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Abstract. In this paper, we survey and supplement the complexity
landscape of the domination chain parameters as a whole, including clas-
sifications according to approximability and parameterised complexity.
Moreover, we provide clear pointers to yet open questions. As this posed
the majority of hitherto unsettled problems, we focus on Upper Ir-
redundance and Lower Irredundance that correspond to finding
the largest irredundant set and resp. the smallest maximal irredundant
set. The problems are proved NP-hard even for planar cubic graphs.
While Lower Irredundance is proved not c log(n)-approximable in
polynomial time unless NP ⊆ DTIME(nlog logn), no such result is known
for Upper Irredundance. Their complementary versions are constant-
factor approximable in polynomial time. All these four versions are APX-
hard even on cubic graphs.

1 Introduction

The well-known domination chain

ir(G) ≤ γ(G) ≤ i(G) ≤ α(G) ≤ Γ (G) ≤ IR(G)

links parameters related to the fundamental notions of independence, domination
and irredundance in graphs. It was introduced in [22,12], is thoroughly discussed
in the textbook [34] and studied further in many ways, [11,21,38,42] showing only
a small selection. These studies cover both combinatorial and computational
aspects. We focus on the latter aspects in this paper. In this chain, γ(G) and
Γ (G) are the minimum and maximum cardinalities over all minimal dominating
sets in G, α(G) is the maximum cardinality of an independent set, i(G) is the
minimum cardinality over all maximal independent sets in G. The less known
irredundance parameters are explained below.
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With n(G) being the order (number of vertices) ofG, we can write co−ζ(G) =
n(G)− ζ(G). Then, we state the following complementary domination chain:

co− IR(G) ≤ co− Γ (G) ≤ co− α(G) ≤ co− i(G) ≤ co− γ(G) ≤ co− ir(G) .

Sometimes, the complement problems have received their own names, like Non-
blocker, Maximum Enclaveless Set, or Maximum Spanning Star For-
est, which all refer to the complement problem of Minimum Domination, or,
most likely better known, Minimum Vertex Cover which refers to the comple-
ment problem of Maximum Independent Set. We will also use τ(G) instead
of co− α(G) to refer to this graph parameter.

Throughout this paper, we will use rather standard terminology from graph
theory. For any subset S ⊆ V and v ∈ S we define the private neighbourhood
of v with respect to S as pn(v, S) := N [v] − N [S − {v}]. Any w ∈ pn(v, S) is
called a private neighbour of v (with respect to S). S is called irredundant if
every vertex in S has at least one private neighbour, i.e., if |pn(v, S)| > 0 for
every v ∈ S. A maximal irredundant set is also known as an upper irredundant
set. IR(G) denotes the cardinality of the largest irredundant set in G, while
ir(G) is the cardinality of the smallest maximal irredundant set in G that is the
smallest upper irredundant set in G. The domination chain is largely due to
the following two combinatorial properties: (1) Every maximal independent set
is a minimal dominating set. (2) A dominating set S ⊆ V is minimal if and only
if |pn(v, S)| > 0 for every v ∈ S. Observe that v can be a private neighbour of
itself, i.e., a dominating set is minimal if and only if it is also an irredundant
set. Actually, every minimal dominating set is also a maximal irredundant set.

For any ε > 0, a graph G = (V,E) is called everywhere-ε-dense if every
vertex in G has at least ε|V | neighbours and average-ε-dense if |E| ≥ εn2, for
0 < ε < 1/2.

We first present some combinatorial bounds for IR(G). The same kind of
bounds have been derived for Γ (G) in [6]. Due to the space constraints, here
and in the following some proofs (denoted by (*)) are deferred to the appendix.

Lemma 1. (*) For any connected graph G with n > 0 vertices we have:

α(G) ≤ IR(G) ≤ max

{
α(G),

n

2
+
α(G)

2
− 1

}
(1)

Lemma 2. (*) For any connected graph G with n > 0 vertices, minimum degree
δ and maximum degree ∆, we have:

α(G) ≤ IR(G) ≤ max

{
α(G),

n

2
+
α(G)(∆− δ)

2∆
− ∆− δ

∆

}
(2)

This lemma generalises [35, Proposition 12], which states the property for ∆-
regular graphs, where, in particular, δ = ∆. Eq. 1 immediately yields:

Lemma 3. Let G be a connected graph. Then,

τ(G)

2
+ 1 ≤ co− IR(G) ≤ τ(G) (3)
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2 The complexity of the domination chain

We are studying algorithmic and complexity aspects of the domination chain pa-
rameters in this paper. For the basic definitions on classical complexity, approx-
imation and parameterised algorithms we refer to standard texts like [5,26]. For
providing hardness proofs in the area of approximation algorithms, L-reductions
have become a kind of standard. An optimisation problem APX-hard under
L-reduction has no polynomial-time approximation scheme if P 6= NP.

We have summarised what is known (and what is done in this paper) in Ta-
bles 1 and 2. Clearly, there is no need to repeat classical complexity results in
Table 2. However, observe that the status of parameterised complexity and ap-
proximation of these problems and their complementary versions indeed differ.
The hitherto unsolved questions regarding Upper Domination have been tack-
led and largely resolved in [6], which can be seen as a kind of companion paper
to this one. Notice that in Table 1, the optimisation problems that correspond to
the first three listed graph parameters are minimisation problems (in particular
Lower Irredundance wich corresponds to find ir(G)), while the last three are
maximisation problems (in particular Upper Irredundance wich corresponds
to find IR(G)); this split is indicated by the double lines; this is reversed in Ta-
ble 2. Also, when considering these problems as parameterised problems, we only
consider the standard parameterisation, which is a lower bound on the entity to
be maximised or an upper bound on the entity to be minimised. In order to
distinguish the problem parameters of the two tables, we use k in Table 1 and `
in Table 2. The purpose of this paper is to survey the state of art and to solve
most of what was still open until now.

ir γ i α Γ IR

exact O∗() 1.99914n [11] 1.4864n [36] 1.3351n [14] 1.2002n [43] 1.7159n [6] 1.9369n [11]

∈ FPT? W[2]-C [11] W[2]-C [25] W[2]-C [25] W[1]-C [25] W[1]-H [6] W[1]-C [27]

non-apx rat. c log(n) Th.5 c log(n) [29] n1−ε [33] n1−ε [44] n1−ε [6] ?

