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Abstract. Modifying the topology of a network to mitigate the spread
of an epidemic with epidemiological constant λ amounts to the NP-hard
problem of finding a partial subgraph with maximum number of edges
and spectral radius bounded above by λ. A software-defined network
(SDN) capable of real-time topology reconfiguration can then use an
algorithm for finding such subgraph to quickly remove spreading mal-
ware threats without deploying specific security countermeasures.

In this paper, we propose a novel randomized approximation algo-
rithm based on the relaxation and rounding framework that achieves
a O(log n) approximation in the case of finding a subgraph with spec-
tral radius bounded by λ ∈ (log n, λ1(G)) where λ1(G) is the spectral
radius of the input graph and n its number of nodes. We combine this
algorithm with a maximum matching algorithm to obtain a O(log2 n)
approximation algorithm for all values of λ. We also describe how the
mathematical programming formulation we give has several advantages
over previous approaches which attempted at finding a subgraph with
minimum spectral radius given an edge removal budget.

Keywords: Approximation algorithm · Relaxation and rounding
Semidefinite programming · Spectral graph theory · Random graphs

1 Introduction

In recent years, a sequence of results [2,4,25,28] have established a relationship
between the convergence of Markovian models representing an epidemic spread-
ing over a network and the spectral characteristics of the underlying graph. The
generalization of these theorems by Prakash et al. [16] states that in the case
of a graph G and an epidemic model with epidemiological characteristic λ, fast
convergence of the Markovian model to its absorbing state is guaranteed if the
spectral radius of the graph λ1(G) < λ. This has led the mathematical epidemi-
ology community to look for algorithms that modify the topology of a network
to ensure that a given epidemic converges rapidly to extinction.
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At the same time, the software-defined networking (SDN) paradigm has
transformed network administration by allowing real-time statistics [20] and
topology reconfiguration [27]. This new paradigm has deep consequences for
the management of network security as it is now possible for a SDN controller to
automatically detect malware spreading over its network via machine learning
[10] and react to such threat by deploying adequate security countermeasures. In
this work we are following epidemiological practice and propose to use topology
modification as a disease-agnostic countermeasure to the spread of malware in
networks.

We are looking to preserve as much as possible the existing network topology
by keeping the largest number of edges in the graph while guaranteeing that a
given epidemic of epidemiological characteristic λ would rapidly disappear. For
this purpose, we introduce the maximum spectral subgraph problem (MSSP)
defined formally as follows. Denoting by λ1(G) the spectral radius of G, i.e. the
largest eigenvalue of its adjacency matrix A, we have:

Definition 1. Maximum spectral subgraph problem (MSSP)

Input: G = (V,E) an undirected graph and 1 ≤ λ < λ1(G).
Output: H = (V,E′) with E′ ⊆ E such that |E′| is maximum and λ1(H) ≤ λ.

1.1 Related Work

Spectral graph theory has often been a decisive tool in the design and analysis
of algorithms. However, to the best of our knowledge, surprisingly few compu-
tational problems have been defined in terms of finding graphs with appropriate
spectrum. The mathematical epidemiology community has proposed and ana-
lyzed several problems related to the spectrum of the adjacency matrix [19,26]
while systems and control researchers have considered optimization problems
related to the spectrum of the Laplacian matrix [5]. In a separate effort, the
theoretical computer science community has focused on problems related to the
design of expander graphs and graphs with high algebraic connectivity i.e. the
second smallest eigenvalue of the Laplacian matrix [7,11]. In this line of research,
all problems are NP-hard and the algorithms proposed in the literature are often
simple to state. We contrast this with the fact that their analysis can be involved
and yet, to the best of our knowledge, only amount to conditional approximation
guarantees. Throughout this paper we qualify approximation algorithms by their
performance guarantee r > 1 which corresponds to returning a solution whose
value is at least a fraction 1/r of the optimal value for maximization problems
or at most a factor r of the optimal value for minimization problems.

