
Efficient algorithms for finding the k most vital

edges for the minimum spanning tree problem

Cristina Bazgan, Sonia Toubaline, and Daniel Vanderpooten

Université Paris-Dauphine, LAMSADE,
Place du Maréchal de Lattre de Tassigny, 75775 Paris Cedex 16, France.

{bazgan,toubaline,vdp}@lamsade.dauphine.fr

Abstract. We study in this paper the problem of finding in a graph a
subset of k edges whose deletion causes the largest increase in the weight
of a minimum spanning tree. We propose for this problem an explicit
enumeration algorithm whose complexity, when compared to the current
best algorithm, is better for general k but very slightly worse for fixed k.
More interestingly, unlike in the previous algorithms, we can easily adapt
our algorithm so as to transform it into an implicit exploration algorithm
based on a branch and bound scheme. We also propose a mixed integer
programming formulation for this problem. Computational results show
a clear superiority of the implicit enumeration algorithm both over the
explicit enumeration algorithm and the mixed integer program.

Key words: most vital edges, minimum spanning tree, exact algorithms,
mixed integer program.

1 Introduction

In many applications involving the use of communication or transportation
networks, we often need to identify critical infrastructures. By critical infrastruc-
ture we mean a set of links whose damage causes the largest perturbation within
the network. Modeling this network by a weighted graph, identifying critical in-
frastructures amounts to finding a subset of edges whose removal from the graph
causes the largest increase in the cost. In the literature this problem is referred
to as the k most vital edges problem. In this paper, we are interested in deter-
mining a subset of edges of the graph whose deletion causes the largest increase
in the weight of a minimum spanning tree (MST). This problem is referred to
as k Most Vital Edges MST.

The problem of finding the k most vital edges of a graph has been studied for
various problems including shortest path [1,7,11] and maximum flow [18,14,19].
For the minimum spanning tree problem defined on a graph G with n vertices and
m edges, Frederickson et al. [4] showed that, for general k, k Most Vital Edges

MST is NP -hard and proposed an O(log k)-approximation algorithm. For a fixed
k the problem is obviously polynomial. The case k = 1 has been largely studied
in the literature [5,6,16]. Hsu et al. [5] gave two algorithms in O(m logm) and
O(n2). Iwano and Katoh [6] proposed an algorithm in O(mα(m,n)) using Tar-
jan’s result [17], where α is the inverse-Ackermann function. Pettie [12] improved

2 Cristina Bazgan, Sonia Toubaline, and Daniel Vanderpooten

the results of Tarjan[17] and Dixon et al. [3], and therefore the current best de-
terministic algorithm for solving the case k = 1 is in O(m logα(m,n)). Several
exact algorithms based on an explicit enumeration of possible solutions have
been proposed [8,9,15]. The best one [8] runs in time O(nkα((k + 1)(n− 1), n))
and was achieved by reducing G to a sparse graph. Using Pettie’s result [12], the
running time of the later algorithm becomes O(nk logα((k + 1)(n− 1), n)).

In this paper we propose a new efficient algorithm also based on an explicit
enumeration of all possible solutions for k Most Vital Edges MST. Its com-
plexity O(nk logα(2(n − 1), n)) for fixed k is theoretically very slightly worse
than the complexity of the algorithm proposed by Liang [8] using Pettie’s result
[12]. However, given the fact that α(m,n) is always less than 4 in practice, the
complexity of these two algorithms can be deemed as equivalent. Moreover, the
complexity of our algorithm is better than that of Liang’s algorithm for general
k. More interestingly, unlike any other algorithm, our algorithm has two specific
useful features. First, it can also determine an optimal solution for i Most Vi-

tal Edges MST, for each 1 ≤ i ≤ k, with the same time complexity. Second, it
can be easily adapted to establish an implicit enumeration algorithm based on a
branch and bound procedure. We also present in this paper a formulation by a
mixed integer program to solve k Most Vital Edges MST. We implement and
test all these proposed algorithms using, for the implicit enumeration algorithm,
different branching and evaluation strategies. The results show that the implicit
enumeration algorithm is much faster than the explicit enumeration algorithm
as well as the resolution of the mixed integer program and its use of memory
space can handle instances of significantly larger size. Moreover, we propose an
ε-approximate algorithm.

The rest of the paper is organized as follows. In section 2 we introduce no-
tations and some results related to our problem. In section 3 we present a new
explicit enumeration algorithm that solves k Most Vital Edges MST. In sec-
tion 4 we propose another exact algorithm based on an implicit enumeration
scheme. In section 5, we present a mixed integer programming formulation for
k Most Vital Edges MST. Computational results are presented in section 6.
In section 7, we present an ǫ-approximate algorithm and compare it with the
exact one. Conclusions are provided in section 8.

2 Basic concepts and preliminary results

Let G = (V,E) be a weighted undirected connected graph with |V | = n,
|E| = m and w(e) ≥ 0 is the integer weight of each edge e ∈ E. We denote by
G − E′ the graph obtained from G by removing the subset of edges E′ ⊆ E.
k Most Vital Edges MST consists of finding a subset of edges S∗ ⊆ E with
|S∗| = k that maximizes the weight of a MST in the graph G− S∗. We assume
that G is at least (k+1) edge-connected, since otherwise any selection of k edges
including the edges of a minimum unweighted cut is a trivial solution. Therefore,
we assume k ≤ λ(G)−1, where λ(G) is the edge-connectivity of G. Also, without
loss of generality, we suppose in the following that all weights are different (by

The k most vital edges for MST 3

introducing, if necessary, an arbitrary total order on edges with the same weight).
This assumption implies the uniqueness of minimum spanning trees or forests.
For a non necessarily connected graph, a minimum spanning forest (MSF) is the
union of minimum spanning trees for each of its connected components. In this
paper a tree or a forest is considered as a graph but also, for convenience, as a
subset of edges. For a set of edges F , w(F) represents the sum of the weights of
the edges in F .

