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omAbstra
t. We introdu
e the problem Partial VC Dimension thatasks, given a hypergraph H = (X,E) and integers k and ℓ, whether one
an sele
t a set C ⊆ X of k verti
es of H su
h that the set {e∩C, e ∈ E}of distin
t hyperedge-interse
tions with C has size at least ℓ. The sets
e ∩ C de�ne equivalen
e 
lasses over E. Partial VC Dimension is ageneralization of VC Dimension, whi
h 
orresponds to the 
ase ℓ = 2k,and of Distinguishing Transversal, whi
h 
orresponds to the 
ase
ℓ = |E| (the latter is also known as Test Cover in the dual hyper-graph). We also introdu
e the asso
iated �xed-
ardinality maximizationproblem Max Partial VC Dimension that aims at maximizing thenumber of equivalen
e 
lasses indu
ed by a solution set of k verti
es. Westudy the approximation 
omplexity of Max Partial VC Dimensionon general hypergraphs and on more restri
ted instan
es, in parti
ular,neighborhood hypergraphs of graphs.1 Introdu
tionWe study identi�
ation problems in dis
rete stru
tures. Consider a hypergraph(or set system) H = (X,E), where X is the vertex set and E is a 
olle
tionof hyperedges, that is, subsets of X . Given a subset C ⊆ X of verti
es, we saythat two hyperedges of E are distinguished (or separated) by C if some elementin C belongs to exa
tly one of the two hyperedges. In this setting, one 
an tellapart the two distinguished hyperedges simply by 
omparing their interse
tionswith C. Following this viewpoint, one may say that two hyperedges are related ifthey have the same interse
tion with C. This is 
learly an equivalen
e relation,and one may determine the 
olle
tion of equivalen
e 
lasses indu
ed by C: ea
hsu
h 
lass 
orresponds to its own subset of C. Any two hyperedges belonging todistin
t equivalen
e 
lasses are then distinguished by C. We 
all these 
lassesneighborhood equivalen
e 
lasses. In general, one naturally seeks to distinguishas many pairs of hyperedges as possible, using a small set C.It is a well-studied setting to ask for a maximum-size set C su
h that Cindu
es all possible 2|C| equivalen
e 
lasses. In this 
ase, C is said to be shattered.
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The maximum size of a shattered set in a hypergraph H is 
alled its Vapnis-�ervonenkis dimension (VC dimension for short). This notion, introdu
ed byVapnis and �ervonenkis [42℄ arose in the 
ontext of statisti
al learning theory asa measure of the stru
tural 
omplexity of the data. It has sin
e been widely usedin dis
rete mathemati
s; see the referen
es in the thesis [9℄ for more referen
es.We have the following asso
iated de
ision problem.VC DimensionInput: A hypergraph H = (X,E), and an integer k.Question: Is there a shattered set C ⊆ X of size at least k in H?The 
omplexity of VC Dimension was studied in e.g. [17,21,36℄; it is a
omplete problem for the 
omplexity 
lass LOGNP de�ned in [36℄ (it is thereforea good 
andidate for an NP-intermediate problem). VC Dimension remainsLOGNP-
omplete for neighborhood hypergraphs of graphs [31℄ (the neighborhoodhypergraph of G has V (G) as its vertex set, and the set of 
losed neighborhoodsof verti
es of G as its hyperedge set).In another setting, one wishes to distinguish all pairs of hyperedges (in otherwords, ea
h equivalen
e 
lass must have size 1) while minimizing the size of thesolution set C. Following [27℄, we 
all the asso
iated de
ision problem, Distin-guishing Transversal.Distinguishing TransversalInput: A hypergraph H = (X,E), and an integer k.Question: Is there a set C ⊆ X of size at most k that indu
es |E| distin
tequivalen
e 
lassses?There exists a ri
h literature about Distinguishing Transversal. It wasstudied under di�erent names, su
h asTest Set in Garey and Johnson's book [26,SP6℄; other names in
lude Test Cover [18,19,20℄, Dis
riminating Code [16℄or Separating System [7,39℄.3 A 
elebrated theorem of Bondy [8℄ also im-pli
itely studies this notion. A version of Distinguishing Transversal 
alledIdentifying Code was de�ned for graphs instead of hypergraphs [24,28℄. Sim-ilarly as for the well-known relation between the 
lassi
 graph problem Domi-nating Set and the hypergraph problem Hitting Set, it is easy to 
he
k thatan identifying 
ode in graph G is the same as a distinguishing transversal in theneighborhood hypergraph of G.The goal of this paper is to introdu
e and study the problem Partial VCDimension, that generalizes both Distinguishing Transversal and VC Di-mension, and de�ned as follows.3 Te
hni
ally speaking, in Test Set, Test Cover and Separating System, thegoal is to distinguish the verti
es of a hypergraph using a set C of hyperedges, andin Dis
riminating Code the input is presented as a bipartite graph. Nevertheless,these formulations are equivalent to Distinguishing Transversal by 
onsideringeither the dual hypergraph of the input hypergraph H = (X,E) (with vertex set Eand hyperedge set X, and hyperedge x 
ontains vertex e in the dual if hyperedge
e 
ontains vertex x in H), or the bipartite in
iden
e graph (de�ned over vertex set
X ∪ E, and where x and e are adja
ent if they were in
ident in H).2



