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Abstract. The Satisfactory Partition problem consists of deciding
if a given graph has a partition of its vertex set into two nonempty parts
such that each vertex has at least as many neighbors in its part as in the
other part. This problem was introduced by Gerber and Kobler in 1998
and further studied by other authors but its complexity remained open
until now. We prove in this paper that Satisfactory Partition, as well
as a variant where the parts are required to be of the same cardinality,
are NP-complete. We also study approximation results for the latter
problem, showing that it has no polynomial-time approximation scheme,
whereas a constant approximation can be obtained in polynomial time.
Similar results hold for balanced partitions where each vertex is required
to have at most as many neighbors in its part as in the other part.

1 Introduction

Gerber and Kobler introduced in [5, 6] the problem of deciding if a given graph
has a vertex partition into two nonempty parts such that each vertex has at
least as many neighbors in its part as in the other part. A graph with this
property is called satisfactory partitionable. As remarked by Gerber and Kobler,
Satisfactory Partition may have no solution. In particular, the following
graphs are not satisfactory partitionable: complete graphs, stars, and complete
bipartite graphs with at least one of the two vertex sets having odd size. Some
other graphs are easily satisfactory partitionable: cycles of length at least 4,
trees which are not stars, and disconnected graphs. After [5, 6] this problem was
further studied in [8] and [1] but its complexity remained open until now, while
some generalizations were studied and proved to be NP -complete.

We define in this paper another variant of Satisfactory Partition, called
Balanced Satisfactory Partition, where the parts are required to have the
same cardinality. A graph admitting such a partition is said to be balanced sat-

isfactory partitionable. Graphs like cycles of even length and complete bipartite
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graphs with both vertex classes of even size are trivially balanced satisfactory
partitionable. A graph of even order formed by two non-partitionable connected
components of unequal size, however, is an example of a graph which is satisfac-
tory partitionable but not balanced satisfactory partitionable. We show in this
paper that Satisfactory Partition and Balanced Satisfactory Parti-
tion are NP -complete.

We consider also the opposite problem of deciding if a given graph has a
vertex partition into two parts such that each vertex has at least as many neigh-
bors in the other part as in its own part. This problem called Co-Satisfactory
Partition corresponds to finding in the graph a maximal cut with respect to
moving a vertex from its part to the other. Therefore, a graph always admits
such a partition that can be found in polynomial time. However, the balanced
version of this problem, called Balanced Co-Satisfactory Partition, does
not always admit a solution, e.g. for stars of even order. We prove in this paper
that Balanced Co-Satisfactory Partition is NP -complete.

When a graph has no balanced (co-)satisfactory partition, it is natural to ask
for a balanced partition maximizing the number of (co-)satisfied vertices. The
corresponding optimization problems are Max Satisfying Balanced Par-
tition and Max Co-Satisfying Balanced Partition. We prove in this
paper that Max Satisfying Balanced Partition is 3-approximable, Max
Co-Satisfying Balanced Partition is 2-approximable, and that these two
problems have no polynomial-time approximation scheme unless P=NP.

The paper is structured as follows. Section 2 contains some notations and
definitions of problems. In Section 3 we show the NP -completeness of Satisfac-
tory Partition, Balanced Satisfactory Partition, and Balanced Co-
Satisfactory Partition. In Section 4 we prove that Max (Co-)Satisfying
Balanced Partition has no approximation scheme, unless P=NP, and in Sec-
tion 5 we give constant approximation algorithms for these problems.

2 Preliminaries

We begin with some basic definitions concerning approximation, and then we
define the problems considered.

Approximability. Given an instance x of an optimization problem A and a
feasible solution y of x, we denote by val(x, y) the value of solution y, and by
optA(x) the value of an optimum solution of x. For a function ρ, an algorithm
is a ρ-approximation for a maximization problem A if for any instance x of the

problem it returns a solution y such that val(x, y) ≥ optA(x)
ρ(|x|) . We say that a

maximization problem is constant approximable if, for some constant ρ > 1,
there exists a polynomial-time ρ-approximation for it. A maximization problem
has a polynomial-time approximation scheme (a PTAS, for short) if, for every
constant ε > 0, there exists a polynomial-time (1 + ε)-approximation for it.

