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Abstract. An independent 2-clique of a graph is a subset of vertices
that is an independent set and such that any two vertices inside have a
common neighbor outside. In this paper, we study the complexity of find-
ing an independent 2-clique of maximum size in several graph classes and
we compare its complexity with the complexity of maximum independent
set. We prove that this problem is NP-hard on apex graphs, APX-hard
on line graphs, not n1/2−ε-approximable on bipartite graphs and not
n1−ε-approximable on split graphs, while it is polynomial-time solvable
on graphs of bounded degree and their complements, graphs of bounded
treewidth, planar graphs, (C3, C6)-free graphs, threshold graphs, interval
graphs and cographs.
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1 Introduction

Community detection is a well established research field in the area of social
networks. It can find many applications in this area with the recent development
of social networks like Facebook or Linkedin. A social network can be easily
modeled by a graph in which vertices represent members and edges represent
relationships between those members.

There are several ways to define a community. Intuitively, a community cor-
responds to a dense subgraph, that is to say a subgraph with a lot of edges.
If a community is defined as a group of maximum size such that all members
know each other, it corresponds to the well known NP-hard problem of finding a
maximum clique. However, such a condition is strong and is not always relevant
to describe a community.
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Another way to define a community is to relax the strong condition of a
clique and focus on the distance between members of a social network. Different
measures have been studied to describe it. Luce introduced in [12] the notion
of k-cliques while Mokken extended this notion in [13] by defining k-clubs. A
k-clique (resp. a k-club) of G is a subgraph S in which any two vertices are at
distance at most k in G (resp. in the subgraph induced by S). The standard
term ‘clique’ means both a 1-clique and a 1-club.

With the recent development of social networks and particularly online dat-
ing services, it could be interesting to investigate the detection of some group of
people who do not know each other, but are related by their other relationships.
Such a group could be considered as a ‘potential’ community since it does not
form a community in the first place, but could become one thanks to their prox-
imity. This may find various applications in online dating and meet-up services
in which members expect not to know the other members.

More precisely, considering a graph G, we want to define potential communi-
ties by looking at independent sets in which any two members are related within
a specified distance in G. Contrary to a k-club, the distance between two vertices
must be realized via vertices outside of the subgraph. We call such a subset of
vertices an independent k-clique, where k is the largest distance between ver-
tices of S in the original graph. In this paper, we study the problem of finding
an independent 2-clique of maximum size.

We investigate the complexity of finding an independent 2-clique of maximum
size in several graph classes. Since this problem is close to finding an independent
set of maximum size, we also compare the hardness of the two problems. Figure 1
summarizes the results we prove in the paper.

The paper is structured as follows. In Sect. 2 we introduce formally some
notation and definitions. In Sect. 3 we show that the complexity of Max Inde-
pendent 2-Clique jumps from polynomial-time solvable to NP-hard when the
input class is extended from planar graphs to apex graphs. In Sect. 4 we present
polynomial algorithms to solve Max Independent 2-Clique in some graph
classes. In Sect. 5 we show NP-hardness and non-approximability of Max Inde-
pendent 2-Clique in some other graph classes. Conclusions are given in Sect. 6.
Due to space limit, some proofs will be given in a journal version.

2 Preliminaries

In this paper, all considered graphs are undirected. The complement G = (V,E)
of a graph G = (V,E) is the graph in which uv ∈ E if and only if uv /∈ E, for
all vertex pairs u, v ∈ V . A k-cycle is a cycle of length k. The maximum degree
of a vertex in a graph G will be denoted by the usual notation Δ(G).

We recall that a clique in a graph is a set of mutually adjacent vertices. A
set of vertices is called a 2-clique if any two vertices of the set are at distance
at most 2 in G. An independent set in a graph is a set of vertices such that no
two of them are joint by an edge. An independent 2-clique is a subset of vertices
which is an independent set and a 2-clique at the same time.
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Fig. 1. Relationship among some classes of (connected) graphs, where each child is a
subset of its parent. We compare the hardness of Max Independent 2-Clique and
Max Independent Set in studied graph classes. Max Independent 2-Clique is
NP-hard on graph classes at the top (hatched area) and is polynomial-time solvable on
graph classes at the bottom (non-hatched area). Max Independent Set is NP-hard
on graph classes on the left (dotted area) and is polynomial-time solvable on graph
classes on the right (non-dotted area).