A minimization version of MSSP has been studied by Saha et al. [19] where
the task is to remove the minimum amount of edges from a graph G such that
the resulting subgraph H satisfies λ1(H) ≤ λ. They give a (1 + ε, ε−1 log n)
bi-criteria approximation algorithm which guarantees that if an optimal solu-
tion is to remove k edges to achieve a spectral radius less than or equal to λ
then the algorithm will remove O(ε−1 log n) times more edges (with n = |V |
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the number of nodes in G) and returns a graph with spectral radius less than
or equal to (1 + ε)λ. Zhang et al. [29] study the problem of maximizing the
drop in spectral radius λ1(G) − λ1(H) where H is a subgraph of G obtained
by deleting at most k edges. Their randomized algorithm, inspired by the relax-
ation and rounding framework, has the following conditional guarantees: if the
weighted graph obtained from the solution of the relaxed semidefinite program-
ming problem has maximum weighted degree Δ∗ = Ω(log4 n), then the returned
subgraph satisfies the constraint on the number of edge deletions in expectation
and, with high probability, the remaining graph has a spectral radius within an
additive O(

√
Δ∗) factor of the optimal solution. If the condition on the maximum

weighted degree is not satisfied, they do not obtain any performance guarantee.
In this article we introduce the maximum spectral subgraph problem (MSSP)

and our main contribution is the design of a O(log2 n)-approximation algorithm
for MSSP obtained by combining a randomized algorithm based on the relax-
ation and rounding framework with a maximum matching algorithm. We also
describe some shortcomings of existing mathematical programming formulation
for variants of MSSP that attempt at minimizing the spectral radius of a given
graph within a prescribed edge deletion budget.

The rest of this paper is organized as follows. In Sect. 2 we recall some sim-
ple facts from spectral graph theory and introduce appropriate notations and
known results. In Sect. 3 we describe our relaxation and rounding algorithm and
illustrate its usage on star graphs. Then, in Sect. 4, we prove its approximation
ratio for the range λ ∈ (log n, λ1(G)) in general graphs. In Sect. 5 we show that
a maximum matching is a O(λ2)-approximation algorithm for MSSP. Finally,
perspectives and concluding remarks are provided in Sect. 6.

2 Preliminaries

We review here useful facts about the spectrum of adjacency matrices of graphs.
Unless specified, all graphs are assumed to be undirected. Recall that the adja-
cency matrix A of a graph G = (V,E) is a symmetric matrix defined as follows:

Aij =

{
1 if ij ∈ E

0 otherwise

Property 1. [24] (General bounds) Given a graph G = (V,E), we denote by
Δ(G) its largest degree. The spectral radius of the graph, defined as the largest
eigenvalue of its adjacency matrix, lies between the following quantities:

max
(√

Δ(G),
2|E|
|V |

)
≤ λ1(G) ≤ Δ(G) (1)

2.1 Computational Complexity

The problem of deciding whether there exists a subgraph with at least k edges
and spectral radius at most λ was studied by van Mieghem et al. [26]. We can
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see that it is the decision problem associated with both MSSP and the problem
of minimum edge removal introduced by Saha et al. [19] that was mentioned in
Sect. 1. Van Mieghem et al. proved that the decision problem is NP-complete by
reduction from the Hamiltonian path problem. It follows from this result that
MSSP is NP-hard.

The reduction uses a fact from extremal spectral graph theory: the path
graph on |V | nodes is the graph with minimum spectral radius among all
connected graphs with |V | nodes and |V | − 1 edges. Setting λ = λ1(P|V |) =
2 cos (π/(|V | + 1)) and k = |V | − 1 completes the reduction. Recall that while
the spectral radius of a graph might be a real number, verifying a candidate solu-
tion amounts to checking whether the eigenvalues of a given adjacency matrix
are bounded above by a given value which can be done in polynomial time to
any precision [14].

