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AbstratWe study the di�erential approximation of several optimal satis�ability problems. Weprove that Min Sat is not di�erential 1/m1−ε-approximable for any ε > 0, where m is thenumber of lauses. Exhibiting that any di�erential approximation algorithm for Max Mini-mal Vertex Cover an be transformed into a di�erential approximation algorithm forMin

kSat ahieving the same di�erential performane ratio, we are lead to study the di�erentialapproximability of Max Minimal Vertex Cover and Min Independent DominatingSet. Both of them are equivalent for the di�erential approximation. For these problems weprove a strong inapproximability result, namely, any approximation algorithm has worst-asedi�erential approximation ratio equal to 0.1 PreliminariesIn this paper we deal with the approximation of lassial optimal satis�ability problems as well aswith restritive versions of them. A omplete disussion about the numerous appliations wherethese problems are enountered is presented in [BP98℄. We also onsider some graph-problems asMax andMin Independent Dominating Set andMax andMin Minimal Vertex Coverwhih, as we prove are strongly related to the satis�ability problems we deal with. More preisely,we onsider the following NP-hard problems.Max (Min) SatInput: a set of lauses C1, . . . , Cm on n variables x1, . . . , xn.Output: a truth assignment to the variables that maximizes (minimizes) the number oflauses satis�ed.Max (Min) DNFInput: a set of onjuntions C1, . . . , Cm on n variables x1, . . . , xn.Output: a truth assignment to the variables that maximizes (minimizes) the number ofonjuntions satis�ed.Max NAE 3SatInput: a set of onjuntions C1, . . . , Cm of three literals on n variables x1, . . . , xn.Output: a truth assignment to the variables that maximizes the number of onjuntionssatis�ed in suh a way that any one of them has at least one true literal and at least onefalse literal.Min (Max) Minimal Vertex CoverInput: a graph G = (V, E).Output: a minimal vertex over (a set S ⊆ V suh that, ∀(u, v) ∈ E, u ∈ S or v ∈ S) ofminimum (maximum) size.
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Min (Max) Independent Dominating SetInput: a graph G = (V, E).Output: a maximal independent set (a set S ⊆ V suh that, ∀u, v ∈ S, (u, v) /∈ E and
∀u /∈ S, ∃v ∈ S, (u, v) ∈ E) of minimum (maximum) size.We study the approximability of all these problems using the so-alled di�erential approxima-tion ratio whih, informally, for an instane I measures the relative position of the value of anapproximated solution in the interval [worst-value feasible solution of I, optimal-value solutionof I℄. We �rst reall a few de�nitions about di�erential and standard approximabilities. Givenan instane x of an optimization problem and a feasible solution y of x, we denote by m(x, y)the value of the solution y, by opt(x) the value of an optimal solution of x, and by ω(x) thevalue of a worst solution of x. The standard performane, or approximation, ratio of y is de-�ned as r(x, y) = max{m(x, y)/opt(x), opt(x)/m(x, y)}, while the di�erential performane, orapproximation, ratio of y is de�ned as ρ(x, y) = |m(x, y) − ω(x)|/| opt(x) − ω(x)|.For a funtion f , f(n) > 1, an algorithm is a standard f(n)-approximation algorithm for aproblem Π if, for any instane x of Π, it returns a solution y suh that r(x, y) 6 f(|x|), where |x|is the size of x. We say that an optimization problem is standard onstantly approximable if,for some onstant c > 1, there exists a polynomial time standard c-approximation algorithmfor it. An optimization problem has a standard polynomial time approximation shema if ithas a polynomial time standard (1 + ε)-approximation, for every onstant ε > 0. Similarly,for a funtion f , f(n) < 1, an algorithm is a di�erential f(n)-approximation algorithm for aproblem Π if, for any instane x of Π, it returns a solution y suh that ρ(x, y) > f(|x|). We saythat an optimization problem is di�erential onstantly approximable if, for some onstant δ < 1,there exists a polynomial time di�erential δ-approximation algorithm for it. An optimizationproblem has a di�erential polynomial time approximation sheme if it has a polynomial timedi�erential (1 + ε)-approximation, for every onstant ε > 0. We say that two optimisationproblems are di�erential equivalent if a di�erential δ-approximation algorithm for one of themimplies a di�erential δ-approximation algorithm for the other one.We �rst study the di�erential approximability of the optimal satis�ability problems de�nedabove. This study brings to the fore an interesting relationship between Min kSat and MinMinimal Vertex Cover whih an be informally desribed as follows: any di�erential ap-proximation algorithm for Min Minimal Vertex Cover an be transformed into a di�erentialapproximation algorithm for Min kSat ahieving the same di�erential performane ratio (prob-lems verifying this relationship will be alled approximate equivalent). On the other hand, aswe will see just below, Max Minimal Vertex Cover is equivalent, for the di�erential ap-proximation, to the well-known Min Independent Dominating Set. We are so led to studydi�erential approximation results for Max Minimal Vertex Cover and Min IndependentDominating Set.All the problems we deal with in this paper have the harateristi that omputation of boththeir optimal and worst solutions is NP-hard (for example, onsidering an instane ϕ of Max

