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2 Université Blaise Pasal - CNRS UMR 6158 - LIMOS, Clermont-Ferrand, FRANCEflorent.fouaud�gmail.omAbstrat. We introdue the problem Partial VC Dimension thatasks, given a hypergraph H = (X,E) and integers k and ℓ, whether onean selet a set C ⊆ X of k verties of H suh that the set {e∩C, e ∈ E}of distint hyperedge-intersetions with C has size at least ℓ. The sets
e ∩ C de�ne equivalene lasses over E. Partial VC Dimension is ageneralization of VC Dimension, whih orresponds to the ase ℓ = 2k,and of Distinguishing Transversal, whih orresponds to the ase
ℓ = |E| (the latter is also known as Test Cover in the dual hyper-graph). We also introdue the assoiated �xed-ardinality maximizationproblem Max Partial VC Dimension that aims at maximizing thenumber of equivalene lasses indued by a solution set of k verties. Westudy the approximation omplexity of Max Partial VC Dimensionon general hypergraphs and on more restrited instanes, in partiular,neighborhood hypergraphs of graphs.1 IntrodutionWe study identi�ation problems in disrete strutures. Consider a hypergraph(or set system) H = (X,E), where X is the vertex set and E is a olletionof hyperedges, that is, subsets of X . Given a subset C ⊆ X of verties, we saythat two hyperedges of E are distinguished (or separated) by C if some elementin C belongs to exatly one of the two hyperedges. In this setting, one an tellapart the two distinguished hyperedges simply by omparing their intersetionswith C. Following this viewpoint, one may say that two hyperedges are related ifthey have the same intersetion with C. This is learly an equivalene relation,and one may determine the olletion of equivalene lasses indued by C: eahsuh lass orresponds to its own subset of C. Any two hyperedges belonging todistint equivalene lasses are then distinguished by C. We all these lassesneighborhood equivalene lasses. In general, one naturally seeks to distinguishas many pairs of hyperedges as possible, using a small set C.It is a well-studied setting to ask for a maximum-size set C suh that Cindues all possible 2|C| equivalene lasses. In this ase, C is said to be shattered.
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The maximum size of a shattered set in a hypergraph H is alled its Vapnis-�ervonenkis dimension (VC dimension for short). This notion, introdued byVapnis and �ervonenkis [42℄ arose in the ontext of statistial learning theory asa measure of the strutural omplexity of the data. It has sine been widely usedin disrete mathematis; see the referenes in the thesis [9℄ for more referenes.We have the following assoiated deision problem.VC DimensionInput: A hypergraph H = (X,E), and an integer k.Question: Is there a shattered set C ⊆ X of size at least k in H?The omplexity of VC Dimension was studied in e.g. [17,21,36℄; it is aomplete problem for the omplexity lass LOGNP de�ned in [36℄ (it is thereforea good andidate for an NP-intermediate problem). VC Dimension remainsLOGNP-omplete for neighborhood hypergraphs of graphs [31℄ (the neighborhoodhypergraph of G has V (G) as its vertex set, and the set of losed neighborhoodsof verties of G as its hyperedge set).In another setting, one wishes to distinguish all pairs of hyperedges (in otherwords, eah equivalene lass must have size 1) while minimizing the size of thesolution set C. Following [27℄, we all the assoiated deision problem, Distin-guishing Transversal.Distinguishing TransversalInput: A hypergraph H = (X,E), and an integer k.Question: Is there a set C ⊆ X of size at most k that indues |E| distintequivalene lassses?There exists a rih literature about Distinguishing Transversal. It wasstudied under di�erent names, suh asTest Set in Garey and Johnson's book [26,SP6℄; other names inlude Test Cover [18,19,20℄, Disriminating Code [16℄or Separating System [7,39℄.3 A elebrated theorem of Bondy [8℄ also im-pliitely studies this notion. A version of Distinguishing Transversal alledIdentifying Code was de�ned for graphs instead of hypergraphs [24,28℄. Sim-ilarly as for the well-known relation between the lassi graph problem Domi-nating Set and the hypergraph problem Hitting Set, it is easy to hek thatan identifying ode in graph G is the same as a distinguishing transversal in theneighborhood hypergraph of G.The goal of this paper is to introdue and study the problem Partial VCDimension, that generalizes both Distinguishing Transversal and VC Di-mension, and de�ned as follows.3 Tehnially speaking, in Test Set, Test Cover and Separating System, thegoal is to distinguish the verties of a hypergraph using a set C of hyperedges, andin Disriminating Code the input is presented as a bipartite graph. Nevertheless,these formulations are equivalent to Distinguishing Transversal by onsideringeither the dual hypergraph of the input hypergraph H = (X,E) (with vertex set Eand hyperedge set X, and hyperedge x ontains vertex e in the dual if hyperedge
e ontains vertex x in H), or the bipartite inidene graph (de�ned over vertex set
X ∪ E, and where x and e are adjaent if they were inident in H).2



