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Abstract. This paper studies Upper Domination, i.e., the problem
of computing the maximum cardinality of a minimal dominating set in
a graph, with a focus on parameterised complexity. Our main results
include W[1]-hardness for Upper Domination, contrasting FPT mem-
bership for the parameterised dual Co-Upper Domination. The study
of structural properties also yields some insight into Upper Total Dom-
ination. We further consider graphs of bounded degree and derive upper
and lower bounds for kernelisation.

1 Introduction

Domination, independence and irredundance are basic concepts in graph theory
and most of the overall six respective minimisation and maximisation problems,
which are related via the so-called domination chain (see [15]), are very well-
studied. Especially for parameterised complexity, Minimum Domination and
Maximum Independent Set and their respective parameterised duals are sort
of fundamental. With the exception of Upper Domination, all problems of the
domination chain are known to be complete for either W[1] or W[2] while their
corresponding parameterised dual is in FPT. This paper therefore studies the
so far neglected parameter Γ (G), which denotes the maximum cardinality of a
minimal dominating set in G. More precisely, we discuss the following problems:
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Upper Domination
Input: A graph G = (V,E), a non-
negative integer k.
Question: Is Γ (G) ≥ k?

Co-Upper Domination
Input: A graph G = (V,E), a non-
negative integer `.
Question: Is Γ (G) ≥ |V | − `?

Notice that Co-Upper Domination could be also addressed as Minimum
Maximal Nonblocker or as Minimum Maximal Star Forest; see [1] for
further discussion. From the perspective of classical complexity theory, both
problems are trivially equivalent and were shown to be NP-complete quite some
time ago [7]. Aside from this, very little is known, especially with respect to
parameterised complexity. From this perspective, k and ` turn out to be the
natural parameters, which turn them into dual problems in the parameterised
complexity sense of this word. As we will only consider this natural parameterisa-
tion, we refrain from explicitly mentioning the parameter throughout this paper.
Slightly abusing notation, we will therefore use the names Upper Domination
and Co-Upper Domination to also refer to the parameterised problems.

In the next section, we link minimal dominating sets to a decomposition of
the vertex set that turns out to be a crucial tool for deriving our combinatorial
and computational results. Section three then discusses properties of upper dom-
inating sets from a parameterised point of view and reveals W[1]-hardness for
Upper and Upper Total Domination. Conversely, Co-Upper Domination
is shown to be in FPT, which we prove by providing both a kernelisation and
a branching algorithm. In section four, we consider graphs of bounded degree
and derive kernelisations for Upper and Co-Upper Domination for this re-
stricted graph class. This section also includes an exact O∗(1.3481n)-algorithm
for subcubic graphs which builds on the decomposition derived in section two.
We further discuss general questions of exact algorithms for Upper Domina-
tion, as well as some related questions for total domination variants (see [16])
in the last section. For reasons of space, proofs and other details were moved
into an appendix to this extended abstract.

Basic notions. Throughout this paper, we only deal with undirected simple
graphs G = (V,E). The number of vertices |V | is also known as the order of G.
N(v) denotes the open neighbourhood of v in a graph G, and N [v] is the closed
neighbourhood of v in G, i.e., N [v] = N(v) ∪ {v}. These notions can be easily
extended to vertex sets X, e.g., N(X) =

⋃
x∈X N(x). The cardinality of N(v)

is also known as the degree of v, denoted as deg(v). The maximum degree in a
graph is written as ∆. A graph of maximum degree three is called subcubic.

Given a graph G = (V,E), a subset S of V is a dominating set if every
vertex v ∈ V \S has at least one neighbour in S, i.e., if N [S] = V . A dominating
set is called minimal if no proper subset of it is a dominating set. Likewise, a
vertex set I is independent if N(I) ∩ I = ∅. An independent set is maximal if
no proper superset is independent. In the following we use classical notations:
α(G) denotes the cardinality of a maximum independent set in G = (V,E) and
τ(G) := |V | − α(G) is the cardinality of a minimum vertex cover.
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For any subset S ⊆ V and v ∈ S we define the private neighbourhood of v
with respect to S as pn(v, S) := N [v]−N [S − {v}]. Any w ∈ pn(v, S) is called
a private neighbour of v with respect to S. If the set S is clear from the context,
we will omit the “with respect to S” part. A dominating set S ⊆ V is minimal
if and only if |pn(v, S)| > 0 for every v ∈ S. Observe that v can be a private
neighbour of itself.

Parameterised Complexity. We mainly refer to a recent textbook [9] in the area.
Important notions that we will make use of include the parameterised complexity
classes FPT, W[1] and W[2], parameterised reductions and kernelisation. In this
area, it has also become customary not only to suppress constants (as in the O
notation), but also even polynomial-factors, leading to the so-called O∗-notation.

2 Graph Decompositions for Minimal Dominating Sets

The following exposition is crucial for the development of the algorithms we
derive in this paper and also for the general investigation of properties of minimal
dominating sets. Any minimal dominating set D for a graph G = (V,E) can be
associated with a partition of the set of V into four sets F, I, P,O given by: I :=
{v ∈ D : v ∈ pn(v,D)}, F := D\I, P ∈ {B ⊆ N(F )∩(V \D) : |pn(v,D)∩B| = 1
for all v ∈ F} and O := V \D∪P ). This representation is not necessarily unique
since there might be different choices for the sets P and O, but for every partition
of this kind, the following properties hold:

1. Every vertex v ∈ F has at least one neighbour in F , called a friend.

2. The set I is an independent set in G.

3. The subgraph induced by the vertices F ∪ P has an edge cut set separating
F and P that is, at the same time, a perfect matching; hence, P can serve
as the set of private neighbours for F .

4. The neighbourhood of a vertex in I is always a subset of O, which are
otherwise the outsiders.

F I

P O

Fig. 1. Illustration of the FIPO structure imposed by minimal dominating sets
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This partition is also related to a different characterisation of Γ (G) in terms
of so-called upper perfect neighbourhoods [15]. Observe two important special
cases of the partition (F, I, P,O): If F = ∅, then I is an independent dominating
set. If I = ∅, then F is a minimal total dominating set, i.e., a set S ⊂ V such that
V = N(S) and N(S′) 6= V for all S′ ⊂ S. Both notions have been thoroughly
studied in the literature. Observe that finding a maximum cardinality minimal
dominating set for which I = ∅ holds in an (F, I, P,O) partitioning (called
(F, P,O)-Domination set in the following) is not equivalent to the problem
Upper Total Domination, which asks for a maximum cardinality minimal
total dominating set. The following example illustrates the differences between
optimal solutions (illustrated by the black vertices) for Minimum, (F, P,O)-,
Upper and Upper Total Domination:

min DS (F, P,O) DS upper DS upper total DS

From the domination chain we know α(G) ≤ Γ (G) for all graphs G, which
is simply due to the fact that any maximal independent set is also a minimal
dominating set. Considering the partition (F, I, P,O) for a minimal dominating
set S for a graph G of order n > 0, we immediately know that |I| ≤ α(G).
Further, we know |F | = |P | and hence |F | = 1/2(n−|I|− |O|) ≤ 1/2(n−α(G)).
With |S| = |F |+ |I|, we see that |S| ≤ 1/2(n+ α(G)) and since this inequality
holds for all mimimal dominating sets S, we can conclude:

