
over for I.The redu
tion in the following proof, showing that Anonym E-Del is NP-
omplete on 
aterpillars, is an adaption of the redu
tion provided in Subse
tion 3.1.A 
aterpillar is a tree that has a dominating path [20℄, that is, a 
aterpillar is atree su
h that deleting all leaves results in a path.Theorem 18. Anonym E-Del is NP-
omplete on 
aterpillars, even if k = 2.Proof. Sin
e 
ontainment in NP is easy to see, we fo
us on showing NP-hardness.To this end, we provide a polynomial-time redu
tion from Exa
t Cover by3-Sets. Let I = (A,B, h) be an instan
e of Exa
t Cover by 3-Sets. Weassume without loss of generality that for ea
h element ai ∈ A there exists aset Bj ∈ B with ai ∈ Bj. Let f : N→ N be f(i) = (2h+ 3)i.The instan
e I ′ of Anonym E-Del is de�ned on a graph G = (V,E) 
on-stru
ted as follows. For ea
h element ai ∈ A add a star K1,f(i) with the 
entervertex v(ai). Denote with VA = {v(a1), v(a2), . . . , v(a3h)} the set of all these
enter verti
es. Furthermore, for ea
h element ai ∈ A add two stars K1,f(i)+1and two stars K1,f(i)+2.For ea
h set Bj ∈ B with Bj = {aj1 , aj2 , aj3} add a set-gadget 
ontainingthe stars K1,f(j1), K1,f(j2), and K1,f(j3). See Figure 7 for the di�eren
e ofthe set-gadget in this redu
tion and the redu
tion in Subse
tion 3.1. Denotewith v(aj1 , Bj), v(aj2 , Bj), and v(aj3 , Bj) the 
enter verti
es of these stars anddenote with VB the set of all these 
enter verti
es, formally VB = {v(ai, Bj) |
1 ≤ i ≤ 3h ∧ 1 ≤ j ≤ β ∧ ai ∈ Bj}. Next, add the edges {v(aj1 , Bj), v(aj2 , Bj)}and {v(aj2 , Bj), v(aj3 , Bj)} to E. Observe that deg(v(aj1 , Bj)) = f(j1) + 1,24



v(B2)

v(a2, B2)

· · ·

v(a4, B2)

· · ·

v(a6, B2)

· · ·set-gadget used in Redu
tion 1 v(a2, B2)

· · ·

v(a4, B2)

· · ·

v(a6, B2)

· · ·set-gadget used in theredu
tion for 
aterpillarsFigure 7: The di�eren
e between the set-gadgets used in Redu
tion 1 and the redu
tion show-ing NP-hardness of Anonym E-Del on 
aterpillars. Deleting the vertex v(B2) 
orrespondsto deleting the two edges {v(a2, B2), v(a4 , B2)} and {v(a4 , B2), v(a6, B2)}.
deg(v(aj2 , Bj)) = f(j2) + 2, and deg(v(aj3 , Bj)) = f(j3) + 1. To end up withone 
aterpillar instead of a forest of 
aterpillars, do the following:1. Take two di�erent 
onne
ted 
omponents (
aterpillars) C1 and C2, let v1be an endpoint of a dominating path in C1, and let v2 be an endpoint ofa dominating path in C2, su
h that degG(v1) = degG(v2) = 1.2. Then, add the edge {v1, v2} to redu
e the number of 
onne
ted 
ompo-nents by one.3. If there exists more than one 
onne
ted 
omponent, goto Step 1.The resulting graph is 
learly a 
aterpillar. We 
omplete the 
onstru
tion of I ′by setting s = 2h and k = 2.We now prove that I is a yes-instan
e of Exa
t Cover by 3-Sets if andonly if I ′ = (G, k, s) is a yes-instan
e of Anonym E-Del.�⇒:� Let B′ ⊆ B be an exa
t 
over of size h. Then we 
onstru
t a 2-deletionset S ⊆ E of size 2h as follows: For ea
h set Bj ∈ B′ with Bj = {aj1 , aj2 , aj3}insert the edges {v(aj1 , Bj), v(aj2 , Bj)} and {v(aj2 , Bj), v(aj3 , Bj)} into S. First,observe that |S| = 2h. Next, we show that S is indeed a 2-deletion set. Supposetowards a 
ontradi
tion that there exists a vertex v ∈ V su
h that there is nofurther vertex of the same degree in G − S. Then, by 
onstru
tion of G, itfollows that v = v(ai) ∈ VA for some i ∈ {1, 2, . . . , 3h} and, by 
onstru
tionof S, it follows that ai /∈