Note that if the bound on the spectral radius λ = 1, then MSSP becomes the
maximum matching problem which can be solved in polynomial time. Indeed,
from Property 1, it is easy to see that the problem consists in finding a subgraph
of degree at most 1 with maximum number of edges. Furthermore, note that all
undirected graphs that are not matchings have a spectral radius larger than or
equal to

√
2 which is the spectral radius of the path graph on 3 nodes. From this

consideration, we will study the range where the bound on the spectral radius
is meaningful, that is

√
2 ≤ λ < λ1(G).

We now present our algorithm based on the relaxation and randomized
rounding framework.

3 Relaxation and Matrix Randomized Rounding

The relaxation and randomized rounding framework [17] is a general algorith-
mic technique composed of two steps: first, solving a continuous relaxation of
the original combinatorial programming and then, sampling a discrete solution
based on an optimal solution of the relaxed problem. This technique has resulted
in the design of a large number of approximation algorithms for a broad range of
combinatorial problems and has been the cornerstone of the application of the
sum of squares hierarchy developed by Lasserre [8] and Parrilo [15] in combina-
torial optimization. There are often two steps in the analysis of a relaxation and
randomized rounding algorithm: finding a tight relaxation of the original prob-
lem that is solvable in polynomial time and proving that the random discrete
solution is feasible with high probability.

Here we propose a mathematical programming formulation of MSSP that
uses semidefinite programming (SDP) to model the constraint on the spectral
radius. While linear programming allows to define optimization problems with
non-negative vector variables written x ≥ 0, SDP extends to the larger class
of problems with positive semidefinite matrix variables written X � 0 i.e. all
eigenvalues of X are non-negative: ∀ i ∈ [1, n], λi(X) ≥ 0. Given an input graph
G = (V,E) and a bound on the spectral radius λ, we write the following semidef-
inite programming problem with binary variables:
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max
∑
ij∈E

yij

s.t.
∑
ij∈E

yijAij 	 λI

∑
j∈Γ(i)

yij ≤ λ2, ∀i ∈ V (SDP0,1)

yij ∈ {0, 1}, ∀ ij ∈ E

where Aij is the adjacency matrix of the graph Gij = (V, {ij}) with a single edge
ij and I is the identity matrix of size |V |. The decision variables yij represent
whether an edge ij belongs to the subgraph when yij = 1 or not when yij = 0.
Recall that for a n by n square matrix, M 	 tI ⇐⇒ ∀ i ∈ [1, n], λi(M) ≤ t.
This means that the semidefinite constraint ensures that the adjacency matrix
of the subgraph defined by yij has its spectral radius bounded above by λ. The
linear constraint ensures that the degree of each node i ∈ V in the subgraph
is bounded above by λ2. Note that this constraint is redundant given that the
general bounds (1) state that the maximum degree of a graph is bounded above
by the square of its spectral radius i.e. Δ ≤ λ2

1. However this is in general not
the case with weighted graphs, which will be discussed in Sect. 3.3.

The continuous relaxation of Problem (SDP0,1) is obtained by relaxing inte-
ger constraints into box constraints. We underline that the semidefinite con-
straint does not originate from the relaxation as is the case for some problems
which relax vector variables with quadratic constraints into a SDP problem e.g.
the one used in the algorithm given by Goemans and Williamson for the maxi-
mum cut problem [6]. Our relaxation is limited to the binary variables.

max
∑
ij∈E

yij

s.t.
∑
ij∈E

yijAij 	 λI

∑
j∈Γ(i)

yij ≤ λ2, ∀i ∈ V (SDPλΔ)

yij ∈ [0, 1], ∀ ij ∈ E

As semidefinite programming is in P, we can solve Problem (SDPλΔ) in
polynomial time. This allows us to state our relaxation and randomized round-
ing algorithm. In the rest of this article, we denote scalar random variables by
lowercase bold letters e.g. x and matrix random variables by uppercase bold let-
ters e.g. X. Furthermore, we denote by x ∼ Ber(μ) the fact that x is a random
variable following a Bernoulli distribution of mean μ.
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Algorithm 1. Relaxation & Randomized Rounding

