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The Min Anonymous-Edge-Rotation problem asks for an input graph G and a positive 
integer k to find a minimum number of edge rotations that transform G into a graph 
such that for each vertex there are at least k − 1 other vertices of the same degree 
(a k-degree-anonymous graph). In this paper, we prove that the Min Anonymous-Edge-

Rotation problem is NP-hard even for k = n/q, where n is the order of a graph and q
any positive integer, q ≥ 3. We argue that under some constrains on the number of edges 
in a graph and k, Min Anonymous-Edge-Rotation is polynomial-time 2-approximable. 
Furthermore, we show that the problem is solvable in polynomial time for any graph when 
k = n and for trees when k = θ(n). Additionally, we establish sufficient conditions for an 
input graph and k such that a solution for Min Anonymous-Edge-Rotation exists.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

In recent years huge amounts of personal data has been collected on various networks as e.g. Facebook, Instagram, 
Twitter or LinkedIn. Ensuring the privacy of network users is one of the main research tasks. One possible model to formalise 
these issues was introduced by Liu and Terzi [18] who transferred the k-degree-anonymity concept from tabular data in 
databases [11] to graphs which are often used as a representation of networks. Following this study a graph is called 
k-degree-anonymous if for its each vertex there are at least k − 1 other vertices with the same degree. The parameter 
k represents the number of vertices that are mixed together and thus the increasing value of k increases the level of 
anonymity. In [21], Wu et al. presented a survey of different anonymization models and some of their weaknesses. Casas 
Roma et al. [4] proposed a survey of several graph-modification techniques for privacy-preserving on networks. In this paper 
we consider the k-degree-anonymous concept of Liu and Terzi [18].

The main study problem related to k-degree anonymous graphs is to find a minimum number of graph operations to 
transform an input graph to a k-degree anonymous graph.

Different graph operations of transforming a graph into a k-degree-anonymous one are considered in research papers 
where the operations maybe the following: delete vertex/edge, add vertex/edge, or add/delete edge (see more details later). 
One advantage in the approaches based on vertex/edge deletion/adding is that a solution always exists since in the worst 
case scenario one can consider the empty or the complete graph that is k-degree-anonymous for any k (at most the number 
of vertices of the graph). However, the basic graph parameters as the number of vertices and edges could be modified with 
such transformations.
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Vertex/edge modification versions associated to k-degree-anonymity have been relatively well studied. Hartung et al. 
[15,16] studied the edge adding modification as proposed by Liu and Terzi [18]. For this type of modification Chester et al. 
[8] established a polynomial time algorithm for bipartite graphs.

The variant of adding vertices instead of edges was studied by Chester et al. in [7] where they presented an approxi-
mation algorithm with an additive error. Bredereck et al. [2] investigated the parameterized complexity of several variants 
of vertex adding which differ in the way the inserted vertices can be adjacent to existing vertices. Concerning the ver-
tex deletion variant, Bazgan et al. [1] showed the NP-hardness even on very restricted graph classes such as trees, split 
graphs, or trivially perfect graphs. Moreover, in [1] the vertex and edge deletion variants are proved intractable from the 
approximability and parameterized complexity point of view.

Several papers study the basic properties of edge rotations, including some bounds for the minimum number of edge 
rotations between two graphs [5,6,10,13,17].

In this paper we consider the version of transforming a graph into a k-degree-anonymous one using edge rotations which 
don’t modify the number of vertices/edges. It should be noticed that in such case a solution may not always exist, as we 
discuss in Section 3.

To the best of our knowledge the problem of transforming a graph to a k-degree anonymous graph using the edge 
rotations has not been fully explored. In some particular cases some research has been done in [19] where the authors 
study the edge rotation distance and various metric between the degree sequences to find a “closest” regular graph. In 
paper [3] the authors proposed an heuristic to compute the edge rotation distance to a k-degree anonymous graph.

Our results. In this paper we study the various aspects of the Min Anonymous-Edge-Rotation problem. An input to the 
problem is an undirected graph G = (V , E) with n vertices and m edges and an integer k ≤ n. The goal is to find a shortest 
sequence of edge rotations that transforms G into a k-degree-anonymous graph, if such a sequence exists. We first show 
that when n

2 ≤ m ≤ n(n−3)
2 and k ≤ n

4 a solution always exists. Moreover for trees a solution exists if and only if 2m
n is an 

integer. We prove that Min Anonymous-Edge-Rotation is NP-hard even when k = n
q and q ≥ 3 is a fixed positive integer. On 

the positive side we provide a polynomial-time 2-approximable algorithm under some constraints. Finally, we demonstrate 
that Min Anonymous-Edge-Rotation is solvable in polynomial time for trees when k = θ(n) and for any graph when k = n.

Our paper is organized as follows. Some preliminaries about edge rotations and our formal definitions are given in 
Section 2. The study of feasibility is initiated in Section 3. Section 4 presents the NP-hardness proof. In Section 5 we study 
properties of the specific k-degree anonymous degree sequences that are used in Section 6 to present a polynomial-time 
2-approximation algorithm and in Section 7 to establish a polynomial time algorithm for trees. Moreover in Section 7 we 
consider the case k = n in general graphs. Some conclusions are given at the end of the paper.

2. Preliminaries

In this paper we assume that all graphs are undirected, without loops and multiple edges, and not necessary connected 
graphs.

Let G = (V , E) be a graph. For a vertex v ∈ V , let degG(v) be the degree of v in G , and �G be the maximum degree 
of G . A vertex v with degree degG(v) = |V | − 1 is called a universal vertex. The neighbourhood of v in G is denoted by 
NG(v) = {u ∈ V : uv ∈ E} and IncG (v) is the set of all edges incident to v , IncG (v) = {e ∈ E : v ∈ e}. If the underlying graph 
G is clear from the context, we omit the subscript G .

Definition 1. Given a graph G = (V , E) of order n, the degree sequence SG of G is the non-increasing sequence of its vertex 
degrees, SG = (deg(v1), . . . , deg(vn)), where deg(v1) ≥ deg(v2) ≥ · · · ≥ deg(vn).

Definition 2. A sequence D of non-negative integers D = (d1, d2, . . . , dn) is graphic if there exists a graph G such that its 
degree sequence coincides with D .

As follows from Erdős-Gallai theorem (see e.g. [9]) the necessary and sufficient conditions for a non-increasing sequence 
D = (d1, d2, . . . , dn) to be graphic are:

n∑
i=1

di is even (1)

�∑
i=1

di ≤ �(� − 1) +
n∑

i=�+1

min(di, �) holds for any 1 ≤ � ≤ n. (2)

Furthermore, it is an easy exercise to prove that a sequence of integers D = (d1, d2, . . . , dn) corresponds to a degree 
sequence of a tree on n vertices if and only if each di ≥ 1 and 

∑n
i=1 di = 2(n − 1).

Let G(n, m) be the set of all graphs with n vertices and m edges.
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Fig. 1. An edge rotation (uv, uw) from uv to uw .