Partial VC DimensionInput: A hypergraph H = (X,E), and two integers k and ℓ.Question: Is there a set C ⊆ X of size k that indues at least ℓ distintequivalene lassses?Partial VC Dimension belongs to the ategory of partial versions of om-mon deision problems, in whih, instead of satisfying the problem's onstrainttask for all elements (here, all 2k equivalene lasses), we ask whether we an sat-isfy a ertain number, ℓ, of these onstraints. See for example the papers [23,30℄that study some partial versions of standard deision problems, suh as SetCover or Dominating Set.When ℓ = |E|, Partial VC Dimension is preisely the problem Distin-guishing Transversal. When ℓ = 2k, we have the problem VC Dimension.Hene, Partial VC Dimension is NP-hard, even on many restrited lasses.Indeed, Distinguishing Transversal is NP-hard [26℄, even on hypergraphswhere eah vertex belongs to at most two hyperedges [20℄, or on neighborhoodhypergraphs of graphs that are either: unit disk graphs [34℄, planar bipartitesububi [24℄, graphs that are interval and permutation [25℄, split graphs [24℄.Min Distinguishing Transversal annot be approximated within a fatorof o(logn) on hypergraphs of order n [20℄, even on hypergraphs without 4-yles [10℄, and on neighborhood hypergraphs of bipartite, o-bipartite or splitgraphs [24℄.When ℓ = 2k, Partial VC Dimension is equivalent to VC Dimensionand unlikely to be NP-hard (unless all problems in NP an be solved in quasi-polynomial time), sine |X | 6 2k and a simple brute-fore algorithm has quasi-polynomial running time. Moreover, VC Dimension (and hene Partial VCDimension) is W[1℄-omplete when parameterized by k [21℄.Reently, the authors in [12℄ introdued the notion of (α, β)-set systems, thatis, hypergraphs where, for any set S of verties with |S| 6 α, S indues at most βequivalene lasses. Using this terminology, if a given hypergraph H is an (α, β)-set system, (H, k, ℓ) with k = α is a YES-instane of Partial VC Dimensionif and only if ℓ 6 β.We will also study the approximation omplexity of the following �xed-ardinality maximization problem assoiated to Partial VC Dimension.Max Partial VC DimensionInput: A hypergraph H = (X,E), and an integer k.Output: A set C ⊆ X of size k that maximizes the number of equivalenelasses indued by C.Similar �xed-ardinality versions of lassi optimization problems suh asSet Cover, Dominating Set or Vertex Cover, derived from the "partial"ounterparts of the orresponding deision problems, have gained some attentionin the reent years, see for example [14,30,13℄.Max Partial VC Dimension is learly NP-hard sine Partial VC Di-mension is NP-omplete; other than that, its approximation omplexity is om-pletely unknown sine it annot be diretly related to the one of approximating3



