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Abstra
tWe study the di�erential approximation of several optimal satis�ability problems. Weprove that Min Sat is not di�erential 1/m1−ε-approximable for any ε > 0, where m is thenumber of 
lauses. Exhibiting that any di�erential approximation algorithm for Max Mini-mal Vertex Cover 
an be transformed into a di�erential approximation algorithm forMin

kSat a
hieving the same di�erential performan
e ratio, we are lead to study the di�erentialapproximability of Max Minimal Vertex Cover and Min Independent DominatingSet. Both of them are equivalent for the di�erential approximation. For these problems weprove a strong inapproximability result, namely, any approximation algorithm has worst-
asedi�erential approximation ratio equal to 0.1 PreliminariesIn this paper we deal with the approximation of 
lassi
al optimal satis�ability problems as well aswith restri
tive versions of them. A 
omplete dis
ussion about the numerous appli
ations wherethese problems are en
ountered is presented in [BP98℄. We also 
onsider some graph-problems asMax andMin Independent Dominating Set andMax andMin Minimal Vertex Coverwhi
h, as we prove are strongly related to the satis�ability problems we deal with. More pre
isely,we 
onsider the following NP-hard problems.Max (Min) SatInput: a set of 
lauses C1, . . . , Cm on n variables x1, . . . , xn.Output: a truth assignment to the variables that maximizes (minimizes) the number of
lauses satis�ed.Max (Min) DNFInput: a set of 
onjun
tions C1, . . . , Cm on n variables x1, . . . , xn.Output: a truth assignment to the variables that maximizes (minimizes) the number of
onjun
tions satis�ed.Max NAE 3SatInput: a set of 
onjun
tions C1, . . . , Cm of three literals on n variables x1, . . . , xn.Output: a truth assignment to the variables that maximizes the number of 
onjun
tionssatis�ed in su
h a way that any one of them has at least one true literal and at least onefalse literal.Min (Max) Minimal Vertex CoverInput: a graph G = (V, E).Output: a minimal vertex 
over (a set S ⊆ V su
h that, ∀(u, v) ∈ E, u ∈ S or v ∈ S) ofminimum (maximum) size.
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Min (Max) Independent Dominating SetInput: a graph G = (V, E).Output: a maximal independent set (a set S ⊆ V su
h that, ∀u, v ∈ S, (u, v) /∈ E and
∀u /∈ S, ∃v ∈ S, (u, v) ∈ E) of minimum (maximum) size.We study the approximability of all these problems using the so-
alled di�erential approxima-tion ratio whi
h, informally, for an instan
e I measures the relative position of the value of anapproximated solution in the interval [worst-value feasible solution of I, optimal-value solutionof I℄. We �rst re
all a few de�nitions about di�erential and standard approximabilities. Givenan instan
e x of an optimization problem and a feasible solution y of x, we denote by m(x, y)the value of the solution y, by opt(x) the value of an optimal solution of x, and by ω(x) thevalue of a worst solution of x. The standard performan
e, or approximation, ratio of y is de-�ned as r(x, y) = max{m(x, y)/opt(x), opt(x)/m(x, y)}, while the di�erential performan
e, orapproximation, ratio of y is de�ned as ρ(x, y) = |m(x, y) − ω(x)|/| opt(x) − ω(x)|.For a fun
tion f , f(n) > 1, an algorithm is a standard f(n)-approximation algorithm for aproblem Π if, for any instan
e x of Π, it returns a solution y su
h that r(x, y) 6 f(|x|), where |x|is the size of x. We say that an optimization problem is standard 
onstantly approximable if,for some 
onstant c > 1, there exists a polynomial time standard c-approximation algorithmfor it. An optimization problem has a standard polynomial time approximation s
hema if ithas a polynomial time standard (1 + ε)-approximation, for every 
onstant ε > 0. Similarly,for a fun
tion f , f(n) < 1, an algorithm is a di�erential f(n)-approximation algorithm for aproblem Π if, for any instan
e x of Π, it returns a solution y su
h that ρ(x, y) > f(|x|). We saythat an optimization problem is di�erential 
onstantly approximable if, for some 
onstant δ < 1,there exists a polynomial time di�erential δ-approximation algorithm for it. An optimizationproblem has a di�erential polynomial time approximation s
heme if it has a polynomial timedi�erential (1 + ε)-approximation, for every 
onstant ε > 0. We say that two optimisationproblems are di�erential equivalent if a di�erential δ-approximation algorithm for one of themimplies a di�erential δ-approximation algorithm for the other one.We �rst study the di�erential approximability of the optimal satis�ability problems de�nedabove. This study brings to the fore an interesting relationship between Min kSat and MinMinimal Vertex Cover whi
h 
an be informally des
ribed as follows: any di�erential ap-proximation algorithm for Min Minimal Vertex Cover 
an be transformed into a di�erentialapproximation algorithm for Min kSat a
hieving the same di�erential performan
e ratio (prob-lems verifying this relationship will be 
alled approximate equivalent). On the other hand, aswe will see just below, Max Minimal Vertex Cover is equivalent, for the di�erential ap-proximation, to the well-known Min Independent Dominating Set. We are so led to studydi�erential approximation results for Max Minimal Vertex Cover and Min IndependentDominating Set.All the problems we deal with in this paper have the 
hara
teristi
 that 
omputation of boththeir optimal and worst solutions is NP-hard (for example, 
onsidering an instan
e ϕ of Max