kSat, its worst solution is an assignment satisfying the minimum number of the lauses of ϕ,i.e., an optimal solution for Min kSat on ϕ). Remark also that, given a graph G = (V, E), theomplement, with respet to V of a minimal vertex over (resp., maximal independent set) is amaximal independent set (resp., minimal vertex over) of G. In other words, the objetive valuesof Min (Max) Minimal Vertex Cover and ofMin (Max) Independent Dominating Setare linked by a�ne transformations. Note that the di�erential approximation ratio is stable forthe a�ne transformation, in the sense that pairs of problems, the objetive values of whih arelinked by a�ne transformations, are di�erential approximate equivalent.We study di�erential approximation preserving redutions for several optimal satis�abilityproblems. Combining them with a general result linking approximability of maximization prob-2



lems in di�erential and standard approximations, we obtain interesting di�erential inapproxima-bility results for optimal satis�ability. We also prove thatMin kSat(B, B̄) andMax kSat(B, B̄)redue to Min Minimal Vertex Cover-B′ and Min Independent Dominating Set-B′,respetively. These redutions lead us to study the di�erential approximation of Min Indepen-dent Dominating Set. For this problem we prove a strong inapproximability result, infor-mally, unless P = NP, any approximation algorithm has worst-ase approximation ratio equalto 0. This, in some sense, gives to Min Independent Dominating Set the status of one ofthe hardest problems for the di�erential approximation. To our knowledge, no suh result waspreviously known. Finally, we prove that one of the optimal satis�ability problems we deal with,the Max NAE 3Sat is di�erential approximable within ratio bounded below by 0.649.2 Approximation preserving redutions for optimal satis�abilityWe �rst prove the di�erential equivalene for Max Sat and Min DNF and for Min Sat andMax DNF.Proposition 1. Max Sat and Min DNF, as well as Min Sat and Max DNF are di�erentialequivalent.Proof. We onstrut a redution from Max Sat to Min DNF that preserves the di�erentialapproximation ratio. Let I be an instane of Max Sat on n variables and m lauses. Theinstane I ′ of Min DNF ontains m lauses and the same set of n variables. With eah lause
ℓ1∨ . . .∨ℓt of I we assoiate in I ′ the onjuntion ℓ̄1∧ . . .∧ ℓ̄t, where ℓ̄i = x̄j if ℓi = xj and ℓ̄i = xjif ℓi = x̄j . It is easy to see that opt(I ′) = m−opt(I) and ω(I ′) = m−ω(I). Also, if m(I ′, y) is thevalue of the solution y in I ′, then the same solution y has in I the value m(I, y) = m−m(I ′, y).Thus, ρ(I, y) = ρ(I ′, y). The redution from Min DNF to Max Sat is the same.By an exatly similar redution, one an prove that Min Sat and Max DNF are alsoapproximate equivalent.By the proof of proposition 1 one easily an dedue that for eah onstant k > 2, Max kSatand Min kDNF as well as Min kSat and Max kDNF are di�erential equivalent.Consider an instane I of a maximization problem Π, and assume that an approximationalgorithm A omputes a feasible solution S in I. Then, (mA(I, S) − ω(I))/(opt(I) − ω(I)) > δimplies mA(I, S)/opt(I) > δ+(1−δ)ω(I) and this together with ω(I) > 0 lead mA(I, S)/β(I) >