degree restrictions

apx-ratio 3
2∆ [23] log(∆)+1 [19] ∆+1 Obs.4

∆+3

5
[7]

6∆2+2∆−3

10∆
[6] & Obs.2

kernel 3
2∆k Obs.5 (∆+ 1)k Obs. 4 ∆k Obs. 3

dense-apx ? APX-H [32] not n1 ε Th.9 not n1 ε Pr.1 not n1 ε Co.5 APX-H Th.8

cubic graphs

+planar NP-C Th.1 NP-C [31] NP-C [38] NP-C [31] NP-C [6] NP-C Th.2

∈ PTAS? APX-C Co.2 APX-C [2] APX-H Co.4 APX-C [2] APX-C [6] APX-C Co.3

Table 1. Status of various problems related to the domination chain
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co− ir co− γ co− i τ co− Γ co− IR

apx-rat. 2 Obs.1 240
193 [4]

√
n [13] 2 (folklore) 4 [6] 4 Th.6

non-apx rat. ? 260
259 [40] n

1
2−ε [13] 2 (UGC) [37] ? ?

kernel 2`− 1 [11] 5
3`+ 3 [24] `2 [30](Sec.4.3) 2` [26] `2 + ` [6] 3` [11]

FPT-O∗() 3.841` [11] 2.0226` [24] 1.5874` [13] 1.2738` [18] 4.3077` [6] 2.8752` [11]

degree restrictions

3≤∆≤d APX-C Co.2 APX-C [8] 1.5d-apx [13] APX-C [41] APX-C [6]

dense ? ? APX-C Th.9 APX-C [20] APX-C Co.5 APX-C Th.8

Table 2. Status of various problems related to the complementary domination chain

3 On the classical complexity of irredundant set problems

In this section, we prove that Lower Irredundance and Upper Irredun-
dance (also their complementary versions) are NP-hard on planar cubic graphs.

Theorem 1. (*) Lower Irredundance is NP-hard on planar cubic graphs.

Proof. We use the same construction as in [38], where Minimum Domination on
planar cubic graphs is reduced to Minimum Independent Domination, that
is: Given a planar cubic graph G = (V,E), construct G′ from G by replacing
every (u, v) ∈ E by the following planar cubic subgraph with four new vertices:

The argumentation [38] shows that i(G′) = γ(G) + |E| which automatically
gives us ir(G′) ≤ γ(G) + |E|. One can also proof that ir(G′) ≥ γ(G) + |E| which
means that Minimum Domination on G has a solution of cardinality at most
k if and only if Lower Irredundance on G′ has a solution of cardinality at
most k + |E|. Details of this proof can be found in the appendix.

Interesting side note to this proof is that ir, γ and i coincide on G′. Since es-
pecially ir and i are known to differ arbitrarily even on cubic graphs [45], this
is obviously due to the special structure of G′. It contains induced K1,3 (ev-
ery original vertex with its neighbourhood), so the result for ir = γ = i from
[28] does not apply. This makes this construction an interesting candidate to
study the characterisation of the graph class for which ir = i. With a different
construction, we can show the same type of result for Upper Irredundance.

Theorem 2. (*) Upper Irredundance is NP-hard on planar cubic graphs.
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4 A special flavour of minimax / maximin problems

Half of the parameters in the domination chain can be defined as either, in case
of minimax problems, looking for the smallest of all (inclusion-wise) maximal
vertex sets with a certain property (i(G) is the size of the smallest maximal
independent set; similarly, ir(G) is defined), or, in case of maximin problems,
looking for the largest of all minimal vertex sets with a certain property (Γ (G) is
an example). Also, the complementary problems share this flavour; for instance,
co− i(G) can be seen as looking for the largest of all minimal vertex covers.

Typical exact algorithms for maximisation problems fix certain subsets to
be part of the solution. In the decision variant, when a parameter value that
lower-bounds the size of the solution is part of the input, we might have a
sufficient number of vertices in our partial solution and now want to (rather
immediately) announce that a sufficiently large solution exists. This is not a
problem for determining α(G) or IR(G), but this may become problematic in the
case of maximin problems. In the following we consider the extension-problem
for the other two maximin problems related to the domination-chain: co− i(G)
and co− ir(G). The first one can formally be stated as follows:

Minimal Vertex Cover Extension
Input: A graph G = (V,E), a set S ⊆ V .
Question: Does G possess a minimal vertex cover S′ with S′ ⊇ S?

Observe that this extension problem can also be seen as a kind of subset problem
for independent sets by rephrasing the question to: Is there a maximal indepen-
dent set S′ for G with S′ ⊆ V − S? In more general terms, one can view the
extension-version of some maximin problem as exclusion-version of the comple-
mentary minimax problem.

Theorem 3. (*) Minimal Vertex Cover Extension is NP-hard even re-
stricted to planar cubic graphs.

Proof. Consider the following simple reduction from satisfiability: For a formula
c1 ∧ · · · ∧ cm over variables x1, . . . , xn, let G = (V,E) be the graph with vertices
vi, v̄i for every i = 1, . . . , n and c1, . . . , cm and edges connecting every clause
with its literals and connecting vi with v̄i for every i. For this graph, the set
S = {c1, . . . , cm} can be extended to a minimal vertex cover if and only if the
formula c1 ∧ · · · ∧ cm is satisfiable. A more sophisticated construction yields
a planar cubic graph G as input for Minimal Vertex Cover Extension.
Details of this proof can be found in the appendix.

The maximin problem co− ir(G) can also be considered with respect to ex-
tension. Since complements of irredundant sets are rather uncomfortable, we
describe this problem in terms of the complementary problem ir(G):

Minimal Co-Irredundant Extension
Input: A graph G = (V,E), a set S ⊆ V .
Question: Does G possess a maximal irredundant set S′ with S′ ⊆ V − S?

Theorem 4. (*) Minimal Co-Irredundant Extension is NP-hard.
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5 Approximation results

In this section, after studying the approximation on general graphs, we consider
bounded degree graphs and cubic graphs.

Theorem 5. (*) For any c > 0, there is no c log(n)-approximation for Lower
Irredundance unless NP ⊆ DTIME(nlog logn).