Reductions. ([7]) Let A and A′ be two maximization problems. Then A is
said to be gap-preserving reducible to A′ with parameters (c, ρ), (c′, ρ′) (where



ρ, ρ′ ≥ 1), if there is a polynomial-time algorithm that transforms any instance
x of A to an instance x′ of A′ such that the following properties hold:

optA(x) ≥ c ⇒ optB(x′) ≥ c′ and optA(x) < c
ρ
⇒ optB(x′) < c′

ρ′

Gap-preserving reductions have the following property. If it is NP -hard to
decide if the optimum of an instance of A is at least c or less than c

ρ
, then it is

NP -hard to decide if the optimum of an instance of A′ is at least c′ or less than
c′

ρ′
. This NP -hardness implies that A′ is hard to ρ′-approximate.

Graphs. We consider finite, undirected graphs without loops and multiple edges.
For a graph G = (V,E), a vertex v ∈ V , and a subset Y ⊆ V we denote by dY (v)
the number of vertices in Y that are adjacent to v; and, as usual, we write d(v)
for the degree dV (v) of v in V . A partition (V1, V2) of V is said to be nontrivial

if both V1 and V2 are nonempty.

The problems we are interested in are defined as follows.

Satisfactory Partition
Input: A graph G = (V,E).
Question: Is there a nontrivial partition (V1, V2) of V such that for every v ∈ V ,
if v ∈ Vi then dVi

(v) ≥ dV3−i
(v) ?

The variant of this problem where the two parts have equal size is:

Balanced Satisfactory Partition
Input: A graph G = (V,E) on an even number of vertices.
Question: Is there a partition (V1, V2) of V such that |V1| = |V2| and for every
v ∈ V , if v ∈ Vi then dVi

(v) ≥ dV3−i
(v)?

Given a partition (V1, V2), we say that a vertex v ∈ Vi is satisfied if dVi
(v) ≥

dV3−i
(v), or equivalently if dVi

(v) ≥ dd(v)
2 e. A graph admitting a nontrivial parti-

tion where all vertices are satisfied is called satisfactory partitionable, and such a
partition is called a satisfactory partition. If |V1| = |V2| also holds, then it will be
called a balanced satisfactory partition and the graph G is balanced satisfactory

partitionable.

Co-Satisfactory Partition
Input: A graph G = (V,E).
Question: Is there a partition (V1, V2) of V such that for every v ∈ V , if v ∈ Vi

then dVi
(v) ≤ dV3−i

(v) ?

We already mentioned in the introduction that Co-Satisfactory Parti-
tion always has a solution which can be found easily in polynomial time.

Balanced Co-Satisfactory Partition
Input: A graph G = (V,E) on an even number of vertices.
Question: Is there a partition (V1, V2) of V such that |V1| = |V2| and for every
v ∈ V , if v ∈ Vi then dVi

(v) ≤ dV3−i
(v) ?

Given a partition (V1, V2), a vertex v ∈ Vi is co-satisfied if dVi
(v) ≤ dV3−i

(v),

or equivalently if dVi
(v) ≤ dd(v)

2 e. The previous notions are similarly defined for
co-satisfiability.



When a graph is not balanced (co-)satisfactory partitionable, it is natural
to ask for a balanced partition that maximizes the number of vertices that are
(co-)satisfied. Therefore, we consider the following problems.

Max Satisfying Balanced Partition
Input: A graph G = (V,E) on an even number of vertices.
Output: A partition (V1, V2) of V , such that |V1| = |V2|, that maximizes the
number of satisfied vertices.

Max Co-Satisfying Balanced Partition
Input: A graph G = (V,E) on an even number of vertices.
Output: A partition (V1, V2) of V , such that |V1| = |V2|, that maximizes the
number of co-satisfied vertices.

Almost Balanced Partitions. The above problems can also be formulated for
graphs with an odd number of vertices, requiring partitions (V1, V2) such that
|V1| and |V2| differ just by 1.

3 Complexity of (Balanced) (Co-)Satisfactory Partition

In this section we establish the NP -completeness of the following three problems:

(i) Satisfactory Partition
(ii) Balanced Satisfactory Partition
(iii) Balanced Co-Satisfactory Partition

The overall scheme is that (iii) is NP -complete, (iii) is reducible to (ii), and (ii)
is reducible to (i).