α(G) ≤ Γ (G) ≤ n

2
+
α(G)

2
(1)

3 Fixed Parameter Tractability

In this section we will investigate the fixed parameter tractability of Upper
Domination, its dual and related problems. The problems Minimum Domi-
nation, Minimum Independent Domination and Maximum Independent
Set were among the first problems conjectured not to be in FPT [8]. In fact,
aside from Upper Domination, all other problems from the domination chain
are now known to be complete for either W[1] or W[2] (see [2] and [10] for up-
per and lower irredundance respectively). It is perhaps not very surprising
that Upper Domination is also unlikely to belong to FPT, and it looks rather
unexpected that this question has been open for such a long time. We show
that Upper Domination is W[1]-hard by a reduction from Multicoloured
Clique, a problem introduced in [12] to facilitate W[1]-hardness proofs. While
the construction used in our reduction itself is not very complicated, proving its
correctness turns out to be quite complex and technical.

Theorem 1. Upper Domination is W[1]-hard.
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Proof. (Sketch) Let G = (V,E) be a graph with k different colour-classes given
by V = V1 ∪V2 ∪ · · · ∪Vk. Multicoloured Clique asks if there exists a clique
C ⊆ V in G such that |Vi ∩ C| = 1 for all i = 1, . . . , k. For this problem, one
can assume that each set Vi is an independent set in G, since edges between
vertices of the same colour-class have no impact on the existence of a solution.
Multicoloured Clique is known to be W[1]-complete, parameterised by k.
We construct a graph G′ = (V ′, E′) by: V ′ := V ∪ {ve : e ∈ E} and

E′ :=

k⋃
i=1

Vi × Vi ∪
k⋃
i=1

k⋃
j=1

{(ve, ve′) : e, e′ ∈ (Vi × Vj) ∩ E}

∪
k⋃
i=1

k⋃
j=1

{
(v(u,w), x) : (u,w) ∈ (Vi × Vj) ∩ E, x ∈ ((Vi ∪ Vj)− {u,w})

}
.

It can be shown that there exists a minimal dominating set S of cardinality
k+ 1

2 (k2−k) for G′ if and only if |S∩Vi| = 1 for all i = 1, . . . , k and |S∩Vi,j | = 1
for all i 6= j, where Vi,j := {ve : e ∈ E ∩ (Vi×Vj)}. With this property, it is easy
to see that S is minimal if and only if S ∩ V is a clique in the original graph;
observe that if S contains two vertices vi and vj from Vi and Vj , respectively,
which are not adjacent in G, then these already dominate all vertices of Vi,j in
G′. Overall, it can be shown that G′ has an upper dominating set of cardinality
k+ 1

2 (k2− k) if and only if G is a “yes”-instance for Multicoloured Clique,
which proves W[1]-hardness for Upper Domination, parameterised by Γ (G′).

ut

We want to point out that the above reduction also works for the restriction of
Upper Domination to solutions for which I is empty:

Corollary 1. (F, P,O)-Domination, that is the restriction of Upper Domi-
nation to solutions S such that V = N(S), is W[1]-hard.

This result means that if we consider somehow splitting the problem Upper
Domination into the subproblems of computing the independent vertices I and
(F, P,O)-Domination, we end up with two W[1]-hard problems. Considering
Upper Total Domination, the construction in the proof of Theorem 1 is not
very helpful, since unfortunately any set S with |S ∩ Vi| = 1 for all i = 1, . . . , k
and |S ∩ Vi,j | = 1 for all i 6= j, regardless of the structure of the original graph
G, is a minimal total dominating set for G′. We can however use a much simpler
construction to show W[1]-hardness for Upper Total Domination, a result
which cannot be inferred from the known NP-hardness of the problem, see [11].

Theorem 2. Upper Total Domination is W[1]-hard.

Proof. (Sketch) We reduce from Multicoloured Independent Set. Let G =
(V,E) be a graph with k different colour-classes given by V = V1 ∪V2 ∪ · · · ∪Vk.
We construct a graph G′ = (V ′, E′) as follows: Starting from G, we add k vertices
C = {c1, . . . , ck} and turn each vertex set Vj ∪ {cj} into a clique. We claim that
G admits a multicoloured independent set (of size k) if and only if G′ has a
minimal total dominating set with 2k vertices. ut
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We do not know if Upper Domination belongs to W[1], but we can at least
place it in W[2], the next level of the W hierarchy. We obtain this result by
describing a suitable multi-tape Turing machine that solves this problem, see [4].

Proposition 1. Upper Domination belongs to W[2].

Proof. Recall how Minimum Domination can be seen to belong to W[2] by
providing an appropriate multi-tape Turing machine [4]. First, the k vertices
that should belong to the dominating set are guessed, and then this guess is
verified in k further (deterministic) steps using n further tapes in parallel, where
n is the order of the input graph. We only need to make sure that the guessed set
of vertices is minimal. To this end, we copy the guessed vertices k times, leaving
one out each time, and we also guess one vertex for each of the k−1-element sets
that is not dominated by this set. Such a guess can be tested in the same way as
sketched before using parallel access to the n+ 1 tapes. The whole computation
takes O(k2) parallel steps of the Turing machine, which shows the claim. ut

Let us notice that very similar proofs also show membership in W[2] and hardness
for W[1] for the question whether, given some hypergraph G and parameter k,
there exists a minimal hitting set of G with at least k vertices. This also means
that Upper Total Domination belongs to W[2].

In the context of parameterised complexity, would like to point out another
difference between Upper Domination and Minimum Domination. Despite
its W[2]-hardness, there is at least a reduction-rule for Minimum Domination,
which deals with vertices of degree one, as they can be assumed not to be
contained in a minimum dominating set. One might suspect that any upper
dominating set would conversely always choose to contain degree-one vertices.

As the example on the right illustrates, there
can not be such a rule for Upper Domination,
since the degree-one vertex v is never part of
a maximum solution; in fact, the black vertices
form the unique optimal solution for this graph.

v w

Another interesting question is to consider the dual parameter `, that is to
decide the existence of an upper dominating set of size at least n− `. This is in
fact the natural parameterisation for Co-Upper Domination.

Theorem 3. Co-Upper Domination is in FPT. More precisely, it admits a
kernel of at most `2 + ` many vertices and at most `2 many edges.