δ. So the following fat holds and will be used in what follows.Fat 1. Approximation of a maximization problem Π within di�erential approximation ratio δ,implies approximation of Π within standard approximation ratio 1/δ.Combining the results of proposition 1 and fat 1 with the result of [PY91℄: for k > 2 and
B > 3, Max kSat(B, B̄) and Max kDNF(B, B̄) have no standard polynomial time approx-imation shemata ([PY91℄), one dedues that for k > 2 and B > 3, Max kSat(B, B̄), Max
kDNF(B, B̄), Min kSat(B, B̄) and Min kDNF(B, B̄) have no di�erential polynomial time ap-proximation shemata, unless P = NP.3 Min Sat and Min Vertex CoverMin Vertex Cover is as the Min Minimal Vertex Cover de�ned in setion 1 modulo thefat that the feasible solutions for the former are not mandatorily minimal. In what follows, byredution from Min Vertex Cover, we establish an inapproximability result for Min Sat.Proposition 2. Unless co − RP = NP, Min Sat is not di�erential 1/m1−ε-approximable forany ε > 0, where m is the number of lauses of the instane.3



Proof. Let G = (V, E) be a graph on n verties and denote by V = {1, . . . , n} its vertexset. In order to onstrut an instane I of Min Sat, at eah edge (i, j) ∈ E, i < j we asso-iate a variable xij . For eah vertex i we de�ne a lause Ci, where Ci = (∨j:(i,j)∈E∧i<jxij) ∨
(∨j:(i,j)∈E∧i>j x̄ji).From a vertex over C of G we de�ne an assignment as follows. For eah i /∈ C and eah
(i, j) ∈ E, xji = 1 if i > j and xij = 0 if i < j. Sine C is a vertex over, this de�nition is notontraditory. If i /∈ C, then Ci is not satis�ed and so opt(I) 6 opt(G).Given an assignment v of I, let C = {i : Ci is satis�ed}. Note that set C is a vertex oversine for (i, j) ∈ E, at least one of Ci and Cj is satis�ed and so at least one of the verties
i, j appears in C. So, at eah assignment v of I, we assoiate in G a vertex over C with
m(G, C) = m(I, v). This also proves that opt(I) = opt(G).Finally, using ω(I) 6 ω(G), it is easy to show that ρ(G) > ρ(I).We have seen that Min Vertex Cover is di�erential equivalent to Max IndependentSet (whih is as Max Independent Dominating Set modulo the fat that the independentset to ompute has not to be minimal). On the other hand sine the worst solution for MaxIndependent Set is the empty set (in other words, ω(I) = 0, ∀I), standard and di�erentialapproximation ratios oinide. Furthermore, Max Independent Set is not di�erential 1/n1−ε-approximable for any ε > 0, unless co − RP = NP ([Has96℄). Consequently, Min VertexCover is not di�erential 1/n1−ε-approximable for any ε > 0, unless co − RP = NP and theresult laimed follows.From the above proof the following orollary is also dedued: Min Sat(B, B̄) for B > 1 is notdi�erential 1/m

1−ε-approximable for any ε > 0, unless co − RP = NP.4 A positive di�erential approximation result for Max NAE 3SatWe show in this setion that a restritive version of Max NAE 3Sat, the one on satis�ableinstanes is di�erential onstantly approximable by the standard 1.096-approximation algorithmof [Zwik98℄.Proposition 3. Max NAE 3Sat on satis�able instanes is di�erential 0.649-approximable.On the other hand, Max NAE 3Sat is not di�erential 0.917-approximable.Proof. Consider a satis�able instane ϕ of Max NAE 3Sat de�ned on m lauses; obviously,
opt(ϕ) = m. Run the standard 1.096-approximation algorithm of [Zwik98℄ on ϕ to obtain asolution C satisfying m(ϕ, C) > m/1.096. On the other hand any random assignment by valuesin {0, 1} of the variables of ϕ, where any of the two values is assigned with probability 1/2,will feasibly satisfy 3m/4 lauses (in other words, the assignments (1, 1, 1) and (0, 0, 0) are to beexluded from the eight possible assignments for eah 3-lause); onsequently, ω(ϕ) 6 3m/4.Using the values for opt(ϕ), m(ϕ, C) and ω(ϕ), we get (m(ϕ, C) − ω(ϕ))/(opt(ϕ) − ω(ϕ)) >