Definition 3. Let G, G ′ ∈ G(n, m). We say that G ′ can be obtained from G by an edge rotation (uv, uw) if V (G) = V (G ′) and 
there exist three distinct vertices u, v and w in G such that uv ∈ E(G), uw /∈ E(G), and E(G ′) = (E(G) \ {uv}) ∪ {uw}, see 
Fig. 1.

Remark 1. Let G be a graph. For the vertices u, v , w in G the edge rotation (uv, uw) modifies G into the graph G ′ such 
that degG ′ (v) = degG(v) − 1, degG ′ (w) = degG(w) + 1, and the degree of the other vertices is not changed. Let define a 
(+1, −1)-degree modification of the degree sequence D = (d1, . . . , dn) in such a way that di := di + 1, d j := d j − 1 for any 
two indices i, j such that i, j ∈ {1, . . . , n}. Note that each edge rotation corresponds to a (+1, −1)-degree modification, but 
not opposite.

Definition 4. A sequence of integers D = (d1, d2, . . . , dn) is called k-anonymous where k ∈ {1, . . . , n}, if for each element di
from D there are at least k − 1 other elements in D with the same value. A graph G is called k-degree-anonymous if its 
degree sequence is k-anonymous. The vertices of the same degree correspond to a degree class.

In this paper we study the following anonymization problem:

Min Anonymous-Edge-Rotation

Input: (G, k) where G = (V , E) is an undirected graph and k a positive integer, k ∈ {1, . . . , |V |}.
Output: If there is a solution, find a sequence of a minimum number � + 1 of graphs G0 = G, G1, G2, . . . , G� such 
that Gi+1 can be obtained from Gi by one edge rotation, and G� is k-degree-anonymous.

Note that a solution to the Min Anonymous-Edge-Rotation problem may not exist for all instances. For example, if G
is a complete graph without an edge, Kn \ {e}, n ≥ 6, then there is no solution for such graph G and k = 3. Therefore, we 
are only interested in studying of feasible instances (G, k) defined as an instance for which there exists a solution to Min 
Anonymous-Edge-Rotation. Our initial study of sufficient conditions for feasibility is presented in Section 3.

Obviously, since all graphs are 1-degree-anonymous, we are only interested in cases where k ≥ 2.
The decision version associated to Min Anonymous-Edge-Rotation is defined as follows for a feasible instance (G, k):

Anonymous-Edge-Rotation

Input: (G, k, r) where G = (V , E) is an undirected graph, k ∈ {1, . . . , |V |}, and r be a positive integer.
Question: Is there a sequence of � + 1 graphs G0 = G, G1, G2, . . . , G� such that � ≤ r, Gi+1 can be obtained from Gi
by one edge rotation, and G� is k-degree-anonymous?

We also consider the Min Anonymous-Edge-Rotation problem in restricted graph classes, e.g. trees. In that case we 
require that all graphs in the sequence G0, . . . , G� must be from the same graph class. Note that the problem can also be 
studied without this requirement, but the results may be different.

The following theorem shows important properties about the edge rotations. The result was already proved in [6], but 
due to the simplicity of our approach, we present another proof here.

Theorem 1. For any two graphs G, G ′ ∈ G(n, m), we can transform G to G ′ using a sequence of edge rotations.

Proof. Let E1 = E(G) \ (E(G) ∩ E(G ′)) be the set of edges that are in G and not in G ′ and E2 = E(G ′) \ (E(G) ∩ E(G ′)) be 
the set of edges that are in G ′ and not in G . For all u, v and w such as uv ∈ E1 and uw ∈ E2, we add one edge rotation 
(uv, uw). In all other cases, let uv ∈ E1 and u′v ′ ∈ E2, where all vertices u, v, u′, v ′ are distinct. There are two case: 1) uu′ , 
uv ′ , vu′ and v v ′ ∈ E(G) or 2) at least one of these four edges is missing.

In the first case we can make the following two edge rotations to move uv from G to u′v ′ in G ′: (v ′v, v ′u′) and (vu, v v ′)
(see Fig. 2). In the second case, if for example v v ′ is missing, we can use the following two rotations (vu, v v ′) and then 
(v ′v, v ′u′) (see Fig. 3) and similarly if another edge is missing. �
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Fig. 2. Case 1.
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Fig. 3. Case 2.

Corollary 1. For any two graphs G, G ′ ∈ G(n, m), the edge distance between G and G ′ is bounded by 2m.

3. Feasibility study

As it was discussed in Section 2, the Min Anonymous-Edge-Rotation problem does not have a solution for every input 
instance. It is not difficult to see that if a graph is ‘almost’ complete or ‘almost’ empty, then there are only restricted options 
on the number of different degree classes and therefore a solution may not exist.

First we present some sufficient conditions for an instance to be feasible showing that if a graph is not ‘almost’ complete 
or an empty graph, then a solution of the problem exists for all k ≤ n

4 , where n is the order of the graph.

Theorem 2. Let G ∈ G(n, m) such that n
2 ≤ m ≤ n(n−3)

2 and n ≥ 4. Then there exists a feasible solution for the Min Anonymous-Edge-

Rotation problem, hence a k-degree-anonymous graph G ′ ∈ G(n, m), for any k ≤ n
4 .

Proof. Let m, n, k be fixed. Any graph G ∈ G(n, m) is a 1-degree-anonymous graph, hence we can suppose k ≥ 2.
In the first part of the proof we describe a construction of a k-anonymous sequence D = (d1, d2, . . . , dn) with property 

n∑
i=1

di = 2m for any m, n, k satisfying the restriction of the theorem. In the second part we show that the sequence D is 

graphic, hence that the sequence satisfies the conditions (1) and (2) from Section 2.

As 
n∑

i=1
di = 2m is the condition for a constructed sequence, the property (1) trivially holds.

Now we construct three distinct k-anonymous sequences Type 1, 2, 3 of integers based on the values of k and s ≡
2m mod n. Denote by d the average degree of the graph G defined as d =

⌊
2m
n

⌋
.

Type 1: k ≤ s ≤ n − k

Let D1 = (d1
1, d

1
2, . . . , d

1
s , d2

1, d
2
2, . . . , d

2
n−s) be a sequence of positive integers where for all i, 1 ≤ i ≤ s, d1

i = d + 1 and for all 

j, 1 ≤ j ≤ n − s, d2
j = d (see Fig. 4). The sequence contains n elements and it is easy to see that 

s∑
i=1

(d + 1) +
n−s∑
j=1

d = 2m.

Following the assumptions s ≥ k and n − s ≥ k, therefore D1 is a k-anonymous sequence.