For the little studied complement of Lower Irredundance we observe:

Observation 1 For any graph G without isolated vertices one can compute a
minimal dominating set of cardinality at most n

2 in polynomial time for an arbi-
trary spanning forest of G. The complement of this dominating set is consequently
a 2-approximation for Co-Lower Irredundance.

Using Lemma 3, one can use known exact or approximation algorithms for
Minimum Vertex Cover and also results from parameterized approximation
such as [15] to deduce:

Theorem 6. (*) Co-Upper Irredundance can be approximated with factor
4 in polynomial, factor 3 in O∗(1.2738τ(G)) and factor 2 in O∗(1.2738τ(G)) or
O∗(1.2002n) time.

There is a kind of methodology to link optimisation problems related to
the domination chain to those related to the complementary domination chain,
which can be stated as follows.

Theorem 7. Assume that the optimisation problem associated to some graph
parameter ζ of the domination chain is APX-hard on cubic graphs. Then, the
optimisation problem associated to the complement problem of ζ is also APX-
hard on cubic graphs.

Proof. We claim that the reduction that acts as the identity on graph (instances)
and complements solution sets is an L-reduction. Given a cubic graph G =
(V,E) of order n with m = 3

2n edges as an instance of the optimisation problem
belonging to ζ (and also to the complement problem). Let us distinguish the two
optima by writing optζ(G) and optco−ζ(G), respectively. Then, optco−ζ(G) =
n− optζ(G). Similarly, if S′ is a solution to G in the complement problem, then
n− |S′| is the size of the solution S := V \ S′ of the original problem. Hence,∣∣optζ(G)− |S|

∣∣ =
∣∣(n− optco−ζ(G))− (n− |S′|)

∣∣ =
∣∣optco−ζ −|S′|

∣∣ .
Moreover, as ir(G) ≥ 2n

9 according to [23], which yields optζ(G) ≥ 2n
9 by the

domination chain,

optco−ζ(G) ≤ n ≤ 9

2
optζ(G),

which proves the claim.

Theorem 3.3 in [2] shows that Minimum Domination, restricted to cubic
graphs, is APX-hard. We can use Theorem 7 to immediately deduce:
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Corollary 1. The complement problem corresponding to Minimum Domina-
tion is APX-hard when restricted to cubic graph instances.

This sharpens earlier results [8] that only considered the subcubic case.

Corollary 2. Lower Irredundance restricted to cubic graphs is APX-hard.
Similarly, Co-Lower Irredundance is APX-hard on cubic graphs.

Proof. The reduction from Theorem 1 can be seen as an L-reduction from the
APX-hard Minimum Domination problem on cubic graphs [2] to Lower Irre-
dundance on cubic graphs. Observe that γ(G) ≥ n

4 and |E| = 3
2n for any cubic

graph G, which gives ir(G′) = γ(G) + |E| ≤ 7γ(G). Furthermore, any maximal
irredundant set of cardinality val′ for G′ can be used to compute a dominating
set for G of cardinality val = val′− |E|, which yields val− γ(G) = val′− ir(G′).
Together with Theorem 7 the result for Co-Lower Irredundance follows.

The computations in the previous proof can be carried out completely anal-
ogously for Upper Irredundance and Co-Upper Irredundance.

Corollary 3. (*) Upper Irredundance is APX-hard on cubic graphs. Simi-
larly, Co-Upper Irredundance is APX-hard on cubic graphs.

Manlove’s NP-hardness proof for Minimum Independent Domination on
cubic planar graphs [38] turns out to be an L-reduction, so that with Theorem 7
we can conclude:

Corollary 4. Minimum Independent Domination and Maximum Minimal
Vertex Cover are both APX-hard on cubic graphs.

This improves on earlier results for Maximum Minimal Vertex Cover,
for instance, the APX-hardness shown in [39] for graphs of maximum degree
bounded by five.

6 Further algorithmic observations

Most of the previously collected results have been hardness results; here we
complement some of them by simple algorithmic results.

Observation 2 The approximation-results for Upper Domination restricted
to graphs of bounded degree from [6] are based on eq. 2 and the fact that ev-
ery maximal independent set is an upper dominating set which is also true for
Upper Irredundance. The approximation by a suitable independent set yields
the same approximation-ratio here which especially means that Upper Irre-

dundance can be approximated within factor at most 6∆2+2∆−3
10∆ for any graph

G of bounded degree ∆.
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Observation 3 With Brooks’ Theorem one can always find an independent set
of cardinality at least n

∆ for any graph G of bounded degree ∆. From a pa-
rameterised point of view, this immediately gives a ∆k-kernel for Maximum
Independent Set, Upper Domination and Upper Irredundance for the
natural parameter k of these problems, since any bounded-degree graph with more
than ∆k vertices is a trivial “yes”-instance.

Observation 4 Bounded degree ∆ implies γ ≥ n
∆+1 , which means that any

greedy solution yields a (∆ + 1)-approximation for Minimal Maximum Inde-
pendent Set (i(G) in domination chain) and Minimum Domination. For
standard parameterisation this also yields a (∆ + 1)k kernel for these problems
since graphs with more than (∆+ 1)k vertices are trivial “no”-instances.

Lower Irredundance is the only problem for which these consequences
of bounded degree are less obvious. A more thorough investigation of lower
irredundant sets in [23] yields the bound ir(G) ≥ 2n

3∆ .

Observation 5 The bound from [23] implies that any greedy maximal irredun-
dant set for a graph of bounded degree ∆ is a 1.5∆-approximation for Lower
Irredundance. Parameterised by k = ir(G), any graph with more than 1.5∆k
vertices is a trivial “no”-instance which yields a 1.5∆k kernel.

Notice that, although the kernel results indicated in the previous two obser-
vations look weak at first glance, they allow for lower bound results based on
the assumption that P 6= NP according to [17].

