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Abstract

We study the differential approximation of several optimal satisfiability problems. We
prove that MIN SAT is not differential 1/m!~*-approximable for any ¢ > 0, where m is the
number of clauses. Exhibiting that any differential approximation algorithm for MAx MINI-
MAL VERTEX COVER can be transformed into a differential approximation algorithm for MIN
kSAT achieving the same differential performance ratio, we are lead to study the differential
approximability of MAX MINIMAL VERTEX COVER and MIN INDEPENDENT DOMINATING
SET. Both of them are equivalent for the differential approximation. For these problems we
prove a strong inapproximability result, namely, any approximation algorithm has worst-case
differential approximation ratio equal to 0.

1 Preliminaries

In this paper we deal with the approximation of classical optimal satisfiability problems as well as
with restrictive versions of them. A complete discussion about the numerous applications where
these problems are encountered is presented in [BP98|. We also consider some graph-problems as
Max and MIN INDEPENDENT DOMINATING SET and MAX and MIN MINIMAL VERTEX COVER
which, as we prove are strongly related to the satisfiability problems we deal with. More precisely,
we consider the following NP-hard problems.

MAax (MIN) SAT
Input: a set of clauses C4,...,C,, on n variables x1,...,Zy,.
Output: a truth assignment to the variables that maximizes (minimizes) the number of
clauses satisfied.

Max (MiN) DNF
Input: a set of conjunctions C1,...,C,, on n variables x1,...,Z,.
Output: a truth assignment to the variables that maximizes (minimizes) the number of
conjunctions satisfied.

Max NAE 3SAT
Input: a set of conjunctions C1,...,C,, of three literals on n variables x1, ..., z,.
Output: a truth assignment to the variables that maximizes the number of conjunctions
satisfied in such a way that any one of them has at least one true literal and at least one
false literal.

MiIN (MAX) MINIMAL VERTEX COVER
Input: a graph G = (V, E).
Output: a minimal vertex cover (a set S C V such that, V(u,v) € E, u € S or v € S) of
minimum (maximum) size.



MIN (MAX) INDEPENDENT DOMINATING SET
Input: a graph G = (V, E).
Output: a maximal independent set (a set S C V such that, Vu,v € S, (u,v) ¢ E and
Vu ¢ S,3v € S, (u,v) € E) of minimum (maximum) size.

We study the approximability of all these problems using the so-called differential approxima-
tion ratio which, informally, for an instance I measures the relative position of the value of an
approximated solution in the interval [worst-value feasible solution of I, optimal-value solution
of I]. We first recall a few definitions about differential and standard approximabilities. Given
an instance x of an optimization problem and a feasible solution y of z, we denote by m(x,y)
the value of the solution y, by opt(z) the value of an optimal solution of x, and by w(z) the
value of a worst solution of x. The standard performance, or approzimation, ratio of y is de-
fined as r(x,y) = max{m(z,y)/opt(x),opt(z)/m(z,y)}, while the differential performance, or
approzimation, ratio of y is defined as p(x,y) = |m(z,y) — w(x)|/| opt(z) — w(z)|.

For a function f, f(n) > 1, an algorithm is a standard f(n)-approximation algorithm for a
problem II if, for any instance x of II, it returns a solution y such that r(x,y) < f(|z|), where |z|
is the size of . We say that an optimization problem is standard constantly approximable if,
for some constant ¢ > 1, there exists a polynomial time standard c-approximation algorithm
for it. An optimization problem has a standard polynomial time approximation schema if it
has a polynomial time standard (1 + ¢)-approximation, for every constant ¢ > 0. Similarly,
for a function f, f(n) < 1, an algorithm is a differential f(n)-approzimation algorithm for a
problem II if, for any instance x of II, it returns a solution y such that p(x,y) > f(|x|). We say
that an optimization problem is differential constantly approximable if, for some constant § < 1,
there exists a polynomial time differential §-approximation algorithm for it. An optimization
problem has a differential polynomial time approximation scheme if it has a polynomial time
differential (1 + ¢)-approximation, for every constant ¢ > 0. We say that two optimisation
problems are differential equivalent if a differential d-approximation algorithm for one of them
implies a differential §-approximation algorithm for the other one.

