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Abstract. We study vehicle routing problems with constraints on the
distance traveled by each vehicle or on the number of vehicles. The ob-
jective is to minimize the total distance traveled by vehicles. We design
constant differential approximation algorithms for some of these prob-
lems. In particular we obtain differential bounds: 1

2
for Metric 3VRP,

3

5
for Metric 4VRP, 2

3
for Metric kVRP with k ≥ 5, 1

2
for the non-

metric case for any k ≥ 3, and 1

3
for Constrained VRP. We prove

also that Min-Sum EkTSP is 2

3
differential approximable and has no

differential approximation scheme, unless P = NP.
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1 Introduction

Vehicle routing problems that involve the periodic collection and delivery of
goods and services as mail delivery or trash collection are of great practical
importance. Simple variants of these real problems can be modeled naturally
with graphs. Unfortunately even simple variants of vehicle routing problems are
NP-hard. In this paper we consider approximation algorithms, and measure their
efficiencies in two ways. One is the standard measure giving the ratio apx

opt
, where

opt and apx are the values of an optimal and approximate solution, respectively.
The other measure is the differential measure, that compares the worst ratio of,
on the one hand, the difference between the cost of the solution generated by
the algorithm and the worst cost, and on the other hand, the difference between
the optimal cost and the worst cost. Formally, the differential measure gives
the ratio α = wor−apx

wor−opt
, where wor is the value of the optimal solution for the

complementary problem. In [11], the measure 1−α is considered and it is called
there z-approximation. Justification for this measure can be found for example
in [1, 5, 18, 11, 14].

The main subject of this paper is differential approximation of the routing
problems. In these problems n customers have to be served by vehicles of limited
capacity from a common depot. A solution consists of a set of routes, where each
starts at the depot and returns there after visiting a subset of customers, such
that each customer is visited exactly once. We refer to a problem as a vehicle



routing problem (VRP) if there is a constraint on the (possibly weighted)
number of customers visited by a vehicle. This constraint reflects the assumption
that the vehicle has a finite capacity and that it collects from the customers (or
distributes among them) a commodity. The goal is to find a solution such that
the total length of the routes is as small as possible. In other cases, the vehicle
is just supposed to visit the customers, for example, in order to serve them. In
such cases we refer to the problem as a TSP problem.

The problems that are considered here generalize the (undirected) Travel-
ing Salesman Problem (TSP). Differential approximation algorithms for the
TSP are given by Hassin and Khuller [11] and Monnot [14]. We will sometimes
use these algorithms to generate approximations for the problems of this paper.
However, we note an important difference. In the TSP, adding a constant k to
all of the edge length does not affect the set of optimal solutions or the value of
the differential ratio. The reason is that every solution contains exactly n edges
and therefore every solution value increases by exactly the same value, namely
n ·k. In particular, this means that for the purpose of designing algorithms with
bounded differential ratio, it doesn’t matter whether d is a metric or not (it can
be made a metric by adding a suitable constant to the edge lengths). In contrast,
in some of problems dealt with here, the number of edges used by a solution is
not the same for every solution and therefore it may turn out, as we will see,
that in some cases the metric version is easier to approximate.

It is easy to see that 2VRP is polynomial time solvable. For k ≥ 3, Met-
ric kVRP was proved NP-hard by Haimovich and Rinnooy Kan [8]. In [9],
Haimovich, Rinnooy Kan and Stougie gave a 5

2 − 3
2k

standard approximation
for Metric kVRP. We study for the first time the differential approximability of
kVRP. More exactly we give a 1

2 differential approximation for the non-metric
case for any k ≥ 3. We improve it to 3

5 for Metric 4VRP and to 2
3 for Met-

ric kVRP with k ≥ 5. An approximation lower bound of 2219
2220 is given here for

Metric nVRP with length 1 and 2 using a lower bound of TSP(1,2) [6].

Min-Sum EkTSP is a generalization of TSP where we search to cover the
customers by exactly k vehicles such that the total length is minimum. Bellmore
and Hong [3] showed that when we search for a solution with at most k cycles
then Min-Sum kTSP is equivalent to TSP on an extended graph. As for Min
TSP, Min-Sum EkTSP is differential equivalent to Metric Min-Sum kTSP
or Max-Sum EkTSP. We show in this paper that Metric Min-Sum EkTSP
is 2

3 differential approximable and it has no differential approximation scheme
unless P = NP.