Partial VC DimensionInput: A hypergraph H = (X,E), and two integers k and ℓ.Question: Is there a set C ⊆ X of size k that indu
es at least ℓ distin
tequivalen
e 
lassses?Partial VC Dimension belongs to the 
ategory of partial versions of 
om-mon de
ision problems, in whi
h, instead of satisfying the problem's 
onstrainttask for all elements (here, all 2k equivalen
e 
lasses), we ask whether we 
an sat-isfy a 
ertain number, ℓ, of these 
onstraints. See for example the papers [23,30℄that study some partial versions of standard de
ision problems, su
h as SetCover or Dominating Set.When ℓ = |E|, Partial VC Dimension is pre
isely the problem Distin-guishing Transversal. When ℓ = 2k, we have the problem VC Dimension.Hen
e, Partial VC Dimension is NP-hard, even on many restri
ted 
lasses.Indeed, Distinguishing Transversal is NP-hard [26℄, even on hypergraphswhere ea
h vertex belongs to at most two hyperedges [20℄, or on neighborhoodhypergraphs of graphs that are either: unit disk graphs [34℄, planar bipartitesub
ubi
 [24℄, graphs that are interval and permutation [25℄, split graphs [24℄.Min Distinguishing Transversal 
annot be approximated within a fa
torof o(logn) on hypergraphs of order n [20℄, even on hypergraphs without 4-
y
les [10℄, and on neighborhood hypergraphs of bipartite, 
o-bipartite or splitgraphs [24℄.When ℓ = 2k, Partial VC Dimension is equivalent to VC Dimensionand unlikely to be NP-hard (unless all problems in NP 
an be solved in quasi-polynomial time), sin
e |X | 6 2k and a simple brute-for
e algorithm has quasi-polynomial running time. Moreover, VC Dimension (and hen
e Partial VCDimension) is W[1℄-
omplete when parameterized by k [21℄.Re
ently, the authors in [12℄ introdu
ed the notion of (α, β)-set systems, thatis, hypergraphs where, for any set S of verti
es with |S| 6 α, S indu
es at most βequivalen
e 
lasses. Using this terminology, if a given hypergraph H is an (α, β)-set system, (H, k, ℓ) with k = α is a YES-instan
e of Partial VC Dimensionif and only if ℓ 6 β.We will also study the approximation 
omplexity of the following �xed-
ardinality maximization problem asso
iated to Partial VC Dimension.Max Partial VC DimensionInput: A hypergraph H = (X,E), and an integer k.Output: A set C ⊆ X of size k that maximizes the number of equivalen
e
lasses indu
ed by C.Similar �xed-
ardinality versions of 
lassi
 optimization problems su
h asSet Cover, Dominating Set or Vertex Cover, derived from the "partial"
ounterparts of the 
orresponding de
ision problems, have gained some attentionin the re
ent years, see for example [14,30,13℄.Max Partial VC Dimension is 
learly NP-hard sin
e Partial VC Di-mension is NP-
omplete; other than that, its approximation 
omplexity is 
om-pletely unknown sin
e it 
annot be dire
tly related to the one of approximating3