Min Distinguishing Transversal or Max VC Dimension (the minimiza-tion and maximization versions of Distinguishing Transversal and VC Di-mension, respetively).Our results. Our fous is on the approximation omplexity of Max Partial VCDimension. We give positive results in Setion 3. We �rst provide polynomial-time approximation algorithms using the VC-dimension for the maximum degreeor for the maximum edge-size of the input hypergraph. We apply these to obtainapproximation ratios of the form nδ (for δ < 1 a onstant) in ertain speialases, as well as a better approximation ratio but with exponential time. Forneighbourhood hypergraphs of planar graphs, Max Partial VC Dimensionadmits a PTAS (this is also shown forMin Distinguishing Transversal). InSetion 4, we give hardness results. We show that any 2-approximation algorithmforMax Partial VC Dimension implies a 2-approximation algorithm forMaxVC Dimension. Finally, we show that Max Partial VC Dimension is APX-hard, even for graphs of maximum degree at most 7.2 PreliminariesTwin-free hypergraphs. In a hypergraph H , we all two equal hyperedges twinhyperedges. Similarly, two verties belonging to the same set of hyperedges aretwin verties.Clearly, two twin hyperedges will always belong to the same neighborhoodequivalene lasses. Similarly, for any set T of mutually twin verties, there isno advantage in seleting more than one of the verties in T when building asolution set C.Observation 1 Let H = (X,E) be a hypergraph and let H ′ = (X ′, E′) be thehypergraph obtained from H by deleting all but one of the hyperedges or vertiesfrom eah set of mutual twins. Then, for any set C ⊆ X, the equivalene lassesindued by C in H are the same as those indued by C ∩X ′ in H ′.Therefore, sine it is easy to detet twin hyperedges and verties in an inputhypergraph, in what follows, we will always restrit ourselves to hypergraphswithout twins. We all suh hypergraphs twin-free.Degree onditions. In a hypergraph H , the degree of a vertex x is the number ofhyperedges it belongs to. The maximum degree of H is the maximum value ofthe degree of a vertex of H ; we denote it by ∆(H).The next theorem gives an upper bound on the number of neighborhoodequivalene lasses that an be indued when the degrees are bounded.Theorem 2 ([18,20,28℄). Let H = (X,E) be a hypergraph with maximum de-gree ∆ and let C be a subset of X of size k. Then, C annot indue more than
k(∆+1)

2 + 1 neighborhood equivalene lasses.4



The Sauer-Shelah lemma. The following theorem is known as the Sauer-ShelahLemma [40,41℄ (it is also redited to Perles in [41℄ and a weaker form was statedby Vapnik and �ervonenkis [42℄). It is a fundamental tool in the study of theVC dimension.Theorem 3 (Sauer-Shelah Lemma [40,41℄). Let H = (X,E) be a hyper-graph with stritly more than ∑d−1
i=0

(

|X|
i

) distint hyperedges. Then, S has VC-dimension at least d.Theorem 3 is known to be tight. Indeed, the system that onsists of onsid-ering all subsets of {1, . . . , n} of ardinality at most d − 1 has VC-dimensionequal to d− 1. Though the original proofs of Theorem 3 were non-onstrutive,Ajtai [1℄ gave a onstrutive proof that yields a (randomized) polynomial-timealgorithm, and an easier proof of this type an be found in Miianio [32℄.The following diret orollary of Theorem 3 is observed for example in [10℄.Corollary 4. Let S = (X,E) be a hypergraph with VC dimension at most d.Then, for any subset X ′ ⊆ X, there are at most ∑d
i=0

(

|X′|
i

)

6 |X ′|d +1 equiva-lene lasses indued by X ′.Approximation. An algorithm for an optimization problem is a c-approximationalgorithm if it returns a solution whose value is always at most a fator of caway from the optimum. The lass APX ontains all optimization problems thatadmit a polynomial-time c-approximation algorithm for some �xed onstant c.A polynomial-time approximation sheme (PTAS for short) for an optimizationproblem is an algorithm that, given any �xed onstant ǫ > 0, returns in polyno-mial time (in terms of the instane and for �xed ǫ) a solution that is a fator of
1+ ǫ away from the optimum. An optimization problem is APX-hard if it admitsno PTAS (unless P=NP).Given an optimization problem P , an instane I of P , we denote by optP (I)(or opt(I) if there is no ambiguity) the value of an optimal solution for I.De�nition 5 (L-redution [35℄). Let A and B be two optimization problems.Then A is said to be L-reduible to B if there are two onstants α, β > 0 andtwo polynomial time omputable funtions f , g suh that: (i) f maps an instane
I of A into an instane I ′ of B suh that optB(I ′) 6 α · optA(I), (ii) g mapseah solution S′ of I ′ into a solution S of I suh that ||S|− optA(I)| 6 β · ||S′|−
optB(I

′)|.
L-redutions are useful in order to apply the following theorem.Theorem 6 ([35℄). Let A and B be two optimization problems. If A is APX-hard and L-reduible to B, then B is APX-hard.3 Positive approximation results for Max Partial VCDimensionWe start with a greedy polynomial-time proedure that always returns (if itexists), a set |X ′| that indues at least |X ′|+ 1 equivalene lasses.5