We denote by T0 the MST of G. Remark that an optimal solution of k Most

Vital Edges MST must contain at least one edge of T0. For i ≥ 1, let Ti be
the MSF of the graph Gi = G − ∪i−1

j=0Tj . We use in the following the graph

UG
k = (V,∪k

j=0Tj) which has the following interesting property.

Lemma 1. (Liang and Shen [9]) For any S ⊆ E, |S| ≤ k, any edge of the MST
of graph G− S belongs to UG

k .

By Lemma 1, solving k Most Vital Edges MST on G reduces to solving
the same problem on the sparser graph UG

k whose number of edges is at most
(k + 1)(n− 1).

Considering T a MST of a graph, the replacement edge r(e) for an edge
e ∈ T is defined as the edge e′ 6= e of minimum weight which connects the two
disconnected components of T \{e}. The sensitivity of a minimum spanning tree
T , i.e. the allowable variation for each edge weight so that T remains a minimum
spanning tree, can be computed in O(m logα(m,n)) [12]. In particular, for edges
in T , this algorithm provides replacement edges. As a consequence, we get the
following result.

Lemma 2. 1 Most Vital Edges MST defined on a graph with n vertices and
m edges is solvable in O(m logα(m,n)).

Proof : Let T ∗ be a minimum spanning tree in a given graph. We calculate the
replacement edges r(e) for all edges e ∈ T ∗. The most vital edge is the edge e∗

such that w(r(e∗))− w(e∗) = max
e∈T∗

w(r(e)) − w(e). 2

Actually, replacement edges belong to a specific subset of edges as shown by
the following result.

Lemma 3. For each edge e ∈ Ti, we have r(e) ∈ Ti+1 for i = 0, . . . , k − 1.

Proof : Given a graph G, Liang [8] shows that for each edge e ∈ T0, r(e) ∈ T1.
Applying this to graph Gi, for which Ti is the MSF, we get the result. 2

3 An explicit enumeration algorithm for finding the k

most vital edges

We propose an algorithm that constructs a tree search of depth k − 1 in a
breadth-first mode. At the ith level of this tree search, i = 0, . . . , k − 1, a node
s is characterized by:

4 Cristina Bazgan, Sonia Toubaline, and Daniel Vanderpooten

• mv(s): a subset of i edges, corresponding to a tentative partial selection of
the k most vital edges.

• Ũ(s) = U
G′(s)
k−|mv(s)| where G′(s) = (V,E\mv(s)). Hence,

Ũ(s) = (V,∪
k−|mv(s)|
i=0 Ti(s)) where Ti(s) is the MSF in G′(s)− ∪i−1

j=0Tj(s).
• mst(s): a subset of edges forbidden to deletion. These edges belonging to
T0(s), will necessary belong to any MST associated with any descendant of
s. Depending on the position of s in the tree search, the cardinality of mst(s)
varies from 0 to n− 2.

Denote by Ni, for i = 0, . . . , k − 1, the set of nodes of the tree search at the
ith level. We describe in the following the exact algorithm.

We first construct the graph UG
k . Let a be the root of the search tree with

mv(a) = mst(a) = ∅, Ũ(a) = UG
k , w(T0(a)) = w(T0), and N0 = {a}.

For a level i, 0 ≤ i ≤ k − 2, we compute for each node s ∈ Ni and each
edge e ∈ T0(s), the replacement edges r(e) in T1(s). Node s gives rise to
|T0(s)\mst(s)| children in Ni+1. Each such child d, corresponding to an edge
ej in T0(s)\mst(s) = {e1, . . . , en−1−|mst(s)|}, is characterized by:

• mv(d) = mv(s) ∪ {ej}.

• mst(d) = mst(s) ∪ (∪j−1
ℓ=1{eℓ}).

• Ũ(d) is updated from Ũ(s) as follows (using Lemma 3):

• T0(d) = T0(s)∪ {r(ej)} \ {ej} and hence w(T0(d)) = w(T0(s))−w(ej) +
w(r(ej)).

• For j = 1, . . . , k− |mv(d)|, Tj(d) is obtained from Tj(s) by deleting the
replacement edge erep of the edge deleted from Tj−1(s) and replacing it
by its replacement edge r(erep) ∈ Tj+1(s).
If for a level i and an edge erep, the replacement edge r(erep) does not ex-
ist, Tj(d) = Tj(s)\{erep} and Tℓ(d) = Tℓ(s) for ℓ = j+1, . . . , k−|mv(d)|.

If for a level i, Ti(s) = ∅ then Tℓ(d) = ∅ for ℓ = i, . . . , k − |mv(d)|.

At level k − 1, for each node s ∈ Nk−1 and for all edges e ∈ T0(s) \mst(s),
we find r(e) in T1(s) and we determine a node s∗ that verifies
max

s∈Nk−1

max
e∈T0(s)\mst(s)

(w(T0(s))−w(e)+w(r(e))). An optimal solution is the subset

mv(s∗) ∪ {e∗} where e∗ = arg max
e∈T0(s∗)\mst(s∗)

w(T0(s
∗)) − w(e) + w(r(e)). The

largest weight of a MST in the partial graph obtained by deleting this subset is
w(T0(s

∗))− w(e∗) + w(r(e∗)).

Algorithm 1 describes this procedure. Its correctness and complexity are
given in Theorem 1.