kSat, its worst solution is an assignment satisfying the minimum number of the 
lauses of ϕ,i.e., an optimal solution for Min kSat on ϕ). Remark also that, given a graph G = (V, E), the
omplement, with respe
t to V of a minimal vertex 
over (resp., maximal independent set) is amaximal independent set (resp., minimal vertex 
over) of G. In other words, the obje
tive valuesof Min (Max) Minimal Vertex Cover and ofMin (Max) Independent Dominating Setare linked by a�ne transformations. Note that the di�erential approximation ratio is stable forthe a�ne transformation, in the sense that pairs of problems, the obje
tive values of whi
h arelinked by a�ne transformations, are di�erential approximate equivalent.We study di�erential approximation preserving redu
tions for several optimal satis�abilityproblems. Combining them with a general result linking approximability of maximization prob-2



lems in di�erential and standard approximations, we obtain interesting di�erential inapproxima-bility results for optimal satis�ability. We also prove thatMin kSat(B, B̄) andMax kSat(B, B̄)redu
e to Min Minimal Vertex Cover-B′ and Min Independent Dominating Set-B′,respe
tively. These redu
tions lead us to study the di�erential approximation of Min Indepen-dent Dominating Set. For this problem we prove a strong inapproximability result, infor-mally, unless P = NP, any approximation algorithm has worst-
ase approximation ratio equalto 0. This, in some sense, gives to Min Independent Dominating Set the status of one ofthe hardest problems for the di�erential approximation. To our knowledge, no su
h result waspreviously known. Finally, we prove that one of the optimal satis�ability problems we deal with,the Max NAE 3Sat is di�erential approximable within ratio bounded below by 0.649.2 Approximation preserving redu
tions for optimal satis�abilityWe �rst prove the di�erential equivalen
e for Max Sat and Min DNF and for Min Sat andMax DNF.Proposition 1. Max Sat and Min DNF, as well as Min Sat and Max DNF are di�erentialequivalent.Proof. We 
onstru
t a redu
tion from Max Sat to Min DNF that preserves the di�erentialapproximation ratio. Let I be an instan
e of Max Sat on n variables and m 
lauses. Theinstan
e I ′ of Min DNF 
ontains m 
lauses and the same set of n variables. With ea
h 
lause
ℓ1∨ . . .∨ℓt of I we asso
iate in I ′ the 
onjun
tion ℓ̄1∧ . . .∧ ℓ̄t, where ℓ̄i = x̄j if ℓi = xj and ℓ̄i = xjif ℓi = x̄j . It is easy to see that opt(I ′) = m−opt(I) and ω(I ′) = m−ω(I). Also, if m(I ′, y) is thevalue of the solution y in I ′, then the same solution y has in I the value m(I, y) = m−m(I ′, y).Thus, ρ(I, y) = ρ(I ′, y). The redu
tion from Min DNF to Max Sat is the same.By an exa
tly similar redu
tion, one 
an prove that Min Sat and Max DNF are alsoapproximate equivalent.By the proof of proposition 1 one easily 
an dedu
e that for ea
h 
onstant k > 2, Max kSatand Min kDNF as well as Min kSat and Max kDNF are di�erential equivalent.Consider an instan
e I of a maximization problem Π, and assume that an approximationalgorithm A 
omputes a feasible solution S in I. Then, (mA(I, S) − ω(I))/(opt(I) − ω(I)) > δimplies mA(I, S)/opt(I) > δ+(1−δ)ω(I) and this together with ω(I) > 0 lead mA(I, S)/β(I) >