7 Consequences for everywhere dense graphs

In [3], Arora et al. presented a unified framework for proving polynomial time
approximation schemes for (average) dense graphs, mainly for Max Cut type
problems, and for Min Bisection for everywhere dense graphs. Concerning
the problems from the domination chain Minimum Vertex Cover and Min-
imum Domination were studied; in [20], Minimum Vertex Cover is proved
APX-hard on everywhere dense graphs and in [32], it is proved that Minimum
Domination is NP-hard on (average) dense graphs. We will show inapproxima-
tion results for more domination-chain problems on everywhere dense graphs.
Interestingly, we can make use of our reductions for sparse (cubic) graphs:

Theorem 8. For any ε > 0, Upper Irredundance and Co-Upper Irre-
dundance are APX-hard for everywhere-ε-dense graphs.

Proof. We construct an L-reduction from (Co-)Upper Irredundance on cubic
graphs to (Co-)Upper Irredundance on everywhere-ε-dense graphs. Given a
connected cubic graph G = (V,E) on n vertices, we construct a dense graph G′

by joining a clique C of d εn−31−ε e new vertices to G. G′ has minimum degree εn′,

where n′ = n+ d εn−31−ε e = d εn−3+n−εn1−ε e = dn−31−ε e is the number of vertices of G′.

Any vertex v ∈ V has 3 + d εn−31−ε e = d εn−3+3−3ε
1−ε e = d ε(n−3)1−ε e many neighbours
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in G′. Any vertex in the added clique has an even higher degree if n ≥ 4. As
any maximal irredundant set of G′ that contains a vertex of C is a singleton set,
opt(G′) = opt(G) and, w.l.o.g., any maximum irredundant set in G′ is a subset
of V which makes it a maximal irredundant set of G.

For Co-Upper Irredundance, we have opt(G′) = opt(G) + d εn−31−ε e and,
given any solution S′ in G′, we can transform it into a new one containing all new
vertices and some vertices from V . The set S′ ∩V is a solution for G. In a cubic
graph, the optimum value of the complement of an upper irredundant set is at
least n/4 using inequality (3) and the fact that τ(G) ≥ n/2 (as G is connected
and non-trivial) and thus opt(G) ≥ n/4. Thus opt(G′) ≤ opt(G) + εn−3

1−ε ≤
opt(G) + 4ε opt(G)−3

1−ε ≤ 1+3ε
1−ε opt(G).

Observe that the arguments and the computations of the previous proof
are also valid for Co-Upper Domination. Since it is also APX-hard on cubic
graphs [6] we can conclude the same result. Almost the same reduction is an E-
reduction when we start with a general instance for Upper Domination (just
adding more vertices in order to be sure that G′ is everywhere-ε-dense). Since
Upper Domination is not n1−δ-approximable for any δ > 0, if P 6= NP on
general graphs [6] we can conclude the same result for everywhere-dense graphs.

Corollary 5. For any ε > 0, Co-Upper Domination is APX-hard and Up-
per Domination is not n1−δ-approximable for any δ > 0, if P 6= NP, for
everywhere-ε-dense graphs.

The inapproximability result from [44] with the above reduction yields:

Proposition 1. For any ε > 0, Maximum Independent Set is not n1−δ-
approximable for any δ > 0, if P 6= NP, for everywhere-ε-dense graphs. 5

Theorem 9. For any ε > 0, Maximum Minimal Vertex Cover is APX-
hard and Minimum Maximal Independent Set is not n1−δ-approximable for
any δ > 0, if P 6= NP, for everywhere-ε-dense graphs.

Proof. We give an E-reduction from Minimum Maximal Independent Set
on general graphs to Minimum Maximal Independent Set on everywhere-ε-
dense graphs. Consider for a graph G the family {Gj : j ∈ N}, recursively defined
by G0 := G and Gj+1 := Gj +Gj (”+” denotes graph join). If the order of G is
n, the order of Gj is 2jn for every j ∈ N. Also every v ∈ Gj has degree at least
n(2j−1) which means that Gj is (1−1/2j)-dense. Let V be the vertices of G and
V ∪V ′ be the vertices of G+G. For any independent set S of G+G either S ⊆ V
or S ⊆ V ′, which means that independent sets in G+G always yield equivalent
independent sets in G and hence i(G) = i(G + G). Inductively, this argument
implies i(G) = i(Gj) for all j ∈ N. For j such that j ≥ log2(1/(1−ε)), the graph
Gj hence yields the aforementioned E-reduction since any independent set in
Gj yields an independent set in G of the same size.

5 We were informed about this fact by Marek Karpiński.
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Starting with a cubic graph G, Gj yields an L-reduction from Maximum
Minimal Vertex Cover on cubic graphs, which is APX-hard by Corollary 4,
to Maximum Minimal Vertex Cover on everywhere-ε-dense graphs, since
for cubic graphs co− i(G) ≥ n

2 and hence co− i(Gj) < 2jn ≤ 2j+1co− i(G).

8 Summary, open problems and prospects

We have presented a sketch of the complexity landscape of the domination chain.
As can be seen from our tables, the status of most combinatorial problems has
now been solved. However, there are still several question marks in these ta-
bles, and also the positive (algorithmic) results implicitly always ask for possible
improvements.

For the investigation of complexity aspects of graph parameters, chains of
inequalities like the domination chain help to unify proofs, but also to find spots
that have not been investigated yet. Also, the idea of looking at the comple-
mentary chain should work out in each case. An example of a similar chain of
parameters is the Roman domination chain [16]. Most of what we know is con-
cerning Roman domination and its complementary version, which is also called
the differential of a graph; see [1,8,9,10].

Acknowledgements. We gratefully acknowledge the support by the Deutsche
Forschungsgemeinschaft, grant FE 560/6-1.
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9 Appendix: Omitted (standard) definitions

9.1 Basic notions of graph theory

Throughout this paper, we only deal with undirected simple graphs G = (V,E).
In the following, we explain the main notions of graph theory that we use, but
refer to any textbook in that area for yet unexplained standard notions. The
number of vertices |V | is also known as the order of G. As usual, N(v) denotes
the open neighbourhood of v in a graph G, and N [v] is the closed neighbourhood
of v in G, i.e., N [v] = N(v)∪{v}. These notions can be easily extended to vertex
sets X, e.g., N(X) =

⋃
x∈X N(x). The cardinality of N(v) is also known as the

degree of v, denoted as deg(v). The maximum degree in a graph is usually written
as ∆. A graph of maximum degree three is called subcubic, and if actually all
degrees equal three, it is called a cubic graph.