Min Distinguishing Transversal or Max VC Dimension (the minimiza-tion and maximization versions of Distinguishing Transversal and VC Di-mension, respe
tively).Our results. Our fo
us is on the approximation 
omplexity of Max Partial VCDimension. We give positive results in Se
tion 3. We �rst provide polynomial-time approximation algorithms using the VC-dimension for the maximum degreeor for the maximum edge-size of the input hypergraph. We apply these to obtainapproximation ratios of the form nδ (for δ < 1 a 
onstant) in 
ertain spe
ial
ases, as well as a better approximation ratio but with exponential time. Forneighbourhood hypergraphs of planar graphs, Max Partial VC Dimensionadmits a PTAS (this is also shown forMin Distinguishing Transversal). InSe
tion 4, we give hardness results. We show that any 2-approximation algorithmforMax Partial VC Dimension implies a 2-approximation algorithm forMaxVC Dimension. Finally, we show that Max Partial VC Dimension is APX-hard, even for graphs of maximum degree at most 7.2 PreliminariesTwin-free hypergraphs. In a hypergraph H , we 
all two equal hyperedges twinhyperedges. Similarly, two verti
es belonging to the same set of hyperedges aretwin verti
es.Clearly, two twin hyperedges will always belong to the same neighborhoodequivalen
e 
lasses. Similarly, for any set T of mutually twin verti
es, there isno advantage in sele
ting more than one of the verti
es in T when building asolution set C.Observation 1 Let H = (X,E) be a hypergraph and let H ′ = (X ′, E′) be thehypergraph obtained from H by deleting all but one of the hyperedges or verti
esfrom ea
h set of mutual twins. Then, for any set C ⊆ X, the equivalen
e 
lassesindu
ed by C in H are the same as those indu
ed by C ∩X ′ in H ′.Therefore, sin
e it is easy to dete
t twin hyperedges and verti
es in an inputhypergraph, in what follows, we will always restri
t ourselves to hypergraphswithout twins. We 
all su
h hypergraphs twin-free.Degree 
onditions. In a hypergraph H , the degree of a vertex x is the number ofhyperedges it belongs to. The maximum degree of H is the maximum value ofthe degree of a vertex of H ; we denote it by ∆(H).The next theorem gives an upper bound on the number of neighborhoodequivalen
e 
lasses that 
an be indu
ed when the degrees are bounded.Theorem 2 ([18,20,28℄). Let H = (X,E) be a hypergraph with maximum de-gree ∆ and let C be a subset of X of size k. Then, C 
annot indu
e more than
k(∆+1)

2 + 1 neighborhood equivalen
e 
lasses.4



The Sauer-Shelah lemma. The following theorem is known as the Sauer-ShelahLemma [40,41℄ (it is also 
redited to Perles in [41℄ and a weaker form was statedby Vapnik and �ervonenkis [42℄). It is a fundamental tool in the study of theVC dimension.Theorem 3 (Sauer-Shelah Lemma [40,41℄). Let H = (X,E) be a hyper-graph with stri
tly more than ∑d−1
i=0

(

|X|
i

) distin
t hyperedges. Then, S has VC-dimension at least d.Theorem 3 is known to be tight. Indeed, the system that 
onsists of 
onsid-ering all subsets of {1, . . . , n} of 
ardinality at most d − 1 has VC-dimensionequal to d− 1. Though the original proofs of Theorem 3 were non-
onstru
tive,Ajtai [1℄ gave a 
onstru
tive proof that yields a (randomized) polynomial-timealgorithm, and an easier proof of this type 
an be found in Mi

ianio [32℄.The following dire
t 
orollary of Theorem 3 is observed for example in [10℄.Corollary 4. Let S = (X,E) be a hypergraph with VC dimension at most d.Then, for any subset X ′ ⊆ X, there are at most ∑d
i=0

(

|X′|
i

)

6 |X ′|d +1 equiva-len
e 
lasses indu
ed by X ′.Approximation. An algorithm for an optimization problem is a c-approximationalgorithm if it returns a solution whose value is always at most a fa
tor of caway from the optimum. The 
lass APX 
ontains all optimization problems thatadmit a polynomial-time c-approximation algorithm for some �xed 
onstant c.A polynomial-time approximation s
heme (PTAS for short) for an optimizationproblem is an algorithm that, given any �xed 
onstant ǫ > 0, returns in polyno-mial time (in terms of the instan
e and for �xed ǫ) a solution that is a fa
tor of
1+ ǫ away from the optimum. An optimization problem is APX-hard if it admitsno PTAS (unless P=NP).Given an optimization problem P , an instan
e I of P , we denote by optP (I)(or opt(I) if there is no ambiguity) the value of an optimal solution for I.De�nition 5 (L-redu
tion [35℄). Let A and B be two optimization problems.Then A is said to be L-redu
ible to B if there are two 
onstants α, β > 0 andtwo polynomial time 
omputable fun
tions f , g su
h that: (i) f maps an instan
e
I of A into an instan
e I ′ of B su
h that optB(I ′) 6 α · optA(I), (ii) g mapsea
h solution S′ of I ′ into a solution S of I su
h that ||S|− optA(I)| 6 β · ||S′|−
optB(I

′)|.
L-redu
tions are useful in order to apply the following theorem.Theorem 6 ([35℄). Let A and B be two optimization problems. If A is APX-hard and L-redu
ible to B, then B is APX-hard.3 Positive approximation results for Max Partial VCDimensionWe start with a greedy polynomial-time pro
edure that always returns (if itexists), a set |X ′| that indu
es at least |X ′|+ 1 equivalen
e 
lasses.5