Proof. Let G = (V,E) be an input graph of order n. Consider a vertex v ∈ V
with deg(v) > ` and any minimal dominating set D with partition (F, I, P,O):

– If v ∈ I, all neighbours of v have to be in O which means |O| ≥ |N(v)| > `.
– If v ∈ F , exactly one neighbour p of v is in P and N [v]−{p} ⊆ F ∪O, which

gives |O|+ |P | = |O|+ |F | ≥ |N [v]− {p}| > `.
– If v ∈ P , exactly one neighbour p of v is in F and N [v] − {p} ⊆ P ∪ O, so
|O|+ |P | > `.
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We always have either v ∈ O or |O|+ |P | > `, which means a “no”-instance for
Co-Upper Domination. Consider the graph G′ built from G by deleting the
vertex v and all its edges. For any minimal dominating set D for G with partition
(F, I, P,O) such that v ∈ O, D is also minimal for G′, since pn(w,D) ⊇ {w}
for all w ∈ I and |pn(u,D) ∩ P | = 1 for all u ∈ F . Also, any set D′ ⊂ V − {v}
which does not dominate v has a cardinality of at most |V −N [v]| < n− `, so if
G′ has a dominating set D′ of cardinality at least n− `, N(v) ∩D′ 6= ∅; hence,
D′ is also dominating for G. These observations allow us to successively reduce
(G, `) to (G′, `′) with `′ = `− 1, as long as there are vertices v with deg(v) > `.
Any isolated vertex in the resulting graph G′ originally only has neighbours in O
which means it belongs to I in any dominating set D with partition (F, I, P,O)
and can hence be deleted from G′ without affecting the existence of an upper
dominating set with |P |+ |O| ≤ `′.

Let (G′, `′) be the instance obtained after the reduction above with G′ =
(V ′, E′) and let n′ = |V ′|. If there is an upper dominating set D for G′ with
|D| ≥ n′ − `′, any associated partition (F, I, P,O) for D satisfies |P |+ |O| ≤ `′.
Since G′ does not contain isolated vertices, every vertex in I has at least one
neighbour in O. Also, any vertex in V ′, and hence especially any vertex in O,
has degree at most `′, which means that |I| ≤ |N(O)| ≤ `′|O|. Overall:

|V ′| ≤ |I|+ |F |+ |P |+ |O| ≤ (`′ + 1)|O|+ 2|P | ≤ `′

max
j=0
{j(`′ + 1), 2(`′ − j)} ,

and hence |V ′| ≤ `′(`′+1), or (G′, `′) and consequently (G, `) is a “no”-instance.
Concerning the number of edges, we can derive a similar estimate. There are at
most ` edges incident with each vertex in O. In addition, there is exactly one
edge incident with each vertex in P that has not yet been accounted for, and, in
addition, there could be `− 1 edges incident to each vertex in F that have not
yet been counted. This shows the claim.

We just derived a kernel result for Co-Upper Domination, in fact a kernel
of quadratic size in terms of the number of vertices and edges. This poses the
natural question if we can do better also with respect to the question weather
the brute-force search we could perform on the quadratic kernel is the best we
can do to solve Co-Upper Domination in FPT time.

Proposition 2. Co-Upper Domination can be solved in time O∗(4.3077`).

Proof. (Sketch) This result can be shown by designing a branching algorithm
that takes a graphG = (V,E) and a parameter ` as input. A complete description
of the algorithm, as well as its correctness and running time analysis are given
in the appendix. Due to space restriction, we only describe here the rough ideas
without any proof. As in Section 2, to each graph G = (V,E) and (partial)

dominating set, we associate a partition (F, I, P,O). We consider κ = `− ( |F |2 +
|P |
2 +|O|) as a measure of the partition and for the running time of the algorithm.

Note that κ ≤ `. At each branching step, our algorithm picks some vertices from
R (the set of yet undecided remaining vertices). They are either added to the
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current dominating set D := F ∪I or to D := P ∪O. Each time a vertex is added
to P (resp. to O) the value of κ decreases by 1

2 (resp. by 1). Also, whenever a
vertex x is added to F , the value of κ decreases by 1

2 .
Let us describe the two halting rules. First, whenever κ reaches zero, we are

facing a “no”-instance. Then, if the set R of undecided vertices is empty, we
check whether the current domination set D is minimal and of size at least n−`,
and if so, the instance is a “yes”-instance. Then, we have a simple reduction rule:
whenever the neighbourhood of a undecided vertex v ∈ R is included in D, we
can safely add v to I. Finally, vertices are placed to F , I or D according to three
branching rules. The first one considers undecided vertices with a neighbour
already in F (in such a case, v cannot belongs to I). The second one considers
undecided vertices with only one undecided neighbour (in such a case, several
cases may be discarded as, e.g., they cannot be both in I or both in D). The
third branching rule considers all the possibilities for an undecided vertex and
due to the previous branching rules, it can be assumed that each undecided
vertex has at least two undecided neighbours (which is nice since such vertices
have to belong to D whenever an undecided neighbour is added to I).

Of course, the question remains to what extent the previously presented
parameterised algorithm can be improved on. In this context, we briefly discuss
the issue of (parameterised) approximation for this parameter.

Theorem 4. Co-Upper Domination is 4-approximable in polynomial time,
3-approximable with a running time in O∗(1.0883τ(G)) and 2-approximable in
time O∗(1.2738τ(G)) or O∗(1.2132n).

Proof. First of all, observe by subtracting n from Eq. (1) that τ(G) relates to
the co-upper domination number in the following way:

τ(G)

2
+ 1 ≤ n− Γ (G) ≤ τ(G) (2)

Using any 2-approximation algorithm one can compute a vertex cover V ′ for G,
and define S′ = V \V ′. Let S be a maximal independent set containing S′. V \S
is a vertex cover of size |V \S| ≤ |V ′| ≤ 2τ(G) ≤ 4(n − Γ (G)). Moreover, S
is maximal independent and hence minimal dominating set which makes V \S
a feasible solution for Co-Upper Domination with |V \S| ≤ 4(n − Γ (G)).
The claimed running time for the factor-2 approximation stems from the best
parameterised and exact algorithms Minimum Vertex Cover by [6] and [18],
the factor-3 approxmation from the parameterised approximation in [3].

4 Graphs of bounded degree

In contrast to the case of general graphs, Upper Domination turns out to be
easy (in the sense of paramterised complexity) for graphs of bounded degree.

Proposition 3. Fix ∆ > 2. Upper Domination has a problem kernel with at
most ∆k many vertices.
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Proof. First, we can assume that the input graph G is connected, as otherwise
we can apply the following argument separately on each connected component.
Assume G is a cycle or a clique. Then, the problem Upper Domination can be
optimally solved in polynomial time, i.e., we can produce a kernel as small as
we want. Otherwise, Brooks’ Theorem yields a polynomial-time algorithm that
produces a proper colouring of G with (at most) ∆ many colours. Extend the
biggest colour class to a maximal independent set I of G. As I is maximal, it is
also a minimal dominating set. So, there is a minimal dominating set I of size
at least n/∆, where n is the order of G. So, Γ (G) ≥ n/∆. If k < n/∆, we can
therefore immediately answer YES. In the other case, n ≤ ∆k as claimed.