Given a graph G = (V,E), a subset S of V is a dominating set if every
vertex v ∈ V \S has at least one neighbour in S, i.e., if N [S] = V . A dominating
set is minimal if no proper subset is a dominating set. Likewise, a vertex set
I is independent if N(I) ∩ I = ∅. An independent set is maximal if no proper
superset is independent. In the following we use classical notations: γ(G) and
Γ (G) are the minimum and maximum cardinalities over all minimal dominating
sets in G, α(G) is the maximum cardinality of an independent set, i(G) is the
minimum cardinality of a maximal independent set, and τ(G) is the size of a
minimum vertex cover, which equals |V | −α(G) by Gallai’s identity. A minimal
dominating set D of G with |D| = Γ (G) is also known as an upper dominating
set of G.

9.2 E-reductions

A problem A is called E-reducible to a problem B, if there exist polynomial time
computable functions f , g and a constant β such that

– f maps an instance I of A to an instance I ′ of B such that opt(I) and opt(I ′)
are related by a polynomial factor, i.e. there exists a polynomial p such that
opt(I ′) ≤ p(|I|) opt(I),

– g maps any solution S′ of I ′ to one solution S of I such that ε(I, S) ≤
βε(I ′, S′).

An important property of an E-reduction is that it can be applied uniformly
to all levels of approximability; that is, if A is E-reducible to B and B belongs
to C then A belongs to C as well, where C is a class of optimisation problems
with any kind of approximation guarantee.6

6 See also S. Khanna, R. Motwani, M. Sudan, and U. Vazirani. On syntactic versus
computational views of approximability. SIAM Journal on Computing, 28:164–191,
1998.
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9.3 On the structure of maximal irredundant sets

Any maximal irredundant set D for a graph G = (V,E) can be associated with
a partition of the set of vertices V into five sets F, I, P,O,R given by: I := {v ∈
D : v ∈ pn(v,D)}, F := D − I, P ∈ {B ⊆ N(F ) ∩ (V −D) : |pn(v,D) ∩ B| = 1
for all v ∈ F} with |F | = |P |, O = N [D] − (D ∪ P ), R = V − N [D]. This
representation is not necessarily unique since there might be different choices for
the sets P and O but for every partition of this kind, the following properties
hold:

1. Every vertex v ∈ F has at least one neighbour in F , called a friend.
2. The set I is an independent set in G.
3. The subgraph induced by the vertices F ∪ P has an edge cut set separating
F and P that is, at the same time, a perfect matching; hence, P can serve
as the set of private neighbours for F .

4. The neighbourhood of a vertex in I is always a subset of O, which are
otherwise the outsiders.

5. Each vertex in R has at least one neighbour in P .

Lemma 4. For any connected graph G with n > 0 vertices and a maximum
irredundant set D with an associated partition (F, I, P,O,R) as defined above,
if |D| = IR(G) > α(G) then |I| ≤ α(G)− 2.

Proof. Let G be a connected graph with n > 0 vertices and let D be a maximum
irredundant set with an associated partition (F, I, P,O,R). We first show that
if IR > α(G) then |F | ≥ 2 (in fact, one can show that then |F | ≥ 3 but that
is not necessary for our proof). Indeed, if |F | = 0, then D is also an indepen-
dent set, and thus IR(G) = α(G), and according to our definition of partition
(F, I, P,O,R), we have |F | 6= 1 (see Property 1 of this partition).

Now, if |F | ≥ 2 then the subgraph of G induced by F ∪ P contains an
independent set of size 2 consisting of a vertex in F , say v, and a vertex in P ,
say u, such that v and u are not adjacent. Since in the original graph G, there
are no edges between the vertices in I and the vertices in F ∪ P (Property 4),
I ∪ {u, v} forms an independent set of size |I| + 2. This sets a lower bound on
the independence number and we have α(G) ≥ |I|+ 2.

From the above, it follows that if IR(G) > α(G) then |I| ≤ α(G)− 2.

10 Appendix: Omitted proofs

10.1 Proof of Lemma 1

We consider a graph G with n > 0 vertices and let D be a maximum irredundant
set with associated partition (F, I, P,O,R). We examine separately the following
two cases:

1. IR(G) = α(G). Then we trivially have IR(G) ≤ α(G).
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2. IR(G) > α(G).

From the fact that |F | = |P | (from Property 3) we have |F | = n−|I|−|O|−|R|
2 ≤⌊

n−|I|
2

⌋
and thus

IR(G) = |F |+ |I| ≤
⌊
n+ |I|

2

⌋
From the above and Lemma 4 we have

IR(G) ≤
⌊
n+ |I|

2

⌋
≤
⌊
n+ α(G)− 2

2

⌋
≤ n

2
+
α(G)

2
− 1

This concludes the proof of the claim.

10.2 Proof of Lemma 2

Let G be a connected graph with n > 0 vertices, maximum degree ∆ and let
D be a maximum irredundant set with associated partition (F, I, P,O,R). Our
argument is similar to the one in Lemma 1, as the case IR(G) = α(G) is again
trivial, assume IR(G) > α(G). Again, we obtain:

IR(G) = |F |+ |I| = n+ |I| − |O| − |R|
2

We next derive an improved lower bound on |O|. Let e be the number of edges
adjacent with vertices from I. As G is of minimum degree δ, we have e ≥ δ|I|.
As the vertices in I are only adjacent with the vertices in O, there are at least e
edges that have exactly one end vertex in O. Since G has maximum degree ∆,

we have that |O| ≥
⌈
e
∆

⌉
≥
⌈
δ|I|
∆

⌉
.

From the above and Lemma 4 we have

IR(G) ≤
⌊
n+|I|−d δ|I|∆ e−|R|

2

⌋
≤

n+ |I| − δ|I|
∆

2
=
n+ (∆−δ)|I|

∆

2

≤ n+
(∆−δ)
∆ (α(G)−2)

2 =
n

2
+
∆− δ

2∆
α(G)− ∆− δ

∆

10.3 Proof of Theorem 1

Recall that we build G′ from G by adding four new vertices for every edge. Let
uv, vu, pu,v, qu,v be the names of the new vertices added for (u, v) ∈ E assigned
like in the picture below:
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Suppose S is a maximal irredundant set for G′. Consider the sets D := S ∩ V
and Vu,v := S ∩ {uv, pu,v, qu,v, vu} for all (u, v) ∈ E and perform the following
two altering-steps (no changes on S):

1. For every edge (u, v) in E such that S∩{uv, vu, pu,v, qu,v} = ∅, delete u from
D and add uv to Vu,v. Maximality of S implies u, v ∈ S and pn(u, S) = {uv}
and pn(v, S) = {vu}. For all edges (u,w) ∈ E with w 6= v consequently
uw /∈ pn(u, S) which means S ∩ {uw, pu,w, qu,w} 6= ∅. This especially ensures
that for all such edges (u, v) one of the vertices u, v remains in S.