⋃

Bj∈B′ Bj , a 
ontradi
tion.�⇐:� Let S be a 2-deletion set of edges of size at most 2h. Observe thatthe only verti
es in G that violate the 2-anonymous property are the verti
esin VA. Furthermore, for ea
h ai ∈ A there is exa
tly one vertex in G with adegree d between f(i) − 2h ≤ d ≤ f(i), namely v(ai). Sin
e S is a 2-deletionset, it follows that for ea
h v(ai) ∈ VA there is a vertex v ∈ V (S) having thesame degree as v(ai) in G−S. Sin
e |VA| = 3h and | deg(v(ai))−deg(v(ai′ ))| >
2h for all i, i′ ∈ {1, 2, . . . , 3h}, it follows that |V (S)| ≥ 3h. For the furtherargumentation we need some notation. A vertex v ∈ V is a type-ℓ vertex,
ℓ ∈ N, if there exists a vertex v(ai) ∈ VA su
h that degG(v) = degG(v(ai)) + ℓ.25



Now, observe that in G the type-1 verti
es are all pairwise non-adja
ent andhave pairwise disjoint neighborhood sets. Thus, V (S) 
ontains at most 2h type-1 verti
es. Furthermore, sin
e |V (S)| ≥ 3h, this implies that V (S) 
ontainsexa
tly 2h type-1 verti
es and exa
tly h type-2 verti
es and that |V (S)| = 3h.Thus, for ea
h edge in S it follows that one endpoint is a type-1 vertex andthe other endpoint is a type-2 vertex. Note that the only edges ful�lling thisrequirement are the ones making two verti
es in VB adja
ent and, thus, V (S) ⊆
VB. Thus, ea
h type-2 vertex of V (S) is 
ontained in some set-gadget. Denotewith B′ the set of h sets 
orresponding to the set-gadgets that 
ontain the h type-2 verti
es in V (S). We now prove that B′ is an exa
t 
over. Suppose towardsa 
ontradi
tion that there is an element ai /∈

⋃

Bj∈B′ Bj . This implies, that novertex v(ai, Bj) su
h that j ∈ {1, 2, . . . , n} and ai ∈ Bj is 
ontained in V (S).However, as V (S) ⊆ VB, this means that v(ai) has a unique degree in G − S,a 
ontradi
tion to the fa
t that S is a 2-deletion set. Finally, sin
e |B′| = h,
⋃

Bj∈B′ Bj = A, ea
h set 
ontains exa
tly three elements, and |A| = 3h, itfollows that no element is 
overed twi
e. Hen
e, B′ is an exa
t 
over and, thus,
I is a yes-instan
e.Note that Exa
t Cover by 3-Sets is �xed-parameter tra
table with re-spe
t to the solution size h: There is a simple polynomial kernel whi
h 
anbe obtained by removing for ea
h set all 
opies from the 
olle
tion B. Afterthis deletion of the 
opies, the number of sets in the 
olle
tion is boundedby |B| ≤ |A|3 = (3h)3.Hen
e, we 
annot state an equivalent of Corollary 9. However, sin
e weestablished NP-
ompleteness for k = 2, we obtain the following equivalent ofthe polynomial-time inapproximability result in Corollary 10.Corollary 19. For every 0 < ε < 1, Max-Anonym V-Del on 
aterpillars
annot be approximated within a fa
tor of 2− ε in polynomial time, unless P =NP.4.2. Inapproximability ResultsAs in Subse
tion 3.3, we 
an state strong inapproximability results forAnonymMin-E-Del and Max-Anonym E-Del. We remark that these inapproxima-bility results transfer modulo the bounded-degree restri
tion to Anonym Min-E-Ins and Max-Anonym E-Ins, sin
e the edge insertion variant is equivalentto the edge deletion variant in the 
omplement graph.Two very similar gap-redu
tions from Exa
t Cover by 3-Sets yield thatMax-Anonym E-Del as well asAnonym Min-E-Del are not n1−ε-approximablein polynomial-time on bounded degree graphs.Theorem 20. For every 0 < ε ≤ 1, Max-Anonym E-Del is not n1−ε-approximable in polynomial time, even on bounded degree graphs, unless P =NP.Proof. Let 0 < ε ≤ 1 be a 
onstant. We provide a gap-redu
tion with gap n1−εfrom Exa
t Cover by 3-Sets whi
h remains NP-
omplete even when no26



element o

urs in more than three subsets [19, SP2℄. For these instan
es wehave h ≤ β ≤ 3h.Let I = (A,B, h) be an instan
e of Exa
t Cover by 3-Sets where noelement o