Proposition 1. Balanced Satisfactory Partition is polynomial-time re-

ducible to Satisfactory Partition.

Proof. Let G = (V,E) be a graph, instance of the first problem on n vertices.
The graph G′ = (V ′, E′), instance of Satisfactory Partition, is obtained
from G by adding two cliques of size n

2 , A = {a1, . . . , an

2
} and B = {b1, . . . , bn

2
}.

In G′, in addition to the edges of G, all vertices of V are adjacent to all vertices
of A and B. Also each vertex ai ∈ A is linked to all vertices of B except bi,
i = 1, . . . , n

2 .
Let (V1, V2) be a balanced satisfactory partition of G. Then (V ′

1 , V ′
2) where

V ′
1 = V1∪A and V ′

2 = V2∪B is a satisfactory partition of G′. Indeed, a vertex from
A∪B is satisfied, for example if v ∈ A, dV ′

1
(v) = |V1|+ |A|−1 = |V2|+ |B|−1 =

dV ′

2
(v). Also it is easy to see that a vertex from V is satisfied in G′ since it is

satisfied in G.
Let (V ′

1 , V ′
2) be a satisfactory partition of G′, where V ′

1 = V1 ∪ A1 ∪ B1 and
V ′

2 = V2 ∪A2 ∪B2 with Vi ⊆ V,Ai ⊆ A,Bi ⊆ B, i = 1, 2. We claim that (V1, V2)
is a balanced satisfactory partition of G.

We first show that A1 ∪ B1 6= ∅ and A2 ∪ B2 6= ∅, which means that no
satisfactory partition can contain A ∪ B in one of its parts. Indeed, by contra-
diction, suppose we have V ′

1 = V1 ∪ A ∪ B and V ′
2 = V2. Then, the inequality

specifying that v ∈ V2 is satisfied is dV2
(v) ≥ dV1

(v) + n which is impossible. So,



two cases are possible: either each part of the partition contains one clique, say
V ′

1 = V1 ∪A and V ′
2 = V2 ∪B (case 1) or at least one of the cliques is cut by the

partition (case 2).
In case 1, in order for a vertex of A to be satisfied, we have n

2 − 1 + |V1| ≥
|V2|+

n
2 − 1 and in order that a vertex of B be satisfied, we have n

2 − 1 + |V2| ≥
|V1|+

n
2 −1. These two inequalities imply |V1| = |V2|. Moreover, since v ∈ V1∪V2

is satisfied in G′ where it is linked to n
2 vertices in A and n

2 vertices in B, v is
also satisfied in G.

In case 2, suppose that clique A is cut by the partition into non-empty sets
A1 and A2 while B1 or B2 may be empty. We show now that if ai ∈ A1 for some
i, then also bi ∈ B2 for the same i. Assume by contradiction that bi ∈ B1. Since
ai is satisfied we have

(|A1| − 1) + (|B1| − 1) + |V1| ≥ |A2| + |B2| + |V2| (1)

This implies |V ′
1 | > |V ′

2 |.
Let aj ∈ A2. We may have bj ∈ B1 or bj ∈ B2. If bj ∈ B2 then the condition

that aj is satisfied is

(|A2| − 1) + (|B2| − 1) + |V2| ≥ |A1| + |B1| + |V1| (2)

If bj ∈ B1 then the condition that aj is satisfied is

(|A2| − 1) + |B2| + |V2| ≥ |A1| + (|B1| − 1) + |V1| (3)

Each of (2) and (3) implies that |V ′
2 | ≥ |V ′

1 |, contradicting (1). Thus |A1| =
|B2| and |A2| = |B1|, that means that both cliques are cut by the partition.

For ai ∈ A1 and bi ∈ B2 the inequalities specifying that ai and bi are satisfied
are respectively: (|A1| − 1) + |B1| + |V1| ≥ |A2| + (|B2| − 1) + |V2|
and |A2| + (|B2| − 1) + |V2| ≥ (|A1| − 1) + |B1| + |V1|

from which we obtain |A1|+ |B1|+ |V1| = |A2|+ |B2|+ |V2|. Since |A1| = |B2|
and |A2| = |B1|, we get |V1| = |V2|.