δ. So the following fa
t holds and will be used in what follows.Fa
t 1. Approximation of a maximization problem Π within di�erential approximation ratio δ,implies approximation of Π within standard approximation ratio 1/δ.Combining the results of proposition 1 and fa
t 1 with the result of [PY91℄: for k > 2 and
B > 3, Max kSat(B, B̄) and Max kDNF(B, B̄) have no standard polynomial time approx-imation s
hemata ([PY91℄), one dedu
es that for k > 2 and B > 3, Max kSat(B, B̄), Max
kDNF(B, B̄), Min kSat(B, B̄) and Min kDNF(B, B̄) have no di�erential polynomial time ap-proximation s
hemata, unless P = NP.3 Min Sat and Min Vertex CoverMin Vertex Cover is as the Min Minimal Vertex Cover de�ned in se
tion 1 modulo thefa
t that the feasible solutions for the former are not mandatorily minimal. In what follows, byredu
tion from Min Vertex Cover, we establish an inapproximability result for Min Sat.Proposition 2. Unless co − RP = NP, Min Sat is not di�erential 1/m1−ε-approximable forany ε > 0, where m is the number of 
lauses of the instan
e.3



Proof. Let G = (V, E) be a graph on n verti
es and denote by V = {1, . . . , n} its vertexset. In order to 
onstru
t an instan
e I of Min Sat, at ea
h edge (i, j) ∈ E, i < j we asso-
iate a variable xij . For ea
h vertex i we de�ne a 
lause Ci, where Ci = (∨j:(i,j)∈E∧i<jxij) ∨
(∨j:(i,j)∈E∧i>j x̄ji).From a vertex 
over C of G we de�ne an assignment as follows. For ea
h i /∈ C and ea
h
(i, j) ∈ E, xji = 1 if i > j and xij = 0 if i < j. Sin
e C is a vertex 
over, this de�nition is not
ontradi
tory. If i /∈ C, then Ci is not satis�ed and so opt(I) 6 opt(G).Given an assignment v of I, let C = {i : Ci is satis�ed}. Note that set C is a vertex 
oversin
e for (i, j) ∈ E, at least one of Ci and Cj is satis�ed and so at least one of the verti
es
i, j appears in C. So, at ea
h assignment v of I, we asso
iate in G a vertex 
over C with
m(G, C) = m(I, v). This also proves that opt(I) = opt(G).Finally, using ω(I) 6 ω(G), it is easy to show that ρ(G) > ρ(I).We have seen that Min Vertex Cover is di�erential equivalent to Max IndependentSet (whi
h is as Max Independent Dominating Set modulo the fa
t that the independentset to 
ompute has not to be minimal). On the other hand sin
e the worst solution for MaxIndependent Set is the empty set (in other words, ω(I) = 0, ∀I), standard and di�erentialapproximation ratios 
oin
ide. Furthermore, Max Independent Set is not di�erential 1/n1−ε-approximable for any ε > 0, unless co − RP = NP ([Has96℄). Consequently, Min VertexCover is not di�erential 1/n1−ε-approximable for any ε > 0, unless co − RP = NP and theresult 
laimed follows.From the above proof the following 
orollary is also dedu
ed: Min Sat(B, B̄) for B > 1 is notdi�erential 1/m

1−ε-approximable for any ε > 0, unless co − RP = NP.4 A positive di�erential approximation result for Max NAE 3SatWe show in this se
tion that a restri
tive version of Max NAE 3Sat, the one on satis�ableinstan
es is di�erential 
onstantly approximable by the standard 1.096-approximation algorithmof [Zwi
k98℄.Proposition 3. Max NAE 3Sat on satis�able instan
es is di�erential 0.649-approximable.On the other hand, Max NAE 3Sat is not di�erential 0.917-approximable.Proof. Consider a satis�able instan
e ϕ of Max NAE 3Sat de�ned on m 
lauses; obviously,
opt(ϕ) = m. Run the standard 1.096-approximation algorithm of [Zwi
k98℄ on ϕ to obtain asolution C satisfying m(ϕ, C) > m/1.096. On the other hand any random assignment by valuesin {0, 1} of the variables of ϕ, where any of the two values is assigned with probability 1/2,will feasibly satisfy 3m/4 
lauses (in other words, the assignments (1, 1, 1) and (0, 0, 0) are to beex
luded from the eight possible assignments for ea
h 3-
lause); 
onsequently, ω(ϕ) 6 3m/4.Using the values for opt(ϕ), m(ϕ, C) and ω(ϕ), we get (m(ϕ, C) − ω(ϕ))/(opt(ϕ) − ω(ϕ)) >