Lemma 7. Let H = (X,E) be a twin-free hypergraph and let k 6 |X | − 1 be aninteger. One an onstrut, in time O(k(|X |+ |E|)), a set C ⊆ X of size k thatprodues at least min{|E|, k + 1} neighborhood equivalene lasses.Proof. We produe C in an indutive way. First, let C1 = {x} for an arbitraryvertex x of X for whih there exists at least one hyperedge of E with x /∈ E (ifsuh hyperedge does not exist, then all edges are twin edges; sine H is twin-free,
|E| 6 1 and we are done). Then, for eah i with 2 6 i 6 k, we build Ci from
Ci−1 as follows: selet vertex xi as a vertex in X \ Ci−1 suh that Ci−1 ∪ {x}maximizes the number of equivalene lasses.We laim that either we already have at least |E| equivalene lasses, or Ciindues at least one more equivalene lass than Ci−1. Assume for a ontraditionthat we have stritly less than |E| equivalene lasses, but Ci has the samenumber of equivalene lasses as Ci−1. Sine we have stritly less than |E| lasses,there is an equivalene lass onsisting of at least two edges, say e1 and e2. Butthen, sine H is twin-free, there is a vertex x that belongs to exatly one of e1and e2. But Ci−1 ∪ {x} would have stritly more equivalene lasses than Ci, aontradition sine Ci was maximizing the number of equivalene lasses.Hene, setting C = Ck �nishes the proof. ⊓⊔Proposition 8. Max Partial VC Dimension is min{2k,|E|}

k+1 -approximable inpolynomial time. For hypergraphs with VC dimension at most d, Max PartialVC Dimension is kd−1-approximable. For hypergraphs with maximum degree ∆,Max Partial VC Dimension is ∆+1
2 -approximable.Proof. By Lemma 7, we an always ompute in polynomial time, a solution withat least k + 1 neighborhood equivalene lasses (if it exists; otherwise, we solvethe problem exatly). Sine there are at most min{2k, |E|} possible lasses, the�rst part of the statement follows. Similarly, by Corollary 4, if the hypergraphhas VC dimension at most d, there are at most kd + 1 equivalene lasses, and

kd+1
k+1 6 kd−1. Finally, if the maximum degree is at most ∆, by Theorem 2 thereare at most k(∆+1)+2

2 possible lasses (and when ∆ > 1, k(∆+1)+2
2(k+1) 6 ∆+1

2 ). ⊓⊔Corollary 9. For hypergraphs of VC dimension at most d, Max Partial VCDimension is |E|(d−1)/d-approximable.Proof. By Proposition 8, we have a min{kd−1, |E|/k})-approximation. If kd−1 <
|E|(d−1)/d we are done. Otherwise, we have kd−1 > |E|(d−1)/d and hene k >

|E|1/d, whih implies that |E|
k 6 |E|(d−1)/d. ⊓⊔For examples of onrete appliations of Corollary 9, hypergraphs with no 4-yles in its bipartite inidene graph4 have VC-dimension at most 3 and henewe have an |E|2/3-approximation for this lass. Hypergraphs with maximumedge-size d also have VC dimension at most d. Other examples, arising from4 In the dual hypergraph, this orresponds to the property that eah pair of hyperedgeshave at most one ommon element, see for example [2℄.6