Type 2: s < k

Let D2 = (d1
1, d

1
2, . . . , d

1
s+k, d

2
1, d

2
2, . . . , d

2
n−s−2k, d

3
1, d

3
2, . . . , d

3
k ) be a sequence of positive integers where for all i, 1 ≤ i ≤ s + k, 

d1
i = d + 1; for all r, 1 ≤ r ≤ n − s − 2k, d2

r = d; for all j, 1 ≤ j ≤ k, d3
j = d − 1 (see Fig. 5). The sequence contains n elements 

and 
s+k∑
i=1

(d + 1) +
k∑

j=1
(d − 1) +

n−s−2k∑
�=1

d = 2m.

Since n ≥ 4k and s < k, n − s − 2k ≥ k, D2 is a k-anonymous sequence.

Type 3: s > n − k

Let D3 = (d1
1, d

1
2, . . . , d

1
k , d2

1, d
2
2, . . . , d

2
s−2k, d

3
1, d

3
2, . . . , d

3
k+n−s) be a sequence of positive integers where for all i, 1 ≤ i ≤ k, 

d1
i = d + 2; for all r, 1 ≤ r ≤ s − 2k, d2

r = d + 1; for all j, 1 ≤ j ≤ k + n − s, d3
j = d (see Fig. 6). The sequence has n elements 

and 
k∑

(d + 2) +
k+n−s∑

d +
s−2k∑

(d + 1) = 2m.

i=1 j=1 �=1

4
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s n − s

d + 1 d

Fig. 4. The sequence D1.

s + k n − s − 2k k

d + 1 d d − 1

Fig. 5. The sequence D2.

k s − 2k k + n − s

d + 2 d + 1 d

Fig. 6. The sequence D3.

Because n > s, the number d appears more than k-times in D3. Due to the assumptions n ≥ 4k and s > n −k, also s − 2k ≥ k. 
Hence D3 is a k-anonymous sequence.

Now we show that all three sequences are graphic, therefore that the condition (2) is true for any �. We split the proof 
into several subcases depending on the value of � and the type of the sequence.

From our assumptions n
2 ≤ m ≤ n(n−3)

2 , it follows 1 ≤ d ≤ n − 3.

Case A. � = 1
Because d ≥ 1, (2) trivially holds.

Case B. � = 2, due to n ≥ 8, 
∑n

j=�+1 min(d j, �) ≥ 6d − 2
�∑

i=1
di ≤ �(d + 2) = 2(d + 2) ≤ 2 + (6d − 2) ≤ �(� − 1) + ∑n

j=�+1 min(d j, �)

Case C. 3 ≤ � < d
�∑

i=1
di ≤ �(d + 2) ≤ �(n − 1) = n� − � = �2 − � + n� − �2 = �(� − 1) + (n − �)� ≤ �(� − 1) +

n∑
j=�+1

min(d j, �)

Case D. 3 ≤ � = d,
Type 1 & 3:
�∑

i=1
di ≤ �(d + 2) ≤ �(n − 1) = n� − � = �2 − � + n� − �2 = �(� − 1) + (n − �)� ≤ �(� − 1) +

n∑
j=�+1

min(d j, �)

Type 2, following our assumptions also � = d ≤ n − 3
�∑

i=1
di ≤ �(d + 1) = �(� + 1) = �(� − 1) + 2� ≤ �(� − 1) + 3� − 3 = �(� − 1) + 3(� − 1) = �(� − 1) + (� + 3 − �)(� − 1) ≤

�(� − 1) + (n − �)(� − 1) ≤ �(� − 1) +
n∑

j=�+1
min(d j, �)

Case E. 3 ≤ � = d + 1. Furthermore, � = d + 1 ≤ n − 2.
Type 1 & 2, � ≥ 4:
�∑

i=1
di ≤ �(d + 1) = �2 = �(� − 1) + � ≤ �(� − 1) + 2� − 4 = �(� − 1) + 2(� − 2) = �(� − 1) + (� + 2 − �)(� − 2) ≤ �(� − 1) + (n −

�)(� − 2) = �(� − 1) + (n − �)(d − 1) ≤ �(� − 1) +
n∑

j=�+1
min(d j, �)

Type 1 & 2, � = 3:
Due to n ≥ 8, 

∑n
j=�+1 min(d j, �) ≥ 5d − 4 ≥ �

Therefore 
�∑

di ≤ �(d + 1) = �2 = �(� − 1) + � ≤ �(� − 1) +
n∑

min(d j, �)

i=1 j=�+1

5
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Type 3, 3 ≤ � ≤ n − 3
�∑

i=1
di ≤ �(d + 2) = �(� + 1) = �(� − 1) + 2� ≤ �(� − 1) + 3� − 3 = �(� − 1) + 3(� − 1) = �(� − 1) + (� + 3 − �)(� − 1) ≤

�(� − 1) + (n − �)(� − 1) ≤ �(� − 1) +
n∑

j=�+1
min(d j, �)

Type 3, � = n − 2
�∑

i=1
di = k(d + 2) + (s − 2k)(d + 1) + (k +n − s − 2)d = nd − 2d + s ≤ d(n − 2) +n − 1 ≤ (n − 3)(n − 2) +n − 1 ≤ �(� − 1) + 2d =

�(� − 1) +
n∑

j=�+1
min(d j, �).

Case F. 3 ≤ � = d + 2. Furthermore, � = d + 2 ≤ n − 1.
Type 1 & 2:
�∑

i=1
di ≤ �(d + 1) ≤ �(� − 1) ≤ �(� − 1) +

n∑
j=�+1

min(d j, �)

Type 3, � = 3:
Due to n ≥ 8, 

∑n
j=�+1 min(d j, �) ≥ 5 ≥ �. Then

�∑
i=1

di ≤ �(d + 2) = �2 = �(� − 1) + � ≤ �(� − 1) +
n∑

j=�+1
min(d j, �)

Type 3, 4 ≤ � ≤ n − 2:
�∑

i=1
di ≤ �(d + 2) = �2 = �(� − 1) + � ≤ �(� − 1) + 2� − 4 = �(� − 1) + 2(� − 2) = �(� − 1) + (� + 2 − �)(� − 2) ≤ �(� − 1) + (n −

�)(� − 2) ≤ �(� − 1) +
n∑

j=�+1
min(d j, �)

Type 3, � = n − 1:
�∑

i=1
di = k(d + 2) + (s − 2k)(d + 1) + (k + n − s − 1)d = s + nd − d ≤ n − 1 + (n − 1)(n − 3) = (n − 1)(n − 2) = �(� − 1) ≤

�(� − 1) +
n∑

j=�+1
min(d j, �).

Case G. d + 2 < � < n
�∑

i=1
di ≤ �(d + 2) ≤ �(� − 1) ≤ �(� − 1) +

n∑
j=�+1

min(d j, �)

Case H. � = n
�∑

i=1
di ≤ �(d + 2) ≤ �(� − 1)

Therefore, we have proved that there exists a k-degree-anonymous graph G ′ ∈ G(n, m) and the graph G can be trans-
formed to G ′ using a sequence of edge rotations due to Theorem 1. �

Now we extend the feasibility study to the case k = n for which we get necessary and sufficient conditions.