The paper is organized as follows: In section 2 we give the necessary defini-
tions. In section 3 we give a constant differential approximation algorithm for
General kVRP, and a better constant differential approximation for the met-
ric case. In section 4 the main result is a constant differential approximation for
Constrained VRP. In section 5 we show that Min-Sum EkTSP is constant
differential approximable and has no differential approximation scheme.



2 Terminology

We first recall a few definitions about differential approximability. Given an in-
stance x of an optimization problem and a feasible solution y of x, we denote
by val(x, y) the value of the solution y, by opt(x) the value of an optimal solution
of x, and by wor(x) the value of a worst solution of x. The differential approxi-

mation ratio of y is defined as δ(x, y) = |val(x,y)−wor(x)|
|opt(x)−wor(x)| . This ratio measures how

the value of an approximate solution val(x, y) is located in the interval between
opt(x) and wor(x). More exactly it is equivalent for a minimization problem to
prove δ(x, y) ≥ ε and val(x, y) ≤ εopt(x) + (1 − ε)wor(x).

For a function f , f(n) < 1, an algorithm is a differential f(n)-approximation
algorithm for a problem Q if, for any instance x of Q, it returns a solution y
such that δ(x, y) ≥ f(|x|). We say that an optimization problem is constant
differential approximable if, for some constant δ < 1, there exists a polynomial
time differential δ-approximation algorithm for it. An optimization problem has
a differential polynomial time approximation scheme if it has a polynomial time
differential (1 − ε)-approximation, for every constant ε > 0. We say that two
optimization problems are differential equivalent (reps., standard equivalent) if a
differential δ-approximation (reps., standard δ-approximation) algorithm for one
of them implies a differential δ-approximation (reps., standard δ-approximation)
algorithm for the other one.

We consider in this paper several routing problems. The problems are defined
on a complete undirected graph denoted G = (V,E). The vertex set V consists
of a depot vertex 0, and customer vertices {1, . . . n}. There is also a function
d : E → R, where di,j ≥ 0 denotes the length of edge (i, j) ∈ E. In the rest of
the paper we call a such graph a complete valued graph. We refer to the version
of the problem in which d is assumed to satisfy the triangle inequality as the
metric case. The output to the problems consists of simple cycles, C1, . . . , Cp,
such that V (Ci) ∩ V (Cj) = {0}, ∀i 6= j, and ∪p

i=1V (Ci) = V . We call such a set
of cycles a p-tour. We now describe the problems. For each one we specify the
input, the problem’s constraints, and the output.

kVRP
Input: A complete valued graph.
Constraint: |Cj | ≤ k + 1, j = 1, . . . , p.
Output: A p-tour minimizing the total length of the cycles.

Constrained VRP
Input: A complete valued graph and a metric ℓ : E → R+, and λ > 0.
Constraint:

∑

(i,j)∈Cq
ℓi,j ≤ λ, q = 1, . . . , p.

Output: A p-tour minimizing the total length of the cycles.



kWVRP
Input: A complete valued graph and a function w : {1, . . . , n} → R where wi

denotes the weight of i.
Constraint:

∑

i∈Cj
wi ≤ k, j = 1, . . . , p.

Output: A p-tour minimizing the total length of the cycles.

Min-Sum EkTSP
Input: A complete valued graph.
Constraint: p = k.
Output: A p-tour minimizing the total length of the cycles.

For a problem Q, we denote by Q(1, 2) the version of Q where lengths are 1
and 2. We will use in this paper the following problems:
Min TSP Path(1,2) is the variant of Min TSP(1,2) problem where in place
of a tour we ask for a Hamiltonian path of minimum length. We can prove that
Min TSP Path(1,2) where the graph induced by edges of weight 1 is Hamilto-
nian and cubic has no differential approximation scheme, unless P = NP. The
result follows since Min TSP Path(1,2) on these instances has no standard
approximation scheme, unless P = NP, Bazgan [2].
partitioning into paths of length k (kPP): Given a graph G = (V,E)
with |V | = (k + 1)q, is there a partition of V into q disjoint sets V1, . . . , Vq of
k + 1 vertices each, so that each subgraph induced by Vi has an Hamiltonian
path? 2PP have been proved NP-complete in [7] whereas, more generally, the
NP-completeness of kPP is proved in Kirkpatrick and Hell [12] as a special case
of G-partition problem.