2. For all w ∈ V such that NG[w] ∩ D = ∅, we know that w was not deleted
by step one since otherwise its neighbour from the edge which triggered step
one would be in D. This means w /∈ S, so by maximality there is a vertex
v ∈ S ∪ {w} such that pn(v, S ∪ {w}) = ∅. Since S is irredundant, such a
vertex v is either in {wz, pw,z, qw,z : z ∈ NG(w)} or v = w. While there exists
a vertex w ∈ V such that NG[w] ∩D = ∅ apply alterations according to the
following cases for v:
(a) If v = wz for some z ∈ NG(w), irredundance of S yields pn(wz, S) ⊆
{w,wz} so especially qw,z /∈ pn(wz, S) so |Vw,z| = 2. Delete wz from Vw,z
and add w to D.

(b) If v = qw,z for some z ∈ NG(w) (symmetrically for pw,z), irredundance
of S yields pn(qw,z, S) = {wz} which means zw ∈ S. Delete zw from Vw,z
and add z to D.

(c) If v = w, especially w /∈ pn(w, S ∩ {w}), so there is a vertex x ∈ NG(w)
such that wx ∈ S. If |Vw,x| = 2, delete wx from Vw,x and add w to
D. Otherwise, {xw, px,w, qx,w} ∩ S = ∅, so x was not deleted in step
one, so x /∈ S. Maximality requires pn(v′, S ∪ {xw}) = ∅ for some v′ ∈
S ∪ {xw}. Since xw /∈ N [S], this means v′ = xy for some y ∈ NG(x)
and pn(xy, S) = {x}. This implies S ∩ {qx,y, px,y} 6= ∅, so especially
|Vx,y| = 2. Delete xy from Vx,y and add x to D.

Observe that this process of deleting a vertex from some Vx,y is not done twice
for the same edge (x, y). For every such Vx,y we always either delete xy and add
x to D or delete yx and add y to D. The first two cases (a) and (b) are only
considered if neither x nor y are in D, so clearly no exchange has happened in a
previous step. In the third case, S only contains xy or yx, so Vx,y will be used at
most once to add x or y, respectively. After these steps clearly D is a dominating
set for G. Since |Vx,y| ≥ 1 for all (x, y) ∈ E and |S| = |D| +

∑
(x,y)∈E |Vx,y|,

this dominating set has a cardinality of at most |S| − |E|. With the choice of
S as a maximal irredundant set for G′ being arbitrary, we can conclude that
ir(G′) ≥ γ(G) + |E|.

10.4 Proof of Theorem 2

The proof of this result is split into two parts: in (A), we prove NP-hardness on
subcubic planar graphs, and then in (B) we show how to modify the construction
to get NP-hardness also in the case of cubic graphs.
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(A) We reduce from the NP-hard Maximum Independent Set on cubic
planar graphs. Let G = (V,E) be a cubic planar input graph for Maximum
Independent Set. Construct a subcubic planar graph G′ from G by replacing
every edge (u, v) ∈ E by the following subgraph with the set of six new vertices
Vu,v := {u′, u1, u2, v1, v2, v′}.

u u′

u1

u2

v1

v2

v′ v

Any maximum independent set S of G can be extended to a maximum indepen-
dent set in G′ of cardinality |S| + 3|E|, since for every edge (u, v) ∈ E either
u /∈ S or v /∈ S, so either {u′, v1, v2} or {v′, u1, u2} can be added to S without vi-
olating independence. The resulting maximal independent set is also a maximal
irredundant set in G′.

Let, on the other hand, S be a maximal irredundant set for G′. For the
induced C6 of an edge-gadget, one can easily verify by checking all possibilities
that S can contain at most three out of the six vertices in Vu,v without violating
irredundance. If {u, v} ⊂ S for an edge (u, v) ∈ E, S can contain at most two
vertices from Vu,v. Consider the sets S′ = S∩V and R = ∅. While there is an edge
(u, v) ∈ E with {u, v} ⊂ S′, delete u from S′ and add it to R. When this deleting-
process ends, S′ is an independent set in G. With E1 := {(u, v) : {u, v} ⊂ S}
and E2 = E − E1, the cardinality of S′ can be estimated by:

|S′| = |S| −
∑

(u,v)∈E

|Vu,v ∩ S| − |R| ≥ |S| − 3|E2| − 2|E1| − |E1| = |S| − 3|E|.

In conclusion, for any k ∈ N, G has an independent set of cardinality at least
k if and only if G′ has an irredundant set of cardinality at least k+ 3|E|. With a
planar (sub)cubic input graph G, the constructed input graph G′ is planar and
subcubic.

(B) In the previous construction, the resulting graph G′ is already subcubic
and planar and does not contain degree-one vertices. For every vertex of degree
two in G′, add the following subgraph:

v

Any choice of two vertices within such a new subgraph dominates all of its new
vertices, so any irredundant set for the new graph contains at most two vertices
from any of the new subgraphs. If the original vertex v chooses its new neighbour
to be a private neighbour in some irredundant set S, then S can only contain one
of the new vertices this subgraph. Deleting v from S and choosing, for example,



18 Bazgan, Brankovic, Casel & Fernau

the two black vertices in the above picture to belong to S instead does neither
violate irredundance nor change the cardinality of S. Let T be the set of degree-
two vertices in G′ and let G′′ denote the graph build from G′ by adding the
above subgraph to every vertex v ∈ T . The graph G′′ is planar, cubic and has
an irredundant set of cardinality k + 2|T | if and only if G′ has an irredundant
set of cardinality k.