Input: G = (V,E),
√

2 ≤ λ < λ1(G), and r > 1.
Output: H = (V,E′) such that λ1(H) ≤ λ with probability pr.
y∗ ← arg Problem (SDPλΔ)
Sample ∀ ij ∈ E, xij ∼ Ber(y∗

ij/r)
return H = (V, { ij ∈ E : xij = 1 })

We will now turn to a simple application of Algorithm1 to the case of star
graphs and determine the adequate sampling factor r that results in a feasible
solution with high probability i.e. pr = 1 − 1/n where n = |V |.

3.1 The Case of Star Graphs

Before giving the complete analysis of our relaxation and randomized rounding
algorithm we focus on a specific class of input graphs to illustrate the methodol-
ogy of relaxation and randomized rounding but also to highlight the importance
of the degree constraint in our proposed mathematical formulation.

Recall that a star graph Sn = K1,n is a graph with V = {0, . . . , n} and
E = {(0, 1), . . . , (0, n)}. It is a well-known fact from spectral graph theory that
the spectral radius of a star equals the square root of its number of edges i.e.
λ1(Sn) =

√
n. More generally, it is easy to see that a weighted star graph Sw,

where each edge ij is associated with weight wij , has spectral radius λ1(Sw) =

||w||2 =
√∑

ij∈E w2
ij . Notice that we recover the non-weighted case by setting

every weight to be 1. Using this property, we determine that the number of edges
in an optimal solution of Problem (SDP0,1) is exactly �λ2� edges. We denote the
optimal value of MSSP on a star graph Sn and parameter λ by opt(Sn, λ) = �λ2�.

To analyze the gap between the combinatorial problem and our relaxation,
we now compute the value of an optimal solution of Problem (SDPλΔ). First,
we can use the above definition of the spectral radius of a star graph to replace
the semidefinite constraint by ||y||2 ≤ λ. Second, we interpret the degree con-
straint as a constraint on the �1-norm of y. This means that we can compute
an optimal solution of Problem (SDPλΔ) by solving the following second-order
cone programming problem:

max
y∈[0,1]|E|

||y||1
s.t. ||y||2 ≤ λ (SOCPλΔ)

||y||1 ≤ λ2

It is now easy to see that an optimal solution of this problem has value at most
λ2 and that can be achieved by any y such that ||y||2 ≤ λ e.g. the uniform
solution where ∀ij ∈ E, y∗

ij = λ2/n has �2-norm ||y∗||2 = λ/
√

n. We denote by
optrel(Sn, λ) = λ2 the optimal value of the relaxation.

We now have a complete description of the integrality gap gSn
of our relax-

ation for star graphs. The gap is the largest ratio between the optimal value of
the relaxation and the optimal value of the original problem:
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gSn

def= max
Sn,λ

optrel(Sn, λ)
opt(Sn, λ)

=
λ2

�λ2� ≤ 4
3

(2)

where the last inequality comes from the fact that λ ≥ √
2.

3.2 Erdös-Rényi Stars

Now that we have solved our relaxation of MSSP, we will use the computed
optimal solution y∗ to sample a discrete solution, here a random subgraph Sx

of the original star graph Sn. For this purpose we introduce for each edge ij
an independent random variable xij ∼ Ber(y∗

ij/r). By definition the random
number of edges x of the random subgraph Sx is a sum of independent Bernoulli
random variables with mean Ex =

∑
ij y∗

ij/r = λ2/r.
If for some r > 1 the random subgraph Sx satisfies the spectral radius con-

straint with high probability, i.e. pr = 1 − O(1/n), then we would have a poly-
nomial time randomized r-approximation algorithm. We obtain the following
approximation algorithm in the case of star graphs:

Theorem 1. (Feasible with constant probability) Given a star graph Sn, a bound
on the spectral radius λ ≥ √

2, and an optimal solution y∗ of Problem (SOCPλΔ),
the random partial subgraph Sx obtained by keeping edges according to indepen-
dent random variables xij ∼ Ber(y∗

ij/r) is a feasible solution of MSSP with
probability pr ≥ 2/3 for r = 4.