We first study the differential approximability of the optimal satisfiability problems defined
above. This study brings to the fore an interesting relationship between MIN ESAT and MIN
MINIMAL VERTEX COVER which can be informally described as follows: any differential ap-
proximation algorithm for MIN MINIMAL VERTEX COVER can be transformed into a differential
approzimation algorithm for MIN kSAT achieving the same differential performance ratio (prob-
lems verifying this relationship will be called approzimate equivalent). On the other hand, as
we will see just below, MAX MINIMAL VERTEX COVER is equivalent, for the differential ap-
proximation, to the well-known MIN INDEPENDENT DOMINATING SET. We are so led to study
differential approximation results for MAX MINIMAL VERTEX COVER and MIN INDEPENDENT
DOMINATING SET.

All the problems we deal with in this paper have the characteristic that computation of both
their optimal and worst solutions is NP-hard (for example, considering an instance ¢ of MAX
kSAT, its worst solution is an assignment satisfying the minimum number of the clauses of ¢,
i.e., an optimal solution for MIN £SAT on ¢). Remark also that, given a graph G = (V, E), the
complement, with respect to V' of a minimal vertex cover (resp., maximal independent set) is a
maximal independent set (resp., minimal vertex cover) of G. In other words, the objective values
of MIN (MAX) MINIMAL VERTEX COVER and of MIN (MAX) INDEPENDENT DOMINATING SET
are linked by affine transformations. Note that the differential approximation ratio is stable for
the affine transformation, in the sense that pairs of problems, the objective values of which are
linked by affine transformations, are differential approximate equivalent.

We study differential approximation preserving reductions for several optimal satisfiability
problems. Combining them with a general result linking approximability of maximization prob-



lems in differential and standard approximations, we obtain interesting differential inapproxima-
bility results for optimal satisfiability. We also prove that MiN kSAT(B, B) and MAX kSAT(B, B)
reduce to MIN MINIMAL VERTEX COVER-B’ and MIN INDEPENDENT DOMINATING SET-B’,
respectively. These reductions lead us to study the differential approximation of MIN INDEPEN-
DENT DOMINATING SET. For this problem we prove a strong inapproximability result, infor-
mally, unless P = NP, any approrimation algorithm has worst-case approximation ratio equal
to 0. This, in some sense, gives to MIN INDEPENDENT DOMINATING SET the status of one of
the hardest problems for the differential approximation. To our knowledge, no such result was
previously known. Finally, we prove that one of the optimal satisfiability problems we deal with,
the MAX NAE 3SAT is differential approximable within ratio bounded below by 0.649.

2 Approximation preserving reductions for optimal satisfiability

We first prove the differential equivalence for MAX SAT and MIN DNF and for MIN SAT and
Max DNF.

Proposition 1. MAX SAT and MIN DNF, as well as MIN SAT and MAX DNF are differential
equivalent.

Proof. We construct a reduction from MAX SAT to MIN DNF that preserves the differential
approximation ratio. Let I be an instance of MAX SAT on n variables and m clauses. The
instance I’ of MIN DNF contains m clauses and the same set of n variables. With each clause
01V ...V, of I we associate in I’ the conjunction ¢1 A... A%, where ¢; = Z;if {; = x; and 0; = xj
if ¢; = z;. It is easy to see that opt(I') = m—opt([) and w(I') = m—w(I). Also, if m(I',y) is the
value of the solution y in I’ then the same solution y has in I the value m(I,y) = m—m(I’,y).
Thus, p(I,y) = p(I’,y). The reduction from MIN DNF to MAX SAT is the same.

By an exactly similar reduction, one can prove that MIN SAT and MaAx DNF are also
approximate equivalent. il

By the proof of proposition 1 one easily can deduce that for each constant k& > 2, MAX kSAT
and MIN kDNF as well as MIN kSAT and MAX kDNF are differential equivalent.

Consider an instance I of a maximization problem II, and assume that an approximation
algorithm A computes a feasible solution S in I. Then, (ma(I,S) — w(I))/(opt(I) —w(I)) = 0
implies m (I, S)/opt(I) > d+ (1 —0)w(I) and this together with w(I) > 0lead m4(I,S)/5(I) >
0. So the following fact holds and will be used in what follows.