Lemma 7. Let H = (X,E) be a twin-free hypergraph and let k 6 |X | − 1 be aninteger. One 
an 
onstru
t, in time O(k(|X |+ |E|)), a set C ⊆ X of size k thatprodu
es at least min{|E|, k + 1} neighborhood equivalen
e 
lasses.Proof. We produ
e C in an indu
tive way. First, let C1 = {x} for an arbitraryvertex x of X for whi
h there exists at least one hyperedge of E with x /∈ E (ifsu
h hyperedge does not exist, then all edges are twin edges; sin
e H is twin-free,
|E| 6 1 and we are done). Then, for ea
h i with 2 6 i 6 k, we build Ci from
Ci−1 as follows: sele
t vertex xi as a vertex in X \ Ci−1 su
h that Ci−1 ∪ {x}maximizes the number of equivalen
e 
lasses.We 
laim that either we already have at least |E| equivalen
e 
lasses, or Ciindu
es at least one more equivalen
e 
lass than Ci−1. Assume for a 
ontradi
tionthat we have stri
tly less than |E| equivalen
e 
lasses, but Ci has the samenumber of equivalen
e 
lasses as Ci−1. Sin
e we have stri
tly less than |E| 
lasses,there is an equivalen
e 
lass 
onsisting of at least two edges, say e1 and e2. Butthen, sin
e H is twin-free, there is a vertex x that belongs to exa
tly one of e1and e2. But Ci−1 ∪ {x} would have stri
tly more equivalen
e 
lasses than Ci, a
ontradi
tion sin
e Ci was maximizing the number of equivalen
e 
lasses.Hen
e, setting C = Ck �nishes the proof. ⊓⊔Proposition 8. Max Partial VC Dimension is min{2k,|E|}

k+1 -approximable inpolynomial time. For hypergraphs with VC dimension at most d, Max PartialVC Dimension is kd−1-approximable. For hypergraphs with maximum degree ∆,Max Partial VC Dimension is ∆+1
2 -approximable.Proof. By Lemma 7, we 
an always 
ompute in polynomial time, a solution withat least k + 1 neighborhood equivalen
e 
lasses (if it exists; otherwise, we solvethe problem exa
tly). Sin
e there are at most min{2k, |E|} possible 
lasses, the�rst part of the statement follows. Similarly, by Corollary 4, if the hypergraphhas VC dimension at most d, there are at most kd + 1 equivalen
e 
lasses, and

kd+1
k+1 6 kd−1. Finally, if the maximum degree is at most ∆, by Theorem 2 thereare at most k(∆+1)+2

2 possible 
lasses (and when ∆ > 1, k(∆+1)+2
2(k+1) 6 ∆+1

2 ). ⊓⊔Corollary 9. For hypergraphs of VC dimension at most d, Max Partial VCDimension is |E|(d−1)/d-approximable.Proof. By Proposition 8, we have a min{kd−1, |E|/k})-approximation. If kd−1 <
|E|(d−1)/d we are done. Otherwise, we have kd−1 > |E|(d−1)/d and hen
e k >

|E|1/d, whi
h implies that |E|
k 6 |E|(d−1)/d. ⊓⊔For examples of 
on
rete appli
ations of Corollary 9, hypergraphs with no 4-
y
les in its bipartite in
iden
e graph4 have VC-dimension at most 3 and hen
ewe have an |E|2/3-approximation for this 
lass. Hypergraphs with maximumedge-size d also have VC dimension at most d. Other examples, arising from4 In the dual hypergraph, this 
orresponds to the property that ea
h pair of hyperedgeshave at most one 
ommon element, see for example [2℄.6



graphs, are neighborhood hypergraphs of: Kd+1-minor-free graphs (that haveVC dimension at most d [11℄); graphs of rankwidth at most r (VC dimension atmost 22
O(r) [11℄); interval graphs (VC dimension at most 2 [10℄); permutationgraphs (VC dimension at most 3 [10℄); line graphs (VC dimension at most 3);unit disk graphs (VC dimension at most 3) [10℄; C4-free graphs (VC dimension atmost 2); 
hordal bipartite graphs (VC dimension at most 3 [10℄); undire
ted pathgraphs (VC dimension at most 3 [10℄). Typi
al graph 
lasses with unboundedVC dimension are bipartite graphs and their 
omplements, or split graphs.In the 
ase of hypergraphs with no 4-
y
les in its bipartite in
iden
e graph(for whi
h Max Partial VC Dimension has an |E|2/3-approximation algo-rithm by Corollary 9), we 
an also relate Max Partial VC Dimension toMax Partial Double Hitting Set, de�ned as follows.Max Partial Double Hitting SetInput: A hypergraph H = (X,E), an integer k.Output: A subset C ⊆ X of size k maximizing the number of hyperedges
ontaining at least two elements of C.Theorem 10. Any α-approximation algorithm for Max Partial Double Hit-ting Set on hypergraphs without 4-
y
les in its bipartite in
iden
e graph 
an beused to obtain a 4α-approximation algorithm for Max Partial VC Dimensionon hypergraphs without 4-
y
les in its bipartite in
iden
e graph.Proof. Let H = (X,E) be a hypergraph without 4-
y
les in its bipartite in
i-den
e graph, and let C ⊆ X be a subset of verti
es. Sin
e H has no 4-
y
les inits bipartite in
iden
e graph, note that if some hyperedge 
ontains two verti
esof X , then no other hyperedge 
ontains these two verti
es. Therefore, the num-ber of equivalen
e 
lasses indu
ed by C is equal to the number of hyperedges
ontaining at least two elements of C, plus the number of equivalen
e 
lasses
orresponding to a single (or no) element of C. Therefore, the maximum num-ber opt(H) of equivalen
e 
lasses for a set of size k is at most opt2HS(H)+k+1,where opt2HS(H) is the value of an optimal solution forMax Partial DoubleHitting Set on H . Observing that opt2HS(H) > k