graphs, are neighborhood hypergraphs of: Kd+1-minor-free graphs (that haveVC dimension at most d [11℄); graphs of rankwidth at most r (VC dimension atmost 22
O(r) [11℄); interval graphs (VC dimension at most 2 [10℄); permutationgraphs (VC dimension at most 3 [10℄); line graphs (VC dimension at most 3);unit disk graphs (VC dimension at most 3) [10℄; C4-free graphs (VC dimension atmost 2); hordal bipartite graphs (VC dimension at most 3 [10℄); undireted pathgraphs (VC dimension at most 3 [10℄). Typial graph lasses with unboundedVC dimension are bipartite graphs and their omplements, or split graphs.In the ase of hypergraphs with no 4-yles in its bipartite inidene graph(for whih Max Partial VC Dimension has an |E|2/3-approximation algo-rithm by Corollary 9), we an also relate Max Partial VC Dimension toMax Partial Double Hitting Set, de�ned as follows.Max Partial Double Hitting SetInput: A hypergraph H = (X,E), an integer k.Output: A subset C ⊆ X of size k maximizing the number of hyperedgesontaining at least two elements of C.Theorem 10. Any α-approximation algorithm for Max Partial Double Hit-ting Set on hypergraphs without 4-yles in its bipartite inidene graph an beused to obtain a 4α-approximation algorithm for Max Partial VC Dimensionon hypergraphs without 4-yles in its bipartite inidene graph.Proof. Let H = (X,E) be a hypergraph without 4-yles in its bipartite ini-dene graph, and let C ⊆ X be a subset of verties. Sine H has no 4-yles inits bipartite inidene graph, note that if some hyperedge ontains two vertiesof X , then no other hyperedge ontains these two verties. Therefore, the num-ber of equivalene lasses indued by C is equal to the number of hyperedgesontaining at least two elements of C, plus the number of equivalene lassesorresponding to a single (or no) element of C. Therefore, the maximum num-ber opt(H) of equivalene lasses for a set of size k is at most opt2HS(H)+k+1,where opt2HS(H) is the value of an optimal solution forMax Partial DoubleHitting Set on H . Observing that opt2HS(H) > k

2 (sine one may always iter-atively selet pairs of verties overing a same hyperedge to obtain a valid doublehitting set ofH), we get that opt(H) 6 3opt2HS(H)+1 6 4opt2HS(H). Moreover,in polynomial time we an apply the approximation algorithm of Max Par-tial Double Hitting Set to H to obtain a set C induing at least opt2HS(H)
αneighborhood equivalene lasses. Thus, C indues at least opt(H)

4α neighborhoodequivalene lasses. ⊓⊔Unfortunately, the omplexity of approximating Max Partial DoubleHitting Set seems not to be well-known, even when restrited to hypergraphswith no 4-yles in its bipartite inidene graph. In fat, the problem MaxDensest Subgraph (whih, given an input graph, onsists of maximizing thenumber of edges of a subgraph of order k) is preisely Max Partial DoubleHitting Set restrited to hypergraphs where eah hyperedge has size at most 27



(that is, to graphs), that an be assumed to ontain no 4-yles in its bipartiteinidene graph (a 4-yle would imply the existene of two twin hyperedges).Although Max Densest Subgraph (and hene Max Partial Double Hit-ting Set for hypergraphs with no 4-yles in its bipartite inidene graph) isonly known to admit no PTAS [29℄, the best known approximation ratio for itis O(|E|1/4) [5℄.5 We dedue from this result, the following orollary of Theo-rem 10 for hypergraphs of hyperedge-size bounded by 2. This improves on the
O(|E|1/2)-approximation algorithm given by Corollary 9 for this ase.Corollary 11. Let α be the best approximation ratio in polynomial time forMax Densest Subgraph. Then, Max Partial VC Dimension an be 3α-approximated in polynomial time on hypergraphs with hyperedges of size at most 2.In partiular, there is a polynomial-time O(|E|1/4)-approximation algorithm forthis ase.We will now apply the following result from [4℄.Lemma 12 ([4℄). If an optimization problem is r1(k)-approximable in fpt-timewith respet to parameter k for some stritly inreasing funtion r1 dependingsolely on k, then it is also r2(n)-approximable in fpt-time w.r.t. parameter k forany stritly inreasing funtion r2 depending solely on the instane size n.Using Proposition 8 showing that Max Partial VC Dimension is 2k

k+1 -approximable and Lemma 12, we diretly obtain the following.Corollary 13. For any stritly inreasing funtion r, Max Partial VC Di-mension parameterized by k is r(n)-approximable in FPT-time.In the following we establish polynomial time approximation shemes forMinDistinguishing Transversal and Max Partial VC Dimension on planargraphs using the layer deomposition tehnique introdued by Baker [3℄.Given a planar embedding of an input graph, we all the verties whih areon the external fae level 1 verties. By indution, we de�ne level t verties asthe set of verties whih are on the external fae after removing the verties oflevels smaller than t [3℄. A planar embedding is t-level if it has no verties oflevel greater than t. If a planar graph is t-level, it has a t-outerplanar embedding.Theorem 14. Max Partial VC Dimension on neighborhood hypergraphs ofplanar graphs admits a PTAS.Proof. Let G be a planar graph with a t-level planar embedding for some integer
t. We aim to ahieve an approximation ratio of 1 + ε. Let λ = ⌈ 1