Proof. As is common practice in the analysis of randomized algorithms [12], we
use the Chernoff bound to get an estimate of the probability that our sampled
solution is feasible. Recall that the Chernoff bound gives an upper bound on the
probability that a sum of independent random variables exceeds a certain value.

Theorem. [12] (Chernoff bound) Let x =
∑n

i=1 xi where each xi is an indepen-
dent random variable. We have for a given value a > 0 the following estimate:

Pr (x ≥ a) ≤ min
t>0

e−ta
n∏

i=1

E etxi .

We directly apply the Chernoff bound on the random number of edges x =∑
ij∈E xij for the value a = λ2. After using the fact that E etxij ≤ e

y∗
ij
r (et−1),

we obtain the following:

Pr(x ≥ λ2) ≤ min
t>0

e−tλ2
exp

⎛
⎝ ∑

ij∈E

y∗
ij

r
(et − 1)

⎞
⎠

Pr(x ≥ λ2) ≤ min
t>0

exp
(

λ2

r
(et − 1) − tλ2

)
.
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The minimum of the r.h.s. is attained at t = log r under the condition that t > 0
from which we deduce that r = 1 + h for some h > 0. The bound then simplifies
into:

Pr(x ≥ λ2) ≤ exp
(

λ2

(
h

1 + h
− log(1 + h)

))
.

We choose r = 1+h = 4 to produce the following readable bound which remains
valid for any λ ≥ √

2:

Pr(x ≥ λ2) ≤ exp(−0.64λ2) ≤ 1
3

which concludes the proof of Theorem1. Recall indeed that the event λ1(Sx) ≥ λ
is equivalent to the event x ≥ λ2. ��

Since our success probability for a single sample pr ≥ 2/3 we can amplify
it by repetition in polynomial time to obtain a solution of expected value λ2/4
and such that the solution is feasible with high probability pr = 1 − O(1/n).

To summarize the case of star graphs, our relaxation and randomized round-
ing algorithm is a polynomial time algorithm which returns with high probability
a feasible star graph of expected size λ2/4.

3.3 Without the Degree Constraint

It is important to notice that the degree constraint played a significant role in the
tightness of the relaxation in the case of star graphs. Reusing the same analysis
as in Sect. 3.1 we can see that Problem (SDPλΔ) without the degree constrained
is equivalent to the following problem:

max
y∈[0,1]|E|

||y||1
s.t. ||y||2 ≤ λ (SOCPλ)

By a geometrical argument, we notice that the uniform solution ∀ij ∈ E, yij =
λ/

√
n is the unique optimal solution of Problem (SOCPλ). It follows that the

associated optimal value optrel′(Sn, λ) = λ
√

n.
In that case, the integrality gap of the relaxation given by Problem (SOCPλ)

is

g′
Sn

def= max
Sn,λ

optrel′(Sn, λ)
opt(Sn, λ)

=
λ
√

n

�λ2� = O

(√
n

λ

)
(3)

which translates into a much higher r = O(g′
Sn

) than the constant obtained
in Sect. 3.1. Problem formulations focusing on minimizing the spectral radius
given an edge deletion budget cannot a priori bound the maximum degree of the
resulting weighted graph. This additional information is a key advantage over
problems that optimize the spectral parameter.