Theorem 1. Algorithm 1 computes an optimal solution for an instance of k

Most Vital Edges MST with n vertices and m edges in O(kmα(m,n) +
nk logα(2(n− 1), n)) time.

The k most vital edges for MST 5

Algorithm 1: Explicit resolution of k MVE MST
/* Let a be the root of the tree search */

1 Construct UG
k ;

2 mv(a)← ∅;mst(a)← ∅;w(T0(a))← w(T0); Ũ(a)← UG
k ;

3 N0 ← {a};Ni ← ∅, i = 1, . . . , k − 1;
4 for i← 0 to k − 2 do

5 forall s ∈ Ni do

6 forall e ∈ T0(s) do

7 find r(e) in T1(s);

/* T0(s)\mst(s) = {e1, . . . , en−1−|mst(s)|} */

8 forall ej ∈ T0(s)\mst(s) do

/* create a new node d, a child of s */

9 mv(d)← mv(s) ∪ {ej};
10 w(T0(d))← w(T0(s))− w(ej) + w(r(ej));

11 mst(d)← mst(s) ∪ (∪j−1
ℓ=1{eℓ});

12 determine Ũ(d);
13 Ni+1 ← Ni+1 ∪ {d};

14 max ← 0;
15 forall s ∈ Nk−1 do

16 forall e ∈ T0(s) do

17 find r(e) in T1(s);

18 forall e ∈ T0(s)\mst(s) do

19 if w(T0(s))− w(e) + w(r(e)) > max then

20 max ← w(T0(s))− w(e) + w(r(e));
21 e∗ ← e;
22 s∗ ← s;

/* The largest weight of a MST in the partial obtained graph is

w(T0(s
∗))− w(e∗) + w(r(e∗)) */

23 return S∗ = mv(s∗) ∪ {e∗};

Proof : We first show that Algorithm 1 gives an optimal solution for k Most

Vital Edges MST. Let S∗ be the solution returned by Algorithm 1, and w∗

the weight of the MST in UG
k − S∗. Consider any solution S′, with |S′| = k,

and w′ the weight of the MST in UG
k − S′. Let r be a node of the tree search

such that mv(r) ⊆ S′ and for any child d of r, mv(d) * S′. Clearly, r exists and
corresponds at worst to root a when S′ ∩ T0 = ∅. Since, by definition, r is such
that no edge of T0(r) belongs to S′, we have w′ = w(T0(r)). Moreover, since
w(T0(r)) ≤ w∗, we have w′ ≤ w∗.

We compute now the complexity of Algorithm 1. The construction of UG
k

requires O(kmα(m,n)) using k times the best current algorithms for MST [2,13].
Denote by tu the time for constructing UG

k , by tedge−rep the time for finding the
replacement edges for all edges of a minimum spanning tree, and by tgen the time
for generating any node s of the tree search (that is determining mv(s),mst(s)

and Ũ(s)). Level 0 requires |N0|tedge−rep time. Level i takes |Ni|tedge−rep +
|Ni|tgen time, for 1 ≤ i ≤ k − 1. At level k, we compute the k most vital edges.
Thus, the total time of Algorithm 1 is given by

tu +

k−1∑

i=0

|Ni|tedge−rep +
k−1∑

i=1

|Ni|tgen + |Nk|

6 Cristina Bazgan, Sonia Toubaline, and Daniel Vanderpooten

For each node s ∈ Ni, subset mv(s) consists of ℓ tree edges of T0(a) and
(i− ℓ) edges belonging to the union set of the (i− ℓ) replacement edges of these
ℓ edges, 1 ≤ ℓ ≤ i (the p replacement edges of an edge e ∈ T0(a) are the p

edges of minimum weight which connect the two disconnected components of
T0(a)\{e}). This implies that |Ni| =

∑i

ℓ=1

(
n−1
ℓ

)
Ki−ℓ

ℓ =
∑i

ℓ=1

(
n−1
ℓ

)(
i−1
i−ℓ

)
=(

n+i−2
i

)
= O(ni), where Kp

n =
(
n+p−1

p

)
is the number of combinations with

repetition of p elements chosen from a set of n elements.

For a node s ∈ Ni, 1 ≤ i ≤ k − 1, Ũ(s) contains at most k − i + 1 forests.
Then, tgen is in O((k − i + 1)n) time. Since the replacement edges of a MST
in a graph with n vertices and m edges can be computed in O(m logα(m,n))
[12], tedge−rep is in O(n logα(2(n − 1), n)) time. Therefore, the complexity of
Algorithm 1 is in O(kmα(m,n)+nk logα(2(n− 1), n)) time. Note that the time
needed to generate all the nodes of the tree search is dominated by the total
time to find, for all nodes s of the tree search, the replacement edges r(e) in
T1(s) for all edges e ∈ T0(s). 2

Remark 1. For each node s of the tree search, we could use, instead of the

graph Ũ(s), the graph U(s) = U
G′′(s)
k−|mv(s)| where G′′(s) is the graph obtained

from G by contracting the edges of mst(s) and removing the edges of mv(s).

Thus, U(s) = (V,∪
k−|mv(s)|
i=0 Ti(s)) where Ti(s) is the MSF of G′′(s)−∪i−1

j=0Tj(s).
Unfortunately, given a child d of a node s of the tree search, updating efficiently
U(d) from U(s) is not as straightforward as for Ũ . However, even if updating U

could be performed more efficiently than Ũ , we would get the same complexity
since the time for generating all nodes of the tree search is dominated by the
total time for finding the replacement edges for all nodes in the tree search.