Moreover, since v ∈ V1∪V2 is satisfied in G′ where it is linked to |A1|+|B1| =
n
2 vertices in V ′

1 among the vertices of the two cliques and |A2|+|B2| = n
2 vertices

in V ′
2 , v is also satisfied in G. 2

We state now our NP -completeness results.

Theorem 1. Balanced Co-Satisfactory Partition is NP-complete.

Proof. Clearly, this problem is in NP. We construct a polynomial reduction
from a variant of Independent Set, the problem of deciding if a graph with
n vertices contains an independent set of size at least n

2 , a problem stated to
be NP -hard in [4]. Let G = (V,E) be a graph with n vertices v1, . . . , vn and
m edges, an input of this variant of Independent Set problem. We assume
that n is even, since otherwise we can add a vertex that we link with all the
vertices of the graph without changing the problem. The edges of G are labelled
e1, . . . , em. We construct a graph G′ = (V ′, E′), instance of Balanced Co-
Satisfactory Partition as follows: the vertex set V ′ consists of three sets F , T
and V (the vertex set of G) where F = {f1, . . . , f2m+1} and T = {t1, . . . , t2m+1}.
Vertices f2`, f2`+1 correspond to edge e` (` = 1, . . . ,m) and f1 is an additional
vertex. F and T are two independent sets of size 2m + 1. Vertices ti are linked



with fj , i = 1, . . . , 2m + 1, j = 1, . . . , 2m + 1. In addition to these edges and
E, the edge set E′ contains the edges (f2`, vi) and (f2`+1, vj) for each edge
e` = (vi, vj), ` = 1, . . . ,m.

It is easy to see that this construction can be accomplished in polynomial
time. All that remains to show is that G has an independent set of size at least
n
2 if and only if G′ is balanced co-satisfactory partitionable.

Suppose firstly that G has an independent set of size at least n
2 . Let S be

an independent set of size exactly n
2 of G. Let V ′

1 = F ∪ S and V ′
2 = T ∪ S̄,

where S̄ = V \ S. Let us check in the following that (V ′
1 , V ′

2) is a balanced co-
satisfactory partition. It is easy to see that all vertices of F and T are co-satisfied.
Let v ∈ S. Since S is an independent set, v is not linked to any vertex in S.
Thus, dV ′

1
(v) = dS̄(v) = dV ′

2
(v) and so the vertices of S are co-satisfied. Given

a vertex v ∈ S̄, dV ′

1
(v) = 2dS(v) + dS̄(v) while dV ′

2
(v) = dS̄(v), thus also the

vertices of S̄ are co-satisfied in G′.
Suppose now that G′ is balanced co-satisfactory partitionable and let (V ′

1 , V ′
2)

be a balanced co-satisfactory partition. It is easy to see that F and T cannot
be both included in the same part of the partition since otherwise the vertices
of F and T are not co-satisfied. If the partition cuts only one of the two sets
F or T , suppose for example that F is cut, then the vertices of F that are in
the same part of the partition as T are not co-satisfied. If the partition cuts
both F and T , denote by F1, T1 and F2, T2 the sets of vertices of F and T that
are included in V ′

1 and V ′
2 respectively. For vertices of T1 to be co-satisfied, we

first have |F1| ≤ |F2| whereas for vertices of T2 to be co-satisfied, we must have
|F2| ≤ |F1|, that is |F1| = |F2|, which is impossible since |F | is odd. Therefore, F
and T are included in different parts of the partition and thus (V ′

1 , V ′
2) cuts the

set V into two balanced sets V1, V2, where V ′
1 = F ∪V1 and V ′

2 = T ∪V2. We show
that V1 is an independent set. A vertex v ∈ V1 has dV ′

1
(v) = 2dV1

(v) + dV2
(v)

and dV ′

2
(v) = dV2

(v). Since v is co-satisfied in G′ we have dV ′

1
(v) ≤ dV ′

2
(v) and

we obtain that dV1
(v) = 0. Thus V1 is an independent set of size n

2 . 2

Theorem 2. Satisfactory Partition and Balanced Satisfactory Par-
tition are NP-complete.

Proof. Clearly, these two problems are in NP. We reduce Balanced Co-Satis-
factory Partition to Balanced Satisfactory Partition which shows the
NP -completeness of the latter problem by Theorem 1. Proposition 1 implies the
NP -completeness of Satisfactory Partition. The reduction is as follows.