ε⌉ − 1.Let Gi (0 6 i 6 λ) be the graph obtained from G by removing the vertieson levels i mod (λ+1). Thus, graph Gi is the disjoint union of several subgraphs
Gij (0 6 j 6 p with p = ⌈ t+i

λ+1⌉) where Gi0 is indued by the verties on5 Formally, it is stated in [5℄ as an O(|V |1/4)-approximation algorithm, but we mayassume that the input graph is onneted, and hene |V | = O(|E|).8



levels 0, . . . , i − 1 (note that G00 is empty) and Gij with j > 1 is induedby the verties on levels (j − 1)(λ + 1) + i + 1, . . . j(λ + 1) + i − 1. In otherwords, eah subgraph Gij is the union of at most λ onseutive levels and isthus λ-outerplanar. Hene, Gi is also λ-outerplanar and it has treewidth atmost 3λ− 1 [6℄. Using Courelle's theorem6, for any integer t and any subgraph
Gij , we an e�iently determine an optimal set St

ij of t verties of Gij thatmaximizes the number of (nonempty) indued equivalene lasses in Gij . Wethen use dynami programming to onstrut a solution for Gi. Denote by Si(q, y)a solution orresponding to the maximum feasible number of equivalene lassesindued by a set of y verties of Gi (0 6 y 6 k) among the �rst q subgraphs
Gi1, . . . , Giq (1 6 q 6 p). We have Si(q, y) = max06x6y(S

x
iq + Si(q − 1, y − x)).Let Si = Si(p, k).Among S0, . . . , Sλ, we hoose the best solution, that we denote by S. We nowprove that S is an (1 + ε)-approximation of the optimal value opt(G) for MaxPartial VC Dimension onG. Let Sopt be an optimal solution of G. Then, thereis at least one integer r suh that at most 1/(λ + 1) of the equivalent lassesindued by Sopt in G are lost when we remove verties on the levels ongruentto r mod (λ + 1).Thus, val(S) > val(Sr) > opt(G) − opt(G)

λ+1 = λ
λ+1opt(G) > (1 − 1

ε )opt(G),whih ompletes the proof.The overall running time of the algorithm is λ times the running time forgraphs of treewidth at most 3λ− 1, that is, O(λn). ⊓⊔As a side result, using the same tehnique, we provide the following theoremabout Min Distinguishing Transversal, whih is an improvement over the
7-approximation algorithm that follows from [38℄ (in whih it is proved that anyYES-instane satis�es ℓ 6 7k) and solves an open problem from [24℄. Due tospae onstraints, its proof is omitted.Theorem 15. Min Distinguishing Transversal on neighborhood hypergraphsof planar graphs (equivalently, Min Identifying Code on planar graphs) ad-mits a PTAS.4 Hardness of approximation results for Max PartialVC DimensionWe de�neMax VC Dimension as the maximization version of VC Dimension.Max VC DimensionInput: A hypergraph H = (X,E).Output: A maximum-size shattered subset C ⊆ X of verties.6 We an indeed enode the deision version of our problem in MSOL as follows:

∃x1, . . . , xk, y1, . . . , yl, s
1

1, s
2

1, . . . , s
ℓ
ℓ−1, s

j
i =

∨k
q=1

xq,
∨(ℓ2)

i,j=0
(sji ∈ yi ∧ sji /∈ yj)∨ (sji /∈

yi ∧ sji ∈ yj). 9



Not muh is known about the omplexity of Max VC Dimension: it istrivially log2 |E|-approximable by returning a single vertex; a lower bound onthe running time of a potential PTAS has been proved [17℄. It is mentioned asan outstanding open problem in [15℄. In the following we establish a onnetionbetween the approximability of Max VC Dimension and Max Partial VCDimension.Theorem 16. Any 2-approximation algorithm for Max Partial VC Dimen-sion an be transformed into a randomized 2-approximation algorithm for MaxVC Dimension with polynomial overhead in the running time.Proof. Let H be a hypergraph on n verties that is an instane for Max VCDimension, and suppose we have a c-approximation algorithm A for MaxPartial VC Dimension.We run A with k = 1, . . . , log2 |X |, and let k0 be the largest value of k suhthat the algorithm outputs a solution with at least 2k