A binary 2-matching (also called 2-factor or cycle cover) is a subgraph in
which each vertex of V has a degree of exactly 2. A minimum binary 2-matching
is one with minimum total edge weight. Hartvigsen [10] has shown how to com-
pute a minimum binary 2-matching in O(n3) time. More generally, a binary
f-matching, where f is a vector of size n + 1, is a subgraph in which each vertex
i of V has a degree of exactly fi. A minimum f-matching is one with minimum
total edge weight and is computable in polynomial time, Cook et al. [4].

3 kVRP

nVRP is standard equivalent with TSP. So, when the distance is not metric
and using the result of Sahni and Gonzalez [17] we deduce that nVRP is not
2p(n) standard approximable for any polynomial p, unless P = NP. In fact for
any k ≥ 5 constant the problem is as hard to approximate as nVRP.

3.1 General kVRP

When d is a metric, the reduction of TSP to nVRP is straightforward, and it
easily follows that computing opt is NP-hard. However, there is no such reduc-
tion between the corresponding maximization problems Max TSP and Max
nVRP leading to the conclusion that computing wor is also NP-hard.



Proposition 1. Computing a worst solution for kVRP is NP-hard for any k ≥
3 even if the distance function takes only two values.

Proof. We use a reduction from partitioning into paths of length k (kPP).
Let G = (V,E) with V = {1, . . . , (k +1)q} be an instance of kPP. We construct
an instance of kVRP by the following way: we add the depot vertex 0 and set
de = 3 if e ∈ E and de = 1 otherwise. It is easy to verify that the answer to kPP
is positive if and only if wor ≥ q(3k + 2).

In the following we give a 1
2 differential approximation for non-metric kVRP.

We apply ideas similar to those in Hassin and Khuller [11].
We first compute a lower bound LB. Then we generate a feasible solution

for G with value apx = LB + δ1. Next, we generate another feasible solution of
value bad = LB + δ2 where δ2 ≥ δ1. This proves that the approximate solution
with value apx is an α-differential approximation where

α =
wor − apx

wor − opt
≥

bad − apx

bad − opt
≥

δ2 − δ1

bad − LB
=

δ2 − δ1

δ2
, (1)

since for a minimization problem wor ≥ bad ≥ apx ≥ opt ≥ LB. To generate
LB we replace 0 by a complete graph with a set V0 of 2n vertices and zero length
edges. The distance between a vertex of V0 and a vertex i of V \ V0 is the same
as the distance between 0 and i. Denote the resulting graph by G′. Compute in
G′ a minimum weight binary 2-matching M .

Lemma 1. Let LB denote the weight of M . Then optV RP ≥ LB.

Theorem 1. kVRP is 1
2 differential approximable.

Proof. We transform each cycle of M into a cycle in G, replacing the vertices
of V0 by a single occurrence of the depot vertex 0. We work on each cycle of
M separately. For each cycle we describe solutions sol1, sol2 and sol3 such that
δ(sol1) + δ(sol2) = δ(sol3). We define apx to be the VRP solution obtained by
concatenating the shortest of sol1 and sol2 for every cycle, and we define bad
similarly but using sol3. We obtain therefore that δ(bad) ≥ 2δ(apx), and the
theorem is proved by (1). In this proof, sol3 will be always described by the
cycles (0, 1, 0), . . . , (0,m, 0).

First, consider a cycle that does not contain the depot, and w.l.o.g. denote
its vertices by (1, . . . ,m). The construction depends on the parity of m.

Suppose that m is even (m 6= 2 since the 2-matching is binary). Let sol1
consist of the cycles (0, 1, 2, 0), . . . , (0,m− 1,m, 0). Let sol2 consist of the cycles
(0,m, 1, 0), . . . , (0,m − 2,m − 1, 0) (See Figure 1 for m = 6).