((m/1.096) − (3m/4))/(m − (3m/4)) = 0.712/1.096 > 0.649.In order to show the inapproximability result of the seond part of the proposition, if one usesfat 1 together with the result of [Zwik98℄ that Max NAE 3Sat is not standard approximablewithin 1.090, unless P=NP, the 0.917 di�erential inapproximability bound is immediately de-dued and ompletes the proof.5 Optimal satis�ability and Min Independent Dominating SetWe now show that Min kSat(B, B̄) is di�erential reduible to Min Minimal Vertex Cover-
B′. Note that an analogous result, dealing with standard approximation, is presented in [CST96℄between Min Sat and Min Vertex Cover. But this result does not work for the di�erentialapproximation. 4



Proposition 4. Min kSat(B, B̄) is di�erential reduible toMin Minimal Vertex Cover-B′and Max kSat(B, B̄) is di�erential reduible to Min Independent Dominating Set-B′.Proof. Let I be an instane of Min kSat(B, B̄) with n variables and m lauses. In theinstane G of Min Minimal Vertex Cover, with eah lause Ci of I we assoiate a vertex i.We draw an edge between i and j if there is a variable x suh that Ci ontains x and Cj ontains x̄.The vertex-degrees of the so onstruted graph are bounded above by B′ = kB.From an assignment v of I we de�ne a vertex over C as the set of verties that orrespondto lauses satis�ed by v. So, opt(G) ≤ opt(I).From a vertex over C of G we de�ne a partial assignment v as follows: if i /∈ C and xj ∈ Cithen xj = 0, and if i /∈ C and x̄j ∈ Ci then xj = 1. Hene, if i /∈ C then Ci is not satis�ed by v.By the way v has been de�ned, the number of the non satis�ed lauses in I is greater than, orequal to, the number of verties that are not in C, i.e., m(I, v) ≤ m(G, C). This, together with
opt(G) ≤ opt(I) proved just above, implies opt(G) = opt(I).If C is a minimal vertex over (for eah i ∈ C there exists j /∈ C suh that (i, j) ∈ E), then
m(I, v) = m(G, C) sine the lause Ci is satis�ed by v when i ∈ C. Consequently, in partiular,
ω(I) = ω(G) and this onludes the proof of the �rst di�erential reduibility laimed.By a proof similar to the one of proposition 2, one an show that Max kSat(B, B̄) reduesto Max Minimal Vertex Cover-B′. Sine the former is di�erential equivalent to Min Inde-pendent Dominating Set-B′, the proof of the seond di�erential reduibility laimed and ofthe proposition. is onludedThe result above of naturally leads us to study the di�erential approximation of Min In-dependent Dominating Set. By a rather tehnial and lengthy way, we an establish astrongly negative di�erential approximation result showing that any polynomial approximationalgorithm for Min Independent Dominating Set has (worst-ase) di�erential approximationratio equal to 0. This an be done by onstruting a redution from Sat to Min IndependentDominating Set suh that the graph obtained for the latter has only two distint feasiblesolutions (the optimal and the worst one). We show that if an approximation algorithm guaran-tees any di�erential approximation ratio di�erent from 0 for Min Independent DominatingSet, then it orretly answers yes if the instane of Sat is satis�able, no otherwise. SineSat is NP-omplete, one onludes that suh an approximation algorithm annot exist for MinIndependent Dominating Set.6 Final remarksWe have given in this paper di�erential inapproximability results for optimal satis�ability prob-lems, as well as forMin Independent Dominating Set. For this problem we have shown thatany polynomial time approximation algorithm has worst-ase di�erential approximation ratio 0.This result brings Min Independent Dominating Set to the status of one of the hardestproblems for the di�erential approximation.Di�erential approximation for optimal satis�ability misses until now in positive results besidesthe one of setion 4 on the satis�able instanes of Max NAE 3Sat. Ahievement of non-trivialpositive results is a major open problem for us. It seems that, in the opposite of the standardapproximation, obtaining onstant di�erential approximation ratios for optimal satis�ability isa rather hard task.Referenes[BP98℄ R. Battiti and M. Protasi, Algorithms and heuristis for MAX-SAT, in D. Z. Du andP. M. Pardalos (eds.) Handbook of Combinatorial Optimization, Kluwer Aademi
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