Discussion For fixed k, by using the result of Dixon et al. [3], Liang [8] proposes
an algorithm to solve k Most Vital Edges MST in O(nkα((k+1)(n− 1), n))
time. Using Pettie’s result [12] Liang’s algorithm can be implemented in O(tu +
nk logα((k + 1)(n− 1), n)) time, where tu is the time for constructing UG

k . Our
algorithm has a complexity that is theoretically slightly worse than that of Liang.
Nevertheless, since α(m,n) is always less than or equal to 4 in practice, the
complexity of these two algorithms can be considered as equivalent. Moreover,
the advantage of our algorithm is to determine, with the same time complexity,
an optimal solution for i Most Vital Edges MST, for 1 ≤ i ≤ k. Indeed, at
each level i, we can find among nodes of Ni, the node with the largest weight of
a MST.

For general k, our bound is clearly better than that of Liang. Indeed, in
Liang’s algorithm, after the determination of UG

k , Liang divides the problem
into two cases: (i) |T0 ∩ S∗| = i, 1 ≤ i < k and (ii) |T0 ∩ S∗| = k where S∗

represents a subset of k most vital edges. In (i), for every possible combination
of i edges among the n − 1 edges of T0, 1 ≤ i < k, the author constructs a
specific graph G with a number of nodes and edges depending only on k, and
determines the k − i remaining edges in G. In (ii), from every possible choice
of (k − 1) edges among the n − 1 edges of T0, the author constructs a MST

The k most vital edges for MST 7

T ′ in the graph obtained by deleting these (k − 1) edges and finds the kth

edge to be removed by using the replacement edges of T ′. Therefore, (i) and

(ii) are performed respectively in
∑k−1

i=1

(
n−1
i

)
(tG + tk−i) and

(
n−1
k−1

)
tlast time,

where tG , tk−i and tlast are respectively the time to construct G, the time to
determine the k − i remaining edges to be removed from G and the time to
find the kth edge to be removed from T ′ ∩ T0. Note that Liang, who considers
only the case where k is fixed, does not need to explicit the term involving tk−i.
However, for general k, even if expressing the complexity of his algorithm as in
O(tu + k3nk +

∑k−1
i=1

(
n−1
i

)
tk−i + knk logα((k + 1)(n− 1), n)), one can observe

that it is relatively larger than the complexity of our proposed algorithm that
remains in O(tu + nk logα(2(n− 1), n)) time.

The other exact algorithms proposed in the literature [9,15] have a worse
complexity than our algorithm both for fixed ad general k.

4 An implicit enumeration algorithm for finding the k

most vital edges

An interesting feature of our explicit enumeration algorithm is that, unlike
the algorithms previously proposed, it can easily be adapted to design an implicit
algorithm based on a branch and bound scheme. To do this, we use for each node
s an upper bound UB(s) based on successive replacements of edges. We also use
lower bounds LB(s) constructed by extending the forest, corresponding to s, to
a particular minimum spanning tree.

In order to obtain the best possible bounds, we construct U(s) for each node
s, instead of using Ũ(s). For each child d of s, U(d) is determined by constructing
Ti(d), for 0 ≤ i ≤ k − |mv(d)| from the edges of U(s).

4.1 Lower bounds

For a fixed node s of the tree search, k− |mv(s)| edges remain to be deleted
from U(s). We present different ways of determining these remaining edges giving
rise to three possible lower bounds.

1. LBgreedy(s): Given T0(s), we compute r(ej) for all ej ∈ T0(s). We delete the
edge e∗j which realizes maxej∈T0(s)\mst(s)(w(r(ej))−w(ej)) and replace it by
r(e∗j). We update U(s) and repeat the process until we remove k − |mv(s)|
edges. The value of this bound is the weight of the last MST obtained.

2. LBfirst(s): We remove the k − |mv(s)| edges of T0(s) \ mst(s) having the
smallest weight, and we construct a MST from the remaining edges in T0(s).
The weight of the MST obtained is the value of this bound.

3. LBbest(s): Given T0(s), we compute r(ej) for all ej ∈ T0(s). We remove
the k− |mv(s)| edges in T0(s) \mst(s) whose difference between the weight
of their replacement edge and their weight is the largest, and we construct
a MST from the remaining edges in T0(s). The value of this bound is the
weight of the MST obtained.

8 Cristina Bazgan, Sonia Toubaline, and Daniel Vanderpooten

In order to test these bounds, we computed, for instances with different
values of n and k, these three lower bounds at the root a of the tree search.
The instances are generated as explained in section 6. Due to space limitation,
we give in Table 1, results for two types of instances. We note that there is no
dominance between these three bounds. We also note that LBfirst is the fastest
in terms of running time but gives bad values. LBgreedy, which gives the best
values in most cases, takes much more time than the other bounds. LBbest, which
gives similar values as LBgreedy, takes only about twice as much time as LBfirst

and about 40 to 100 times less time than LBgreedy.

n k LBgreedy(a) LBfirst(a) LBbest(a) w(T0) UB(a)
value time(s) value time(s) value time(s) in G \ S∗

20 9 265 0.873 255 0.016 250 0.047 282 719
221 0.889 219 0.015 222 0.032 229 711
178 0.982 179 0.032 180 0.031 211 669
166 0.842 157 0.000 157 0.016 186 681
276 0.624 268 0.015 267 0.016 278 726
246 0.904 243 0.016 240 0.000 279 764
236 0.764 232 0.031 235 0.047 239 682
272 0.967 254 0.031 255 0.031 272 712
205 1.060 193 0.016 203 0.000 207 668
245 0.748 216 0.000 225 0.016 249 716