urs in more than three subsets. Constru
t an instan
e I ′ = (G, s) ofMax-Anonym E-Del as follows. The graph G = (V,E) 
ontains an element-vertex v(ai) for ea
h element ai from A and a set-vertex v(Bj) for ea
h subset Bjfrom B. There is an edge in G between v(ai) and v(Bj) if Bj 
ontains ai. Forea
h vertex v(Bj) add four degree-one verti
es that are adja
ent to v(Bj), thusthe degree of ea
h vertex v(Bj) is seven. For ea
h vertex v(ai) add up tothree degree-one verti
es that are adja
ent to v(ai) su
h that the degree of v(ai)is three (observe that ea
h element o

urs in at most three sets). Set x :=
⌈
(6h171−ε)1/ε

⌉. Next, add x stars K1,7 and x stars K1,4 to G. If the number ofdegree-one verti
es is odd, then add one further star K1,7 to G to ensure thatthe number of degree-one verti
es is even. Now, add a perfe
t mat
hing on thedegree-one verti
es to in
rease their degrees to two. Finally set s := 3h. Thusthe graph G has β+x or β+ x+1 degree-seven verti
es, x degree-four verti
es,
3h degree-three verti
es, and between 4β + 11x and 4β + 9h+ 11x + 7 degree-two verti
es. Hen
e, G is 3h-anonymous. Overall, G is a graph with maximumdegree seven and at most 12x+12h+5β+7 verti
es. Observe, that x ≥ 6h ≥ 2βand thus |V | ≤ 17x.We now show that if I is a yes-instan
e, then opt(I ′) ≥ x and if I is ano-instan
e, then opt(I ′) ≤ 6h.Suppose that I 
ontains an exa
t 
over B′ ⊆ B of size h. Then removingfrom G the 3h edges between v(Bj) ∈ B′ and v(ai) ∈ A, we obtain an x-anony-mous graph G′, sin
e all verti
es from the blo
k of degree three from G are in G′in the blo
k of degree two.Suppose that S ⊆ E is a (6h + 1)-deletion set of size |S| ≤ s = 3h, thatis, G − S is (6h + 1)-anonymous. First, observe that V (S) does not 
ontain avertex having degree two in G: Sin
e |S| ≤ 3h, at most 6h degree-two verti
es
an be 
ontained in V (S). Sin
e G− S is (6h+ 1)-anonymous and G does not
ontain any degree-zero or degree-one verti
es, this implies that V (S) does not
ontain any degree-two vertex. Next, observe that the only edges in G thathave no degree-two vertex as endpoint are edges with one set-vertex and oneelement-vertex as endpoints. Sin
e ea
h set-vertex is, by 
onstru
tion, adja
entto at most three element-verti
es, this implies that all set-verti
es in G−S havedegree at least four. Furthermore, sin
e the 3h element-verti
es are the onlyverti
es in G having degree three and S is a (6h+ 1)-deletion set, this impliesthat V (S) 
ontains all element-verti
es. Hen
e, |S| = 3h and ea
h element-vertex is in
ident to exa
tly one edge in S. Observe that G 
ontains no vertexof degree �ve or six. Sin
e S is a (6h + 1)-deletion set, this implies that ea
hset-vertex in V (S) has degree four in G − S and is in
ident to exa
tly threeedges in S. Hen
e, V (S) 
ontains exa
tly h set-verti
es and the 
orrespondingsets form an exa
t 
over of size h for I. Thus, if I does not 
ontain any exa
t
over of size h, then there exists no (6h + 1)-deletion set of size h for G and,hen
e, opt(I ′) ≤ 6h. 27



Thus we obtain a gap-redu
tion with the gap
x

6h
=

xεx1−ε

6h
=

6h · 171−ε · x1−ε

3h
≥ (17x)1−ε ≥ |V |1−ε.Adjusting the gap-redu
tion above a little bit yields the following result.Theorem 21. For every 0 < ε ≤ 1, Anonym Min-E-Del is not n1−ε-approximable in polynomial time, even on bounded degree graphs, unless P =NP.Proof. Let 0 < ε ≤ 1 be a 
onstant. We provide a gap-redu
tion with gap n1−εfrom Exa
t Cover by 3-Sets to Anonym Min-E-Del. This redu
tion isvery similar to the gap-redu
tion provided in the proof of Theorem 20. Let I =