In this paper we are interested in the following optimization problem:

Max Independent 2-Clique
Input: A graph G = (V,E).
Output: A subset S ⊂ V which is an independent 2-clique of maximum size.

The Max Independent 2-Clique problem is closely related to another well
known one:

Max Independent Set
Input : A graph G = (V,E).
Output : A subset S ⊂ V such that S is an independent set of maximum size.

Given a graph G, the standard notation for the maximum size of an inde-
pendent set in G is α(G). The maximum number of vertices in an independent
2-clique of G will be denoted by α=2(G). The subscript ‘=2’ intends to express
that the distance between any two vertices of the independent set is exactly 2.

Note that α=2(G) ≥ 2 whenever at least one connected component of G
is not a complete graph. (Indeed, any such component contains two vertices at
distance exactly two, hence forming an independent 2-clique of size 2.) Moreover,
if G is disconnected and has components G1, . . . , Gk then

α=2(G) = max
1≤i≤k

α=2(Gi)
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For these reasons we assume throughout that G is a non-complete, connected
graph (although some of the algorithms also need to handle disconnected graphs
temporarily).

Some Classes of Graphs. A cactus is a graph in which each edge occurs in
at most one cycle. A (C3, C6)-free graph is a graph containing no triangle C3

and no induced cycle of length 6. An interval graph is a graph for which there
exists a family of intervals on the real line and a bijection between the vertices
of the graph and the intervals of the family in such a way that two vertices
are joined by an edge if and only if the intersection of the two corresponding
intervals is non-empty. A threshold graph is a graph which can be constructed
from the empty graph by a sequence of two operations: insertion of an isolated
vertex, and insertion of a dominating vertex (i.e., a vertex adjacent to all the
other vertices). A cograph is a graph that can be generated from the single-
vertex graph by (repeated applications of) complementation and vertex-disjoint
union. A split graph is a graph whose vertex set can be partitioned into two
subsets, one inducing an independent set S and the other one inducing a clique
K. We denote by Kp,m the complete bipartite graph with p and m vertices in
its vertex parts. The line graph of a graph G is the graph L(G) whose vertices
represent the edges of G, and two vertices of L(G) are adjacent if and only if the
corresponding two edges of G share a vertex. A graph is outerplanar if it has a
crossing-free embedding in the plane such that all vertices are on the same face.
A graph is k-outerplanar if for k = 1, G is outerplanar and for k > 1 the graph
has a planar embedding such that if all vertices on the exterior face are deleted,
the connected components of the remaining graph are all (k − 1)-outerplanar. A
graph G is apex if it contains a vertex v such that G \ v is planar. A family of
graphs on n vertices is δ-dense if it has at least δn2

2 edges. It is everywhere-δ-
dense if the minimum degree is at least δn. A family of graphs is dense (resp.
everywhere-dense) if there is a constant δ > 0 such that all members of this
family are δ-dense (resp. everywhere-δ-dense).

3 Complexity Jump from Planar Graphs
to Apex Graphs

According to [8], Max Independent Set is known to be NP-hard in planar
graphs, and thus also in apex graphs. On the other hand, we prove that Max
Independent 2-Clique is polynomial-time solvable on planar graphs but NP-
hard on apex graphs. This shows that inserting or removing a single vertex
in a graph may dramatically change the complexity of Max Independent 2-
Clique.

Theorem 1. Max Independent 2-Clique is NP-hard on apex graphs.