100 7 185 5.912 173 0.032 184 0.062 185 253
192 5.554 186 0.031 192 0.062 199 264
215 5.850 192 0.031 212 0.047 215 274
211 5.585 193 0.031 211 0.062 212 278
201 5.651 186 0.035 201 0.056 201 265
215 5.446 194 0.035 215 0.052 215 279
220 5.028 202 0.034 220 0.052 223 279
218 5.048 201 0.031 218 0.051 220 284
202 5.772 192 0.031 202 0.047 204 276
207 5.616 191 0.031 205 0.047 210 274

Table 1. Values of the lower and upper bounds at the root of the tree search

4.2 Upper bound

Let s be a given node of the tree search. To compute UB(s), we select the
edge in T1(s) of largest weight and we replace the edge deleted from Tj(s) by
the edge with largest weight belonging to Tj+1(s), for j = 1, . . . , k−|mv(s)|− 1.
We repeat this process k − |mv(s)| − 1 times.

Let F be the set of the k− |mv(s)| edges selected from T1(s) in this process.
Then, we must determine the k − |mv(s)| edges to remove. To obtain an upper
bound for all feasible solutions obtained from s, we delete the k−|mv(s)| edges of
smallest weight among the edges of F ∪T0(s)\mst(s). Denote by Emin the subset
of these selected edges removed. Therefore, UB(s) = w(T0(s))+w(F)−w(Emin).

We computed, for instances with different values of n and k, this upper bound
at the root a of the tree search (see Table 1). The main observation is that UB(a)
is rather close to the optimal value for small values of k and deteriorates as k

increases.

The k most vital edges for MST 9

4.3 Branching strategy

Let a be the root of the tree search. The branching strategy is the same as for
the explicit enumeration algorithm. We start with a feasible solution value cor-
responding to max{LBgreedy(a), LBfirst(a), LBbest(a)}. We tested two different
best first search strategies. The first one is the standard strategy (Branching:
best upper bound) where the node with the largest upper bound is selected first.
No lower bound is computed and the fathoming test is performed only when we
update the current best feasible solution value, which can occur only at level
k − 1 of the tree search. In the second strategy (Branching: best lower bound),
the node with the largest lower bound is selected first. Lower and upper bounds
are computed at every node. Since LBbest gives values close to the best ones
and takes less time, we use this bound for computing a lower bound. Here, the
fathoming test is performed at each node by comparing each lower bound value
with the current best feasible solution value.

5 A mixed integer programming formulation for finding

the k most vital edges

Consider the graph UG
k = (V,Eu) with Eu = ∪k

j=0Tj . Let D = (V,Au) be
the digraph obtained by replacing each edge (i, j) in Eu by two arcs (i, j) and
(j, i) in Au and let wij = w(e) for each edge e ∈ Eu. In [10], Magnanti and
Wolsey present a formulation of the minimum spanning tree problem, called the
directed multicommodity flow model. Using this model, we propose the following
formulation for k Most Vital Edges MST:

max
z∈Z

min
∑

(i,j)∈Eu

(wij +Mij zij)(yij + yji)

∑

(j,1)∈Au

f ℓ
j1 −

∑

(1,j)∈Au

f ℓ
1j = −1 ∀ℓ ∈ V \{1}

∑

(j,i)∈Au

f ℓ
ji −

∑

(i,j)∈Au

f ℓ
ij = 0 ∀i, ℓ ∈ V \{1}, i 6= ℓ

∑

(j,ℓ)∈Au

f ℓ
jℓ −

∑

(ℓ,j)∈Au

f ℓ
ℓj = 1 ∀ℓ ∈ V \{1}

f ℓ
ij ≤ yij ∀(i, j) ∈ Au, ∀ℓ ∈ V \{1}
∑

(i,j)∈Au

yij = n− 1

fij ≥ 0, yij ≥ 0 ∀(i, j) ∈ Au

where Z = {zij ∈ {0, 1}, ∀(i, j) ∈ Eu :
∑

(i,j)∈Eu

zij = k}

In this formulation, we consider node 1 as the root of a MST and every node
ℓ 6= 1 defines a commodity. Denote by f ℓ

ij the flow of ℓ passing through (i, j).
Variable zij is equal to 1 if edge (i, j) is deleted and 0 otherwise. In order to
discard this edge from any MST, we assign it the weight wij +Mij where Mij

is a large enough constant, e.g. Mij = max(i,j)∈E wij + 1− wij .
Using the dual of the inner program, we obtain the following mixed integer

programming formulation for k Most Vital Edges MST.

10 Cristina Bazgan, Sonia Toubaline, and Daniel Vanderpooten

max
∑

ℓ∈V, ℓ 6=1

(αℓ
ℓ − αℓ

1) + (n− 1)µ

σℓ
ij ≥ αℓ

j − αℓ
i ∀(i, j) ∈ Au, ∀ℓ ∈ V \{1}

∑

ℓ 6=1

σℓ
ij + µ ≤ wij +Mij zij ∀(i, j) ∈ Eu

∑

ℓ 6=1

σℓ
ji + µ ≤ wij +Mij zij ∀(i, j) ∈ Eu

∑

(i,j)∈Eu

zij = k

zij ∈ {0, 1} ∀(i, j) ∈ Eu

σℓ
ij ≥ 0 ∀(i, j) ∈ Au, ∀ℓ ∈ V \{1}

αℓ
i ≥ 0 ∀i ∈ V, ℓ ∈ V \{1}

µ unrestricted

6 Computational results

All experiments presented here were performed on a 3.4GHz computer with
3Gb RAM. All proposed algorithms are implemented in C. All instances are
complete graphs defined on n vertices. Weights w(e) for all e ∈ E are generated
randomly, uniformly distributed in [1, 100]. For each value of n and k presented
in this study, 10 different instances were generated and tested. The results are re-
ported in Table 2 where each given value is the average over 10 instances. For the
implicit enumeration algorithm, treated and generated nodes represent respec-
tively nodes for which we have computed mv, mst, and U and nodes satisfying
the condition of not fathoming (UB > bestvalue). Column ♯opt corresponds to
the number of instances solved optimally.