(A,B, h) be an instan
e of Exa
t Cover by 3-Sets where no element o

urs inmore than three subsets. We provide an instan
e I ′ = (G, k) of Anonym Min-E-Del where the graph is 
onstru
ted as in the proof of Theorem 20 and k := x.We now show that if I is a yes-instan
e then opt(I ′) = 3h and if I is ano-instan
e then opt(I ′) ≥ x/2.Suppose that I 
ontains an exa
t 
over B′ ⊆ B of size h. Then removingfrom G the 3h edges between v(Bj) ∈ B′ and v(ai) ∈ A, we obtain a k-anony-mous graph G′, sin
e all verti
es from the blo
k of degree three from G are in G′in the blo
k of degree two.Suppose that G has a k-deletion set S of size at most x/2− 1. First, observethat V (S) does not 
ontain a vertex having degree two in G: Sin
e |S| ≤ x/2−1,at most x − 2 degree-two verti
es 
an be 
ontained in V (S). Sin
e G − S is
k-anonymous, k = x, and G does not 
ontain any degree-zero or degree-onevertex, this implies that V (S) does not 
ontain any degree-two vertex. Next,observe that the only edges in G that have no degree-two vertex as endpointare edges with one set-vertex and one element-vertex as endpoints. Sin
e ea
hset-vertex is, by 
onstru
tion, adja
ent to at most three element-verti
es, thisimplies that all set-verti
es in G − S have degree at least four. Furthermore,sin
e the 3h element-verti
es are the only verti
es in G having degree threeand S is a k-deletion set with k = x > 3h, this implies that V (S) 
ontainsall element-verti
es. Furthermore, as G does not 
ontain any degree-zero ordegree-two vertex, it follows that ea
h element-vertex is in
ident to exa
tly oneedge in S. Observe that G 
ontains no vertex of degree �ve or six. Sin
e S is a
k-deletion set of size at most x/2 − 1, this implies that ea
h set-vertex in V (S)has degree four in G − S and is in
ident to exa
tly three edges in S. Hen
e,
V (S) 
ontains exa
tly h set-verti
es and the 
orresponding sets form an exa
t
over of size h for I. Thus, if I does not 
ontain any exa
t 
over of size h, thenthere exists no k-deletion set of size x/2 − 1 for G and, hen
e, opt(I ′) ≥ x/2.Thus we obtain a gap-redu
tion with the gap at least x/(2·3h) ≥ |V |1−ε (seethe proof of Theorem 20 for intermediate steps in the inequality).28



Similarly to Max-Anonym V-Del, we now show strong inapproximabilityof Max-Anonym E-Del, even when allowing fpt-time instead of polynomialtime. Note that, in 
ontrast to the vertex deletion 
ase in Subse
tion 3.3, weobtain the same inapproximability result as in the minimization variant in termsof the approximation fa
tor. Unlike the previous redu
tions and the redu
tionsin Subse
tion 3.3, we redu
e from the W[1℄-
omplete Clique problem, thusbuilding on a slightly stronger assumption.Theorem 22. For every 0 < ε ≤ 1, Max-Anonym E-Del is not �xed-parameter n1−ε-approximable with respe
t to parameter s, unless FPT = W[1℄.Proof. Let 0 < ε ≤ 1 be a 
onstant. We provide an fpt gap-redu
tion withgap n1−ε from the W[1℄-
omplete Clique problem [12℄ parameterized by thesolution size h.Clique [19, GT19℄Input: An undire
ted graph G = (V,E) and an integer h ∈ N.Question: Is there a subset V ′ ⊆ V of at least h pairwise adja
ent verti
es?Input:
h = 4

Solution:
Let I = (G, h) be an instan
e of Clique. Assume without loss of generalitythat ∆G + 2h+ 1 ≤ n, where n = |V |. If this is not the 
ase, then one 
an addisolated verti
es to G until the bound holds.We 
onstru
t an instan
e I ′ = (G′ = (V ′, E′), s) of Max-Anonym E-Delas follows: First, 
opy G into G′. Then, add a vertex u and 
onne
t it to the nverti
es in G′. Next, for ea
h vertex v ∈ V add to G′ degree-one verti
es thatare adja
ent only to v su
h that degG′(v) = n − h. This is always possiblesin
e we assumed ∆G + 2h+ 1 ≤ n. Observe that in this way at most n(n− h)degree-one verti
es are added. Now, set x := ⌈(4n)3/ε⌉ and add 
liques withtwo, n− 2h+ 1, and n− h+ 1 verti
es su
h that after adding these 
liques thenumber of degree-d verti
es in G′, for ea
h d ∈ {1, n−2h, n−h}, is between x+hand x + h+ n, that is, x + h ≤ |BG′(d)| ≤ x + h+ n; re
all that BG′(d) is theset of verti
es having degree d in G′. After inserting these 
liques, the graph
onsists of four blo
ks: of degree one, n−h, n− 2h, and n, where the �rst threeblo
ks are roughly of the same size (between x+h and x+h+n verti
es) and thelast blo
k of degree n 
ontains exa
tly one vertex. To �nish the 
onstru
tion,set s := (

h
2

)
+ h.Now we show that if I is a yes-instan
e, then opt(I ′) ≥ x, and if I is ano-instan
e, then opt(I ′) < 2s.Suppose that I 
ontains a 
lique C ⊆ V of size h. Then, deleting the (h2) edgeswithin C and the h edges between the verti
es in C and u does not ex
eed thebudget s and results in an x-anonymous graph G′′: Sin
e h edges in
ident to u29