Suppose now that m is odd. We modify sol1 by choosing (0,m−2,m−1,m)
as the last cycle (see Figure 2). We modify sol2 by using (0,m− 1, 0) as the last
cycle.

Consider a cycle (0, 1, . . . ,m, 0) in M . If m ≤ k we don’t change it. Otherwise:
If m ≡ 0 mod 3 then let sol1 consist of the cycles (0, 1, 0), (0, 2, 3, 0),. . . ,(0,m−

2, 0),(0,m−1,m, 0). Let sol2 consist of the cycles (0,m, 1, 2, 0),. . . , (0,m−3,m−
2,m − 1, 0).
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If m ≡ 1 mod 3 then let sol1 consist of the cycles (0, 1, 0),(0, 2, 3, 0),. . . ,(0,m−
3, 0),(0,m−2,m−1,m, 0). Let sol2 consist of the cycles (0,m, 1, 2, 0),. . . ,(0,m−
4,m − 3,m − 2, 0), and (0,m − 1, 0).

If m ≡ 2 mod 3 then let sol1 consist of the cycles (0, 1, 0),(0, 2, 3, 0), . . . ,(0,m−
3,m−2, 0),(0,m−1,m, 0). Let sol2 consist of the cycles (0,m, 1, 2, 0),. . . ,(0,m−
5,m − 4,m − 3, 0), and (0,m − 2,m − 1, 0).

Let δ(soli) denote the added cost of soli with respect to the length of C. Since
M was computed to have a minimum cost, δ(soli) ≥ 0 and we have δ(sol3) =
δ(sol1) + δ(sol2) which complete the proof.

3.2 Metric kVRP

When d is a metric, computing a worst solution becomes easy since any feasible
cycle can be broken into two cycle without decrease the weight and then:

Lemma 2. worV RP = 2
∑n

i=1 d0,i

In Theorem 1 we have shown that kVRP is 1
2 differential approximable. We

now show that in the metric case, the same bound can be achieved by a simpler
algorithm: we compute a minimum weight perfect matching M on the subgraph
induced by {1, . . . , n}, if n is even, or by {0, 1, . . . , n} if n is odd. We link each
endpoint different of 0 of M to the depot. It is easy to see that optV RP ≥ 2d(M)
by walking around an optimum solution for kVRP and by shortcut it in order
to obtain a Hamiltonian cycle. Using Lemma 2 and the construction of the



approximate solution, we obtain: apx = d(M)+
∑n

i=1 d0,i ≤
1
2optV RP + 1

2worV RP

proving that the result is a 1
2 differential approximation.

In Haimovich et al. [9], a 5
2 −

3
2k

standard approximation for Metric kVRP
is obtained by reduction to Metric TSP and using Christofides’ algorithm. We
proceed similarly for the differential case.

Theorem 2. Metric kVRP is δ · k−1
k

differential approximable, where δ is the
differential approximation ratio for Metric TSP.

Proof. Our algorithm modifies the Optimal Tour Partitioning heuristic of Haimo-
vich, Rinnooy Kan and Stougie [9]: first construct a tour T on V using the differ-
ential approximation algorithm for TSP of value val(T ). W.l.o.g., assume that
this tour is described by the sequence (0, 1, . . . , n, 0). We produce k solutions soli
for i = 1, . . . , k and we select the best solution. The first cycle of soli is formed
by the sequence (0, 1, . . . , i, 0) and then each other cycle (except eventually the
last) of soli has exactly k consecutive vertices (for instance, the second cycle is
(0, i+1, . . . , i+k, 0)) and finally, the last cycle is formed by the unvisited vertices
(connecting n to the depot 0). Denote by apxi for i = 1, . . . , k the values of the
k solutions and by apx the value of the best one.

Consider sol1, . . . , solk; each edge of T \{(0, 1), (0, n)} appear exactly (k−1)
times and each edge (0, j) for j 6= 1, n appears exactly twice. Finally, the edges
(0, 1) and (0, n) appears exactly (k+1) times. Using Lemma 2, we deduce: apx ≤
1
k

∑k

i=1 apxi ≤ (k−1)
k

val(T ) + 2
k
worV RP . By hypothesis, T satisfies: val(T ) ≤

(1− δ)worTSP + δoptTSP and since it is possible to construct from an optimum
solution of VRP a solution of TSP with smaller a value (using the triangle
inequality), it follows that optTSP ≤ optV RP . Also, by connecting the depot
twice with each customer, we can construct from a solution of TSP a solution
of VRP with greater value, and therefore worTSP ≤ worV RP .