Let G be a graph, instance of Balanced Co-Satisfactory Partition
on n vertices v1, . . . , vn. The graph G′, instance of Balanced Satisfactory
Partition, has 2n vertices v1, . . . , vn, u1, . . . , un. G′ is the complement of graph
G on vertices v1, . . . , vn, and we add pendant edges (ui, vi), i = 1, . . . , n. If G
is balanced co-satisfactory partitionable and (V1, V2) is such a partition, then
V ′

i = Vi ∪ {uj : vj ∈ Vi} is a balanced satisfactory partition for G′. Indeed, if
vi ∈ V1 then dV1

(vi) ≤ dV2
(vi) in G. Thus, in G′ we have dV ′

1
(vi) = n

2 − 1 −
dV1

(vi) + 1 ≥ n
2 − dV2

(vi) = dV ′

2
(vi) and dV ′

1
(ui) = 1 > dV ′

2
(ui) = 0. Conversely,

since in each balanced satisfactory partition of G′, ui is in the same set as vi,
such a partition of G′ gives a balanced co-satisfactory partition in G. 2



4 No PTAS for Max (Co-)Satisfying Balanced Partition

In this section we prove that Max Co-Satisfying Balanced Partition and
Max Satisfying Balanced Partition have no polynomial-time approxima-
tion scheme unless P=NP. We first introduce a problem used in our reductions.

Max k-Vertex Cover-B
Input: A graph G = (V,E) with |V | ≥ k and maximum degree at most B.
Output: The maximum number of edges in G that can be covered by a subset
V ′ ⊆ V of cardinality k.

Theorem 3 (Petrank [7]). There exists a constant α, 0 < α < 1 with the

following property: given a graph G with n vertices and m edges, instance of

Max k-Vertex Cover-B for some k = Θ(n), it is NP-hard to distinguish,

whether it has opt(G) = m or opt(G) < (1 − α)m.

Though it is not explicitly mentioned in [7], the proof of Theorem 3 yields
the same conclusion for the restricted class of graphs with m ≥ n

2 . We prove
next that the previous result holds in particular for k = n

2 .

Theorem 4. There exists a constant β, 0 < β < 1, with the following property:

given a graph G with N vertices and M edges, instance of Max N
2 -Vertex

Cover-B′, it is NP-hard to distinguish whether it has opt(G) = M or opt(G) <
(1 − β)M .

Proof. We construct a gap-preserving reduction from Max k-Vertex Cover-
B with k = cn, for some constant c < 1, to Max N

2 -Vertex Cover-(2B+2).
Let G = (V,E) be a graph on n vertices and m ≥ n

2 edges, instance of Max
k-Vertex Cover-B. We will construct a graph G′′ with N vertices and M
edges such that if opt(G) = m then opt(G′′) = M and if opt(G) ≤ (1− α)m, for
some α > 0, then opt(G′′) ≤ (1 − β)M , for some β > 0.

First assume that c > 1/2. Let G′′ be the graph obtained from G by insert-
ing 2k − n isolated vertices. In this case, the properties of the gap-preserving
reduction hold with β = α.

Consider now the case c < 1/2. Suppose first that n − 2k is a multiple of
B + 1. Let G′′ be the graph that consists of a copy of G and n−2k

B+1 copies of
the graph TB+1 which is the complete tripartite graph whose vertex classes have
cardinality B + 1 each. Observe that TB+1 needs 2B + 2 vertices in covering
its edges (the complement of a vertex class), and if just 2B + 2 − t vertices
are taken, then at least t(B + 1) edges remain uncovered. Thus, since G has
maximum degree at most B, each subset of N

2 vertices not covering all copies
of TB+1 is trivially improvable. Suppose first that opt(G) = m and let V ′ be a
vertex cover of size k in G. Then the set V ′ and the vertices of two among the 3
independent sets of each of the n−2k

B+1 copies of TB+1 form a vertex cover of G′′ of

size N
2 , and thus opt(G′′) = M . On the other hand, suppose opt(G) < (1−α)m.