are deleted, it follows that degG′′(u) = n − h. Furthermore, for ea
h 
lique-vertex v ∈ C also h in
ident edges are deleted (h − 1 edges to other 
lique-verti
es and the edge to u), thus it follows that degG′′(v) = n − 2h. Sin
e thedegrees of the remaining verti
es remain un
hanged, and |BG′(n− h)| ≥ x+ h,it follows that ea
h of the three blo
ks in G′′ has size at least x. Hen
e, G′′ is
x-anonymous.For the reverse dire
tion, suppose that there is a 2s-deletion set S of sizeat most s in G′. Sin
e u is the only vertex in G′ with degree n, and all otherverti
es in G′ have degree at most n − h, it follows that S 
ontains at least hedges that are in
ident to u. Sin
e NG′(u) = V , it follows that the degree ofat least h verti
es of the blo
k BG′(n − h) is de
reased by one. Denote theseverti
es by C. Sin
e |S| ≤ s and h edges in
ident to u are 
ontained in S, itfollows that at most 2s−h+1 verti
es are in
ident to an edge in S. Furthermore,sin
e S is a 2s-deletion set, it follows that the verti
es in C have in G′−S eitherdegree one or degree n− 2h. Thus, by deleting the at most (h2) remaining edgesin S, the degree of ea
h of the h verti
es in C is de
reased by at least h − 1.Hen
e, these (

h
2

) edges in S form a 
lique on the verti
es in C and thus I isa yes-instan
e. Therefore, it follows that if I is a no-instan
e, then there is no
2s-deletion set of size s in G′′ and hen
e opt(I ′) < 2s.Altogether, we obtain a gap-redu
tion with the gap at least x/(2s). Set n′ :=
|V ′|. By 
onstru
tion we have 3x ≤ n′ ≤ n2 + 3x+ 3h+ 3n+ 1. By the 
hoi
eof x it follows that x > n′/4, sin
e

n′

4
≤

1

4
(n2 + 3x+ 3h+ 3n+ 1) = x+

1

4
(n2 + 3h+ 3n+ 1− x)

︸ ︷︷ ︸
<0

< x.Hen
e the gap is
x

2s
>

(n′)1−ε+ε

4(h2 + h)
≥ n′1−ε (n

′)ε

8h2
> (n′)1−ε xε

8n2
= (n′)1−ε (4n)

3ε/ε

8n2
> (n′)1−ε.Thus, the statement of the theorem follows from Lemma 1.Note that the redu
tion above also shows that Anonym E-Del is W[1℄-hard with respe
t to the 
ombined parameter (s, k): It is shown that if theinput graph G 
ontains a 
lique of size h, then there exists an x-deletion set Sof size s =

(
h
2

)
+ h in G′. Sin
e x > 2s it follows that S is also a 2s-deletionset of size s. We also proved that if G′ 
ontains a 2s-deletion set of size s, thenthere exists a size-h 
lique in G. Hen
e, we obtain the following: (G, h) is ayes-instan
e of Clique if and only if (G′, 2s, s) is a yes-instan
e of AnonymE-Del. Thus, we arrive at the following 
orollary.Corollary 23. Anonym E-Del is W[1℄-hard with respe
t to the 
ombinedparameter (s, k). 30



5. Fixed-Parameter Tra
table CasesTheorem 2 and Corollaries 7 and 23 show thatAnonym E-Del andAnonymE-Del are �xed-parameter intra
table for the ea
h of single parameters s, k,and ∆ as well as for the 
ombined parameter (s, k). Here we show �xed-parameter tra
tability with respe
t to the 
ombined parameter (s,∆) for thefollowing general problem variant where one might insert and delete spe
i�ednumbers of verti
es and edges.Degree Anonymity Editing (Anonym-Edt)Input: An undire
ted graph G = (V,E) and �ve positive inte-gers s1, s2, s3, s4, and k.Question: Is it possible to obtain a graph G′ = (V ′, E′) from G using atmost s1 vertex deletions, s2 vertex insertions, s3 edge deletions,and s4 edge insertions su
h that G′ is k-anonymous?Input: k = 5