c neighborhood equivalenelasses. Sine A is a c-approximation algorithm, we know that the optimumfor Max Partial VC Dimension for any k > k0 is stritly less than 2k. Thisimplies that the VC-dimension of S is at most k0.Now, let X be the solution set of size k0 omputed by A , and let HX bethe sub-hypergraph of H indued by X . By our assumption, this hypergraphhas at least 2k0

c distint edges. We an now apply the Sauer-Shelah Lemma(Theorem 3).We have c = 2, and we apply the lemma with |X | = k0 and d = k0

2 + 1; itfollows that the VC dimension of HX (and hene, of H) is at least k0

2 +1. By theonstrutive proof of Theorem 3, a shattered set Y of this size an be omputedin (randomized) polynomial time [1,32℄. Set Y is a 2-approximation, sine wesaw in the previous paragraph that the VC dimension of H is at most k0. ⊓⊔We note that the previous proof does not seem to apply for any other on-stant than 2, beause the Sauer-Shelah Lemma would not apply. Though theapproximation omplexity of Max VC Dimension is not known, our resultshows that Max Partial VC Dimension is at least as hard to approximate.Before proving our next result, we �rst need an intermediate result for MaxPartial Vertex Cover (also known as Max k-Vertex Cover [14℄), whihis de�ned as follows.Max Partial Vertex CoverInput: A graph G = (V,E), an integer k.Output: A subset S ⊆ V of size k overing the maximum number of edges.Proposition 17 ([37℄). Max Partial Vertex Cover is APX-hard, even forubi graphs.Theorem 18. Max Partial VC Dimension is APX-hard, even for graphs ofmaximum degree 7. 10



Proof. We will give an L-redution fromMax Partial Vertex Cover (whihis APX-hard, by Proposition 17) to Max Partial VC Dimension. The resultwill then follow from Theorem 6. Given an instane I = (G, k) of Max PartialVertex Cover with G = (V,E) a ubi graph, we onstrut an instane I ′ =
(G′, k′) of Max Partial VC Dimension with G′ = (V ′, E′) of maximumdegree 7 in the following way. For eah vertex v ∈ V , we reate a gadget Pv withtwelve verties where four among these twelve verties are speial: they form theset Fv = {f1
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v},
{f2

v , f
3
v }, {f1

v , f
3
v }, {f2

v , f
4
v }, {f1

v , f
4
v}, {f1

v , f
3
v , f

4
v }, {f1

v , f
2
v , f

4
v},{f1

v , f
2
v , f

3
v , f

4
v},respetively. We also add edges between f1

v and f2
v , between f2

v and f3
v andbetween f3

v and f4
v . Sine G is ubi, for eah vertex v of G, there are threeedges e1, e2 and e3 inident with v. For eah edge ei (1 6 i 6 3), the endpoint

v is replaed by f i
v. Moreover, eah of these original edges of G is replaed in G′by two edges by subdividing it one (see Figure 1 for an illustration). We allthe verties resulting from the subdivision proess, edge-verties. Finally, we set

k′ = 4k.
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Fig. 1. a) Vertex-gadget Pv and b) illustration of the redution.From any optimal solution S with |S| = k overing opt(I) edges of G, weonstrut a set C = {f j
v : 1 6 j 6 4, v ∈ S} of size 4k. By onstrution, Cindues 12 equivalene lasses in eah vertex gadget. Moreover, for eah overededge e = xy in G, the orresponding edge-vertex ve in G′ forms a lass ofsize 1 (whih orresponds to one or two neighbor verties f i

x and f j
y of ve in C).11



Finally, all verties in G′ orresponding to edges not overed by S in G, as wellas all verties in vertex gadgets orresponding to verties not in S, belong to thesame equivalene lass (orresponding to the empty set). Thus, C indues in G′