With some more combinatorial effort, we obtain:

Proposition 4. Fix ∆ > 2. Co-Upper Domination has a problem kernel with
at most (∆+ 0.5)` many vertices.

Proof. Consider any graph G = (V,E). For any partition (F, I, P,O) correspond-
ing to an upper dominating set D = I ∪ F for G, isolated vertices in G always
belong to I and can hence be deleted in any instance of Co-Upper Domination
without changing `. For any graph G without isolated vertices, the set P ∪O is a
dominating set for G, since ∅ 6= N(v) ⊂ O for all v ∈ I and N(v)∩P 6= ∅ for all
v ∈ F . Maximum degree ∆ hence immediately implies n = |N [P∪O]| ≤ (∆+1)`.

Since any connected component can be solved separately, we can assume that
G is connected. For any v ∈ P , the structure of the partition (F, I, P,O) yields
|N [v] ∩ D| = 1, so either |N [v]| = 1 < ∆ or there is at least one w ∈ P ∪ O
such that N [v] ∩ N [w] 6= ∅. For any v ∈ O, if N [v] ∩ F 6= ∅, the F -vertex
in this intersection has a neighbour w ∈ P , which means N [w] ∩ N [v] 6= ∅.
If N [v] ⊂ I and N [v] 6= V , at least one of the I-vertices in N [v] has to have
another neighbour to connect to the rest of the graph. Since N [I] ⊂ O, this also
implies the existence of a vertex w ∈ O, w 6= v with N [w]∩N [v] 6= ∅. Finally, if
N [v] 6⊂ I ∪ F , there is obviously a w ∈ P ∪O, w 6= v with N [w] ∩N [v] 6= ∅.

Assume that there is an upper dominating set with partition (F, I, P,O) such
that |P ∪ O| = l ≤ ` and let v1, . . . , vl be the l > 1 vertices in P ∪ O. By the
above argued domination-property of P ∪O, we have:

n = |
l⋃
i=1

N [vi]| = 1
2

l∑
i=1

|N [vi] \
i−1⋃
j=1

N [vj ]|+ 1
2

l∑
i=1

|N [vi] \
l⋃

j=i+1

N [vj ]|

Further, by the above argument about neighbourhoods of vertices in P ∪ O,
maximum degree ∆ yields for every i ∈ {1, . . . , l} either |N [vi]\

⋃i−1
j=1N [vj ]| ≤ ∆

or |N [vi] \
⋃l
j=i+1N [vj ]| ≤ ∆ which gives:

n = 1
2

l∑
i=1

|N [vi] \
i−1⋃
j=1

N [vj ]|+ |N [vi] \
l⋃

j=i+1

N [vj ]| ≤ 1
2 l(2∆+ 1) ≤ (∆+ 0.5)`.

Any graph with more than (∆ + 0.5)` vertices is consequently a “no”-instance
which yields the stated kernelisation, as the excluded case |P ∪ O| = 1 (or in
other words N [v] = V for some v ∈ O) can be solved trivially.
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This implies that we have a 3k-size vertex kernel for Upper Domination,
restricted to subcubic graphs, and a 3.5`-size vertex kernel for Co-Upper Dom-
ination, again restricted to subcubic graphs. With [5, Theorem 3.1], we can
conclude the following consequence:

Corollary 2. Unless P equals NP , for any ε > 0, Upper Domination, re-
stricted to subcubic graphs, does not admit a kernel with less than (1.4 − ε)k
vertices; neither does Co-Upper Domination, restricted to subcubic graphs,
admit a kernel with less than (1.5− ε)` vertices.

Exact Algorithms

Let us recall one important result on the pathwidth of subcubic graphs from [14].

Theorem 5. Let ε > 0 be given. For any subcubic graph G of order n > nε, a
path decomposition proving pw(G) ≤ n/6 + ε is computable in polynomial time.

This result immediately gives an O∗(1.2010n)-algorithm for solving Minimum
Domination on subcubic graphs. We will take a similar route to prove moder-
ately exponential-time algorithms for Upper Domination.

Proposition 5. Upper Domination on graphs of pathwidth p can be solved in
time O∗(7p), given a corresponding path decomposition.

We are considering all partitions of each bag of the path decomposition into 6
sets: F , F ∗, I, P , O, O∗, where

– F is the set of vertices that belong to the upper dominating set and have
already been matched to a private neighbour;

– F ∗ is the set of vertices that belong to the upper dominating set and still
need to be matched to a private neighbour;

– I is the set of vertices that belong to the upper dominating set and is inde-
pendent in the graph induced by the upper dominating set;

– P is the set of private neighbours that are already matched to vertices in
the upper dominating set;

– O is the set of vertices that are not belonging neither to the upper dominating
set nor to the set of private neighbours but are already dominated;

– O∗ is the set of vertices not belonging to the upper dominating set that have
not been dominated yet.

The exact recursions can be found in the appendix. Observe that the upper
bound on the running time can be improved for graphs of a certain maximum
degree to O∗(6p), so that we can conclude:

Corollary 3. Upper Domination on subcubic graphs of order n can be solved
in time O∗(1.3481n), using the same amount of space.

We like to point out that the idea from the pathwidth algorithm above can be
adapted to work for treewidth.

Proposition 6. Upper Domination on graphs of treewidth p can be solved in
time O∗(11p), given a corresponding nice tree decomposition.
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5 Discussions and Open Problems

The motivation to study Upper Domination (at least for some in the group
of authors) was based on the following observation:

Proposition 7. Upper Domination can be solved in time O∗(1.7159n) on
general graphs of order n.

Proof. The suggested algorithm simply lists all minimal dominating sets and
then picks the biggest one. It has been shown in [13] that this enumeration
problem can be performed in the claimed running time.

It is of course a bit nagging that there seems to be no better algorithm (analy-
sis) than this enumeration algorithm for Upper Domination. Recall that the
minimisation counterpart can be solved in better than O∗(1.5n) time [17,19]. As
this appears to be quite a tough problem, it makes a lot of sense to study it
on restricted graph classes. This is what we did above for subcubic graphs, see
Corollary 3. We summarise some open problems.

– Is Upper Domination in W[1]? Or, hard for W[2]?
– Can we improve on the 4-approximation of Co-Upper Domination?
– Can we find smaller kernels for Upper or Co-Upper Domination on

degree-bounded graphs?
– Can we find exact (e.g., branching) algorithms that beat the enumeration or

pathwidth-based ones for Upper Domination, at least on cubic graphs?