10.5 Proof of Theorem 3

If there exists an assignment φ for x1, . . . , xn which satisfies c1 ∧ · · · ∧ cm, the
set S′ := S ∪ {vi : φ(xi) = 0} ∪ {v̄i : φ(xi) = 1} is a minimal vertex cover for
G. Since for each edge (vi, v̄i) either vi ∈ S′ or v̄i ∈ S′ and all vertices cj are
in S′, every edge is covered. Every vertex vi ∈ S′ (or v̄i ∈ S′) uniquely covers
the edge (vi, v̄i), so S′ − {vi} (or S′ − {v̄i}) is not a vertex cover. Since φ is
satisfying for c1 ∧ · · · ∧ cm, every clause cj has at least one literal which is not in
S′. This means that the edge corresponding to this satisfying literal is uniquely
covered by cj ∈ S′ or, in other words, that S′ − {cj} is not a vertex cover, so S′

is minimal.

Let, on the other hand, S′ be a minimal vertex cover for G which extends S.
Every edge (vi, v̄i) has to be covered by S′ which means that S′∩{vi, v̄i} 6= ∅. The
setting φ(xi) = 0 if v̄i /∈ S′ and φ(xi) = 1 if vi /∈ S′ is hence not contradictory.
Minimality requires that there is an edge (cj , x) for which x /∈ S′ for each
j = 1, . . . ,m. The only possible vertices x for these private edges are literals of
the clause cj which means that there is either a vi /∈ S′ or a v̄i /∈ S′ which is
literal in cj . In terms of satisfiability, this implies that the assignment φ can be
extended to a satisfying assignment for c1 ∧ · · · ∧ cm.

To prove hardness for the restriction to planar cubic graphs, consider reducing
not from general satisfiability but from the NP-hard 4-Bounded Planar 3-
Connected SAT (4P3C3SAT)7. For a 4P3C3SAT-formula c1 ∧ · · · ∧ cm, the
associated graph G = (V,E) with vertex-set {c1, . . . , cm} ∪ {x1, . . . , xn} and
edges connecting each clause to the three variables which occur in it is planar
and the vertices xi have degree at most four. Fix some planar embedding of G
and let ci1, c

i
2, c

i
3, c

i
4 be the (possibly not existing) clauses in which xi appears,

arranged in the chosen planar embedding in clockwise order:

xi

ci1

ci3

ci4 ci2

7 see J. Kratochv́ıl. A special planar satisfiability problem and a consequence of its
NP-completeness. Discrete Applied Mathematics, 52:233–252, 1994.
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Create the graph G′ from G by replacing each xi according to the following
cases:

(a) If the variable xi appears positively in clauses ci1, c
i
2, c

i
3 and negated in ci4,

replace xi by:

v̄i

vi

v′i

ci1

ci3

ci4 ci2

(b) If the variable xi appears positively in clauses ci1, c
i
2 and negated in ci3, c

i
4,

replace xi by:

vi

v̄i

ci1

ci3

ci4 ci2

(c) If the variable xi appears positively in clauses ci1, c
i
3 and negated in ci2, c

i
4,

replace xi by:

ci1

ci3

ci4 ci2

vi

v′i

v̄i

v̄′i

All other cases are rotations of the above three cases and/or invert the roles
of vi and v̄i and v′i and v̄′i.

By the same argumentation as above for general satisfiability, the set S =
{c1, . . . , cm} can be extended to a minimal vertex cover for G′ if and only if the
formula c1 ∧ · · · ∧ cm is satisfiable.

G′ is planar and subcubic. For a planar cubic instance add the following
subgraph to every vertex v of degree two and put the black vertices to S:
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v

All new edges introduced by these additional subgraphs are already covered by
the vertices added to S and these new vertices in S obviously do not cover
any original edge. These additional subgraphs consequently do not affect the
possibility to turn S into a minimal vertex cover for G′.

10.6 Proof of Theorem 4

Just like for Minimal Vertex Cover Extension, we reduce from satisfiabil-
ity. Given a formula c1 ∧ · · · ∧ cm over variables x1, . . . , xn, construct a graph
G = (V,E) with vertices {k1, . . . , km} ∪ {oi, pi, f1i , f2i , ui, ūi, vi, v̄i : i = 1, . . . , n}
and edges connecting kj to vi or v̄i if xi or x̄i is literal in cj respectively. Fur-
ther, the vertices {oi, pi, f1i , f2i , ui, ūi, vi, v̄i : i = 1, . . . , n} induce i non-connected
subgraphs of the following structure:

oi pi f1
i f2

i

ūi

ui

v̄i

vi

With this construction, c1 ∧ · · · ∧ cm is satisfiable if and only if there is an
irredundant set forG which does not contain any vertex from S := {k1, . . . , km}∪
{oi, pi : 1 ≤ i ≤ m}.

Suppose c1 ∧ · · · ∧ cm is satisfiable by some assignment φ. We claim that
S′ := {ui : φ(xi) = 1} ∪ {ūi : φ(xi) = 0} ∪ {f1i , f2i : i = 1, . . . , n} is a maxi-
mal irredundant set in G. The private neighbourhoods with respect to S′ are:
pn(f1i , S

′) = {pi}, pn(f2i , S
′) = {ui, ūi}−S′, pn(ui, S

′) = {vi}, pn(ūi, S
′) = {v̄i},

all of which are non-empty which means that S′ is irredundant. About maxi-
mality, adding a vertex v from V − S′ to S′ means one of the following cases:

1. v = oi or v = pi for some i yields pn(f1i , S
′ ∪ {v}) = ∅.

2. v = ūi or v = v̄i for some i with φ(xi) = 1 yields pn(f2i , S
′ ∪ {v}) = ∅.

3. v = ui or v = vi for some i with φ(xi) = 0 yields pn(f2i , S
′ ∪ {v}) = ∅.

4. v = vi for some i with φ(xi) = 1 yields pn(ui, S
′ ∪ {v}) = ∅.

5. v = v̄i for some i with φ(xi) = 0 yields pn(ūi, S
′ ∪ {v}) = ∅.

6. v = kj for some j implies pn(ui, S
′ ∪ {v}) = ∅ (or pn(ūi, S

′ ∪ {v}) = ∅)
for each i with xi (or x̄j) literal in cj . Since φ is a satisfying assignment for
c1 ∧ · · · ∧ cm, φ satisfies at least one literal of each cj and the corresponding
ui (or ūi) is consequently in S′.