Theorem 3. Let G ∈ G(n, m) for some positive integers n and m. Then (G, n) is a feasible instance of Min Anonymous-Edge-Rotation 
if and only if 2m

n is an integer.

Proof. Since k = n in Min Anonymous-Edge-Rotation, every vertex has to be in the same degree class, so if there is a 
solution, the resulting graph has to be regular. Moreover, a necessary and sufficient condition for a p-regular graph with n
vertices to exist is that n ≥ p + 1 and np must be even [20].

If 2m
n is not an integer then obviously there is no regular graph in G(n, m) and therefore (G, n) is not a feasible instance.

If 2m
n is an integer, since n × 2m

n = 2m is even, n ≥ 2m
n + 1 there is a 2m

n -regular graph in G(n, m) as it was mentioned 
before. By Theorem 1 we conclude that there exists a sequence of edge rotations that leads to a 2m

n -regular graph starting 
from G . �
6
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4. Hardness of MIN ANONYMOUS-EDGE-ROTATION

In this section we show that the decision version of Min Anonymous-Edge-Rotation, the problem Anonymous-Edge-

Rotation, is NP-hard. The proof is based on a reduction from the restricted version of a cover set problem, Exact Cover By 
3-Sets, which is known to be NP-complete ([12]).

Exact Cover By 3-Sets (X3C)

Input: A set X of elements with |X | = 3m and a collection C of 3-elements subsets of X where each element appears 
in exactly 3 sets.
Question: Does C contain an exact cover for X , i.e. a subcollection C ′ ⊆ C such that every element occurs in exactly 
one member set of C ′?

Remark 2. Note that |C | = 3m and we can suppose that m is even and larger than 6. If m is odd, we consider the instance 
Ieven defined as follows: Xeven = X ∪ {x′ | x ∈ X} and Ceven = C ∪ {cx′ y′z′ | cxyz ∈ C}, and thus in the new instance Ieven the 
set has 6m elements and the collection has 6m 3-elements subsets.

We define a polynomial-time reduction and then prove the NP-hardness of Anonymous-Edge-Rotation.

Reduction. Let I = (X, C) be an instance of X3C with |X | = |C | = 3m and m even and q ≥ 3 a given constant. We describe 
the construction σ transforming an instance I into the graph G := σ(I) where G = (V , E) is defined as follows:

• For each element x ∈ X , we add a vertex vx to the set V elem ⊂ V and a vertex ux to the set Vhub ⊂ V .
• For each 3-element set {x, y, z} of the collection C , we add 4 vertices c1

xyz , c2
xyz , c3

xyz and c4
xyz to the set V set ⊂ V .

• For each i ∈ {1, . . . , 5m} we add a vertex wi to the set Vreg ⊂ V and for each j ∈ {1, . . . , 10m} we add a vertex t j to 
V single ⊂ V .

Let V − = V elem ∪ Vhub ∪ V set ∪ Vreg ∪ V single and |V −| = 3m + 3m + 12m + 15m = 33m. If q = 3, then let V = V − . If q ≥ 4, 
then for each i, 4 ≤ i ≤ q, add a set of 11m vertices denoted V i

dummy . Let Vdummy = V 4
dummy ∪ · · · ∪ V q

dummy and define 
V = V − ∪ Vdummy . Obviously, |V | = 33m + (q − 3)11m.

Now we define the set E of the edges in G .

• For all x, y ∈ X , such that x �= y, we add the edge vxu y between the vertex vx ∈ V elem and u y ∈ Vhub , to E X ⊂ E .
• For each 3-element set {x, y, z} of the collection C , ∀i ∈ {1, 2, 3, 4}, we add the edges ci

xyzux , ci
xyzu y and ci

xyzuz to the 
set EC ⊂ E .

• We add the set of edges E ′ ⊂ E to the vertex set V elem such that (V elem, E ′) is a 11-regular graph. Since the number of 
vertices in the set |V elem| = 3m is even (m is even) and 11 < 3m such a regular graph exists [20]. Furthermore, such a 
graph can be constructed in polynomial time using Havel-Hakimi algorithm [14].

• We add the set of the edges E ′′ ⊂ E to the vertex set Vreg such that (Vreg, E ′′) is a (3m + 11)-regular graph. Since the 
number of vertices of Vreg is even and 3m + 11 < 5m, similarly to the previous case such a regular graph exists and can 
be constructed in polynomial time.

Finally, let E− = E X ∪ EC ∪ E ′ ∪ E ′′ . If q = 3, then let E = E− . If q ≥ 4, then the set E contains E− and for any i, such that 
4 ≤ i ≤ q, we add the set of edges Ei

dummy ⊆ E to the vertex set V i
dummy such that (V i

dummy, E
i
dummy) is a (9m + 12)-regular. 

Since the number of vertices of V i
dummy is even (m is even) and 9m +12 ≤ 11m, similarly to the previous case such a regular 

graph exists and can be constructed in polynomial time.
Obviously, the graph G = (V , E) has the following properties: (i) 10m vertices of degree 0 (the vertices of the set V single), 

(ii) 12m vertices of degree 3 (the vertices of the set V set ), (iii) 8m vertices of degree 3m + 11 (the vertices of the set Vreg
and Vhub), (iv) 3m vertices of degree 3m + 10 (the vertices of the set V elem), (v) (q − 3)11m vertices of degree (9m + 12)

(the vertices of the set Vdummy).

Example. Fig. 7 represents the transformation σ for q = 3. Let I1 be the following instance of X3C: m = 2, X =
{1, 2, 3, 4, 5, 6}, and C = {{1, 2, 3}, {2, 3, 4}, {3, 4, 5}, {4, 5, 6}, {1, 5, 6}, {1, 2, 6}}. To simplify the figure, we only consider 
m = 2, but for the construction m must be at least 6 (due to an (3m + 11)-regular graph on the vertex set of Vreg ).

Theorem 4. Anonymous-Edge-Rotation is NP-hard even in case k = n
q where n is the order of the graph G for an input instance 

(G, k, r) and q is a fixed number greater than or equal to 3.

Proof. Let C ′ ⊆ C be an exact cover for X of size m. Now we define 3m rotations which are independent from each other: 
for every 3-element set {x, y, z} ∈ C ′ , we replace the edge uxc1

xyz by the edge ux vx , and similarly u yc1
xyz by u y v y and uzc1

xyz
7
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Fig. 7. σ(I1).

by uz vz . Since C ′ is of size m, we define exactly 3m rotations. Let G ′ be the graph obtained from G after applying all 3m
rotations. Since C ′ is an exact cover of size m: (i) there are m vertices of type c1

xyz that lost all 3 neighbours and become 
of degree 0 in G ′ , (ii) all 3m vertices of type vx are attached to a new neighbour, so they become of degree 3m + 11
in G ′ .

Then G ′ has 10m + m = 11m vertices of degree 0, 12m − m = 11m of degree 3 vertices, 8m + 3m = 11m of degree 
3m + 11 vertices and it contains q − 3 disconnected (9m + 12)-regular subgraphs of size 11m, hence we conclude that G ′ is 
the 11m-anonymous graph.