Using the previous inequalities we obtain that

apx ≤ δ
k − 1

k
optV RP +

(

1 − δ
k − 1

k

)

worV RP .

Since the best known differential approximation algorithm for TSP is 2
3 [11,

14] then the algorithm of Theorem 2 is an 2
3 · k−1

k
differential approximation

algorithm for metric kVRP. So, for k ≥ 5, we obtain a ratio strictly better that
the bound produced by the Theorem 1 or by the previous algorithm build on
a matching. Now, we will improve all the previous bounds for k > 3 since we
give a 3

5 (resp., 2
3 ) differential approximation for Metric 4VRP (resp., Metric

kVRP for k ≥ 5).

Theorem 3. Metric kVRP is min{ 2
3 , k−1

k+1} differential approximable.

Proof. Our algorithm works as follow: we compute a minimum weight binary
2-matching M = (C1, . . . , Cq) on the subgraph induced by {1, . . . , n}. Then, for
each cycle of it, we produce several solutions and we take the best one among
them. These different solutions depend on the size mi of the cycle Ci of M .



Without loss of generality, assume that this cycle is described by the sequence
(1, . . . ,mi, 1) with mi ≥ 3. Let wori = 2

∑mi

j=1 d0,j .
If mi ≤ k, then we produce mi solutions sol1, . . . , solmi

where solj is obtained
just by deleting the edge (j, j + 1) (mod mi) and by connecting j and j + 1 to
the depot. Since wori ≥ d(Ci) by the triangle inequality and mi ≥ 3 we have:
apxi = minj d(solj) ≤

mi−1
mi

d(Ci) + 1
mi

wori ≤
2
3d(Ci) + 1

3wori.
Now, assume that mi = kp + r with p ≥ 1 and 0 ≤ r ≤ k − 1. We still

produce mi solutions sol1, . . . , solmi
but in this case in a different way. In order

to build the solution solj , we delete from Ci the edge (j − 1, j) and the edges
(j−1+ r +kℓ, j + r +kℓ) for ℓ = 1, . . . , p (the indices are taken mod mi) and we
add for each endpoint of these paths, the link with the depot. Note that when
r = 1, the first path is the isolated vertex j and then in this case, we add once
again the edge (0, j).

If r = 0, then we deduce: apxi ≤
p(k−1)

kp
d(Ci) + p

kp
wori ≤

2
3d(Ci) + 1

3wori.

If r ≥ 1, then we obtain: apxi ≤
p(k−1)+r−1

kp+r
d(Ci) + p+1

kp+r
wori ≤

k−1
k+1d(Ci) +

2
k+1wori.

Finally, since d(M) ≤ optV RP , by taking the minimum between 2
3 and k−1

k+1
and by summing over i the previous inequalities we obtain the expected result.

Since nVRP and TSP are standard equivalent by using the result of Pa-
padimitriou and Yannakakis [16] we deduce immediately that nVRP(1,2) has
no standard approximation scheme. Also TSP(1,2) has no differential approx-
imation scheme, Monnot et al. [15] but we cannot deduce immediately that
nVRP(1,2) has no differential approximation scheme since wornV RP and worTSP

can be very far. However, we prove in the following a lower bound for the ap-
proximation of nVRP(1,2).

Theorem 4. Metric nVRP(1, 2) is not 2219
2220 −ε differential approximable, for

any constant ε, unless P = NP.

Proof. Since wornV RP ≤ 4n ≤ 4optnV RP , a δ differential approximation for
nVRP(1, 2) gives a δ + 4(1− δ) standard approximation for nVRP(1, 2). Using
the negative result given in Engebretsen and Karpinski[6]: TSP(1,2) is not 741

740−
ε standard approximable, then we obtain the expected result.