We first compare the explicit and implicit enumeration algorithms. The re-
sults show that implicit enumeration algorithms are much faster than the explicit
enumeration algorithm and can handle instances of considerably larger size. Ob-
serve that, for the explicit enumeration algorithm, the tree search size is identical
for any instance of the same (n, k) type. As a consequence, either all or none
of the instances of a same (n, k) type can be solved. Moreover, for the same
reason, computation times show a low variance for all instances of a same (n, k)
type. Regarding the implicit enumeration algorithm, the "Branching: best upper
bound" strategy yields slightly better running times than the "Branching: best
lower bound" strategy. However, the "Branching: best upper bound" strategy,
for which fathoming tests are performed less frequently, generates more nodes.
Thus, owing to the limited memory capacity, the "Branching: best lower bound"
strategy can handle instances of larger size.

We compare now the results obtained by the mixed integer program with
those of the implicit enumeration algorithm. For this, we implemented the mixed
integer program using the solver CPLEX 12.1 and we run it on the same gener-
ated instances. We limited the running time to 1 hour for the instances with 20,
25, 30 and 50 vertices, and to 2 hours for the other instances. The results are
also reported in Table 2 where

• Time, given in seconds, is the average running time on the 10 instances. For
any instance which is not solved optimally within the time limit, the running
time is set to this limit;

The k most vital edges for MST 11

• Generated nodes represents the average number of nodes created in the tree
search corresponding to instances giving a feasible solutions;

• Gap, expressed as a percentage, represents the average over ratios UB − BS
UB

computed on all instances returning at least one feasible solution, where UB

is the final best upper bound and BS is the best solution value found;
• Opt/Feas represents the number of instances solved optimally /for which at

least one feasible solution was found within the time limit.

We note that the mixed integer program reaches the optimal value for very
small instances only. Actually, for n < 100, we only obtain in most cases feasible
solutions with rather large gaps which indicates that optimality is far from being
reached. Finally, for instances with n ≥ 100, no feasible solutions are returned
within the time limit. Moreover, for n = 300 and 400, the execution of the
program exceeds the memory after a few seconds (297.437 and 0.56 seconds in
average respectively).

From all these remarks, we can conclude that our proposed implicit enumer-
ation algorithm gives better results than the explicit enumeration algorithm as
well as the resolution of the mixed integer program and this both in terms of
running time and using memory capacity.

7 ε-approximate algorithm

The proposed algorithm is based on the previous implicit algorithm. The
aim being to obtain an ε-approximate solution of the optimum, the condition to
generate a node s in the tree search is now (1 − ε)UB(s) > bestvalue. Indeed,
the value v returned by the approximate algorithm must verify opt(G)(1− ε) ≤
v ≤ opt(G). Since v is equal to bestvalue, any node for which UB(s)(1 − ε) ≤
bestvalue is fathomed.

The algorithm is implemented in C and tested on the same instances gen-
erated in Section 6 and this for ε = 0.01; 0.05 and 0.1. Thus, we compare the
ε-approximate algorithm with the implicit algorithm. The results are summa-
rized in Table 3. The meaning of treated and generated nodes is the same as in
Section 6 and each given value in the table represents the average over the 10
generated instances for each value of n and k.

We note that the running times of the ε-approximate algorithm are signifi-
cantly lower than those of the implicit enumeration algorithm. Running times
do not exceed 21 seconds for ε = 0.1, 180 seconds for ε = 0.05 and 1 215 seconds
for ε = 0.01. We also note that for large instances with n = 300 and 400 nodes,
the ε-approximate algorithm solves the problem for ε = 0.05 and 0.1 at the root
in a time less than 1 second, and for ε = 0.1 in a time less than 90 seconds while
the implicit enumeration algorithm requires 1 793.460 and 7 265.850 seconds
respectively.

n k Explicit Implicit enumeration Mixed Integer Program
enumeration Branching: best lower bound Branching: best upper bound

Time Nodes Time Nodes Time Nodes ♯opt Time Generated Gap Opt/Feas
(s) (s) Treated Generated (s) Treated Generated (s) nodes (%)

20 3 0.000 210 0.000 165.1 33.5 0.001 165.1 34.3 10 35.750 1 638.2 0 10 / 10
5 0.135 8 855 0.032 3 280.6 422.3 0.032 3 230.9 463.2 10 692.984 21 792.4 0 10 / 10
7 2.732 177 100 0.419 35 714.0 4 792.0 0.380 35 659.2 5 918.2 10 3 600.000 61 386.5 23.91 0 / 10
9 36.020 220 075 3.322 258 321.8 35 639.1 3.047 257 776.0 44 037.4 10 3 600.000 36 908.1 46.49 0 / 10

25 3 0.000 325 0.000 245.0 29.8 0.003 245.0 31.4 10 141.270 2 066.5 0 10 / 10
5 0.318 20 475 0.095 7 146.4 705.1 0.089 7 047.2 866.7 10 2 984.021 29 300.4 8.69 5 / 10
7 8.783 593 775 1.772 128 802.5 15 143.4 1.617 128 742.2 16 926.0 10 3 600.000 14 218.1 46.05 0 / 10
8 52.068 2 629 575 3.765 247 900.6 26 076.8 3.566 247 822.8 31 938.3 10 3 600.000 10 733.5 66.43 0 / 10