Then since M = m + 3(B + 1)(n − 2k) and m ≥ n
2 , the number of edges not

covered in G′′ is at least αm ≥ αM
1+6(B+1)(1−2c) that can be viewed as βM .



Finally, if c < 1/2 and if n−2k = ` mod(B+1), 0 < ` ≤ B, then let G′ be the
graph G together with further B+1−` isolated vertices. Now, we can transform
G′ to G′′ as before by inserting n−2k−`

B+1 + 1 copies of TB+1. In this case we get
a slightly different value for β, as the number m of edges is now compared with
the modified number n+B +1− ` of vertices. Nevertheless, β > 0 is obtained. 2

From this theorem, the following non-approximability results can be deduced.

Theorem 5. Max Co-Satisfying Balanced Partition has no polynomial-

time approximation scheme unless P=NP.

Proof. We construct a gap-preserving reduction between Max n
2 -Vertex Cover-

B and Max Co-Satisfying Balanced Partition. Let G be a graph instance
of Max n

2 -Vertex Cover-B on n vertices and m edges. We construct the graph
G′ as in the proof of Theorem 1. Denote by N the number of vertices of G′.

Suppose first that opt(G) = m, and let V ′ be a vertex cover of size n
2 of G.

Then in the partition (F ∪ (V \V ′), T ∪V ′) all vertices are co-satisfied and thus
opt(G′) = N .

Suppose now that opt(G) < (1 − β)m. Thus for any set of n
2 vertices V ′,

at least βm edges of G remain uncovered. The number of vertices incident to
a non-covered edge is at least 2βm

B
. These vertices are not co-satisfied in the

partition (F ∪(V \V ′), T ∪V ′) and thus the number of co-satisfied vertices in this
partition is less than N − 2βm

B
. It is lengthy but not too hard to show that, when

a balanced partition cuts F or/and T , at least cm vertices are not co-satisfied, for
some constant c < 1, and thus in this case we have opt(G′) < N − dm, for some
constant d. Since Max k-Vertex Cover-B is trivial for m ≤ k, we may assume
that m ≥ n

2 . Thus, since the number of vertices of G′, N = 4m + 2 + n ≤ 7m,

we obtain opt(G′) < (1 − d
7 )N . 2

Theorem 6. Max Satisfying Balanced Partition has no polynomial-time

approximation scheme unless P=NP.

Proof. Consider the graph G′ with N vertices and M edges obtained in the
construction given in the proof of Theorem 5, and apply to G′ the reduction given
in Theorem 2. Let G′′ be the graph obtained. It can be shown that if opt(G′) = N
then opt(G′′) = 2N and if opt(G′) < (1 − γ)N then opt(G′′) < 2N(1 − cγ) for
some constant c. 2

5 Constant approximations for Max (Co-)Satisfying
Balanced Partition

We concentrate mostly on the approximation of Max Satisfying Balanced
Partition. The co-satisfying version turns out to be simpler, and will be con-
sidered at the end of the section.

Proposition 2. Any graph G with an odd number of vertices n has an almost

balanced partition such that each vertex in the part of size n+1
2 is satisfied, and

such a partition can be found in polynomial time.



Proof. Let (V1, V2) be an almost balanced partition of G with |V1| > |V2|. If V1

contains a vertex v that is not satisfied, then dV1
(v) < dV2

(v) and thus by moving
v from V1 to V2 we obtain an almost balanced partition with a smaller value of
the cut induced by (V1, V2). The algorithm repeats this step while the largest
set contains a non-satisfied vertex. After at most |E| steps we obtain an almost
balanced partition where the largest set contains only satisfied vertices. 2

We consider now graphs of even order. Given a graph on an even number of
vertices n, a vertex of degree n−1 is never satisfied in a balanced partition since
it has only n

2 − 1 neighbors in its own part and n
2 neighbors in the other part.

Theorem 7. In any graph G on an even number of vertices n, a balanced parti-

tion with at least dn−t
3 e satisfied vertices can be found in polynomial time, where

t is the number of vertices of degree n − 1 in G.

Proof. If G is not connected, then we find an almost balanced partition in each
odd connected component, using Proposition 2, and a balanced partition in each
even connected component (as shown afterwards); and then it is easy to put them
together in order to form a balanced partition of G, where at least dn−t

3 e vertices
are satisfied.

