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Abstract. While the complexity of min-max and min-max regret ver-
sions of most classical combinatorial optimization problems has been
thoroughly investigated, there are very few studies about their approxi-
mation. For a bounded number of scenarios, we establish a general ap-
proximation scheme which can be used for min-max and min-max regret
versions of some polynomial problems. Applying this scheme to short-
est path and minimum spanning tree, we obtain fully polynomial-time
approximation schemes with much better running times than the ones
previously presented in the literature.
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1 Introduction

The definition of an instance of a combinatorial optimization problem requires
to specify parameters, in particular objective function coefficients, which may
be uncertain or imprecise. Uncertainty /imprecision can be structured through
the concept of scenario which corresponds to an assignment of plausible values
to parameters. There exist two natural ways of describing the set of all possible
scenarios. In the interval data case, each numerical parameter can take any
value between a lower and an upper bound. In the discrete scenario case, which
is considered here, the scenario set is described explicitly. Kouvelis and Yu [6]
proposed the min-max and min-max regret criteria, stemming from decision
theory, to construct solutions hedging against parameters variations. The min-
max criterion aims at constructing solutions having a good performance in the
worst case. The min-max regret criterion, less conservative, aims at obtaining a
solution minimizing the maximum deviation, over all possible scenarios, of the
value of the solution from the optimal value of the corresponding scenario.
Complexity of the min-max and min-max regret versions has been studied
extensively during the last decade. In [6], for the discrete scenario case, the
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complexity of min-max (regret) versions of several combinatorial optimization
problems was studied, including shortest path and minimum spanning tree. In
general, these versions are shown to be harder than the classical versions. More
precisely, if the number of scenarios is not constant, these problems become
strongly NP-hard, even when the classical problems are solvable in polynomial
time. On the other hand, for a constant number of scenarios, min-max (regret)
versions of these polynomial problems usually become weakly NP-hard.

While the complexity of these problems was studied thoroughly, their approx-
imation was not studied until now, except in [2]. That paper investigated the
relationships between min-max (regret) and multi-objective versions, and showed
the existence, in the case of a bounded number of scenarios, of fully polynomial-
time approximation schemes (fptas) for min-max versions of several classical
optimization problems (shortest path, minimum spanning tree, knapsack). The
interest of studying these relationships is that, unlike for min-max (regret) ver-
sions, fptas, which determine an approximation of the non-dominated set (or
Pareto set), have been proposed for the multi-objective version (see, e.g., [9,
11]). Approximation algorithms for the min-max version, which basically consist
of selecting one min-max solution from an approximation of the non-dominated
set, are then easy to derive but critically depend on the running time of the
approximation scheme for the multi-objective version.

In this paper, we adopt an alternative perspective and develop a general
approximation scheme, using the scaling technique, which can be applied to
min-max (regret) versions of some problems, provided that some conditions are
satisfied. The advantage of this approach is that the resulting fptas usually have
a much better running time than those derived using multi-objective fptas.

After presenting some background concepts in section 2, we introduce in
section 3 the general approximation scheme. In section 4 we present applications
of this general scheme to shortest path and minimum spanning tree, giving in
each case fptas with better running times than previously known fptas based on
multi-objective versions.

2 Preliminaries

We consider in this paper the class C of 0-1 problems with a linear objective
function defined as:
min ) ;" ¢ ¢ €N
{m e X c{o,1}™

This class encompasses a large variety of classical combinatorial problems,
some of which are polynomial-time solvable (shortest path problem, minimum
spanning tree, ...) and others are NP-hard (knapsack, set covering, ...). The
size of a solution x € X is the number of variables z; which are set to 1.

2.1 Min-max, min-max regret versions

Given a problem P € C, the min-max (regret) version associated to P has for
input a finite set of scenarios S where each scenario s € S is represented by a



vector (cf,...,c5,). We denote by val(z,s) = Y i~ c¢ix; the value of solution
x € X under scenario s € S and by val} the optimal value in scenario s.