4 Constrained VRP

We assume now that each edge is associated with a weight ℓ (where ℓi,j ≥ 0
denotes the cost/time of traversing the edge (i, j)) satisfying the triangle in-
equality, and the solution must satisfy that the total weight on each cycle does
not exceed λ. Note that if we do not assume that ℓ is a metric then even deciding
whether the problem has any feasible solution is NP-complete.

Theorem 5. Deciding the feasibility of Constrained VRP is NP-complete.



Proof. In order to prove the NP-hardness, we reduce Hamiltonian s− t Path
problem to Constrained VRP. From a graph G = (V,E) with V = {1, . . . , n},
we construct a graph G′ instance of Constrained VRP by adding a depot
vertex 0. We define the function l as follows: ℓ0,s = ℓ0,t = 1, ℓ0,i = λ, for i 6= s, t,
ℓi,j = 1 if (i, j) ∈ E and ℓi,j = λ if i, j ∈ {1, . . . , n} and (i, j) /∈ E. Trivially there
is a feasible solution for G′ only if λ ≥ n+1. It is easy to see that Constrained
VRP has a feasible solution iff G contains a Hamiltonian path between s and t.

Therefore, we assume that ℓ satisfies the triangle inequality, and to ensure feasi-
bility we also assume that 2ℓ0,i ≤ λ for i = 1, . . . , n. Using similar ideas as those
used for kVRP we can prove:

Theorem 6. Constrained VRP is 1
3 differential approximable.

Proof. We start with a binary 2-matching as described in Lemma 1 except that
the initial graph is not a complete undirected graph Kn+1 but a partial graph
G′ of it built by deleting the edges (i, j) for i 6= 0 and j 6= 0 such that ℓ0,i +ℓi,j +
ℓj,0 > λ. It is easy to observe that M is still a lower bound of an optimal solution
of Constrained VRP. As previously, we work on each cycle of M separately.

First, consider a cycle of M that does not contain the depot, and w.l.o.g.
denote its vertices by (1, . . . ,m). The construction depends on the parity of m.
If m is even, we produce two same solutions sol1 and sol2 of Theorem 1, i.e.,
(0, 1, 2, 0), (0, 3, 4, 0), . . . , (0,m−1,m, 0) and (0,m, 1, 0), (0, 2, 3, 0), (0, 4, 5, 0), . . . ,
(0,m − 2,m − 1, 0). Now, if m is odd, we produce m solutions sol1, . . . , solm
where the solution soli for i = 1, . . . ,m consist of the cycles (0, i, 0), (0, i + 1, i +
2, 0), (0, i + 3, i + 4, 0), . . . , (0, i − 2, i − 1, 0) (the indices are taken mod m).

Second, consider a cycle (0, 1, . . . ,m, 0) in M . If
∑m

i=1 wi ≤ λ we don’t change
it. Otherwise, we have m ≥ 3 and we produce two solutions sol1 and sol2 de-
pending on the parity of m. Let us consider the two cases:

Suppose that m is even. Let sol1 consist of the cycles (0, 1, 2, 0), (0, 3, 4, 0), . . . ,
(0,m − 1,m, 0). Let sol2 consist of the cycles (0, 1, 0), (0, 2, 3, 0), . . . , (0,m −
2,m− 1, 0), (0,m, 0). Now, suppose that m is odd. Let sol1 consist of the cycles
(0, 1, 0), (0, 2, 3, 0), . . . , (0,m − 1,m, 0). Let sol2 consist of the cycles (0, 1, 2, 0),
(0, 3, 4, 0), . . . , (0,m − 2,m − 1, 0), (0,m, 0).

In all cases the solution bad = (0, 1, 0), . . . , (0, n, 0) satisfies mini δ(soli) ≤
2
3δ(bad) (this relation holds with equality when each cycle has exactly three
vertices and does not contain the depot, since in this case δ(sol1) + δ(sol2) +
δ(sol3) = 2δ(bad) ). Therefore, by (1), the best of the solutions soli is a 1

3
differential approximation.

In Haimovich et al. [9], the authors consider two versions of kVRP with ad-
ditional constraint on the length of each cycles. In the first problem that we
will call here Weighted kVRP (kWVRP), each customer has a weight and
we want to find a solution such that the total customer weight on each cycle
does not exceed k. In the second, called in [9] Min metric Distance, we want
to find a solution such that the total distance on each cycle does not exceed a
given bound λ. For each of these two problems, we give a differential reduction
preserving approximation scheme from Constrained VRP.