12k + opt(I) + 1 equivalene lasses, and hene we have
opt(I ′) > 12k + opt(I) + 1. (1)Conversely, given a solution C′ of I ′ with |C′| = 4k, we transform it into asolution for I as follows. First, we show that C′ an be transformed into anothersolution C′′ suh that (1) C′′ only ontains verties of the form f i

v, (2) eahvertex-gadget ontains either zero or four verties of C′′, and (3) C′′ does notindue less equivalene lasses than C′. To prove this, we proeed step by stepby loally altering C′ whenever (1) and (2) are not satis�ed, while ensuring (3).Suppose �rst that some vertex-gadget Pv of G′ ontains at least four vertiesof C′. Then, the number of equivalene lasses involving some vertex of V (Pv)∩
C′ is at most twelve within Pv (sine there are only twelve verties in Pv), and atmost three outside Pv (sine there are only three verties not in Pv adjaent toverties in Pv). Therefore, we an replae V (Pv)∩C′ by the four speial vertiesof the set Fv in Pv; this hoie also indues twelve equivalene lasses within Pv,and does not derease the number of indued lasses.Next, we show that it is always best to selet the four speial verties of Fvfrom some vertex-gadget (rather than having several vertex-gadgets ontainingless than four solution verties eah). To the ontrary, assume that there are twovertex-gadgets Pu and Pv ontaining respetively a and b verties of C′, where
1 6 b 6 a 6 3. Then, we remove an arbitrary vertex from C′ ∩ V (Pv); moreoverwe replae C′ ∩ V (Pu) with the subset {f i

u, 1 6 i 6 a + 1}, and similarly wereplae C′∩V (Pv) with the subset {f i
v, 1 6 i 6 b−1}. Before this alteration, thesolution verties within V (Pu) ∪ V (Pv) ould ontribute to at most 2a + 2b − 2equivalene lasses. After the modi�ation, one an hek that this quantity isat least 2a+1+2b−1−2 lasses. Observing that 2a+1+2b−1−2 > 2a+2b−2 sine

2a − 2b−1 > 0 yields our laim. Hene, by this argument, we onlude that allvertex-gadgets (exept possibly at most one) ontain either zero or four vertiesfrom the solution set C′.Suppose that there exists one vertex-gadget Pv with i solution verties, 1 6

i 6 3. We show that we may add 4−i solution verties to it so that C′∩V (Pv) =
Fv. Consider the set of edge-verties belonging to C′. Sine we had |C′| = 4kand all but one vertex-gadget ontain exatly four solution verties, there are atleast 4−i edge-verties in the urrent solution set. Then, we remove an arbitraryset of 4− i edge-verties from C′ and instead, we replae the set V (Pv) ∩C′ bythe set Fv of speial verties of Pv. We now laim that this does not derease thenumber of lasses indued by C′. Indeed, any edge-vertex, sine it has degree 2,may ontribute to at most three equivalene lasses, and the i solution vertiesin Pv an ontribute to at most 2i lasses. Summing up, in the old solution set,these four verties ontribute to at most 3(4− i) + 2i lasses, whih is less than
12 sine 1 6 i 6 3. In the new solution, these four verties ontribute to at least
12 lasses, whih proves our above laim.12



We now know that there are 4i edge-verties in C′, for some i 6 k. Allother solution verties are speial verties in some vertex-gadgets. By similararguments as in the previous paragraph, we may selet any four of them andreplae them with some set Fv of speial verties of some vertex-gadget Pv.Before this modi�ation, these four solution verties may have ontributed to atmost 3 · 4 = 12 lasses, while the new four solution verties now ontribute to atleast 12 lasses.Applying the above arguments, we have proved the existene of the requiredset C′′ that satis�es onditions (1)�(3).Therefore, we may now assume that the solution C′′ ontains no edge-verties,and for eah vertex-gadget Pv, C′′ ∩ V (Pv) ∈ {∅, Fv}. We de�ne as solution Sfor I the set of verties v of G for whih Pv ontains four verties of C′′. Then,
val(S) = val(C′)− 12k − 1. Considering an optimal solution C′ for I ′, we have
opt(I) > opt(I ′)−12k−1. Using (1), we onlude that opt(I ′) = opt(I)+12k+1 6

opt(I) + 24opt(I) + 1 sine k 6 2opt(I) and thus opt(I ′) 6 26opt(I).Moreover, we have opt(I)−val(S) = opt(I ′)−12k−1− (val(C′)−12k−1) =
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