2 (sin
e one may always iter-atively sele
t pairs of verti
es 
overing a same hyperedge to obtain a valid doublehitting set ofH), we get that opt(H) 6 3opt2HS(H)+1 6 4opt2HS(H). Moreover,in polynomial time we 
an apply the approximation algorithm of Max Par-tial Double Hitting Set to H to obtain a set C indu
ing at least opt2HS(H)
αneighborhood equivalen
e 
lasses. Thus, C indu
es at least opt(H)

4α neighborhoodequivalen
e 
lasses. ⊓⊔Unfortunately, the 
omplexity of approximating Max Partial DoubleHitting Set seems not to be well-known, even when restri
ted to hypergraphswith no 4-
y
les in its bipartite in
iden
e graph. In fa
t, the problem MaxDensest Subgraph (whi
h, given an input graph, 
onsists of maximizing thenumber of edges of a subgraph of order k) is pre
isely Max Partial DoubleHitting Set restri
ted to hypergraphs where ea
h hyperedge has size at most 27



(that is, to graphs), that 
an be assumed to 
ontain no 4-
y
les in its bipartitein
iden
e graph (a 4-
y
le would imply the existen
e of two twin hyperedges).Although Max Densest Subgraph (and hen
e Max Partial Double Hit-ting Set for hypergraphs with no 4-
y
les in its bipartite in
iden
e graph) isonly known to admit no PTAS [29℄, the best known approximation ratio for itis O(|E|1/4) [5℄.5 We dedu
e from this result, the following 
orollary of Theo-rem 10 for hypergraphs of hyperedge-size bounded by 2. This improves on the
O(|E|1/2)-approximation algorithm given by Corollary 9 for this 
ase.Corollary 11. Let α be the best approximation ratio in polynomial time forMax Densest Subgraph. Then, Max Partial VC Dimension 
an be 3α-approximated in polynomial time on hypergraphs with hyperedges of size at most 2.In parti
ular, there is a polynomial-time O(|E|1/4)-approximation algorithm forthis 
ase.We will now apply the following result from [4℄.Lemma 12 ([4℄). If an optimization problem is r1(k)-approximable in fpt-timewith respe
t to parameter k for some stri
tly in
reasing fun
tion r1 dependingsolely on k, then it is also r2(n)-approximable in fpt-time w.r.t. parameter k forany stri
tly in
reasing fun
tion r2 depending solely on the instan
e size n.Using Proposition 8 showing that Max Partial VC Dimension is 2k

k+1 -approximable and Lemma 12, we dire
tly obtain the following.Corollary 13. For any stri
tly in
reasing fun
tion r, Max Partial VC Di-mension parameterized by k is r(n)-approximable in FPT-time.In the following we establish polynomial time approximation s
hemes forMinDistinguishing Transversal and Max Partial VC Dimension on planargraphs using the layer de
omposition te
hnique introdu
ed by Baker [3℄.Given a planar embedding of an input graph, we 
all the verti
es whi
h areon the external fa
e level 1 verti
es. By indu
tion, we de�ne level t verti
es asthe set of verti
es whi
h are on the external fa
e after removing the verti
es oflevels smaller than t [3℄. A planar embedding is t-level if it has no verti
es oflevel greater than t. If a planar graph is t-level, it has a t-outerplanar embedding.Theorem 14. Max Partial VC Dimension on neighborhood hypergraphs ofplanar graphs admits a PTAS.Proof. Let G be a planar graph with a t-level planar embedding for some integer
t. We aim to a
hieve an approximation ratio of 1 + ε. Let λ = ⌈ 1

ε⌉ − 1.Let Gi (0 6 i 6 λ) be the graph obtained from G by removing the verti
eson levels i mod (λ+1). Thus, graph Gi is the disjoint union of several subgraphs
Gij (0 6 j 6 p with p = ⌈ t+i