Let I ′ be a yes-instance of Anonymous-Edge-Rotation. Then there exists a sequence of 3m rotations such that the graph 
G ′ = (V , E ′) obtained after applying the rotations to G is a 11m-anonymous graph. Since |V | = 33m + (q − 3)11m, there 
must be only q different degrees classes in G ′ . Note that with one rotation, we can change the degree of two vertices, 
therefore the degree at most 6m vertices can be changed by 3m rotations. Since the graph G has more than 6m vertices of 
the degrees 3m + 11, 3, 0 and 9m + 12, all these degree classes must be in G ′ . Furthermore, due to the number of vertices 
of G , these are the only degree classes in G ′ . This means that in G ′ the number of vertices of degree 3m + 11 must be 
increased by 3m, the number of vertices of degree 0 must be increased by m, the number of vertices of degree 3 must 
be decreased by m, there are no vertices of degrees 3m + 10 in G ′ and the other degree classes keep the same amount of 
vertices.

A single rotation can increase or decrease the degree of a vertex by 1 therefore using 3m rotations no vertex of degree 
3m + 10 in G can have degree 0 in G ′ and similarly, no vertex of degree 3 in G can have degree 3m + 11 in G ′ . Therefore 
the 3m new vertices of degree 3m + 11 in G ′ must have degree 3m + 10 in G . This is only possible if the degree of each 
vertex vx from the set V elem is increased by 1. Similarly, the m new vertices of degree 0 in G ′ must have degree 3 in G , 
let CG ′ be the set of such vertices. Obviously, CG ′ must be a subset of V set , in which the vertices have the form c�

xyz with 
x, y, z ∈ X , for any set {x, y, z} ∈ C , and � ∈ {1, 2, 3, 4}. For the same reasons, vertices of degree greater than 9m + 12 cannot 
be degree less than 3m + 12.

To reach the requested degree configuration in G ′ with exactly 3m edge rotations, in each rotation the degree 
of each vertex from V elem must be increased by 1 and the degree of each vertex from the set CG ′ must be de-
crease by 1. To achieve that, for each vertex vx from V elem , the only possible rotation is to add the edge ux vx

where ux ∈ Vhub and remove the edge uxc�
xyz where cxyz ∈ CG ′ . To fulfil the condition about the degree classes and 

the number of the rotations, the only way to achieve that is that C ′′ = {{x, y, z} | c�
xyz ∈ CG ′ } is an exact cover 

of X . �

8
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5. Characterization of the “closest” k-anonymous degree sequence

In this section we suppose that (G, k) is a feasible instance. For any such instance we define a k-anonymous degree 
sequence Sbound that can be computed in polynomial time if k = θ(n). We show that with the (+1, −1)-degree modifications 
(Remark 1) the graph G can be transformed into a k-degree-anonymous graph G ′ with degree sequence Sbound using at most 
double of edge rotations as in an optimal solution of Min Anonymous-Edge-Rotation for (G, k).

Note that in general a (+1, −1)-degree modification doesn’t correspond to an edge rotation, but as we show later in 
Section 7.1, it is true for trees.

Now in the following steps we show how to define the degree sequence Sbound .

Step 1: Compute every available target sequence.
Let S = (s1, . . . , sn) be a non-increasing sequence of non-negative integers, r ∈ {1, . . . , n}. Any partition of S into r contiguous 
subsequences (i.e. if S[a] and S[b] are in one part, then all S[i], a ≤ i ≤ b must be in the same part) is called a contiguous 
r-partition. The number of contiguous r-partitions of S is 

(n−1
r−1

)
, therefore bounded by (n − 1)r−1. Then the number of 

contiguous partitions of S with at most r parts can be bounded by 
r−1∑
i=0

(n − 1)i ≤ 2nr−1.

For each contiguous �-partition p, 1 ≤ � ≤ r, we use notation p = [p1, . . . , p�], where pi denotes the number of elements 
in part i, 1 ≤ i ≤ �. Note that at this stage important is the number of elements in each part, not which elements from S
are in it.

Let G be a graph of order n and k an integer, k ≥ 2. If G is a k-degree-anonymous graph, then the vertices of G can 
be partitioned into at most c = �n

k � parts where the vertices in each part have the same degree. Let P be the set of all 
such contiguous partitions with at most c parts. As it follows from the initial discussion, the number of such partitions is 
bounded by 2nc−1.

Now for each contiguous partition p = [p1, p2, . . . , p�] ∈ P , � ∈ {1, . . . , c}, we compute all non-increasing sequences 
(d1, d2, . . . , d�) of � integers di such that 0 ≤ di < |V |. Let P̂ p be the set of all feasible k-anonymous degree sequences for p, 
i.e.

S = (d1, . . . ,d1︸ ︷︷ ︸
p1−times

,d2, . . . ,d2︸ ︷︷ ︸
p2−times

, . . . ,d�, . . . ,d�︸ ︷︷ ︸
p�−times

) = (dp1
1 ,dp2

2 , . . . ,dp�

� ) ∈ P̂ p

if and only if 
�∑

i=1
pidi = 2|E|, S is graphic and k-anonymous.

For each contiguous partition p with � parts, 1 ≤ � ≤ c, there are at most n possibilities for a degree on each position. 
The test whether the generated sequence is graphic and k-anonymous can be done in O (n) operations. Since |P | = O (nc−1), 
there are at most O (nc−1 × n� × n) ≤ O (n2c) operations to compute all feasible degree sequences of every partition, where 
c = �n

k �. Obviously, if c is a constant, such number of operations is polynomial.

Step 2: Find the best one.
Now based on the previous analysis we can define the degree sequence Sbound and prove some basic properties.

Definition 5. Let G be a graph with the degree sequence SG . Then define Sbound for G as a degree sequence for which the 

sum 
n∑

i=1
|SG [i] − S[i]| achieves the minimum for all elements S ∈ P̂ p and p ∈ P .

Remark 3. Similarly to a k-anonymous sequence Sbound defined in Definition 5 for a graph, we can define a k-anonymous 
sequence ST bound for a tree. The only difference is that in the set P̂ p , every feasible solution must have di ≥ 1, which would 

be a subset of P̂ p . Also for the testing, we don’t need to check whether S is graphic, the condition 
�∑

i=1
pidi = 2|E|, is enough 

for the degree sequence of a tree.