30 3 0.007 465 0.000 345.1 47.7 0.005 345.1 49.7 10 424.171 3 831.9 0 10 / 10
5 0.812 40 920 0.260 16 756.3 1 373.7 0.231 16 625.9 1 588.7 10 3 458.330 13 156.2 26.03 1 / 10
7 40.461 1 623 160 3.899 231 523.5 20 779.0 3.553 231 210.2 25 737.4 10 3 600.000 4 855.9 63.65 0 / 10

50 3 0.880 1 275 0.028 949.1 64.9 0.026 949.1 85.3 10 3 600.000 1 285.8 17.28 0 / 10
5 15.390 292 825 2.043 76 840.3 4 649.3 1.856 74 550.2 5 138.1 10 3 600.000 503.0 43.59 0 / 10
7 - - 88.886 3 156 471.8 168 127.4 81.707 3 156 170.1 218 830.4 10 3 600.000 21.33 80.47 0 / 9

75 3 0.376 2 850 0.101 2 296.8 114.8 0.096 2 296.8 117.7 10 7 200.000 430.2 17.83 0 / 10
5 - - 11.248 259 738.0 8 130.7 10.459 259 737.6 10 519.6 10 6 490.238 0.3 39.22 1 / 10
7 - - 650.008 13 330 591.9 474 912.7 463.385 9 608 531.7 379 179.2 7 7 200.000 0 55.75 0 / 3

100 3 1.083 5 050 0.224 3 617.1 83.3 0.210 3 617.1 89.9 10 7 200.000 0 0 / 0
5 - - 54.148 904 662.4 19 383.8 49.895 904 662.4 23 800.1 10 7 200.000 0 0 / 0
7 - - 2 016.410 26 835 600.6 721 120.4 935.777 11 986 049.2 368 180.0 4 7 200.000 0 0 / 0

200 5 - - 572.557 2 933 547.2 46 236.3 670.340 2 933 296.1 49 073.6 10 7 200.000 0 0 / 0

300 5 - - 1 793.460 3 996 192.1 43 671.2 2 163.350 3 980 311.0 56 924.5 10 7 200.000 0 0 / 0

400 5 - - 7 265.850 10 956 321.8 106 433.4 6 195.182 5 927 376.8 56 424.5 7 - - - 0 / 0

italics: average over instances solved optimally
-: memory overflow

Table 2. Comparison of explicit enumeration, implicit enumeration and MIP-based algorithms

T
h
e
k

m
o
st

v
ita

l
ed

g
es

fo
r

M
S
T

1
3

n k ε-approximate algorithm
ε = 0.01 ε = 0.05 ε = 0.1

Time Nodes ε′ Time Nodes ε′ Time Nodes ε′

(s) Treated Generated (s) Treated Generated (s) Treated Generated

20 3 0.000 162.9 30.6 0.00000 0.000 136.9 14.0 0.00000 0.000 100.6 7.4 0.00198
5 0.035 3 108.2 384.6 0.00000 0.024 2 068.8 211.1 0.00043 0.012 1 258.4 113.1 0.00267
7 0.393 33 258.5 4 356.0 0.00000 0.273 21 820.0 2 575.7 0.00323 0.174 13 209.9 1 451.0 0.00922
9 3.044 237 267.0 32 085.4 0.00000 2.180 160 036.0 20 093.2 0.00421 1.376 93 275.6 10 888.2 0.00735

25 3 0.000 230.8 26.7 0.00000 0.000 189.8 13.1 0.00263 0.000 98.2 5.7 0.00263
5 0.093 6 691.6 637.2 0.00060 0.061 4 235.5 345.2 0.00213 0.031 2 002.0 146.1 0.00779
7 1.648 119 033.8 13 603.0 0.00000 1.066 72 193.8 7 178.9 0.00148 0.606 37 683.2 3 379.8 0.00416
8 3.513 226 536.1 23 389.9 0.00000 2.255 135 623.2 12 792.9 0.00142 1.242 68 426.4 5 900.1 0.00319

30 3 0.000 338.1 38.8 0.00000 0.000 280.1 17.3 0.00453 0.000 161.6 7.2 0.00452
5 0.233 15 137.4 1 171.7 0.00000 0.123 7 302.6 470.5 0.00307 0.059 3 146.2 181.9 0.00363
7 3.523 209 289.3 18 256.8 0.00000 2.183 119 797.9 9 363.5 0.00470 1.155 57 665.1 4 062.5 0.00721

50 3 0.025 899.4 48.8 0.00000 0.011 381.6 14.1 0.00000 0.000 76.5 2.4 0.00646
5 1.790 67 052.0 3 757.3 0.00000 0.635 20 586.6 866.5 0.00178 0.255 7 213.3 241.8 0.00279
7 74.688 2 534 780.6 130 685.3 0.00000 28.324 820 954.5 36 722.1 0.00053 7.958 193 201.5 7 827.2 0.00316

75 3 0.092 2 121.1 75.7 0.00000 0.0016 325.4 5.3 0.00241 0.003 75.0 1.0 0.00355
5 8.334 187 230.6 5 444.6 0.00000 1.679 27 753.6 616.2 0.00168 0.232 2 860.8 50.4 0.00387
7 510.768 9 838 080.8 336 993.8 0.00000 109.664 1 734 007.8 51 514.5 0.00195 20.661 260 410.7 6 584.0 0.00536