Proof. We establish a polynomial reduction from Max Independent Set on
cubic planar graphs, which is proved NP-hard in [8], to Max Independent
2-Clique on apex graphs. Let G = (V,E) be a cubic planar graph, an instance
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of Max Independent Set. The instance G′ = (V ′, E′) of Max Independent
2-Clique is defined by inserting an additional vertex z that is adjacent to every
vertex of V . It is easy to see that {z} itself is a one-element non-extendable
independent 2-clique, while the independent 2-cliques of G′ not containing z are
precisely the independent sets of G. �

This first theorem implies another interesting result:

Corollary 2. Max Independent 2-Clique is NP-hard on the class of graphs
of average degree at most 5.

Proof. Cubic graphs on n vertices have 3n/2 edges, thus the graph constructed
in the proof of Theorem 1 is of order n + 1 and has 5n/2 edges, yielding average
degree less than 5. �

Now, in order to prove that Max Independent 2-Clique is polynomial-
time solvable on planar graphs, we use a famous theorem introduced by Courcelle
in [6] which states that any problem expressible in Monadic Second-Order Logic
is linear-time solvable for graphs of bounded treewidth. This allows to show first
the following:

Theorem 3. Max Independent 2-Clique is linear-time solvable on graphs
with bounded treewidth.

Proof. We observe that the property ‘Independent 2-Clique’ is expressible in
Monadic Second-Order Logic:

I2C(S) := ∀x∀y(Sx ∧ Sy) → (¬edg(x, y) ∧ (∃z, edg(x, z) ∧ edg(y, z)))

Since any problem expressible in Monadic Second-Order Logic is linear-time
solvable for graphs of bounded treewidth (see [6]), α=2 can be determined in
linear time in graphs of bounded treewidth. �

Based on this result, we prove the following result.

Theorem 4. Max Independent 2-Clique is polynomial-time solvable on pla-
nar graphs.

Proof. Let G = (V,E) be a planar graph and v ∈ V any vertex. Then all the
other vertices in an independent 2-clique S containing v are at distance exactly
2 apart from v. Further, the 2-clique property for S \ {v} is ensured by vertices
within distance at most 3 from v. Thus, the vertices relevant for S to be an
independent 2-clique induce a subgraph G′ in G such that G′ belongs to the
class of ‘4-outerplanar’ graphs. Graphs which are 4-outerplanar have treewidth
at most 11 (more generally, all k-outerplanar graphs have treewidth at most
3k − 1, due to [3]). Then, using Theorem 3, a polynomial-time algorithm for
Max Independent 2-Clique in planar graphs consists in solving the prob-
lem for all subgraphs G′ (which have treewidth at most 11) defined from each
vertex v. �
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4 Graph Classes with Polynomial-Time Algorithms

In the following we identify some graph classes on which Max Independent
2-Clique is computable in polynomial time, while Max Independent Set is
not always polynomial-time solvable.

First, it is interesting to notice that, according to the next propositions,
Max Independent 2-Clique is polynomial-time solvable on graphs of bounded
degree and also on complements of graphs of bounded degree, while Max Inde-
pendent Set is NP-hard on graphs of bounded degree [8] but polynomial-time
solvable on their complements (using exhaustive search in the non-neighborhood
of each vertex, which can be done in linear time).

Proposition 5. Max Independent 2-Clique is linear-time solvable on graphs
withboundedmaximumdegree,andalsoongraphsofminimumdegreeat least (n−d),
where d is constant.

Now, notice that a natural way to find an independent 2-clique is to take an
independent set included in the neighborhood of one vertex. Then, it is interest-
ing to investigate the properties of a graph in which an independent 2-clique is
not included in the neighborhood of one vertex. We show in Lemma 6 that such
a graph necessarily contains a cycle of length 3 or 6, and cannot be a cactus if
such an independent 2-clique has a certain size. Such properties allow to get an
easy polynomial-time algorithm for Max Independent 2-Clique on (C3, C6)-
free graphs, while Max Independent Set is NP-hard on this class of graphs
(see [1]). From Theorem 4 we already know that Max Independent 2-Clique
is linear-time solvable on cactus graphs, but the property of Lemma 6 allows to
give a simpler algorithm for this class of graph.