Also for Upper Total Domination, the best exact algorithm seems to be
based on enumeration. Recall that Fomin et al. establish that a graph with
n vertices has at most 1.7159n minimal dominating sets [13]. To achieve this
result, they first design a branching algorithm to enumerate all minimal set
covers of an instance (U ,S), where S is a collection of subsets over a universe U
and then use a simple reduction from a dominating set instance to a set cover
instance. It is implicit from their analysis (see Section 4 of [13]) that a Set
Cover instance has at most 1.156154|U|+2.720886|S| minimal set covers which
can be enumerated in time O∗(1.156154|U|+2.720886|S|). As a easy consequence,
minimal total dominating sets of a graph G = (V,E) can be enumerated in
time O∗(1.7159n), by picking as the universe U = V and S = {N(v) : v ∈ V }.
This allows us to conclude that Upper Total Domination can be solved in
the same time. Similarities to Upper Domination continue to some extent;
however, the general picture is not very clear and still needs some research.

Acknowledgements. We would like to thank our colleagues Serge Gaspers, David
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6 Appendix: Omitted Proofs

In this section, we collect proofs that have been omitted or considerably short-
ened in the main text body.

6.1 Proof of Theorem 1

Let G = (V,E) be a graph with k different colour-classes given by V = V1∪V2∪
· · ·∪Vk. Multicoloured Clique asks if there exists a clique C ⊆ V in G such
that |Vi∩C| = 1 for all i = 1, . . . , k. For this problem, one can assume that each
set Vi is an independent set in G, since edges between vertices of the same colour-
class have no impact on the existence of a solution. Multicoloured Clique
is known to be W[1]-complete, parameterised by k. We construct a graph G′

such that G′ has an upper dominating set of cardinality (at least) k+ 1
2 (k2− k)

if and only if G is a “yes”-instance for Multicoloured Clique which proves
W[1]-hardness for Upper Domination, parameterised by Γ (G′).

Consider G′ = (V ′, E′) given by: V ′ := V ∪ {ve : e ∈ E} and

E′ :=

k⋃
i=1

Vi × Vi ∪
k⋃
i=1

k⋃
j=1

{(ve, ve′) : e, e′ ∈ (Vi × Vj) ∩ E}

∪
k⋃
i=1

k⋃
j=1

{
(v(u,w), x) : (u,w) ∈ (Vi × Vj) ∩ E, x ∈ ((Vi ∪ Vj)− {u,w})

}
.

If C ⊂ V is a (multi-coloured) clique of cardinality k in G, the set S′ := C ∪
{v(u,v) : u, v ∈ C} is an upper dominating set for G′ of cardinality k+ 1

2 (k2−k):
First of all, {v(u,v) : u, v ∈ C} ⊂ V ′ since (u, v) ∈ E for all u, v ∈ C. Further, by
definition of the edges E′, u, v /∈ NG′(v(u,v)) and u /∈ NG′(v) for u and v from
different colour classes so S′ is an independent set in G′ and hence a minimal
dominating set. It can be easily verified that S′ is also dominating for G′ –
observe that it contains exactly one vertex for each clique in the graph.

Suppose S is a minimal dominating set for G′. Consider the partition S =(⋃k
i=1 Si

)
∪
(⋃

1≤i<j≤k S{i,j}

)
defined by: Si := S ∩ Vi for i = 1, . . . , k and

S{i,j} := S ∩ {ve : e ∈ Vi × Vj} for all 1 ≤ i < j ≤ k. The minimality of S gives
the following properties for these subsets of S:

1. If |Si| > 1 for some index i ∈ {1, . . . , k}, minimality implies |Si| = 2 and for
all j 6= i either S{i,j} = ∅ or Sj = ∅:



14 Bazgan et al.

Since for every u ∈ Vi and every j, j 6= i, by construction Vi ⊂ N [u], and
if there is more than one vertex in Si, then their private neighbours have to
be in {ve : e ∈ E}. A vertex ve with e ∈ Vi × Vj is not adjacent to a vertex
u ∈ Vi if and only if e = (u,w) for some w ∈ Vj . For two different vertices
u, v ∈ Vi consequently all ve with e ∈ Vi×Vj are adjacent to either u or v, a
third vertex w ∈ Vi consequently can not have any private neighbour. This
also means that any vertex ve ∈ S{i,j} has to have a private neighbour in
Vj , so if S{i,j} 6= ∅ the set Sj has to be empty because one vertex from Sj
dominates all vertices in Vj . These observations hold for all j 6= i.

2. If |S{i,j}| > 1 for some indices i, j ∈ {1, . . . , k} we find that |S{i,j}| = 2,
|Si|, |Sj | ≤ 1 and that Si 6= ∅ implies Sj = S{j,l} = ∅ for all l ∈ {1, . . . , k} −
{i, j} (and equivalently Sj 6= ∅ implies Si = S{i,l} = ∅ for all l ∈ {1, . . . , k}−
{i, j}):

Since for any two vertices u, v from S{i,j} we have {ve : e ∈ (Vi × Vj) ∩
E} ∪ Vi ∪ Vj ⊂ N(u) ∪N(v), the cardinality of S{i,j} can be at most two. If
there is a vertex y in Si, it already dominates all of Vi so private neighbours
for u, v ∈ S{i,j} have to be in Sj . For any two vertices w,w′ ∈ Vj any
ve ∈ V ′ ∩ {ve : e ∈ Vj × Vl, l = 1, . . . , k} is either adjacent to at least
w or w′, so especially for the private vertices of u and v every x ∈ Sj,l
would be adjacent to one of them and can consequently not be in a minimal
dominating set, so Sj = S{j,l} = ∅. Dominating the vertices in S{j,l} for l 6= i
then requires |Sl| = 2 for all l 6= i, which leaves no possible private vertices
outside Vi for vertices in Vi, so |Si| = 1.

3. If |Si| = 2 there exists an index j 6= i such that S{i,j} = ∅ and |Sj | ≤ 1:
Let u, v ∈ Si. By the structure of G′, u and v share all neighbours in Vi and
ve such that e = (x, y) ∈ Vi×Vl with x 6∈ {u, v} for all l 6= i, so especially the
private neighbourhood of u is restricted to pn(u, S) ⊆ {ve : e = (v, y) ∈ E}.
Let j be an index such that there is a vertex z ∈ Vj with v(u,z) ∈ pn(v, S)
(there is at least one such index). No neighbour of v(u,z) beside v can be in
S, which means that S{i,j} = ∅ and Sj ⊆ {z}.