Lemma 1. Let S be a n-sequence of non-negative integers and denote by S ′ the sequence S sorted in non-increasing order. Let Ss be 
another n-sequence of non-negative integers sorted in non-increasing order. Then

n∑
i=1

|Ss[i] − S ′[i]| ≤
n∑

i=1

|Ss[i] − S[i]| (3)

Proof. If S is already in non-increasing order then (3) holds. If not then there exist positive integers a, b such that a < b
and S[a] < S[b]. Let S1 be the sequence defined swapping the values S[a], S[b], hence: S1[a] = S[b], S1[b] = S[a], and 
S1[i] = S[i] otherwise. We denote
9
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A =
n∑

i=1

|Ss[i] − S[i]| −
n∑

i=1

|Ss[i] − S1[i]|

= |Ss[a] − S[a]| − |Ss[a] − S1[a]| + |Ss[b] − S[b]| − |Ss[b] − S1[b]|
= |Ss[a] − S1[b]| − |Ss[a] − S1[a]| + |Ss[b] − S1[a]| − |Ss[b] − S1[b]|

In order to follow easier six different cases, let x1 = Ss[a], x2 = Ss[b], x3 = S1[a], x4 = S1[b], and thus A = |x1 − x4| −
|x1 − x3| + |x2 − x3| − |x2 − x4|. Following our assumptions x1 ≥ x2 and x3 > x4.

Now for all possible arrangements of x1, x2, x3, x4 we discuss the value A:

• x1 ≥ x2 ≥ x3 > x4: A = x1 − x4 − x1 + x3 + x2 − x3 − x2 + x4 = 0
• x3 > x4 ≥ x1 ≥ x2: A = x4 − x1 − x3 + x1 + x3 − x2 − x4 + x2 = 0
• x1 ≥ x3 > x4 ≥ x2: A = x1 − x4 − x1 + x3 + x3 − x2 − x4 + x2 = 2x3 − 2x4 > 0
• x3 ≥ x1 ≥ x2 ≥ x4: A = x1 − x4 − x3 + x1 + x3 − x2 − x2 + x4 = 2x1 − 2x2 ≥ 0
• x1 ≥ x3 ≥ x2 ≥ x4: A = x1 − x4 − x1 + x3 − x2 − x1 − x2 + x4 = 2x3 − 2x2 ≥ 0
• x3 ≥ x1 ≥ x4 ≥ x2: A = x1 − x4 − x3 + x1 + x3 − x2 − x4 + x2 = 2x1 − 2x4 ≥ 0

We can conclude that in all cases A ≥ 0, therefore 
n∑

i=1
|Ss[i] − S1[i]| ≤

n∑
i=1

|Ss[i] − S[i]|.
If the sequence S1 is still not in non-increasing order, we can repeat the process of swapping for the next two unsorted 

elements on S1 until we obtain the non-increasing sequence S ′ . Each process can be repeated independently, therefore

n∑
i=1

|Ss[i] − S ′[i]| ≤
n∑

i=1

|Ss[i] − S[i]|. �

Theorem 5. Let (G, k) be a feasible instance for the Min Anonymous-Edge-Rotation problem. Let OPT be an optimum solution that 

is a minimum set of rotations that transform G to a k-degree-anonymous graph G ′. Then 
n∑

i=1
|SG [i] − Sbound[i]| ≤ 2|OPT|, where the 

degree sequence Sbound is defined in Definition 5.

Proof. Let SG ′ be the degree sequence of G ′ sorted in the same order as SG (i.e. for every v ∈ V , if degG(v) is in the 
position i in SG then degG ′ (v) is in the position i in SG ′ ). Let S ′

G ′ be the degree sequence SG ′ sorted in non-increasing 
order. As in the definition of Sbound we considered all the options, there must exist p ∈ P and S ∈ P̂ p such that S = S ′

G ′ , and

n∑
i=1

|SG [i] − Sbound[i]| ≤
n∑

i=1

|SG [i] − S ′
G ′ [i]|.

Since the degree sequence S ′
G ′ is sorted in non-increasing order, then

n∑
i=1

|SG [i] − S ′
G ′ [i]| ≤

n∑
i=1

|SG [i] − SG ′ [i]|

by Lemma 1. One rotation from the graph G j to G j+1 in the sequence of the graphs from G to G ′ can only decrease the 

degree of a vertex by one and increase the degree of another one by one, hence 
n∑

i=1
|SG j [i] − SG ′ [i]| ≤

n∑
i=1

|SG j+1 [i] − SG ′ [i]| +2. 

This means by one rotation the value 
n∑

i=1
|SG [i] − SG ′ [i] decreases by at most 2. After |OPT| rotations, the last graph G j+1 in 

the sequence is G ′ , therefore 
n∑

i=1
|SG [i] − SG ′ [i]| ≤ 2|OPT| and the theorem follows. �

6. Approximation of MIN ANONYMOUS-EDGE-ROTATION

In this section we show that under some constraints on the number of edges and k, there exists a polynomial time 
2-approximation algorithm for the Min Anonymous-Edge-Rotation problem for all feasible inputs (G, k).

Remark 4. Let S = (x1, x2, . . . , xn) be a non-increasing sequence of n non-negative integers. Denote by R = x1 − xn , A0 =
x1+xn , and let A =

∑n
i=1 xi .
2 n

10
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The standard deviation of S is defined as σ(S) =
√∑

(xi−A)2

n . It can be shown that

n∑
i=1

(xi − A)2 ≤
n∑

i=1

(xi − A0)
2 ≤ nR2

4
,

hence σ(S) ≤ R
2 .

The mean absolute derivation of S is defined as MAD[S] = 1
n

∑n
i=1 |xi − A|. It is well known (e.g. applying Jensen’s 

inequality) that MAD[S] ≤ σ(S).

Based on the correlation mentioned in Remark 4, we calculate an upper bound on the values in the degree sequence 
Sbound in the following lemma.

Lemma 2. Let (G, k) be an instance of the Min Anonymous-Edge-Rotation problem where G is the graph with n vertices and m edges. 
Suppose that n

2 ≤ m ≤ n(n−3)
2 , k ≤ n

4 , and let the constant c be defined as c = �n
k �, hence k = θ(n). Let Sbound be the k-anonymous 

degree sequence associated with G defined following Definition 5. Then for every i, Sbound[i] ≤ min{(1 + n
4k + n

k�
)�, n −1}, 1 ≤ i ≤ n.

Proof. Let SG be the degree sequence of G sorted in non-increasing order and D the k-anonymous degree sequence con-

structed following Theorem 2. Denote the unrounded average degree as A =
n∑

i=1
SG [i]
n . Then using Remark 4, the standard 

deviation of SG , σ [SG ] ≤ �
2 , and MAD[SG ] ≤ σ(SG). Hence

n∑
i=1

|SG [i] − D[i]| ≤
n∑

i=1

max(|SG [i] − �A + 2�|, |SG [i] − �A − 1�|)

≤
n∑

i=1

|SG [i] − A| +
n∑

i=1

2 = nM AD[SG ] + 2n

≤ nσ [SG ] + 2n ≤ n
�

2
+ 2n = n(� + 4)

2

Let �′ be the maximum value of Sbound . If �′ ≤ �, then the condition from Lemma holds. If �′ > �, then the distance 
between the k first elements of Sbound and the k first elements of SG is at least k(�′ − �) since Sbound is k-anonymous 

and sorted in non-increasing order. Because 
n∑

i=1
Sbound[i] =

n∑
i=1

SG [i], if the value of some elements is increased of a certain 

amount, the value of some others have to be decreased by the same amount, so 
n∑

i=1
|SG [i] − Sbound[i]| ≥ 2k(�′ − �).