((m/1.096) − (3m/4))/(m − (3m/4)) = 0.712/1.096 > 0.649.In order to show the inapproximability result of the se
ond part of the proposition, if one usesfa
t 1 together with the result of [Zwi
k98℄ that Max NAE 3Sat is not standard approximablewithin 1.090, unless P=NP, the 0.917 di�erential inapproximability bound is immediately de-du
ed and 
ompletes the proof.5 Optimal satis�ability and Min Independent Dominating SetWe now show that Min kSat(B, B̄) is di�erential redu
ible to Min Minimal Vertex Cover-
B′. Note that an analogous result, dealing with standard approximation, is presented in [CST96℄between Min Sat and Min Vertex Cover. But this result does not work for the di�erentialapproximation. 4



Proposition 4. Min kSat(B, B̄) is di�erential redu
ible toMin Minimal Vertex Cover-B′and Max kSat(B, B̄) is di�erential redu
ible to Min Independent Dominating Set-B′.Proof. Let I be an instan
e of Min kSat(B, B̄) with n variables and m 
lauses. In theinstan
e G of Min Minimal Vertex Cover, with ea
h 
lause Ci of I we asso
iate a vertex i.We draw an edge between i and j if there is a variable x su
h that Ci 
ontains x and Cj 
ontains x̄.The vertex-degrees of the so 
onstru
ted graph are bounded above by B′ = kB.From an assignment v of I we de�ne a vertex 
over C as the set of verti
es that 
orrespondto 
lauses satis�ed by v. So, opt(G) ≤ opt(I).From a vertex 
over C of G we de�ne a partial assignment v as follows: if i /∈ C and xj ∈ Cithen xj = 0, and if i /∈ C and x̄j ∈ Ci then xj = 1. Hen
e, if i /∈ C then Ci is not satis�ed by v.By the way v has been de�ned, the number of the non satis�ed 
lauses in I is greater than, orequal to, the number of verti
es that are not in C, i.e., m(I, v) ≤ m(G, C). This, together with
opt(G) ≤ opt(I) proved just above, implies opt(G) = opt(I).If C is a minimal vertex 
over (for ea
h i ∈ C there exists j /∈ C su
h that (i, j) ∈ E), then
m(I, v) = m(G, C) sin
e the 
lause Ci is satis�ed by v when i ∈ C. Consequently, in parti
ular,
ω(I) = ω(G) and this 
on
ludes the proof of the �rst di�erential redu
ibility 
laimed.By a proof similar to the one of proposition 2, one 
an show that Max kSat(B, B̄) redu
esto Max Minimal Vertex Cover-B′. Sin
e the former is di�erential equivalent to Min Inde-pendent Dominating Set-B′, the proof of the se
ond di�erential redu
ibility 
laimed and ofthe proposition. is 
on
ludedThe result above of naturally leads us to study the di�erential approximation of Min In-dependent Dominating Set. By a rather te
hni
al and lengthy way, we 
an establish astrongly negative di�erential approximation result showing that any polynomial approximationalgorithm for Min Independent Dominating Set has (worst-
ase) di�erential approximationratio equal to 0. This 
an be done by 
onstru
ting a redu
tion from Sat to Min IndependentDominating Set su
h that the graph obtained for the latter has only two distin
t feasiblesolutions (the optimal and the worst one). We show that if an approximation algorithm guaran-tees any di�erential approximation ratio di�erent from 0 for Min Independent DominatingSet, then it 
orre
tly answers yes if the instan
e of Sat is satis�able, no otherwise. Sin
eSat is NP-
omplete, one 
on
ludes that su
h an approximation algorithm 
annot exist for MinIndependent Dominating Set.6 Final remarksWe have given in this paper di�erential inapproximability results for optimal satis�ability prob-lems, as well as forMin Independent Dominating Set. For this problem we have shown thatany polynomial time approximation algorithm has worst-
ase di�erential approximation ratio 0.This result brings Min Independent Dominating Set to the status of one of the hardestproblems for the di�erential approximation.Di�erential approximation for optimal satis�ability misses until now in positive results besidesthe one of se
tion 4 on the satis�able instan
es of Max NAE 3Sat. A
hievement of non-trivialpositive results is a major open problem for us. It seems that, in the opposite of the standardapproximation, obtaining 
onstant di�erential approximation ratios for optimal satis�ability isa rather hard task.Referen
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