s4 = 2
s1 = s2 = s3 = 1

Solution:
Observe that here we require that the inserted verti
es have degree zero and wehave to �pay� for making the inserted verti
es adja
ent to the existing ones. Inparti
ular, if s4 = 0, then all inserted verti
es are isolated in the target graph.Note that there are other models where the added verti
es 
an be made adja
entto an arbitrary number of verti
es [9, 10℄. Our ideas, however, do not dire
tlytransfer to this variant.For 
onvenien
e, we set s := s1 + s2 + s3 + s4 to be the number of allowedgraph modi�
ation operations.Theorem 24. Anonym-Edt is �xed-parameter tra
table with respe
t to the
ombined parameter (s,∆).Proof. Let I = (G = (V,E), k, s1, s2, s3, s4) be an instan
e of Anonym-Edt. Inthe following we des
ribe an algorithm �nding a solution if it exists. Intuitively,the algorithm �rst guesses a �solution stru
ture� and then 
he
ks whether thegraph modi�
ation operations asso
iated to this solution stru
ture 
an be per-formed in G. A solution stru
ture is a graph S with at most s(∆ + 1) verti
eswhere1. ea
h vertex is equipped with an 
olor from {0, 1, . . . ,∆} indi
ating thedegree of the vertex in G and2. ea
h edge and ea
h vertex is marked either as �to be deleted�, �to beinserted�, or �not to be 
hanged� su
h that31



(a) all edges in
ident to a vertex marked as �to be inserted� are alsomarked as �to be inserted�,(b) at most s1 verti
es and at most s3 edges are marked as �to be deleted�,and(
) at most s2 verti
es and at most s4 edges are marked as �to be in-serted�.The intuition behind this de�nition is that a solution stru
ture S 
ontains allgraph modi�
ation operations in a solution and the verti
es that are a�e
tedby the modi�
ation operations, that is, the verti
es whose degree is 
hangedwhen performing these modi�
ation operations. Observe that any solution for Ide�nes su
h a solution stru
ture with at most s(∆ + 1) verti
es as ea
h graphmodi�
ation a�e
ts at most ∆ + 1 verti
es. This bound is tight in the sensethat deleting a vertex v a�e
ts v and its up to ∆ neighbors. Furthermore,observe that on
e given su
h a solution stru
ture, we 
an 
he
k in polynomialtime whether performing the marked edge/vertex insertions/deletions results ina k-anonymous graph G′ sin
e the 
oloring of the vertex indi
ates the degreesof the verti
es that are a�e
ted by the graph modi�
ation operations.Our algorithm works as follows: First it bran
hes into all possibilities forthe solution stru
ture S. In ea
h bran
h it 
he
ks whether performing thegraph modi�
ation operations indi
ated by the marks in S indeed result ina k-anonymous graph. If yes, then the algorithm 
he
ks whether the graphmodi�
ation operations asso
iated to S 
an be performed in G. To this end, alledges and verti
es marked as �to be inserted� are removed from S and the marksat the remaining verti
es and edges are also removed and the resulting �
leaned�graph is 
alled S′. Finally the algorithm tries to �nd S′ as an indu
ed subgraphof G su
h that the vertex degrees 
oin
ide with the vertex-
oloring in S′. Ifthe algorithm su

eeds and �nds S′ as an indu
ed subgraph, then the graphmodi�
ation operations en
oded in S 
an be performed whi
h proves that I is ayes-instan
e. If the algorithm fails in every bran
h, then, due to the exhaustivesear
h over all possibilities for S, it follows that I is a no-instan
e. Thus, thealgorithm is 
orre
t.As to the running time: There are s(∆ + 1) possibilities for the numberof verti
es in the solution stru
ture. Hen
e, there are at most s(∆ + 1) ·

2(
s(∆+1)

2 ) < 2(s(∆+1))2 graphs with s(∆ + 1) verti
es. Furthermore, there are atmost (∆ + 1)s(∆+1) possibilities to equip the verti
es with 
olors {0, 1, . . . ,∆}and 3s(∆+1)+(s(∆+1)
2 ) possibilities to mark the verti
es and edges.Overall, the algorithm bran
hes into 2O((s∆)2) possibilities for the solutionstru
ture S. As mentioned above, 
he
king whether performing the graph mod-i�
ation operations indi
ated by S indeed results in a k-anonymous graph 
anbe done in polynomial time.Next, the algorithm 
he
ks for ea
h S that may lead to a k-anonymous graphwhether the 
leaned graph S′ o

urs as an indu
ed subgraph in G su
h that de-gree 
onstraints given by the vertex 
oloring are ful�lled. Observe that sin
eour input graph G has maximum degree ∆ it also has a lo
al tree-width of at32