We are now ready to describe our matrix randomized rounding whose analysis
follows a similar structure to the one for star graphs. However we need to use
more powerful concentration inequalities than the Chernoff bound to obtain
bounds on the spectral radius of the random matrix we sample. This sampling
can be seen as a special case of inhomogeneous Erdös-Rényi random graphs.
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4 Spectral Subgraphs in General Graphs

In order to extend the analysis of Algorithm1 to arbitrary graphs we turn to
more advanced concentration inequalities that describe the behavior of random
matrices and in particular their spectrum. Fortunately, recent results in the
analysis of random matrices (cf. the survey by Tropp [22]) provide tail bounds for
the largest eigenvalue of random matrices. These results are directly applicable
to the analysis of Algorithm1 for finding the sampling factor r that guarantees
that the returned solution is feasible with high probability pr = 1 − 1/n.

We start by presenting the generic matrix Bernstein bound and its applica-
tion to adjacency matrices following the work of Radcliffe and Chung [3]. Finally
we give the proof that Algorithm 1 is a randomized O(log n)-approximation algo-
rithm with the following property:

Theorem 2. (Feasible with constant probability) Given a graph G = (V,E) with
|V | = n, a bound on the spectral radius λ ≥ log n, and an optimal solution y∗

of Problem (SDPλΔ), the random subgraph H obtained by keeping edges ij ∈ E
according to independent random variables xij ∼ Ber(y∗

ij/r) is a feasible solution
of MSSP with probability pr ≥ 2/3 for r = O(log n).

4.1 Following the Matrix Bernstein Bound

The matrix Bernstein bound is a generalization of the classical Bernstein bound
to the setting of independent random matrices. The theorem states the following:

Theorem. [3] (Matrix Bernstein) Let X =
∑

i Xi where each Xi is an inde-
pendent symmetric random matrix of size n which is centered EXi = 0 and
bounded in spectral norm λ1(Xi) ≤ L. We define the matrix variance of X by
v(X) = λ1(

∑
i EX2

i ). The following tail inequality holds:

Pr(λ1(X) ≥ a) ≤ n exp
(

− a2

2v(X) + 2La/3

)
. (4)

The output of Algorithm1 corresponds to a random adjacency matrix A
which is the sum of independent random adjacency matrices each corresponding
to an edge in the random graph. Let Aij = (Eij + Eji) where the Eij form the
canonical basis for Mn,n and denote by xij a Bernoulli random variable of mean
y∗

ij/r. We have the following:

A =
∑
ij∈E

xijAij (5)

Note that our random adjacency edges have non-zero mean ExijAij =
(y∗

ij/r)Aij . Fortunately, applying Weyl’s inequalities on A and EA will give
us control over the spectral radius of A by proxy.

Theorem. [1] (Weyl’s inequalities) Let X and Y be two symmetric matrices,

λ1(X − Y ) ≤ ε =⇒ |λ1(X) − λ1(Y )| ≤ ε (6)
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This theorem implies that bounding the spectral radius of our centered random
adjacency matrix by (1 − 1/r)λ will give us the adequate bound on the spectral
radius of A. Since we only consider the event where A has greater spectral radius
than EA, we drop the absolute value:

λ1(A − EA) <

(
1 − 1

r

)
λ =⇒ λ1(A) − λ1(EA) <

(
1 − 1

r

)
λ

and by feasibility of an optimal solution of the relaxed SDP, i.e. Problem
(SDPλΔ), we have λ1(EA) ≤ λ/r which gives:

λ1(A − EA) <

(
1 − 1

r

)
λ =⇒ λ1(A) < λ.

From the general bounds of (1) we know that the spectral radius of the
centered adjacency matrix of a random edge ij is either y∗

ij/r (no edge) or
1 − y∗

ij/r (one edge) which lets us bound the spectrum of each summand. In the
worst case we have, for each edge ij:

λ1

((
xij − y∗

ij

r

)
Aij

)
≤ 1 (7)

4.2 Proof of Theorem2

We start by computing the matrix variance:

v(A − EA) = λ1

⎛
⎝ ∑

ij∈E

Var(xijAij)

⎞
⎠ .