λ+1⌉) where Gi0 is indu
ed by the verti
es on5 Formally, it is stated in [5℄ as an O(|V |1/4)-approximation algorithm, but we mayassume that the input graph is 
onne
ted, and hen
e |V | = O(|E|).8



levels 0, . . . , i − 1 (note that G00 is empty) and Gij with j > 1 is indu
edby the verti
es on levels (j − 1)(λ + 1) + i + 1, . . . j(λ + 1) + i − 1. In otherwords, ea
h subgraph Gij is the union of at most λ 
onse
utive levels and isthus λ-outerplanar. Hen
e, Gi is also λ-outerplanar and it has treewidth atmost 3λ− 1 [6℄. Using Cour
elle's theorem6, for any integer t and any subgraph
Gij , we 
an e�
iently determine an optimal set St

ij of t verti
es of Gij thatmaximizes the number of (nonempty) indu
ed equivalen
e 
lasses in Gij . Wethen use dynami
 programming to 
onstru
t a solution for Gi. Denote by Si(q, y)a solution 
orresponding to the maximum feasible number of equivalen
e 
lassesindu
ed by a set of y verti
es of Gi (0 6 y 6 k) among the �rst q subgraphs
Gi1, . . . , Giq (1 6 q 6 p). We have Si(q, y) = max06x6y(S

x
iq + Si(q − 1, y − x)).Let Si = Si(p, k).Among S0, . . . , Sλ, we 
hoose the best solution, that we denote by S. We nowprove that S is an (1 + ε)-approximation of the optimal value opt(G) for MaxPartial VC Dimension onG. Let Sopt be an optimal solution of G. Then, thereis at least one integer r su
h that at most 1/(λ + 1) of the equivalent 
lassesindu
ed by Sopt in G are lost when we remove verti
es on the levels 
ongruentto r mod (λ + 1).Thus, val(S) > val(Sr) > opt(G) − opt(G)

λ+1 = λ
λ+1opt(G) > (1 − 1

ε )opt(G),whi
h 
ompletes the proof.The overall running time of the algorithm is λ times the running time forgraphs of treewidth at most 3λ− 1, that is, O(λn). ⊓⊔As a side result, using the same te
hnique, we provide the following theoremabout Min Distinguishing Transversal, whi
h is an improvement over the
7-approximation algorithm that follows from [38℄ (in whi
h it is proved that anyYES-instan
e satis�es ℓ 6 7k) and solves an open problem from [24℄. Due tospa
e 
onstraints, its proof is omitted.Theorem 15. Min Distinguishing Transversal on neighborhood hypergraphsof planar graphs (equivalently, Min Identifying Code on planar graphs) ad-mits a PTAS.4 Hardness of approximation results for Max PartialVC DimensionWe de�neMax VC Dimension as the maximization version of VC Dimension.Max VC DimensionInput: A hypergraph H = (X,E).Output: A maximum-size shattered subset C ⊆ X of verti
es.6 We 
an indeed en
ode the de
ision version of our problem in MSOL as follows:

∃x1, . . . , xk, y1, . . . , yl, s
1

1, s
2

1, . . . , s
ℓ
ℓ−1, s

j
i =

∨k
q=1

xq,
∨(ℓ2)

i,j=0
(sji ∈ yi ∧ sji /∈ yj)∨ (sji /∈

yi ∧ sji ∈ yj). 9



Not mu
h is known about the 
omplexity of Max VC Dimension: it istrivially log2 |E|-approximable by returning a single vertex; a lower bound onthe running time of a potential PTAS has been proved [17℄. It is mentioned asan outstanding open problem in [15℄. In the following we establish a 
onne
tionbetween the approximability of Max VC Dimension and Max Partial VCDimension.Theorem 16. Any 2-approximation algorithm for Max Partial VC Dimen-sion 
an be transformed into a randomized 2-approximation algorithm for MaxVC Dimension with polynomial overhead in the running time.Proof. Let H be a hypergraph on n verti
es that is an instan
e for Max VCDimension, and suppose we have a c-approximation algorithm A for MaxPartial VC Dimension.We run A with k = 1, . . . , log2 |X |, and let k0 be the largest value of k su
hthat the algorithm outputs a solution with at least 2k

c neighborhood equivalen
e
lasses. Sin
e A is a c-approximation algorithm, we know that the optimumfor Max Partial VC Dimension for any k > k0 is stri
tly less than 2k. Thisimplies that the VC-dimension of S is at most k0.Now, let X be the solution set of size k0 
omputed by A , and let HX bethe sub-hypergraph of H indu
ed by X . By our assumption, this hypergraphhas at least 2k0

c distin
t edges. We 
an now apply the Sauer-Shelah Lemma(Theorem 3).We have c = 2, and we apply the lemma with |X | = k0 and d = k0