Lemma 6. Let G = (V,E) be a graph. Suppose that there exists an independent
2-clique S not contained in the neighborhood of a single vertex. Then G contains
an induced cycle of length 3 or 6. Moreover, if |S| ≥ 4, G is not a cactus.

This lemma implies the following theorem:

Theorem 7. Any (C3, C6)-free graph G satisfies α=2(G) = Δ(G) and Max
Independent 2-Clique is linear-time solvable on it.

Recalling that a tree does not contain any cycle, for the classical class of trees
we obtain the following:

Corollary 8. Any tree T satisfies α=2(T ) = Δ(T ) and Max Independent
2-Clique is linear-time solvable on it.

Finally, Lemma 6 allows to give a polynomial-time algorithm for Max Inde-
pendent 2-Clique on cactus.

Proposition 9. Max Independent 2-Clique is linear-time solvable on cactus
graphs.
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We focus in the following part of this section on classes of graphs on
which both Max Independent 2-Clique and Max Independent Set are
polynomial-time solvable. We first investigate a subclass of split graphs, namely
threshold graphs. It follows from the definitions that a threshold graph G =
(V,E) is a split graph with the following property: the vertices of the independent
set S can be ordered as v1, . . . , vp such that NG(v1) ⊆ NG(v2) ⊆ . . . ⊆ NG(vp).
We denote by u1, . . . , uq the vertices of the clique K, and we suppose that
dG(u1) ≤ dG(u2) ≤ . . . ≤ dG(uq). Without loss of generality, we assume that
there is no isolated vertex in G. Note that a threshold graph can be recognized
in linear time (see [10]).

Proposition 10. Max Independent 2-Clique is linear-time solvable on
threshold graphs. Moreover, in every threshold graph G without isolated vertices
we have α=2(G) = α(G).

Proof. Let G = (V,E) be a threshold graph with the previous decomposition into
S and K. Let NG(vp) = {ur, ur+1, . . . , uq}, for some r ≥ 1. Then a maximum
independent 2-clique in G is S if K \NG(vp) = ∅, and otherwise it is S∪{z} with
any z ∈ K\NG(vp), since in both cases the common neighbor of all these vertices
is uq. Since Max Independent Set can be solved in linear time in threshold
graphs [7], Max Independent 2-Clique can be solved in linear time. �

The previous result can be extended in two directions, for interval graphs
and for cographs.

Using the results of Booth and Lueker [4] it can be tested in linear time
whether a graph G is an interval graph; and if it is, then an interval representation
I1, . . . , In of G can also be generated.

Proposition 11. Max Independent 2-Clique is polynomial-time solvable on
interval graphs.

Proof. Consider any G = (V,E) and let I1, . . . , In be an interval representation
of G. In order to determine α=2(G), first notice that all vertices of an independent
2-clique S of G must have a common neighbor. Indeed, if I and I ′ are the leftmost
and the rightmost intervals of S then any of their common neighbors intersects
all intervals located between them, and therefore is a common neighbor of all
members of S. Then, for every vertex I, we compute a maximum independent
set in the subgraph induced by the neighborhood of I. An optimal solution is
such an independent set with maximum size. Since Max Independent Set is
polynomial-time solvable on interval graphs [9], the result follows. �

We consider now the class of cographs, that contains all threshold graphs.

Proposition 12. Max Independent 2-Clique is polynomial-time solvable on
cographs.

Notice that since Max Independent Set is linear-time solvable on chordal
graphs [7], it is also polynomial-time solvable on interval graphs and threshold
graphs. Moreover, Max Independent Set is also polynomial-time solvable on
cographs by bottom-up tree computation [5].
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5 NP-hardness and Non-approximability

Using the reduction from the proof of Theorem 1, we can conclude:

• Max Independent 2-Clique is NP-hard on dense (resp. everywhere dense)
graphs, since Max Independent Set is NP-hard on dense (resp. every-
where dense) graphs. Moreover, Max Independent 2-Clique is not n1−ε-
approximable for any ε > 0, if P 
= NP, on everywhere dense graphs (and
respectively dense graphs) since the same result holds for Max Independent
Set on everywhere dense graphs (and respectively dense graphs). In order to
get this last result, we use the same inaproximability result for Max Indepen-
dent Set on general graphs [15] and a reduction preserving approximation
from general graphs to everywhere dense graphs (that consists of adding a
clique of the same size as the size of the graph and joining every vertex from
the original graph to all vertices in this clique).