4. |S{i,l}| = 2 implies |S{j,l}| ≤ 1 for all j 6= i.
Suppose |S{i,l}|, |S{j,l}| ≥ 2 for some indices i, j, l ∈ {1, . . . , k}. By prop-
erty 2 both sets S{i,l}, S{j,l} have cardinality two so let ui, wi ∈ S{i,l}
and uj , wj ∈ S{j,l}. Since each set {ve : e ∈ E ∩ (Vs × Vt)} is a clique,
the private neighbours for these vertices have to be in Vi, Vj , Vl. Suppose
v ∈ pn(ui, S)∩ Vl which means that wi, uj , wj are not adjacent to v. This is
only possible if wi represents some edge (v, x) ∈ E ∩ Vl × Vi and uj , wj rep-
resent some edges (v, y), (v, y′) ∈ E ∩ Vl × Vj . By definition of E′, wi, uj , wj
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then share their neighbourhood in Vl (namely Vl − {v}) which means that
pn(wi, S) ⊂ Vi and pn(uj) ∪ pn(wj) ⊂ Vj which implies Si = Sj = ∅. So
in any case, even if there is no v ∈ pn(ui, S) ∩ Vl, at least one of the sets
Vi or Vj contains two vertices which are private neighbours for S{i,j} and
Si = Sj = ∅.
Suppose Vj contains two private vertices y 6= y′ for uj and wj respectively.
For any two arbitrary vertices n1, n2 ∈ Vj , any vertex x ∈ {ve : e ∈ E ∩
(Vi × Vj)} is adjacent to at least one of them, which means that any x ∈
S{i,j} would steal at least y ∈ pn(uj) or y′ ∈ pn(wj) as private neighbour.
Minimality of S hence demands Si = Sj = S{i,j} = ∅. A set with this
property however does not dominate any of the vertices ve with e ∈ E ∩
(Vi×Vj). (The set E ∩ (Vi×Vj) is not empty unless the graph G is a trivial
“no”-instance for Multicoloured Clique.)

According to these properties, the indices of these subsets of S can be divided
into the following six sets: Ci := {j : |Sj | = i} and Di := {(j, l) : |S{j,l}| = i} for
i = 0, 1, 2 which then give |S| = 2(|C2|+ |D2|) + |C1|+ |D1|. If |C2|+ |D2| 6= 0
and k > 3, we can construct an injective mapping f : C2 ∪D2 ∪ {a} → C0 ∪D0

with some a /∈ V ′ in the following way:

– For every i ∈ C2 choose some j 6= i with (i, j) ∈ D0 and j /∈ C2 which exists
according to property 3 and set f(i) = (i, j). Since j /∈ C2 this setting is
injective.
If D2 = ∅ and C2 = {i}, choose some l 6= i and map a via f either to l or to
(i, l), since, by property 1, one of them is in C0 or D0 respectively. If D2 = ∅
and |C2| > 1, choose some i, l ∈ C2 and set f(a) = (i, l) since S{i,l} = ∅ by
property 1 and neither i nor l is mapped to (i, l).

– For (i, j) ∈ D2, property 2 implies at least i or j lies in C0. By Property 4
we can choose one of them arbitrarily without violating injectivity. If both
are in C0 we can use one of them to map a. If for all (i, j) ∈ D2 only
one of the indices i, j is in C0, we still have to map a, unless f(a) has
been already defined. Assume for (i, j) ∈ D2 that i /∈ C0. By property
2 {(j, l) : l /∈ {i, j}} ⊂ D0. If we cannot choose one of these index-pairs
as injective image for a, they have all been used to map C2 which means
{1, . . . , k} − {i, j} ⊆ C2 and hence, by property 1, all index-pairs (l, h) with
l, h ∈ {1, . . . , k} − {i, j} are in D0 and so far not in the image of f , so we
are free to chose one of them as image of a, unless f(a) has been already
defined.

This injection proves that |C2|+ |D2| > 0 implies that |C2|+ |D2| < |C0|+ |D0|.
This means that, regardless of the structure of the original graph G, the subsets
Si and Si,j of S either all contain exactly one vertex or k + 1

2 (k2 − k) = |C1|+
|D1|+ |C0|+ |D0|+ |C2|+ |D2| > |C1|+ |D1|+ 2(|C2|+ |D2|) = |S|.

So if |S| = k + 1
2 (k2 − k), the above partition into the sets Si, Si,j satisfies

|Si| = |S{i,j}| = 1 for all i, j. A set with this property is always dominating for G′

but only minimal if each vertex has a private neighbour. For some ve ∈ S{i,j} this
implies that there is some private neighbour e′ = (u, v) ∈ V ′∩(Vi×Vj) that is not
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dominated by the (existing) vertex u′ in Si or the vertex v′ in Sj ; (all vertices Vi
and Vj are already dominated by {u′, v′} ⊂ S and cannot be private neighbours
for ve). By construction of E′, this is only possible if (u, v) = (u′, v′) ∈ E. Since
this is true for all index-pairs (i, j), the vertices {v : v ∈ Si, i = 1, . . . , k} form a
clique in the original graph G.

6.2 Proof of Theorem 2

In analogy to the private neighbourhood, the private open neighbourhood of v
with respect to S is pon(v, S) := N(v)−N(S−{v}). Any w ∈ pon(v, S) is called
a private open neighbour of v with respect to S.

We again reduce from Multicoloured Clique. Let G = (V,E) be a graph
with k different colour-classes given by V = V1∪V2∪· · ·∪Vk. We construct a graph
G′ = (V ′, E′) as follows: Starting from G, we add k vertices C = {c1, . . . , ck}
and turn each vertex set Vj ∪ {cj} into a clique. We claim that G admits a
multicoloured independent set (of size k) if and only if G′ has a minimal total
dominating set with 2k vertices.

If K = {v1, . . . , vk} ⊆ V is a multi-coloured independent set, then D := K∪C
is a total dominating set. It is minimal, because removing a vertex v ∈ {vj , cj}
from D would yield u /∈ N(D) for u ∈ {vj , cj} \ {v}, since both vj and cj are
not adjacent to any ci with i 6 j or any vertex in K \ {vj}.

Conversely, any dominating set must contain at least one vertex from Vj∪{cj}
for each j in order to dominate cj . Let D be some minimal total dominating set
for G′, with |D| ≥ 2k. If for some j, |D ∩ (Vj ∪ {cj})| > 2, then, as Vj ∪ {cj}
forms a clique, all ` > 2 private open neighbours p1, . . . , p` of the vertices from
{u1, . . . , u`} = D∩(Vj∪{cj}) are from V ′\(Vj∪{cj}), so in fact from V \Vj . Each
pi belongs to some color class f(i) ∈ {1, . . . , k}, and f : {1, . . . , `} → {1, . . . , k}
is an injective mapping; namely, suppose there were i 6= i′ with f(i) = f(i′) = s.
The vertex cs needs to be dominated, which is then impossible without stealing
the private neighbour from either ui or ui′ .

With the same argument, it is also clear that ui is the only vertex from
D ∩ (Vs ∪ {cs}) for s = f(i). Hence, |D ∩ {x ∈ (Vr ∪ {cr}) : r = j ∨ r ∈
f({1, . . . , `})}| = 2`, but this affects `+ 1 colour classes. Hence, D contains less
than 2k vertices, a contradiction. Therefore, for all j, 1 ≤ |D ∩ (Vj ∪ {cj})| ≤ 2.
In order to satisfy |D| ≥ 2k, this means that, for all j, 1 ≤ |D∩ (Vj ∪{cj})| = 2.
We can argue as before that all vertices from D ∩ (Vj ∪ {cj}) must find their
private open neighbours within D∩(Vj∪{cj}). This also means that K := D∩V
forms an independent set in G with |I| ≥ k.