Lemma 3. A δ differential approximation solution for Constrained VRP
(respectively, metric case) is also a δ differential approximation for kWVRP
(respectively, metric case).

Proof. Let G = (V,E) with d and w be an instance of kWVRP. We construct an
instance of Constrained VRP as follows. First we set λ = k. The graph and
the function d are the same whereas the function ℓ is defined by: ℓi,j =

wi+wj

2
where we assume that w0 = 0. This function satisfies the triangle inequality.
Moreover, let C be a cycle linking the depot to a subset of customers. We have
∑

q∈C wq ≤ k iff
∑

(i,j)∈C ℓi,j ≤ λ.

Corollary 1. kWVRP is 1
3 differential approximable.

Min Metric Distance is a particular case of Metric Constrained VRP
where the function ℓ is exactly the function d. Thus, from Theorem 6 we deduce
the corollary:

Corollary 2. Min Metric Distance is 1
3 differential approximable.

5 Min-Sum EkTSP

It is easy to see that Min-Sum EkTSP is differential equivalent to Metric
Min-Sum EkTSP since the number of edges in every solution is the same (like
in the TSP case). Hence, we add a constant to all the edge lengths and achieve
the triangle inequality without affecting the best and worst solutions.

Theorem 7. Metric Min-Sum EkTSP is 2
3 differential approximable, ∀k ≥ 1.

Proof. Add to every edge incident with the depot a parallel copy. Compute
a minimum binary f-matching M on G where f(0) = 2k and f(v) = 2 for
v ∈ V \ {0}. Compute by using an algorithm of Hassin and Khuller [11] or
Monnot [14] a solution C ′ for TSP on the subgraph G′ of G induced by V ′ =
V \(∪k−1

i=1 V (Ci))∪{0}, where C1, . . . , Ck are the cycles of M containing the depot
0. The approximate solution sol is composed of C ′ and the cycles C1, . . . , Ck−1.
See Figure 3. Since M is an minimum binary f-matching M on G then M ′ = M \

(∪k−1
i=1 Ci) is an optimum binary 2-matching on G′. We denote by r =

∑k−1
i=1 d(Ci);

the TSP algorithm gives a solution satisfying val ≤ 2
3d(M ′) + 1

3worTSP (G′).
Since workTSP (G) ≥ worTSP (G′) + r and optkTSP (G) ≥ d(M), we deduce that
the value of sol satisfies: apx = val + r ≤ 2

3 [d(M ′) + r] + 1
3 [worTSP (G′) + r] ≤

2
3optkTSP (G) + 1

3workTSP (G)

Theorem 8. Unless P = NP, Min-Sum EkTSP(1,2) has no standard and dif-
ferential approximation scheme.

Proof. We reduce Min TSP Path (1,2) on Hamiltonian cubic graphs to Min-
Sum E2TSP. From a graph G = (V,E) on n vertices, we construct a graph G′

instance of Min-Sum E2TSP. G′ consists of two copies of G and a vertex 0 (the
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Fig. 3. M and sol

depot). Within a copy, the edges have the same distance as in G; d0,i = 1, for each
vertex i in one of the two copies; di,j = 2 if i and j are vertices in different copies.
We have opt(G′) = 2opt(G) + 4 and wor(G′) = 2wor(G) + 4. Given a solution S
of G′ with two cycles, we can transform it in another one S′ that contains exactly
two cycles (0, P1, 0), (0, P2, 0), each of these two paths are contained in a copy of
G and with a better value. The idea for doing this is to remove the edges between
the two copies and to replace them by the missing edges in the two copies. We
consider as solution for G the path with the smallest value among the two.

So, val = min{val(P1), val(P2)} ≤ val(P1)+val(P2)
2 = val(S′)−4

2 ≤ val(S)−4
2 . Since

opt(G) = opt(G′)
2 −2 and wor(G) = wor(G′)

2 −2 then a δ differential approximation
of Min-Sum E2TSP gives a δ differential approximation for Min TSP Path
(1,2) on Hamiltonian and cubic graphs and the conclusion follows.
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