• Max Independent 2-Clique is NP-hard on K4-free graphs, since Max
Independent Set is NP-hard on K3-free graphs [1].

We now investigate graph classes in which Max Independent 2-Clique is
NP-hard while Max Independent Set is polynomial-time solvable. We first
consider a graph class containing threshold graphs, namely the class of split
graphs, for which Max Independent 2-Clique becomes NP-hard (and even
not n1−ε-approximable). Since Max Independent Set is polynomial-time solv-
able on chordal graphs [7], it is also polynomial-time solvable on split graphs.

Theorem 13. On split graphs, Max Independent 2-Clique is NP-hard and
it is not n1−ε-approximable in polynomial time unless P = NP .

We prove now that Max Independent 2-Clique is NP-hard (and even
not n1/2−ε-approximable) on bipartite graphs while Max Independent Set is
polynomial-time solvable since the number of vertices in a maximum independent
set equals the number of edges in a minimum edge covering.

Theorem 14. On bipartite graphs, Max Independent 2-Clique is NP-hard
and is not n1/2−ε-approximable in polynomial time, unless P = NP .

Proof. First we prove the NP-hardness. Max Independent Set is known to
be NP-hard on 3-regular graphs [8], so Max Clique is also NP-hard on (n−4)-
regular graphs (where n is the number of vertices), by considering its comple-
ment. We reduce Max Clique on (n−4)-regular graphs to Max Independent
2-Clique on bipartite graphs. Let G = (V,E) be an (n − 4)-regular graph. We
construct an instance of G′ = (V ′, E′) of Max Independent 2-Clique on
bipartite graphs as follows (see Fig. 2).

Let V1, V2, V3, V4 be four copies of V . Let E1 be a set of |E| vertices corre-
sponding to the edges in E, and define V ′ := V1 ∪ V2 ∪ V3 ∪ V4 ∪ E1. Let there
exist an edge in E′ between a vertex v in Vi, i ∈ {1, 2, 3, 4} and a vertex e in E1
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V1

E1

V2 V3 V4

Fig. 2. The bipartite graph G′, an instance of Max Independent 2-Clique

if and only if the corresponding vertex v in V is incident with the corresponding
edge e in E.

Now we show that G contains a clique of size at least k if and only if G′

contains an independent 2-clique of size at least 4k.
Given a clique C ⊆ V of size at least k in G, the union of the four copies of

C in G′ is an independent 2-clique of size at least 4k.
For the other direction, notice first that the value of a maximum independent

set in a 3-regular graph is at least �n
4 �. Then, the value of a maximum clique

in an (n − 4)-regular graph is also at least �n
4 �. Thus the size of a maximum

independent 2-clique in G′ is at least n.
We consider now a solution C ′ of Max Independent 2-Clique in G′ with

at least 4k ≥ n vertices (this restriction is always possible because of the previous
comment). Notice that C ′ cannot contain both a vertex from E1 and a vertex
from V ′ \ E1 since the distance between any two vertices of C ′ must be 2.
A solution which is a subset of E1 would mean pairwise intersecting edges in G,
hence would have size at most max(3, n−4) < n. Therefore C ′ must be a subset
of V ′ \ E1. Notice that for any i ∈ {1, 2, 3, 4}, C ′ ∩ Vi must be a copy of a clique
in G. Then C ′ is a union of copies of four cliques in G, and |C ′| ≥ 4k. Let C0

be the copy of largest size, which thus has |C0| ≥ k. Then C0 is the copy of a
clique C of G of size at least k.