2 + 1; itfollows that the VC dimension of HX (and hen
e, of H) is at least k0

2 +1. By the
onstru
tive proof of Theorem 3, a shattered set Y of this size 
an be 
omputedin (randomized) polynomial time [1,32℄. Set Y is a 2-approximation, sin
e wesaw in the previous paragraph that the VC dimension of H is at most k0. ⊓⊔We note that the previous proof does not seem to apply for any other 
on-stant than 2, be
ause the Sauer-Shelah Lemma would not apply. Though theapproximation 
omplexity of Max VC Dimension is not known, our resultshows that Max Partial VC Dimension is at least as hard to approximate.Before proving our next result, we �rst need an intermediate result for MaxPartial Vertex Cover (also known as Max k-Vertex Cover [14℄), whi
his de�ned as follows.Max Partial Vertex CoverInput: A graph G = (V,E), an integer k.Output: A subset S ⊆ V of size k 
overing the maximum number of edges.Proposition 17 ([37℄). Max Partial Vertex Cover is APX-hard, even for
ubi
 graphs.Theorem 18. Max Partial VC Dimension is APX-hard, even for graphs ofmaximum degree 7. 10



Proof. We will give an L-redu
tion fromMax Partial Vertex Cover (whi
his APX-hard, by Proposition 17) to Max Partial VC Dimension. The resultwill then follow from Theorem 6. Given an instan
e I = (G, k) of Max PartialVertex Cover with G = (V,E) a 
ubi
 graph, we 
onstru
t an instan
e I ′ =
(G′, k′) of Max Partial VC Dimension with G′ = (V ′, E′) of maximumdegree 7 in the following way. For ea
h vertex v ∈ V , we 
reate a gadget Pv withtwelve verti
es where four among these twelve verti
es are spe
ial: they form theset Fv = {f1

v , f
2
v , f

3
v , f

4
v }. The other verti
es are adja
ent to the subsets {f4

v},
{f2

v , f
3
v }, {f1

v , f
3
v }, {f2

v , f
4
v }, {f1

v , f
4
v}, {f1

v , f
3
v , f

4
v }, {f1

v , f
2
v , f

4
v},{f1

v , f
2
v , f

3
v , f

4
v},respe
tively. We also add edges between f1

v and f2
v , between f2

v and f3
v andbetween f3

v and f4
v . Sin
e G is 
ubi
, for ea
h vertex v of G, there are threeedges e1, e2 and e3 in
ident with v. For ea
h edge ei (1 6 i 6 3), the endpoint

v is repla
ed by f i
v. Moreover, ea
h of these original edges of G is repla
ed in G′by two edges by subdividing it on
e (see Figure 1 for an illustration). We 
allthe verti
es resulting from the subdivision pro
ess, edge-verti
es. Finally, we set

k′ = 4k.
f1

v

f2

v

f3

v

f4

va) b)
v

u1

u2

u3

Pv

Pu1

Pu2

Pu3

Fig. 1. a) Vertex-gadget Pv and b) illustration of the redu
tion.From any optimal solution S with |S| = k 
overing opt(I) edges of G, we
onstru
t a set C = {f j
v : 1 6 j 6 4, v ∈ S} of size 4k. By 
onstru
tion, Cindu
es 12 equivalen
e 
lasses in ea
h vertex gadget. Moreover, for ea
h 
overededge e = xy in G, the 
orresponding edge-vertex ve in G′ forms a 
lass ofsize 1 (whi
h 
orresponds to one or two neighbor verti
es f i

x and f j
y of ve in C).11



Finally, all verti
es in G′ 
orresponding to edges not 
overed by S in G, as wellas all verti
es in vertex gadgets 
orresponding to verti
es not in S, belong to thesame equivalen
e 
lass (
orresponding to the empty set). Thus, C indu
es in G′

12k + opt(I) + 1 equivalen
e 
lasses, and hen
e we have
opt(I ′) > 12k + opt(I) + 1. (1)Conversely, given a solution C′ of I ′ with |C′| = 4k, we transform it into asolution for I as follows. First, we show that C′ 
an be transformed into anothersolution C′′ su
h that (1) C′′ only 
ontains verti
es of the form f i

v, (2) ea
hvertex-gadget 
ontains either zero or four verti
es of C′′, and (3) C′′ does notindu
e less equivalen
e 
lasses than C′. To prove this, we pro
eed step by stepby lo
ally altering C′ whenever (1) and (2) are not satis�ed, while ensuring (3).Suppose �rst that some vertex-gadget Pv of G′ 
ontains at least four verti
esof C′. Then, the number of equivalen
e 
lasses involving some vertex of V (Pv)∩
C′ is at most twelve within Pv (sin
e there are only twelve verti
es in Pv), and atmost three outside Pv (sin
e there are only three verti
es not in Pv adja
ent toverti
es in Pv). Therefore, we 
an repla
e V (Pv)∩C′ by the four spe
ial verti
esof the set Fv in Pv; this 
hoi
e also indu
es twelve equivalen
e 
lasses within Pv,and does not de
rease the number of indu
ed 
lasses.Next, we show that it is always best to sele
t the four spe
ial verti
es of Fvfrom some vertex-gadget (rather than having several vertex-gadgets 
ontainingless than four solution verti
es ea
h). To the 
ontrary, assume that there are twovertex-gadgets Pu and Pv 
ontaining respe
tively a and b verti
es of C′, where
1 6 b 6 a 6 3. Then, we remove an arbitrary vertex from C′ ∩ V (Pv); moreoverwe repla
e C′ ∩ V (Pu) with the subset {f i