6.3 Details on Proposition 2

Proposition 8. Given a graph G = (V,E) and a parameter `, a call of Algo-
rithm ComputeCoUD with parameters (G, `, ∅, ∅, ∅, `) solves Co-Upper Domi-
nation in time O∗(4.3077`).
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Algorithm 1: ComputeCoUD(G, `, F, I, D, κ)

input : a graph G = (V,E), parameter ` ∈ N, three disjoint sets F, I,D ⊆ V
and κ ≤ `.

output : “yes” if Γ (G) ≥ |V | − `; “no” otherwise.

Let R← V \ (F ∪ I ∪D)
if κ < 0 then return “no” ; (H1)
if R is empty then (H2)

if F ∪ I is a minimal dominating set of G and |F ∪ I| ≥ n− ` then
return “yes”

else return “no”

if there is a vertex v ∈ R s.t. N(v) ⊆ D then (R1)
return ComputeCoUD(G, `, F, I ∪ {v}, D, κ)

if there is a vertex v ∈ R s.t. |N(v) ∩ F | ≥ 1 then (B1)
return ComputeCoUD(G, `, F ∪ {v}, I, D, κ− 1

2) ∨
ComputeCoUD(G, `, F, I, D ∪ {v}, κ− 1

2)

if there is a vertex v ∈ R s.t. |N(v) ∩R| = 1 then (B2)
Let u be the unique neighbour of v in R

return ComputeCoUD(G, `, F ∪ {u, v}, I, D, κ− 1) ∨
ComputeCoUD(G, `, F ∪ {u}, I, D ∪ {v}, κ− 1) ∨
ComputeCoUD(G, `, F, I ∪ {v}, D ∪ {u}, κ− 1)

else (B3)
Let v be a vertex of R

return ComputeCoUD(G, `, F, I ∪ {v}, D ∪N(v), κ− 2) ∨
ComputeCoUD(G, `, F ∪ {v}, I, D, κ− 1

2) ∨
ComputeCoUD(G, `, F, I, D ∪ {v}, κ− 1

2)

Proof. Algorithm ComputeCoUD is a branching algorithm, with halting rules (H1)
and (H2), reduction rule (R1), and three branching rules (B1)-(B3). We denote
by G = (V,E) the input graph and by ` the parameter. At each call, the set of
vertices V is partitioned into four sets: F , I, D and R. The set of remaining
vertices R is equal to V \ (F ∪ I ∪D), and thus can be obtained from G and the
three former sets.

At each recursive call, the algorithm picks some vertices from R. They are
either added to the current dominating set D := F ∪I, or to the set D to indicate
that they do not belong to any extension of the current dominating set. The sets
F and I are as previously described (i.e., if we denote by D the dominating set
we are looking for, I := {v ∈ D : v ∈ pn(v,D)} and F := D − I).

Note that parameter κ corresponds to our “budget”, which is initially set to
κ := `. Recall that any minimal dominating set of a graph G = (V,E) can be
associated with a partition (F, I, P,O) (see Section 2 for the definitions of the
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sets and for some properties). If we denote by D a minimal dominating set of G
and by D the set V \D, then by definition, F, I is a partition of D and P,O is a
partition of D. Also, by definition of F and P , it holds that |F | = |P | and there
is a perfect matching between vertices of F and P . Since each vertex of F will
(finally) be matched with its private neighbour from P , we define our budget as

κ = ` −
(
|F |
2 + |P |

2 + |O|
)

. One can observe that if D is a minimal dominating

set of size at least n−` then κ ≥ 0. Conversely, if κ < 0 then any dominating set
D such that F ∪ I ⊆ D is of size smaller than n− `. This shows the correctness
of (H1). We now consider the remaining rules of the algorithm. Note that by
the choice of κ, each time a vertex x is added to D, the value of κ decrease by
1
2 (or by 1 if we can argue that x is not matched with a vertex of F and thus
belongs to O). Also, whenever a vertex x is added to F , the value of κ decreases
by 1

2 .

(H2) If R is empty, then all vertices have been decided: they are either in
D := F ∪ I or in D. It remains to check whether D is a minimal dominating
set of size at least n− `.

(R1) All neighbours (if any) of v are in D and thus v has to be in I ∪ F . As v
will also belong to pn(v,D), we can safely add v to I. Observe also that this
reduction rule does not increase our budget.

(B1) Observe that if v has a neighbour in F , then v cannot belong to I. When
a vertex v in added to F the budget is reduced by at least 1

2 ; when v is

added to D, the budget is reduced by 1
2 , as well. So (B1) gives a branching

vector of ( 1
2 ,

1
2 ).

(B2) If (R1) and (B1) do not apply and N(v) ∩ R = {u}, then the vertex v
has to either dominate itself or be dominated by u. Every vertex in F has
a neighbour in F , which in this case means that v ∈ F implies u ∈ F (first
branch). Moreover, the budget is the reduced by at least 2 · 12 .
If v is put in I, u has to go to D̄ (third branch). Thus u cannot be a private
neighbour of some F -vertex, and the budget decreases by at least 1 (u ∈ O).
If v does not dominate itself, u has to be in F ∪ I. In this last case it suffices
to consider the less restrictive case u ∈ F , as v can be chosen as the private
neighbour for u (second branch). If u is indeed in I for a minimal dominating
set which extends the current I ∪ F , there is a branch which puts all the
remaining neighbours of u in D̄. Observe that we only dismiss branches with
halting rule (H2) where we check if F ∪I is a minimal dominating set, we do
not require the chosen partition to be correct. As for the counting in halting
rule (H1): whether we count u ∈ F and v ∈ P (recall that P ⊆ D) each
with 1

2 or count v ∈ O (recall that O ⊆ D) with 1 does not make a difference
for κ. So the budget decreases by at least 1.
Altogether (B2) gives a branching vector of (1, 1, 1).

(B3) The correctness of (B3) is easy as all possibilities are explored for vertex
v. Observe that by (R1) and (B2), vertex v has at least two neighbours in
R. When v is added to I, these two vertices are removed (and cannot be the
private neighbours of some F -vertices). Thus we reduce the budget by at
least 2. When v is added to F , the budget decreases by at least 1

2 . When v is
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added to D, we reduce the budget by at least 1
2 . Thus (B3) gives a branching

vector of (2, 12 ,
1
2 ). However, we can observe that the second branching rule

(i.e., when v is added to F ) implies a subsequent application of (B1) (or rule
(H1) would stops the recursion). Thus the branching vector can be refined
to (2, 1, 1, 12 ).

Taking the worst-case over all branching vectors, establishes the claimed
running time.