For the proof of non-approximability, we construct an E-reduction (see [11])
from Max Clique. Let I = (V,E) be an instance of Max Clique. Consider a
reduction similar to the one for the proof of NP-hardness, except that we now con-
sider � = |V | copies V1, . . . , V� instead of four copies of V ; adjacencies are defined
in the same way as before. We denote by I ′ = (V ′, E′) the corresponding instance
of Max Independent 2-Clique from the reduction. As in previous proof, start-
ing with a clique of size opt(I), we can construct an independent 2-clique of size
� · opt(I) in G′ and thus opt(I ′) ≥ � · opt(I). Let S′ be any independent 2-clique
in I ′ of size at least � (it always exists, take e.g. the � copies of the same vertex,
one copy in each Vi). As before, S′ cannot contain both a vertex of E1 and a ver-
tex from V \ E1 since two vertices of S′ must have distance 2 in G′, and S′ cannot
contain only vertices from E1 since any independent 2-clique included in E1 is of
size at most max(3,Δ(G)) < � − 1. Moreover, each subset Vi ∩ S′ corresponds
to a clique in G. Let S be the subset Vi ∩ S′ of largest size. We have |S| ≥ |S′|

�
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and then opt(I) ≥ |S| ≥ |S′|
� = opt(I′)

� when S′ is an optimal solution. Using that
opt(I ′) ≥ � · opt(I) we get opt(I ′) = � · opt(I) and we obtain:

ε(I, S) =
opt(I)

|S| − 1 ≤ � · opt(I ′)
� · |S′| − 1 = ε(I ′, S′)

Since we clearly have opt(I ′) ≤ p(|I|) · opt(I) with a polynomial p, the reduc-
tion is an E-reduction. Then, since Max Clique is not �1−ε-approximable unless
P = NP [15], the same property holds for Max Independent 2-Clique. Thus
Max Independent 2-Clique is not n1/2−ε approximable where n = |V ′| since
n = �2 + |E|. �

Finally we prove that Max Independent 2-Clique is NP-hard (and even
APX-hard) on line graphs, while Max Independent Set is polynomial-time
solvable since it consists in a maximum matching in the original graph.

Theorem 15. On line graphs, Max Independent 2-Clique is NP-hard and
even APX-hard.

Proof. First we prove the NP-hardness. We establish a reduction from the Max
Clique problem on graphs of minimum degree at least n − 4. Consider an
instance G = (V,E) of Max Clique with |V | = n. We construct a graph
G′ = (V ′, E′) (see Fig. 3) as follows. Let G0 = (V0, E0) be a copy of G. Let
V ′ be V0 ∪ A ∪ B ∪ C where A,B,C are three sets of n vertices. Then, let
E′ = E0 ∪E1 ∪E2 ∪E3 ∪E4 such that E1 is a perfect matching between V0 and
A, E2 is the set of all possible edges (i.e., a complete bipartite graph) between
the vertices of A and the vertices of B, E3 is a perfect matching between B
and C, and E4 is the set of all possible edges between any two vertices of C (a
complete subgraph). The line graph of G′, denoted by L(G′), is an instance of
Max Independent 2-Clique. Notice that an independent 2-clique in L(G′)
corresponds to a set of edges in G′ such that, for each pair of edges {e1, e2} in
the set, e1 and e2 are not adjacent but are joined by an edge. We show that G
contains a clique of size at least k if and only if L(G′) contains an independent
2-clique of size at least k + n.

Consider a clique S of size k in G, and let S0 be its copy in G′. We define
a set of edges S′ of size at least k + n in G′ as follows. For any vertex v ∈ S0,

V0 A B C

Fig. 3. The graph G′ for which the corresponding line graph L(G′) is an instance of
Max Independent 2-Clique
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add in S′ its adjacent edge in E1. Moreover add the entire E3 to S′. We show
now that any pair of edges in S′ have an adjacent edge in common. Two edges
of S′ ∩ E1 have a common adjacent edge in E0 since the subgraph induced by
S0 is a clique. Similarly, two edges of E3 have a common adjacent edge in E4.
Moreover, an edge of S′ ∩ E1 and an edge of E3 have a common adjacent edge
in E2 since the subgraph induced by A∪B is Kn,n. Then, the corresponding set
of vertices in L(G′) is an independent 2-clique of size k + n.