If �′ > (1 + n
4k + n

k�
)� then 

n∑
i=1

|SG [i] − Sbound[i]| > 2k( n
4k + n

k�
)� = n(�+4)

2 ≥
n∑

i=1
|SG [i] − D[i]|, which is not possible due 

to minimality of Sbound . �
In the following two lemmas we prove that if a graph has ‘sufficiently’ many edges than edge rotations with the specific 

properties exist in a graph.

Lemma 3. Let G = (V , E) be a graph with |E| > �2 , let uv ∈ E. Then there exists an edge ab ∈ E such that both vertices a and b are 
different from u and v and at most one of the following edges {av, au, bv, bu} is in E.

Proof. For an edge xy ∈ E , let Nx = NG(x) \ {y} and N y = NG(y) \ {x}. For a contradiction suppose there exists an edge 
uv ∈ E such that for every edge ab ∈ E \ (Inc(u) ∪ Inc(v)) at least two of the edges {av, au, bv, bu} are in E . Then at 
least one vertex from {a, b} is incident to both vertices u, v , hence belongs to Nu ∩ Nv , or both vertices {a, b} are in 
(Nu ∪ Nv) \ (Nu ∩ Nv). Moreover, every vertex in Nu ∪ Nv has at most � − 1 neighbours in V \ {u, v}. Hence,

|E \ (Inc(u) ∪ Inc(v))| ≤ (� − 1) × (|Nu ∩ Nv | + |(Nu ∪ Nv) \ (Nu ∩ Nv)|
2

)

= (� − 1) × |Nu ∩ Nv | + |Nu ∪ Nv)|
2

= (� − 1) × |Nu| + |Nv |
2

≤ (� − 1)2
11
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Then |E| ≤ |Inc(u) ∪ Inc(v)| + |E \ (Inc(u) ∪ Inc(v))| ≤ 1 + 2(� − 1) + (� − 1)2 = �2. This is in contradiction with 
hypothesis |E| > �2. �
Lemma 4. Let G = (V , E) be a graph and suppose |E| > �2 . Let v+, v− ∈ V such that 1 ≤ dG(v−) ≤ � and 0 ≤ dG(v+) ≤ � <
|V | −1. Then there exists a sequence of at most two edge rotations that transform G to G ′ such that dG ′(v+) = dG (v+) +1, dG ′ (v−) =
dG (v−) − 1 and degrees of other vertices in G are not changed. These rotations can be found in O (|E|2) steps.

Proof. Case 1: Suppose there exists a vertex v ∈ V such that v ∈ NG(v−) and v /∈ NG(v+). Let G ′ be the graph obtained 
from G removing the edge v−v and adding the edge v v+ , hence using rotation (v v−, v v+). Obviously, dG ′ (v+) = dG(v+) +
1, dG ′ (v−) = dG (v−) − 1 and G ′ is obtained by using a single rotation.
Case 2: N (v−) ⊆N (v+). Let u ∈NG(v−). Since |E| > �2 and uv+ ∈ E , by using Lemma 3 then there exists an edge ab ∈ E
such that at most one edge of the set {av+, au, bv+, bu} is in E . If au is in E , then the graph G ′ obtained by two rotations 
(ab, av+) and (uv−, ub) has the required properties. If av+ is in E , then the graph G ′ obtained by two rotations (ba, bv+)

and (uv−, ua) has the required properties. The remaining two cases if bu or bv+ are from E are symmetrical to the above 
cases, it is enough to swap a and b.

Obviously, such an edge ab can be found in O (|E|2). �
Theorem 6. The Min Anonymous-Edge-Rotation problem is polynomial time 2-approximable for all instances (G, k), k ≤ n

4 where 
k = θ(n) and G is the graph with n vertices and m edges, where max{ n

2 , (1 + n
4k + n

k�
)2�2} ≤ m ≤ n(n−3)

2 , and the constant c is 
defined as c = �n

k �.

Proof. Let (G = (V , E), k) be an instance of Min Anonymous-Edge-Rotation and SG be the degree sequence of G . Let the 
constant c be defined as c = �n

k �. Due to our assumptions about the number of edges and k, all such instances are feasible 
as follows from Section 3. First we compute a k-anonymous degree sequence Sbound following Definition 5 in O (n2c) steps. 
Due to the assumption k = θ(n) and consequently c being a constant, such number of steps is polynomial. Furthermore, the 
condition on the number of edges ensures that we can always apply Lemma 4 and find suitable edge rotations.

If there exist two vertices v+ , v− ∈ V such that 0 ≤ SG [v+] < Sbound[v+] ≤ (1 + n
4k + n

k�
)� < |V | − 1 and SG [v−] >

Sbound[v−] we apply Lemma 4 to transform G to a graph G1 with at most two rotations such that dG1 (v+) = dG(v+) + 1
and dG1 (v−) = dG (v−) − 1.

We’ll be executing the above transformations while there are two vertices v+ , v− ∈ V with the required properties. In 
each such transformation we decrease the degree of one vertex by 1 and increase the degree of another one by 1 with at 

most two rotations. Hence we transform G to a final graph G ′ with degree sequence Sbound by at most 
n∑

i=1
|SG [i] − Sbound[i]|

rotations. By Lemma 5 we know that 
n∑

i=1
|SG [i] − Sbound[i]| ≤ 2|OPT|, hence we use at most 2 times the numbers of rotations 

of an optimal solution. In each transformation loop searching for the vertices v+ and v− can be done in time O (n) and 
searching for an edge ab in time O (m2) (Lemma 3). Due to the modifications in each transformation loop, there can be at 
most O (n2) loops. Therefore the time complexity is bounded by O (n2c +n2 ×m2 ×n). Since c ≥ 4, O (n2c +m2 ×n3) ≤ O (n2c).

Finally, since Sbound is k-anonymous, G ′ is a k-degree-anonymous graph. �
7. Polynomial cases for MIN ANONYMOUS-EDGE-ROTATION

As follows from Section 4, the Min Anonymous-Edge-Rotation problem is NP-hard even for k = n
q and q ≥ 3 is a fixed 

constant where n is the order of an input graph. In this section we show that the problem can be solved in polynomial time 
on trees when k = θ(n) or in case of any graph when k = n.

7.1. Trees

For a tree T = (V , E) rooted in a vertex r, for any v ∈ V , v �= r, child(v) is a vertex that is a neighbour of v not on the 
path from r to v .

Lemma 5. Let T = (V , E) be a tree and v− , v+ vertices from V such that v− is not a leaf and v+ is not a universal vertex. Then using 
one rotation we can transform T into a tree T ′ such that dT ′(v−) = dT (v−) − 1 and dT ′ (v+) = dT (v+) + 1.