100 3 0.208 3 341.4 57.4 0.00000 0.013 121.6 1.4 0.00051 0.010 100.0 1.0 0.00308
5 34.779 561 343.8 10 619.5 0.00000 3.875 41 860.1 611.1 0.00143 0.396 3 307.4 41.6 0.00297
7 1 214.43 14 901 505.8 377 861.2 0.00000 179.771 1 703 572.1 34 196.8 0.00143 13.940 95 045.1 1 492.2 0.00371

200 5 165.904 682 703.2 10 147.9 0.00000 0.731 1 693.0 11.5 0.00163 0.131 200.0 1.0 0.00163

300 5 87.600 164 368.6 1 129.4 0.00030 0.380 300.0 1.0 0.00245 0.379 300.0 1.0 0.00241

400 5 89.564 80 786.1 257.3 0.00000 0.846 400.0 1.0 0.00000 0.842 400.0 1.0 0.00000

Table 3. Results of the ε-approximate algorithm

14 Cristina Bazgan, Sonia Toubaline, and Daniel Vanderpooten

Moreover, the approximate solutions a posteriori are within ε′ to the opti-
mum, with ε′ ≤ 0.0006 for ε = 0.01, ε′ ≤ 0.0047 for ε = 0.05 and ε′ ≤ 0.00922
for ε = 0.1.

For ε = 0.01, we note that the problem is nearly solved to optimality (ε′ = 0).

All these remarks show that the proposed lower bounds and upper bound
are of very good quality and that the running time of the implicit enumeration
algorithm is the time needed to verify the optimality of the solution. Indeed,
this optimal solution is either found in a few seconds or determined at the root
of the tree search corresponding then to the maximum value of the three lower
bounds associated to the root.

8 Conclusions

Algorithms proposed in this paper can be easily adapted to solve some vari-
ants of the k Most Vital Edges MST problem. In a first variant, a removing
cost is associated to each edge. The problem consists of finding a subset of edges
with total cost bounded by a budget limit whose deletion causes the largest in-
crease in the weight of a minimum spanning tree. In a second variant, we have
to determine a minimum number of edges to be removed such that the weight
of a minimum spanning tree in the resulting graph is at least a fixed value.

References

1. A. Bar-Noy, S. Khuller, and B. Schieber. The complexity of finding most vital arcs
and nodes. Technical Report CS-TR-3539, University of Maryland, 1995.

2. B. Chazelle. A minimum spanning tree algorithm with inverse-Ackermann type
complexity. Journal of the ACM, 47(6):1028–1047, 2000.

3. B. Dixon, M. Rauch, and R.E. Tarjan. Verification and sensitivity analysis of
minimum spanning trees in linear time. SIAM Journal on Computing, 21(6):1184–
1192, 1992.

4. G. N. Frederickson and R. Solis-Oba. Increasing the weight of minimum span-
ning trees. Proceedings of the 7th ACM-SIAM Symposium on Discrete Algorithms
(SODA 1996), pages 539–546, 1996.

5. L. Hsu, R. Jan, Y. Lee, C. Hung, and M. Chern. Finding the most vital edge with
respect to minimum spanning tree in a weighted graph. Information Processing
Letters, 39(5):277–281, 1991.

6. K. Iwano and N. Katoh. Efficient algorithms for finding the most vital edge of a
minimum spanning tree. Information Processing Letters, 48(5):211–213, 1993.

7. L. Khachiyan, E. Boros, K. Borys, K. Elbassioni, V. Gurvich, G. Rudolf, and
J. Zhao. On short paths interdiction problems : total and node-wise limited inter-
diction. Theory of Computing Systems, 43(2):204–233, 2008.

8. W. Liang. Finding the k most vital edges with respect to minimum spanning trees
for fixed k. Discrete Applied Mathematics, 113(2-3):319–327, 2001.

9. W. Liang and X. Shen. Finding the k most vital edges in the minimum spanning
tree problem. Parallel Computer, 23(3):1889–1907, 1997.

The k most vital edges for MST 15

10. T. L. Magnanti and L. Wolsey. Optimal trees. In M. O. Ball, et al. (Eds.),
Network Models, Handbook in Operations Research and Management Science, Vol
7, North-Holland, Amsterdam, pages 503–615, 1995.

11. E. Nardelli, G. Proietti, and P. Widmayer. A faster computation of the most vital
edge of a shortest path. Information Processing Letters, 79(2):81–85, 2001.

12. S. Pettie. Sensitivity analysis of minimum spanning tree in sub-inverse-ackermann
time. In Proceedings of 16th International Symposium on Algorithms and Compu-
tation (ISAAC 2005), LNCS 3827, pages 964–973, 2005.

13. S. Pettie and V. Ramachandran. An optimal minimum spanning tree algorithm.
Journal of the ACM, 49(1):16–34, 2002.

14. H. D. Ratliff, G. T. Sicilia, and S. H. Lubore. Finding the n most vital links in
flow networks. Management Science, 21(5):531–539, 1975.

15. H. Shen. Finding the k most vital edges with respect to minimum spanning tree.
Acta Informatica, 36(5):405–424, 1999.

16. F. Suraweera, P. Maheshwari, and P. Bhattacharya. Optimal algorithms to find
the most vital edge of a minimum spanning tree. Technical Report CIT-95-21,
School of Computing and Information Technology, Griffith University, 1995.

17. R. E. Tarjan. Applications of path compression on balanced trees. Journal of the
ACM, 26(4):690–715, 1979.

18. R. Wollmer. Removing arcs from a network. Operations Research, 12(6):934–940,
1964.

19. R. K. Wood. Deterministic network interdiction. Mathematical and Computer
Modeling, 17(2):1–18, 1993.