Since Var(xijAij) = Var(xij)A2
ij and A2

ij = Di + Dj where Dv = Evv, we
obtain a clean expression for the variance of the centered adjacency matrix as
the spectral radius of the matrix of degree variances:

v(A − EA) = λ1

⎛
⎝ ∑

ij∈E

Var(xij)(Di + Dj)

⎞
⎠

= max
i∈V

∑
j∈Γ(i)

y∗
ij

r

(
1 − y∗

ij

r

)

≤ max
i∈V

∑
j∈Γ(i)

y∗
ij

r

and by feasibility of an optimal solution of the relaxation, the degree constraint
holds which means that maxi∈V

∑
j∈Γ(i) y∗

ij ≤ λ2 and gives:

v(A − EA) ≤ λ2

r
.
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We now fulfill all the prerequisites to apply the matrix Bernstein bound on
A−EA and L = 1. To explicitly describe the fact that the approximation ratio
r > 1 we introduce as earlier h > 0 such that r = 1 + h. We apply the Bernstein
bound for the value a = (h/(1 + h))λ:

Pr
(

λ1(A − EA) ≥ h

1 + h
λ

)
≤ n exp

(
−1

2
a2

v(A − EA) + a
3

)

= n exp

(
−1

2
a2

λ2

1+h + 1
3

h
1+hλ

)

≤ n exp

(
−1

2
h2

(1 + h)2
λ2

λ2

1+h + 1
3

h
1+hλ

)
.

We simplify the above expression to obtain:

Pr
(

λ1(A − EA) ≥ h

1 + h
λ

)
≤ n exp

(
−1

2
h2

(1 + h)2
λ2

λ
1+h (λ + h/3)

)

= n exp
(

−1
2

h2

1 + h

λ

λ + h/3

)
.

As in the case of star graphs, we will derive possible values for r (resp. for h)
such that the probability of our subgraph H being infeasible is less than 1/3. For
this, we attempt to derive an upper bound for the argument of the exponential
as n exp(−x) ≤ 1

3 implies that x ≥ log 3n.
We are looking for values of h and λ such that the following inequality holds:

1
2

h2

1 + h

λ

λ + h/3
≥ log 3n

We start by deriving a lower bound on λ function of h. In the above inequality,
λ/(λ+h/3) can be arbitrarily small if h is unbounded. To prevent this, we impose
that, for a certain constant c > 0:

1
2

λ

λ + h/3
≥ c

which implies that

λ ≥ 2c

3 − 6c
h.

Choosing c = 1/4 gives us the condition that λ ≥ h/3.
Now we are left with finding the value of h such that:

1
4

h2

1 + h
≥ log 3n.



An Approximation Algorithm for the Maximum Spectral Subgraph Problem 119

For all values of n, it is sufficient to take h = 3 log n which completes the proof.
��

Algorithm 1 is a randomized algorithm which returns a feasible solution with
probability greater than 2/3 and of expected value within 1+3 log n of the value
of an optimal solution whenever λ ≥ log n. Recall that the success probability of
such an algorithm can be amplified to high probability in polynomial time. We
now turn to a different algorithm to handle the range λ ∈ [

√
2, log n).

5 Maximum Matching

After designing an approximation algorithm for MSSP for the range of the spec-
tral bound λ ∈ (log n, λ1(G)), we turn to the well-studied maximum matching
problem: finding a subgraph M consisting of the maximum number of non-
adjacent edges in a given graph G. The number of edges in M is often called
the matching number ν(G) of the graph. We use a spectral generalization of
a classical lower bound on the matching number due to Stevanović [21] which
states the following:

Theorem. [21] (Spectral lower bound on the matching number) Given a graph
G = (V,E) we have the following lower bound:

ν(G) ≥ |E|
λ2

1(G) − 1
.