u, 1 6 i 6 a + 1}, and similarly werepla
e C′∩V (Pv) with the subset {f i
v, 1 6 i 6 b−1}. Before this alteration, thesolution verti
es within V (Pu) ∪ V (Pv) 
ould 
ontribute to at most 2a + 2b − 2equivalen
e 
lasses. After the modi�
ation, one 
an 
he
k that this quantity isat least 2a+1+2b−1−2 
lasses. Observing that 2a+1+2b−1−2 > 2a+2b−2 sin
e

2a − 2b−1 > 0 yields our 
laim. Hen
e, by this argument, we 
on
lude that allvertex-gadgets (ex
ept possibly at most one) 
ontain either zero or four verti
esfrom the solution set C′.Suppose that there exists one vertex-gadget Pv with i solution verti
es, 1 6

i 6 3. We show that we may add 4−i solution verti
es to it so that C′∩V (Pv) =
Fv. Consider the set of edge-verti
es belonging to C′. Sin
e we had |C′| = 4kand all but one vertex-gadget 
ontain exa
tly four solution verti
es, there are atleast 4−i edge-verti
es in the 
urrent solution set. Then, we remove an arbitraryset of 4− i edge-verti
es from C′ and instead, we repla
e the set V (Pv) ∩C′ bythe set Fv of spe
ial verti
es of Pv. We now 
laim that this does not de
rease thenumber of 
lasses indu
ed by C′. Indeed, any edge-vertex, sin
e it has degree 2,may 
ontribute to at most three equivalen
e 
lasses, and the i solution verti
esin Pv 
an 
ontribute to at most 2i 
lasses. Summing up, in the old solution set,these four verti
es 
ontribute to at most 3(4− i) + 2i 
lasses, whi
h is less than
12 sin
e 1 6 i 6 3. In the new solution, these four verti
es 
ontribute to at least
12 
lasses, whi
h proves our above 
laim.12



We now know that there are 4i edge-verti
es in C′, for some i 6 k. Allother solution verti
es are spe
ial verti
es in some vertex-gadgets. By similararguments as in the previous paragraph, we may sele
t any four of them andrepla
e them with some set Fv of spe
ial verti
es of some vertex-gadget Pv.Before this modi�
ation, these four solution verti
es may have 
ontributed to atmost 3 · 4 = 12 
lasses, while the new four solution verti
es now 
ontribute to atleast 12 
lasses.Applying the above arguments, we have proved the existen
e of the requiredset C′′ that satis�es 
onditions (1)�(3).Therefore, we may now assume that the solution C′′ 
ontains no edge-verti
es,and for ea
h vertex-gadget Pv, C′′ ∩ V (Pv) ∈ {∅, Fv}. We de�ne as solution Sfor I the set of verti
es v of G for whi
h Pv 
ontains four verti
es of C′′. Then,
val(S) = val(C′)− 12k − 1. Considering an optimal solution C′ for I ′, we have
opt(I) > opt(I ′)−12k−1. Using (1), we 
on
lude that opt(I ′) = opt(I)+12k+1 6

opt(I) + 24opt(I) + 1 sin
e k 6 2opt(I) and thus opt(I ′) 6 26opt(I).Moreover, we have opt(I)−val(S) = opt(I ′)−12k−1− (val(C′)−12k−1) =
opt(I ′)− val(C′).Thus, our redu
tion is an L-redu
tion with α = 26 and β = 1. ⊓⊔Proposition 8 and Theorem 18 give the following 
orollary:Corollary 19. Max Partial VC Dimension is APX-
omplete for boundeddegree graphs.5 Con
lusionIn this paper, we de�ned and studied generalization of Distinguishing Transver-sal and VC Dimension. The probably most intriguing open question seemsto be the approximation 
omplexity of Max Partial VC Dimension. In par-ti
ular, does the problem admit a 
onstant-fa
tor approximation algorithm? Asa �rst step, one 
ould determine whether su
h an approximation algorithm ex-ists in superpolynomial time, or on spe
ial sub
lasses su
h as neighbouroodhypergraphs of spe
i�
 graphs. We have seen that there exist polynomial-timeapproximation algorithms with a sublinear ratio for spe
ial 
ases; does one existin the general 
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