most ∆ [25℄. Thus, for �nding S′ as indu
ed subgraph, we 
an use a generalresult of Fri
k and Grohe [25, Theorem 1.2℄ showing that de
iding whether agraph H of lo
al tree-width at most ℓ satis�es a property φ de�nable in �rst-order logi
 is �xed-parameter tra
table with respe
t to the 
ombined parame-ter (|φ|, ℓ). The subgraph isomorphism problem 
an be solved with this resulton graphs with bounded lo
al tree-width [25℄. Thus it remains to spe
ify thepart of the formula φ that ensures the degree 
onstraints. To this end, Fri
kand Grohe [25℄ gave as example the formula
x ∈ V ∧ ¬∃y∃z(¬(y = z) ∧ (x, y) ∈ E ∧ (x, z) ∈ E)to express that a vertex x ∈ V has degree at most one. This formula 
an beextended to express that x ∈ V has degree at most ℓ for some 1 ≤ ℓ ≤ ∆ andthe size of the formula is upper-bounded in a fun
tion of ∆. Similarly, removingthe �rst negation symbol yields the statement that x ∈ V has a degree of atleast two (degree at least ℓ+1 in the extended version). Hen
e, we 
an expressthe degree 
onstraints and the formula size is still bounded by a fun
tion of sand ∆ (as there are up to s(∆ + 1) verti
es in S′). Hen
e, applying the resultsof Fri
k and Grohe [25℄ shows that the overall algorithm runs in fpt-time withrespe
t to (s,∆).We remark that Theorem 24 is a mere 
lassi�
ation result. We 
laim with-out proof by slightly adapting the 
olor-
oding approa
h used by Cai et al. [26℄and Golova
h [27℄ one 
an obtain a running time of 2(s∆)O(1)

nO(1): The ideais to randomly 
olor the verti
es in the graph with green and red. Then thesubgraph G′ = (V ′, E′) we are looking for is with probability 2(∆+1)|V ′| 
om-pletely 
ontained within the green verti
es and NG(V \ V ′) are 
olored red. Bybrute-for
e, one 
an determine in O(|V ′|!) whether a green 
omponent �ts witha 
onne
ted 
omponent of the sought subgraph su
h that the degree 
onstraintsare ful�lled. Thus, using a knapsa
k dynami
 program over the green 
ompo-nents, one 
an 
ompute the whole subgraph G′ in the 
laimed running time.As the running time would be still impra
ti
al, we refrain from giving a formalproof.Next, we show that 
onsidering Anonym V-Del we 
an assume that s <
f(∆, k) for some fun
tion f . This implies that the above �xed-parametertra
tability results transfers to the parameter (k,∆).Lemma 25. For every yes-instan
e (G = (V,E), k, s) of Anonym V-Delwith ∆ denoting the maximum degree of G, there is a subset S ⊆ V with |S| <
2∆+1∆3k su
h that G− S is k-anonymous.Proof. Let (G = (V,E), k, s) be a yes-instan
e of Anonym V-Del and let S ⊆
V be a k-deletion set. We show that if |S| ≥ 2∆∆32k, then we get a smaller
k-deletion set by removing a subset of k verti
es from S.Let D = {0, 1, . . . ,∆} be the set of possible vertex degrees in G − S. Wesay a vertex v ∈ S is of type (D′, d′) with D′ ⊆ D and 0 ≤ d′ ≤ ∆ if D′ =
{degG−S(v

′) | v′ ∈ NG−S(v)} and d′ = degG[(V \S)∪{v}](v). If |S| ≥ 2∆∆32k,33



then S 
ontains a set S′ of ∆2 · 2k verti
es whi
h are of the type (D′, d′) forsomeD′ ⊆ D and 0 ≤ d′ ≤ ∆. Note that ea
h vertex has at most∆ verti
es in its�rst and at most∆(∆−1) verti
es in its se
ond neighborhood. Hen
e, there mustbe a set S′′ ⊂ S′ of 2k independent verti
es with pairwise disjoint neighborhoods.Let S+, S− ⊆ S′′ be any two sets of size k ea
h su
h that S+∪S− = S′′. Considerthe graphs G1 = G − S and G2 = G − (S \ S+), that is, S+ is the subset ofverti
es from S′′ that remains in G2 and S− is the subset of verti
es from S′′that is not in G2.We show that if G1 is k-anonymous then G2 is also k-anonymous. Ev-ery vertex from S+ has degree d′ in G2 be
ause S+ is an independent set.Sin
e |S+| = k, there are at least k verti
es of degree d′, that is, the verti
esfrom S+ are k-anonymous. Every vertex v that is in G1 and in G2 satis�esthat either degG2
(v) = degG1

(v) or degG2
(v) = degG1

(v) + 1, be
ause the ver-ti
es from S+ have pairwise disjoint neighborhoods. Now, there are two 
asesfor d′′ = degG1
(v): If d′′ /∈ D′, then degG2