Suppose in the following that G is connected, and let H be the complement
of G. Let H1, . . . ,Hq (q ≥ 1) be the connected components of H. Observe that
if a vertex is of degree n − 1 in G then it forms alone a connected component
in H. Denote by ni the number of vertices of Hi, i = 1, . . . , q. Consider now a
connected component Hi, where ni > 1. We will show that a (almost) balanced
partition of V (Hi) can be constructed where at least dni

3 e vertices are satisfied in
G. (For ni odd and n even, the almost balanced partition found in Proposition 2
may not work, since its smaller part will be completed with too many, n

2 − ni−1
2

vertices in G.)
Let M = {(a1, b1), . . . , (ap, bp)} be a maximum matching in Hi. It can be

found efficiently, using e.g. Edmonds’ algorithm [2]. We distinguish two cases.
If |M | ≥ dni

3 e then consider a (almost) balanced partition of the vertices of
V (Hi) except the vertices of the matching M . Let (V1, V2) be the partition of
V (Hi) obtained from this one by adding vertices aj to V1 and vertices bj to V2.
While there exists a pair (aj , bj) where both vertices are not satisfied (in G), we
exchange these two vertices. Since aj and bj are not linked in G, this exchange
makes both aj and bj satisfied and decreases the value of the cut by at least 2.

Therefore, after at most |E|
2 exchanges, we obtain a (almost) balanced partition

with at least dni

3 e vertices satisfied (at least one vertex in each pair (aj , bj) ).
If |M | < dni

3 e then using Gallai’s decomposition theorem [3] we can obtain in
polynomial time a vertex set S such that 2|M | = ni−`+|S| where ` is the number
of odd connected components of Hi − S. Let O1, . . . , O` be the odd connected
components of Hi − S. Thus `− |S| ≥ dni

3 e and so ` ≥ dni

3 e and |S| ≤ dni

3 e. Let
us consider a vertex vj ∈ Oj linked to a vertex of S, for j = 1, . . . , `. Those vj

are mutually adjacent in G.
If ` ≥ dni

2 e then we consider the following (almost) balanced partition (V1, V2):
V1 contains dni

2 e vertices from v1, . . . , v` and V2 contains the other vertices. It



is easy to see that at least dni

2 e vertices are satisfied in G, since for vj ∈ V1 we
have dV1

(vj) = dni

2 e − 1 and dV2
(vj) ≤ bni

2 c − 1.
Suppose next that dni

3 e ≤ ` ≤ dni

2 e. If ni is even, we construct a balanced
partition (V ′

1 , V ′
2) where V ′

1 contains v1, . . . , v` and V ′
2 contains S and `−|S| other

vertices; and if ni is odd, we construct an almost balanced partition (V ′
1 , V ′

2)
where V ′

1 contains v1, . . . , v` and V ′
2 contains S and `− 1− |S| other vertices. In

this latest step we pay attention, when we take some vertices from the remaining
vertices of an odd connected component Oj , to take always an even number of
vertices. In order to obtain a (almost) balanced partition (V1, V2) from (V ′

1 , V ′
2)

we consider the remaining vertices of each odd connected component Oj and
we put half of these vertices in V1 and half in V2 such that vj is satisfied. The
partition in Oj does not influence the satisfied status of vs for s 6= j, therefore
it can be done independently in all Oj . We complete this partition by putting
half of the remaining vertices in V1 and half in V2. 2

Theorem 8. Max Satisfying Balanced Partition is 3-approximable.

Proof. Given a graph on n vertices, the maximum number of vertices that are
satisfied in a balanced partition is opt(G) ≤ n − t, where t is the number of
vertices of degree n−1. Using Theorem 7 we obtain in polynomial time a balanced

partition where the number of satisfied vertices is val ≥ dn−t
3 e ≥ opt(G)

3 . 2

Theorem 9. Max Co-Satisfying Balanced Partition is 2-approximable.

Proof. Let (V1, V2) be a balanced partition of G. While there exists v1 ∈ V1 and
v2 ∈ V2 that are not co-satisfied, we exchange v1 and v2. After this exchange the

value of the cut increases by at least 2. Thus, after |E|
2 steps we obtain a balanced

partition where at least one of the two parts contains co-satisfied vertices only. 2
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