This static lower bound can be immediately turned into an approximation
algorithm since computing a maximum matching can be done in polynomial
time.
Algorithm 2. Maximum matching

Input: G = (V,E),
√

2 ≤ λ ≤ λ1(G)
Output: H = (V,E′) such that λ1(H) ≤ λ
return H = arg ν(G)

Theorem 3. (Approximation by maximum matching) Given G = (V,E) and a
spectral bound λ > 0, a maximum matching of G is a (λ2 −1)-approximation for
MSSP.

Proof. Denoting by H∗ an optimal solution of MSSP for a graph G and spectral
bound λ, we know that H∗ is a partial subgraph of G which implies ν(G) ≥
ν(H∗). We also know that H∗ is feasible i.e. λ1(H∗) ≤ λ. Combining these two
statements together with the lower bound of Stevanović, we obtain the following
inequality:

ν(G) ≥ ν(H∗) ≥ opt(G,λ)
λ2 − 1

which shows that the size of a maximum matching is within a factor of λ2 − 1
of an optimal solution of MSSP. Furthermore any matching has spectral radius
equal to 1 i.e. is trivially feasible. ��
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Used in the range λ ∈ [
√

2, log n) a maximum matching is a O(log2 n)-
approximation algorithm in the worst-case. We then combine Algorithm1 with
Algorithm 2 to obtain a O(log2 n)-approximation algorithm for all values of λ.

6 Conclusion and Perspectives

We have introduced the maximum spectral subgraph problem and designed
a randomized O(log2 n)-approximation algorithm based on the relaxation and
rounding framework to solve it.

In terms of lower bounds, we currently do not have any result regarding
hardness of approximation, but we are actively exploring this direction. To the
best of our knowledge, no inapproximability results have been established for
problems related to the spectrum of a graph. Indeed, NP-hardness results found
in the literature [11,26] are based on reductions which relate extremal values
in spectral graph theory to classical computational problems. These reductions
cannot be directly extended to obtain an approximation gap.

Without a better lower bound than NP-hardness, we are compelled to find
new techniques to improve our current upper bound. First, the continuous relax-
ation used in Algorithm1 is rather natural aside from the redundant degree con-
straints. It would be interesting to see if stronger relaxations could be used to
obtain more information about the random graph e.g. strong bounds on the vari-
ance of the random degrees. For this purpose we would like to consider a sum-of-
squares relaxation for the binary semidefinite programming problem. Indeed, Nie
[13] has given an extension of the classical sum-of-squares hierarchy to include
positivity certificates for matrix variables. This relates to the question of gen-
eralizing the results of Raghavendra [18] on maximum constraint satisfaction
problems where constraints apply to at most k variables to maximum constraint
satisfaction problems with spectral constraints which, by definition, involve all
variables at once. Aside from strengthening the relaxation, there is opportunity
for improvement in developing more precise tail bounds on the spectrum of ran-
dom adjacency matrices following recent results by van Handel [23] as well as by
Le, Levina, and Vershynin [9]. On a separate note, we are currently working on
applying the method of conditional probabilities to derandomize Algorithm1 in
order to obtain a deterministic approximation algorithm. The analysis of Sect. 5
focuses on the maximum matching problem as a way of computing a feasible
solution for the range λ ∈ [

√
2, log n). It is natural to wonder whether the degree

constrained subgraph problem with Δ ≤ λ (also known as the simple λ-matching
problem) could be proven to return a better solution, and possibly match the
O(log n) ratio obtained by Algorithm1.

Finally, we are also interested in applying a similar strategy to the problem of
adding the smallest number of edges to reach a given algebraic connectivity i.e.
a lower bound on the second smallest eigenvalue of the Laplacian matrix of the
graph. This problem, proven NP-hard by Mosk-Aoyama [11], is a variant of the
problem of finding the maximum algebraic connectivity given an edge addition
budget proposed by Ghosh and Boyd [5]. While Kolla et al. have designed an
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approximation algorithm with conditional guarantees [7] for the original prob-
lem, we hope that our methodology could apply to the variant and lead to an
unconditional approximation ratio.
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