Proof. Let v+ be the root of T . Since v− is not a leaf, there exists a vertex c ∈ child(v−). Since T is a tree, cv+ /∈ E . Therefore 
we can define the rotation (cv−, cv+) (see Fig. 8). Let T ′ be the graph obtained after a such rotation. Since there is no edge 
between the subtree of c and other vertices, T ′ is a tree. Moreover dT ′ (v−) = dT (v−) − 1 and dT ′ (v+) = dT (v+) + 1. �
Theorem 7. The Min Anonymous-Edge-Rotation problem is polynomial-time solvable for any instance (T , k) where T is a tree of 
the order n, k ≤ n and such that c = �n � is a constant, hence k = θ(n).
4 k
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v−

a b c

v+

Fig. 8. Transformation T to T ′ .

Proof. Let T be a tree and ST = (d1, d2, . . . , dn) its degree sequence sorted in non-increasing order. As it was mentioned 

in Section 2, for a degree sequence of a tree only the following conditions must hold 
n∑

i=1
di = 2(n − 1) and di ≥ 1 for all i, 

1 ≤ i ≤ n. Now based on ST define a k-anonymous sequence ST bound as discussed in Section 5.
Let x and y be integers such that ST [x] > ST bound[x] and ST [y] < ST bound[y]. Since ST bound corresponds to a tree, 

ST bound[x] ≥ 1 then ST [x] > 1 and thus vx is not a leave in T . Moreover since ST bound[y] ≤ n − 1, v y is not a universal 
vertex in T .

By Lemma 5 there exists a tree T1 such that ST1 [x] = ST [x] − 1 and ST1 [y] = ST [y] + 1. Repeat this operation until 

reaching a tree T ′ with the degree sequence ST bound . The cost of one operation is O (n) and we repeat it 

n∑
i=1

|ST [i]−ST bound[i]|
2 ≤

n2 times. Since ST bound is k-anonymous, T ′ is a k-degree-anonymous tree. Since we use 

n∑
i=1

|ST [i]−ST bound[i]|
2 ≤ |OPT| rotations 

(Lemma 5), the algorithm is optimal. The total cost of the algorithm is bounded by O (n2c + n2) = O (n2c), where c = �n
k � is 

a constant. �
7.2. One degree class, k = n

In this part we show that Min Anonymous-Edge-Rotation is polynomial-time solvable for instances where k coincides 
with the number of vertices of the graph, that means all vertices must be in the same degree class.

Lemma 6. Let G = (V , E) be a graph and u, v ∈ V . If NG(u) �NG(v), then there is an edge rotation that leads to a graph G ′ such 
that dG ′(u) = dG(u) − 1 and dG ′ (v) = dG(v) + 1.

Proof. Since NG(u) �NG(v), there exists w ∈ V such that uw ∈ E and v w /∈ E . Then we can do the following edge rotation 
(uw, v w) and get the graph G ′ with E ′ = (E \ {uw}) ∪ {v w}. �
Remark 5. Let G = (V , E) be a graph, ∀u, v ∈ V , if dG(u) > dG(v), then there is an edge rotation that leads to a graph G ′
such that dG ′ (u) = dG(u) − 1 and dG ′ (v) = dG (v) + 1.

Lemma 7. Let (G, n) be an instance of Min Anonymous-Edge-Rotation where G ∈ G(n, m) for some positive integers m, n, and 2m
n

is an integer. Then the optimum value of Min Anonymous-Edge-Rotation on (G, n) is 
∑

w∈V |dG (w)−2m/n|
2 .

Proof. As follows from Theorem 3, an instance (G, n) from G(n, m) is a feasible instance of Min Anonymous-Edge-Rotation

if and only if 2m
n is an integer. Let suppose that (G, n) is such an instance. Obviously, if G is a regular graph, then the degree 

of each vertex must be 2m
n .

If G is not a regular graph, then ∃u, v ∈ V such that dG (u) > 2m
n and dG (v) < 2m

n . By Remark 5, there is an edge rotation 
that leads to a graph G ′ such that dG ′ (u) = dG(u) − 1 and dG ′ (v) = dG(v) + 1. Then obviously at least 

∑
w∈V |dG (w)−2m/n|

2
rotations are necessary to have all the vertices of the same degree 2m

n , therefore the optimum value of Min Anonymous-

Edge-Rotation on the instance (G, n) is at least 
∑

w∈V |dG (w)−2m/n| .
2

13
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Now suppose that the optimum value is r strictly less than 
∑

w∈V |dG (w)−2m/n|
2 . Each rotation increases the degree of a 

vertex by one and decreases the degree of another vertex by one too. Obviously, each vertex w has to be involved in at 
least |dG (w) − 2m/n| edge rotations to reach the degree 2m

n . Hence if there are r <

∑
w∈V |dG (w)−2m/n|

2 edge rotations then in 
any graph G ′ obtained from G using r edge rotations there exists w ′ ∈ V such that dG ′ (w ′) > 2m

n or dG ′ (w ′) < 2m
n . �

Theorem 8. The Min Anonymous-Edge-Rotation problem is polynomial-time solvable for instances (G, k) when k = n, where n is 
the order of the graph G.

Proof. In case k = n, we are looking for a n-degree-anonymous graph with only one degree class, hence for a regular graph. 
Due to Theorem 3, we can easily decide whether (G, n) is a feasible instance of Min Anonymous-Edge-Rotation: if for 
G ∈ G(n, m) the fraction 2m

n is not an integer, (G, n) is not a feasible input.
For a feasible input (G, n), the result is based on Algorithm 1 and its correctness follows from Lemmas 6 and 7.

Input : A graph G = (V , E)

Output : A sequence S of edge rotations if 2|E|
|V | is an integer

NO otherwise

S = ∅ ;

d = 2|E|
|V | ;

if if d is not integer then
return NO ;

else
while ∃u, v ∈ V such that dG (u) < d and dG (v) > d do

Let w ∈N (v) \N (u) ;
E = E \ {v w};
E = E ∪ {uw};
S = S ∪ {(w v, wu)};

end
end

Algorithm 1: Algorithm for k = |V |.

Obviously, the algorithm runs in polynomial time. �
8. Conclusion

In this paper we initiate the study of the complexity of Min Anonymous-Edge-Rotation problem in which the task is 
to transform a given graph to a k-degree anonymous graph using a minimum number of edge rotations. As we were able 
to prove NP-hardness in case where the number of vertices k in each degree class is θ(n), further research could explore 
stronger hardness results or cases when k is a constant. Our next research step includes relaxation of the condition on the 
number of the edges in the presented 2-approximation algorithm as well as extension of the graph classes in which the
Min Anonymous-Edge-Rotation problem can be solved in polynomial time. As the problem doesn’t have a solution for all 
graphs and all possible values of k, our initial feasibility study covers a large part of instances. The extensions of the results 
are still possible, in the sense of necessary and sufficient conditions.
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