Fact 1. Approximation of a maximization problem II within differential approximation ratio ¢,
implies approximation of II within standard approximation ratio 1/4. I

Combining the results of proposition 1 and fact 1 with the result of [PY91]: for k > 2 and
B > 3, MAX kSAT(B, B) and MAX kDNF (B, B) have no standard polynomial time approz-
imation schemata ([PY91]), one deduces that for k >2 and B >3, Max kSar(B,B), Max
kDNF(B,B), MiN kSaT(B,B) and Min kDNF(B,B) have no differential polynomial time ap-
proximation schemata, unless P = NP.

3 MIN SAT and MIN VERTEX COVER

MIN VERTEX COVER is as the MIN MINIMAL VERTEX COVER defined in section 1 modulo the
fact that the feasible solutions for the former are not mandatorily minimal. In what follows, by
reduction from MIN VERTEX COVER, we establish an inapproximability result for MIN SAT.

Proposition 2. Unless co — RP = NP, MIN SAT is not differential 1/m'~¢-approzimable for
any € > 0, where m is the number of clauses of the instance.



Proof. Let G = (V,E) be a graph on n vertices and denote by V' = {1,...,n} its vertex
set. In order to construct an instance I of MIN SAT, at each edge (i,j) € E i < j we asso-
ciate a variable x;;. For each vertex i we define a clause C;, where C; = (V; (i.5)€ EM<].CC”) vV
(V6. j)eEni>j Tji)-

From a vertex cover C' of G we define an assignment as follows. For each i ¢ C' and each
(1,j) € E, xj; =1if i > j and x;; = 0 if ¢ < j. Since C' is a vertex cover, this definition is not
contradictory. If i ¢ C, then C; is not satisfied and so opt(I) < opt(G).

Given an assignment v of I, let C' = {i : C; is satisfied}. Note that set C is a vertex cover
since for (i,j) € E, at least one of C; and Cj is satisfied and so at least one of the vertices
1,7 appears in C'. So, at each assignment v of I, we associate in G a vertex cover C' with
m(G,C) = m(I,v). This also proves that opt(I) = opt(G).

Finally, using w(I) < w(G), it is easy to show that p(G) > p(I).

We have seen that MIN VERTEX COVER is differential equivalent to MAX INDEPENDENT
SET (which is as MAX INDEPENDENT DOMINATING SET modulo the fact that the independent
set to compute has not to be minimal). On the other hand since the worst solution for MAX
INDEPENDENT SET is the empty set (in other words, w(I) = 0, VI), standard and differential
approximation ratios coincide. Furthermore, MAX INDEPENDENT SET is not differential 1/n!~¢-
approximable for any ¢ > 0, unless co — RP = NP (|[Has96|). Consequently, MIN VERTEX
COVER is not differential 1/n'~¢-approximable for any ¢ > 0, unless co — RP = NP and the
result claimed follows. Il

From the above proof the following corollary is also deduced: MiN SAT(B, B) for B > 1 is not
differential 1/m'~¢-approximable for any £ > 0, unless co — RP = NP.

4 A positive differential approximation result for MAX NAE 3SAT

We show in this section that a restrictive version of MAX NAE 3SAT, the one on satisfiable
instances is differential constantly approximable by the standard 1.096-approximation algorithm

of [Zwick98].

Proposition 3. MAX NAE 3SAT on satisfiable instances is differential 0.649-approximable.
On the other hand, MAX NAE 3SAT is not differential 0.917-approzimable.

Proof. Consider a satisfiable instance ¢ of MAX NAE 3SAT defined on m clauses; obviously,
opt(¢) = m. Run the standard 1.096-approximation algorithm of [Zwick98] on ¢ to obtain a
solution C' satisfying m(¢p, C') > m/1.096. On the other hand any random assignment by values
in {0,1} of the variables of ¢, where any of the two values is assigned with probability 1/2,
will feasibly satisfy 3m /4 clauses (in other words, the assignments (1,1, 1) and (0,0, 0) are to be
excluded from the eight possible assignments for each 3-clause); consequently, w(y) < 3m/4.