(v) = d′′. Furthermore, there are atleast as many verti
es of degree d′′ in G1 as in G2, be
ause no vertex from S+is adja
ent to any vertex of degree d′′ in G1. If d′′ ∈ D′, then a vertex withdegree d′′ in G1 may have degree d′′ + 1 in G2 be
ause it is adja
ent to somevertex in S+. However, sin
e the verti
es from S+ have pairwise disjoint neigh-borhoods, for ea
h of the k verti
es from S+ there is at least one vertex thathas degree d′′ in G1 and degree d′′ +1 in G2 Furthermore, for ea
h of the k ver-ti
es from S− there is at least one vertex that has degree d′′ in G1 and G2. Inea
h 
ase, there are at least k verti
es with degree degG2
(v) in G2. Thus, G2 is

k-anonymous.By 
ombining Theorem 24 and Lemma 25 we obtain �xed-parameter tra
tabil-ity with respe
t to the parameter (k,∆). For an instan
e (G, k, s) of Anonym V-Del simply run the algorithm from Theorem 24 on the instan
e (G, k,min{s, 2∆∆32k}).The ideas behind Lemma 25 
an be easily transferred to the edge deletionvariant.Lemma 26. For every yes-instan
e (G = (V,E), k, s) of Anonym E-Delwith ∆ denoting the maximum degree of G there is a subset S ⊆ E with |S| <
2∆32k su
h that G− S is k-anonymous.Proof. Let (G = (V,E), k, s) be a yes-instan
e of Anonym E-Del and let S ⊆
E be a k-deletion set. We show that if |S| ≥ 2∆32k, then we get a smaller
k-deletion set by removing a subset of k edges from S.We say an edge e = {u, v} ∈ S is of type (d1, d2) with 1 ≤ d1, d2 ≤ ∆if d1 = degG−S(u) and d2 = degG−S(v). If |S| ≥ 2∆32k, then S 
ontains aset S′ of 2∆ · 2k edges whi
h are of the type (d1, d2) for some 0 ≤ d1, d2 ≤ ∆.Sin
e ea
h vertex has, by de�nition of ∆, at most ∆ neighbors, there must be aset S′′ ⊂ S′ of 2k pairwise disjoint edges. Let S+ ⊆ S′′ be a set of size k. Now,similarly to proof of Lemma 25, it follows that G− (S \S+) is also k-anonymousas it 
ontains at least k verti
es of degree d1, d1+1, d2, and d2+1, respe
tivelyand the other verti
es remain untou
hed.34



By 
ombining Theorem 24 and Lemma 26 we also obtain �xed-parametertra
tability for Anonym E-Del with respe
t to the parameter (k,∆). Thus,we arrive at the following 
lassi�
ation result.Corollary 27. Anonym V-Del and Anonym E-Del are �xed-parametertra
table with respe
t to the 
ombined parameter (k,∆).6. Con
lusionIn this work, we provided a thorough overview on the 
omputational 
om-plexity of the Degree Anonymity problem when 
onsidering vertex or edgedeletions. We obtained various hardness results from the viewpoints of approx-imation and parameterized 
omplexity, even in restri
ted graph 
lasses. Be-sides this large amount of hardness results we obtained a few positive results(polynomial-time solvable 
ases) on highly stru
tured graph 
lasses.Despite this (in terms of algorithmi
 tra
tability) dis
ouraging pi
ture of the
omputational 
omplexity, a number of open questions remains that still mayraise hope for broader positive results. In parti
ular, these questions are:1. Are Anonym Min-E-Del or Anonym Min-V-Del 
onstant-fa
tor ap-proximable in polynomial time when k is a 
onstant?2. Are the two optimization variants of Anonym E-Edt 
onstant-fa
torapproximable in polynomial time?3. What is the 
omplexity of Anonym V-Del on unit interval graphs andon bipartite 
hain graphs?4. Do all our NP-
ompleteness results for Anonym V-Del on spe
ial graph
lasses (see Subse
tion 3.2) also 
arry over to Anonym E-Del?Despite serious e�orts, we failed to extend the polynomial-time inapproxima-bility results for Anonym Min-E-Del and Anonym Min-V-Del to ex
ludeapproximation algorithms running in fpt-time with respe
t to the parameter k.The reason is that all our gap-redu
tions relied on k being in the order of n.This restri
tion made it easy to 
ontrol the possibilities for the solutions in the
onstru
ted graph, but leaves Question 1 as 
hallenge for future resear
h. Ques-tion 2 seems to be 
losely related to Question 1 as we failed to answer bothquestions for the same reason: The variant of editing edges allows to �repair� asuboptimal de
isions by reverting the degree of a vertex with one further oper-ation (edge deletion or insertion). In the 
ase of edge deletions with 
onstantvalues of k it might be possible to �repair� suboptimal de
ision by de
reasing thedegrees of just a few other verti
es. We found no way of dealing even with oneof these two possibilities to repair suboptimal de
isions. As to Question 4, our�ndings so far support the 
onje
ture that the hardness results mostly transfer,but the redu
tions to prove this will be
ome messy.35
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