In the other direction, consider an independent 2-clique in L(G′) of size k+n.
Notice that it is always possible to take the set of vertices in L(G′) corresponding
to E3 in G′ and two edges in E1 whose vertices in V0 are neighbors in G′, hence
we can suppose that k ≥ 2. Let S′ be the set of all corresponding edges in G′.
Suppose first that there is exactly one edge from E0 in S′. Then, there are at
most n − 2 edges from E1 in S′, and there are at most 2 edges from E2 in S′,
due to the constraints of an independent 2-clique. There cannot be edges from
E3 ∪E4 in S′ since they would not be joined to the edge of E0 ∩S′ by any edge.
Then, S′ contains at most n + 1 edges in S′, which contradicts k ≥ 2. Suppose
now that there are at least two edges from E0 in S′. Name two of them e0,1

and e0,2. Then, there are at most n − 4 edges from E1 in S′ but there is no
edge from E2 in S′. Indeed, an edge e2 from E2 in S′ can be joined by an edge
to at most one of e0,1 and e0,2. Then the size of S′ does not exceed n, which
contradicts k ≥ 2. Thus, we can assume that there is no edge from E0 in S′.
Similarly, there is no edge from E4 in S′. Now, notice that |S′ ∩ (E2 ∪ E3)| ≤ n
since if S′ ∩ (E2 ∪ E3) contained n + 1 edges then at least two of these edges
would have a common endpoint. Consequently, |S′ ∩E1| ≥ k. Moreover, any two
edges from S′ ∩ E1 must have a common adjacent edge in E0 since they cannot
have a common adjacent edge in E2. Then, the subgraph of G induced by the
set of vertices in V0 which are the endpoints of the edges in S′ ∩ E1 must be a
clique whose size is at least k.

For the proof of APX-hardness, we prove that the reduction above is an L-
reduction (see [14]). We proved in the NP-hardness part that any independent
2-clique in I ′ has a size at most 2n. Then opt(I ′) ≤ 2n = 8 · n

4 ≤ 8 ·opt(I) follows
since opt(I) ≥ n

4 in graphs of degree at least n − 4. Moreover, starting with a
clique of size opt(I), we can construct an independent 2-clique of size opt(I) + n
and therefore opt(I ′) ≥ +n + opt(I). Let S′ be an independent 2-clique in I ′

of size at least n + 2 (we proved in the NP-hardness part that it always exists
and that such a set must be included in E1 ∪ E2 ∪ E3). Let S be the set of
vertices in V0 which are incident with edges in E1 ∩ S′. We have |S′| − |S| ≤ n
which implies n + |S| ≥ |S′|. Then we obtain opt(I) − |S| ≤ opt(I ′) − n − |S| =
opt(I ′)−(n+|S|) ≤ opt(I ′)−|S′|. Since Max Independent Set is APX-hard on
the class of graphs of maximum degree 3 [2], Max Clique is also APX-hard on
the class of graphs of minimum degree at least n−4. Thus, Max Independent
2-Clique is APX-hard on line graphs. �
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6 Conclusion

Even if Max Independent 2-Clique and Max Independent Set are similar
problems, their complexity can be very different depending on the graph class
we try to solve the problem in. We showed that Max Independent 2-Clique
is NP-hard on apex, dense and everywhere dense, K4-free, split, bipartite and
line graphs while it is polynomial-time solvable on bounded treewidth, planar,
bounded degree (and complement of bounded degree), (C3, C6)-free, interval
graphs and on cographs. Many further types of graphs may be of interest, con-
cerning separation of graph classes in which the problem is NP-hard from the
ones where the problem is solvable in polynomial-time.
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