Using the values for opt(p), m(e, C) and w(y), we get (m(p, C) —w(p))/(opt(v) —w(p)) =
((m/1.096) — (3m/4))/(m — (3m/4)) = 0.712/1.096 > 0.649.

In order to show the inapproximability result of the second part of the proposition, if one uses
fact 1 together with the result of [Zwick98] that MAX NAE 3SAT is not standard approzimable
within 1.090, unless P=NP, the 0.917 differential inapproximability bound is immediately de-
duced and completes the proof. Il

5 Optimal satisfiability and MIN INDEPENDENT DOMINATING SET

We now show that MIN kSAT(B, B) is differential reducible to MIN MINIMAL VERTEX COVER-
B’. Note that an analogous result, dealing with standard approximation, is presented in [CST96]
between MIN SAT and MIN VERTEX COVER. But this result does not work for the differential
approximation.



Proposition 4. MIN kSAT(B, B) is differential reducible to MIN MINIMAL VERTEX COVER-B’
and MAX kSAT(B, B) is differential reducible to MIN INDEPENDENT DOMINATING SET-B'.

Proof. Let I be an instance of MIN kSAT(B, B) with n variables and m clauses. In the
instance G of MIN MINIMAL VERTEX COVER, with each clause C; of I we associate a vertex 1.
We draw an edge between ¢ and j if there is a variable x such that C; contains x and C}j contains Z.
The vertex-degrees of the so constructed graph are bounded above by B’ = kB.

From an assignment v of I we define a vertex cover C as the set of vertices that correspond
to clauses satisfied by v. So, opt(G) < opt(I).

From a vertex cover C of G' we define a partial assignment v as follows: if i ¢ C' and z; € C;
then z; =0, and if i ¢ C and Z; € C; then x; = 1. Hence, if i ¢ C then Cj is not satisfied by v.
By the way v has been defined, the number of the non satisfied clauses in [ is greater than, or
equal to, the number of vertices that are not in C, i.e., m(I,v) < m(G,C). This, together with
opt(G) < opt(I) proved just above, implies opt(G) = opt(I).

If C' is a minimal vertex cover (for each ¢ € C there exists j ¢ C such that (i,7) € E), then
m(I,v) = m(G,C) since the clause C; is satisfied by v when i € C. Consequently, in particular,
w(I) = w(G) and this concludes the proof of the first differential reducibility claimed.

By a proof similar to the one of proposition 2, one can show that MAX kSAT(B, B) reduces
to MAX MINIMAL VERTEX COVER-B’. Since the former is differential equivalent to MIN INDE-
PENDENT DOMINATING SET-B’, the proof of the second differential reducibility claimed and of
the proposition. is concluded I

The result above of naturally leads us to study the differential approximation of MiIN IN-
DEPENDENT DOMINATING SET. By a rather technical and lengthy way, we can establish a
strongly negative differential approximation result showing that any polynomial approximation
algorithm for MIN INDEPENDENT DOMINATING SET has (worst-case) differential approzimation
ratio equal to 0. This can be done by constructing a reduction from SAT to MIN INDEPENDENT
DOMINATING SET such that the graph obtained for the latter has only two distinct feasible
solutions (the optimal and the worst one). We show that if an approximation algorithm guaran-
tees any differential approximation ratio different from 0 for MIN INDEPENDENT DOMINATING
SET, then it correctly answers yes if the instance of SAT is satisfiable, no otherwise. Since
SAT is NP-complete, one concludes that such an approximation algorithm cannot exist for Min
INDEPENDENT DOMINATING SET.

6 Final remarks

We have given in this paper differential inapproximability results for optimal satisfiability prob-
lems, as well as for MIN INDEPENDENT DOMINATING SET. For this problem we have shown that
any polynomial time approximation algorithm has worst-case differential approximation ratio 0.
This result brings MIN INDEPENDENT DOMINATING SET to the status of one of the hardest
problems for the differential approximation.

Differential approximation for optimal satisfiability misses until now in positive results besides
the one of section 4 on the satisfiable instances of MAX NAE 3SAT. Achievement of non-trivial
positive results is a major open problem for us. It seems that, in the opposite of the standard
approximation, obtaining constant differential approximation ratios for optimal satisfiability is
a rather hard task.
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