Overall, any choice of v ∈ V −S′ yields some w ∈ S′ such that pn(w, S′∪{v}) = ∅
which proves maximality of S′.
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Let S′ be a maximal irredundant set for G with S′ ∩ S = ∅. Maximality
of S′ requires at least one vertex w for which pn(w, S′ ∪ {oi}) = ∅ for each
i = 1, . . . , n. For any set which does not contain oi or pi, the only possible choice
for such a vertex w is f1i . pn(f1i , S

′ ∪ {oi}) = ∅ especially requires that f1i has
at least one neighbour in S′ ∪ {oi} which means f2i ∈ S′ for all i = 1, . . . , n.
Irredundance of S′ requires at least one private neighbour for f2i , which means
that either S′∩{ui, vi} = ∅ or S′∩{ūi, v̄i} = ∅. This allows to define the (partial)
assignment:

φ(xi) =

{
1 if S′ ∩ {ui, vi} 6= ∅
0 if S′ ∩ {ūi, v̄i} 6= ∅

Suppose there is a clause cj which is not satisfied by this assignment. This means
that for all neighbours vi (or v̄i) of kj , S

′ ∩ {vi, ui} = ∅ (or S′ ∩ {v̄i, ūi} = ∅).
This however means that pn(kj , S

′∪{kj}) ⊃ {kj} and further, kj can only affect
private neighbourhodds from vertices in {ui, vi} (or {ūi, v̄i}) for indices i such
that xi (or x̄i) is literal in cj , non of which are in S′. In other words, if cj is not
satisfied by φ, S′∪{kj} is irredundant, a contradiction to the maximality of S′.

10.7 Proof of Theorem 5

We show an E-reduction from Minimum Domination. Let G = (V,E) be
a connected graph as an instance for Minimum Domination. Consider the
associated bipartite graph G′ = (V ∪ V ′, E′) where V ′ is a copy of V and
E′ = {(u, v′), (u′, v) : (u, v) ∈ E} ∪ {(v, v′) : v ∈ V }. Let G′′ be the graph built
from G′ by turning V into a clique as instance for Lower Irredundance.

Any minimum dominating set D of G is also dominating for G′′ and, because
of minimality, every v ∈ D has at least one private neighbour. In G′′ every
v ∈ D consequently has a private neighbour in V ′ since pnG′′(v,D) = {w′ : w ∈
pnG(v,D)}. So D is a maximal irredundant set in G′′, hence γ(G) ≥ ir(G′′).

For any maximal irredundant setD′′ forG′′, the setD = {v : {v, v′}∩D′′ 6= ∅}
is a dominating set for G. Assume there is a vertex w ∈ V such that w 6∈ NG[D].
Because w′ is not adjacent to any vertex in D′′, we have w′ ∈ pnG′′(w′, D′′ ∪
{w′}). Suppose there is some v ∈ D′′ such that pnG′′(v,D

′′) ⊂ V . This means
that D′′∩V = {v} and {x′ : x ∈ N [v]} ⊂ D′′. Then however pnG′′(x

′, D′′) = ∅ for
any {x′ : x ∈ N [v]} (there is at least one neighbour since G is connected) which is
not possible. So pnG′′(v,D

′′∪{w′}) ⊇ pnG′′(v,D′′)−V 6= ∅ for all v ∈ D′′ which
would make D′′ ∪ {w′} irredundant, a contradiction to the maximality of D′′.
Since |D| ≤ |D′′| we conclude γ(G) ≤ ir(G′′) and then γ(G) = ir(G′′). In con-
clusion, the non-approximability of Minimum Domination of Feige8 transfers
to Lower Irredundance.

8 see: U. Feige. A threshold of lnn for approximating set cover. Journal of the ACM,
45:634–652, 1998.
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10.8 Proof of Theorem 6

Given a graph G on n vertices, we first find a vertex cover V ′ in G using any
2-approximation algorithm, and define S′ = V \V ′. Set S′ is an independent set
and let S be a maximal independent set containing S′. The set V \S is a vertex
cover of size |V \ S| ≤ |V ′| ≤ 2τ(G) ≤ 4(n − IR(G)), see Lemma 3. Moreover,
V \ S is the complement of a maximal independent set which also makes it
the complement of a maximal irredundant set, so overall a feasible solution for
Co-Upper Irredundance with |V \ S| ≤ 4(n− IR(G)). The claimed running
time for the factor-2 approximation stems from the best parameterised and exact
algorithms for Minimum Vertex Cover.9

10.9 Proof of Corollary 3

The reductions from Theorem 2 can be seen as L-reductions and since the com-
position of L-reductions is an L-reduction and from the APX-hard Maximum
Independent Set problem on cubic graphs we obtain the APX-hardness of
Upper Irredundance on cubic graphs. Observe that α(G) ≥ n

4 and |E| = 3
2n

for any cubic graph G, which gives IR(G′) = α(G) + 3|E| ≤ 19α(G). Further-
more, any maximal irredundant set of cardinality val′ for G′ can be used to
compute a dominating set for G of cardinality val = val′ − 3|E|, which yields
val−α(G) = val′−IR(G′). Moreover, IR(G′′) = IR(G′)+8|E| and IR(G′) ≥ 19n

4 ,

gives IR(G′′) ≤ 67IR(G′)
19 . Furthermore, any maximal irredundant set of cardinal-

ity val′′ for G′′ can be used to compute a maximal irredundant set for G′ of
cardinality val′ = val′′ − 8|E|, which yields val′ − IR(G′) = val′′ − IR(G′′).
Together with Theorem 7, the result for Co-Upper Irredundance follows.

9 The current published records are held by the following two papers: J. Chen, I. A.
Kanj, and G. Xia. Improved upper bounds for vertex cover. Theoretical Computer
Science, 411(40–42):3736–3756, 2010. M. Xiao and H. Nagamochi. Exact algorithms
for maximum independent set. In L. Cai, S.-W. Cheng, and T. W. Lam, editors,
Algorithms and Computation - 24th International Symposium, ISAAC, volume 8283
of LNCS, pages 328–338. Springer, 2013.