6.4 Proof of Proposition 5

We are considering all partitions of each bag of the path decomposition into 6
sets: F , F ∗, I, P , O, O∗, where

– F is the set of vertices that belong to the upper dominating set and have
already been matched to a private neighbour;

– F ∗ is the set of vertices that belong to the upper dominating set and still
need to be matched to a private neighbour;

– I is the set of vertices that belong to the upper dominating set and is inde-
pendent in the graph induced by the upper dominating set;

– P is the set of private neighbours that are already matched to vertices in
the upper dominating set;

– O is the set of vertices that are not belonging neither to the upper dominating
set nor to the set of private neighbours but are already dominated;

– O∗ is the set of vertices not belonging to the upper dominating set that have
not been dominated yet.

(Sets within the partition can be also empty.) For each such partition, we de-
termine the largest minimal dominating set in the situation described by the
partition, assuming optimal settings in the part of the graph already forgotten.

We can assume that we are given a nice path decomposition. So, we only
have to describe the table initialisation (the situation in a bag containing only
one vertex) and the table updates necessary when we introduce a new vertex
into a bag and when we finally forget a vertex.

initialisation We have six cases to consider:
– T [{v}, ∅, ∅, ∅, ∅, ∅]← −1,
– T [∅, {v}, ∅, ∅, ∅, ∅]← 1,
– T [∅, ∅, {v}, ∅, ∅, ∅]← 1,
– T [∅, ∅, ∅, {v}, ∅, ∅]← −1,
– T [∅, ∅, ∅, ∅, {v}, ∅]← −1.
– T [∅, ∅, ∅, ∅, ∅, {v}]← 1.

Here, −1 signals the error cases when we try to introduce already dominated
vertices.

forget Assume that we want to update table T to table T ′ for the partition F ,
F ∗, I, P , O, O∗, eliminating vertex v:
– T ′[F \ {v}, F ∗, I, P,O,O∗]← T [F, F ∗, I, P,O,O∗],
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– T ′[F, F ∗ \ {v}, I, P,O,O∗]← −1,

– T ′[F, F ∗, I \ {v}, P,O,O∗]← T [F, F ∗, I, P,O,O∗],

– T ′[F, F ∗, I, P \ {v}, O,O∗]← T [F, F ∗, I, P,O,O∗],

– T ′[F, F ∗, I, P,O \ {v}, O∗]← T [F, F ∗, I, P,O,O∗],

– T ′[F, F ∗, I, P,O,O∗ \ {v}]← −1.

Clearly, it is not feasible to eliminate vertices whose promises have not yet
been fulfilled.

introduce We are now introducing a new vertex v into the bag. The neigh-
bourhood N refers to the situation in the new bag, i.e., to the corresponding
induced graph. T ′ is the new table and T the old one.

– T ′[F ∪{v}, F ∗, I, P,O,O∗]← −1 if N(v)∩(I∪O∗) 6= ∅ or |N(v)∩P | 6= 1;
T ′[F ∪ {v}, F ∗, I, P,O,O∗]← max{T [F, F ∗, I, P \ {x}, O \X,O∗ ∪X ∪
{x}] : x ∈ N(v), X ⊆ (N(v) \ {x}) ∩O}+ 1 otherwise;
this means that exactly one neighbour x of v that was previously labelled
to be dominated in the future is selected as a private neighbour of v; all
other neighbours of v are labelled dominated;

– T ′[F, F ∗ ∪ {v}, I, P,O,O∗]← −1 if N(v) ∩ (I ∪ P ∪O∗) 6= ∅;
T ′[F, F ∗ ∪ {v}, I, P,O,O∗] ← max{T [F, F ∗, I, P,O \ X,O∗ ∪ X] : X ⊆
N(v) ∩O}+ 1 otherwise;
in contrast to the previous situation, no private neighbour has been
selected;

– T ′[F, F ∗, I ∪ {v}, P,O,O∗]← −1 if N(v) ∩ (I ∪ F ∪ F ∗ ∪ P ∪O∗) 6= ∅;
T ′[F, F ∗, I ∪ {v}, P,O,O∗] ← max{T [F, F ∗, I, P,O \ X,O∗ ∪ X] : X ⊆
N(v) ∩O}+ 1 otherwise;

– T ′[F, F ∗, I, P ∪ {v}, O,O∗]← −1 if N(v) ∩ I 6= ∅ or |N(v) ∩ F | 6= 1;
T ′[F, F ∗, I, P ∪ {v}, O,O∗] ← T [F \N(v), F ∗ ∪ (N(v) ∩ F ), I, P,O,O∗]
otherwise;
this means that exactly one neighbour x of v that was previously labelled
as dominating but looking for a private neighbour in the future is selected
as pairing up with v; all other neighbours of v are not in the dominating
set;

– T ′[F, F ∗, I, P,O∪{v}, O∗]← T [F, F ∗, I, P,O,O∗] if N(v)∩(F∪F ∗∪I) 6=
∅ and T ′[F, F ∗, I, P,O ∪ {v}, O∗]← −1 otherwise;

– T ′[F, F ∗, I, P,O,O∗ ∪ {v}] ← T [F, F ∗, I, P,O,O∗] unless N(v) ∩ (F ∪
F ∗ ∪ I) 6= ∅; in that case, T ′[F, F ∗, I, P,O,O∗ ∪ {v}]← −1.

The formal induction proof showing the correctness of the algorithm is an easy
standard exercise. As to the running time, observe that we cycle only in one
case potentially through all subsets of O, so that the running time follows by
applying the binomial formula:

p∑
i=0

(
p

i

)
5i2p−i = 7p .
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6.5 Proof of Proposition 6

For a given nice tree decomposition use the same partition into the six sets
F, F ∗, I, P,O,O∗ for each bag as in the proof of Proposition 5. The procedures
for initialisation, forget and introduce can be used just like before. The only case
missing for a treewidth algorithm is a procedure which deals with a join-bag (a
bag with two children which both contain the same vertices as their parent). In
terms of a table update, this join-procedure has to create a new table T ′ from the
two given tables T1, T2 of the children. The only important things to consider
are that private neighbourhoods with forgotten vertices only exist in exactly one
of the child-bags and that dominated outsiders only need domination from at
most one of the child-bags. This can be handled with the following procedure:

join To create the new table entry T ′[F, F ∗, I, P,O,O∗] from existing tables T1
and T2, consider all partitions F1∪F2 of F −N(P ) and P1∪P2 of P −N(F )
and O1 ∪ O12 ∪ O2 of O − N(I ∪ F ∪ F ∗) and choose the partitions for
which v1 := T1[F − F2, F

∗ ∪ F2, I, P − P2, O −O2, O
∗ ∪ P2 ∪O2] 6= −1 and

v2 := T2[F − F1, F
∗ ∪ F1, I, P − P1, O − O1, O

∗ ∪ P1 ∪ O1] 6= −1 such that
T ′[F, F ∗, I, P,O,O∗] := v1 + v2 − |F ∪ F ∗ ∪ I| is maximised.

Considering all these partitions for a join-bag results in a worst-case running
time in O∗(11p).