The min-max optimization problem corresponding to P, denoted by MIN-
Max P, consists of finding a solution x having the best worst case value across
all scenarios, which can be stated as: min, ¢ x maxgecg val(z, s).

Given a solution = € X, its regret, R(x, s), under scenario s € S is defined
as R(x, s) = val(x, s) —val’. The mazimum regret Ryqq(x) of solution x is then
defined as R4, () = maxses R(z, s).

The min-max regret optimization problem corresponding to P, denoted by
MIN-MAX REGRET P, consists of finding a solution x minimizing the maximum
regret Ry,q.(x) which can be stated as: min,ex maxses{val(z, s) — val’}.

When P is a maximization problem, the max-min and min-max regret ver-
sions associated to P are defined similarly.

2.2 Approximation

Let us consider an instance I, of size |I|, of an optimization problem and a

solution x of I. We denote by opt(I) the optimum value of instance I. The
Z;ﬁg;, %}, and its error is e(z) =
r(x) — 1. For a function f, an algorithm is an f(n)-approzimation algorithm if,
for any instance I of the problem, it returns a solution = such that r(z) < f(|1]).
An optimization problem has a fully polynomial-time approzimation scheme (an
fptas, for short) if, for every constant & > 0, it admits an (1 + ¢)-approximation
algorithm which is polynomial both in the size of the input and in 1/e. The class

of problems having an fptas is denoted by FPTAS.

performance ratio of x is r(x) = max{

2.3 Matrix tree theorem

In this section we describe classical results concerning the matriz tree theorem
that will enable us to derive approximation schemes for min-max and min-max
regret versions of spanning tree.

The matrix tree theorem provides a way of counting all the spanning trees
in a graph (see, e.g., [10]). Consider a graph G = (V, E) with |V| =n, |E| =m
and let ¢;; denote the cost of edge (i,7) € E.

Define an n x n matrix A whose entries are given as follows:

—Cij if 4 #] and (Z,_]) ek
Q5 = Z(i,Z)EE Civ if 4 :]
0 otherwise

Define A, as the submatrix of A obtained by deleting the r* row and column
and D(A,) as its determinant. The matrix tree theorem [10] states the following

equality:
D(A,) = Z H Cij (1)
TET (i,))eT
where 7 is the set of all spanning trees of G.



As indicated in [3], this theorem can be extended to count the number of
spanning trees of value v for each possible value v using a matrix depending on
one variable. Following this idea, we can extend the matrix tree theorem to the
multiple scenarios case as in [5]. Define the n x n matrix A(yy,...,yx) as follows:

—TTh,ws? if i #j and (i,j) € E

s ) = 3 5 ep T, i i = 5
0 otherwise

Then, the determinant of the submatrix A, (y1,...,yr) obtained by deleting
any r*" row and column is given by

k
D(Ar(ylv"'vyk)) = Z QAuy,... vk Hy:é' (2)
V1,..., 0 €EVT s=1
where a,, .. ., is the number of spanning trees with value v; in scenario s, for
all s € S and V7 is the set of values reached on all scenarios, for all spanning
trees of G. .
Equality (2) is obtained by replacing each ¢;; in (1) by H];:l ys. Then each

product term in (1) corresponding to tree T becomes H’;:l g~ BDET i

3 A general approximation scheme

We establish now a general result giving a sufficient condition for the existence
of fptas for min-max (regret) versions of problems P in C.

Theorem 1. Given a problem MIN-MAX (RECGRET) P, if

1. for any instance I, a lower and an upper bound L and U of opt can be
computed in time p(|I|), such that U < q(|I|)L, where p and q are two
polynomials with g non decreasing and q(|I]) > 1,

2. and there exists an algorithm that finds for any instance I an optimal solution
in time r(|I|,U) where r is a non decreasing polynomial,

then MIN-MAX (REGRET) P is in FPTAS.

Proof. Let I be an instance of MIN-MAX P or MIN-MAX REGRET P defined on
a scenario set S where each scenario s € S is represented by a vector (cf, ..., c5,).
We use the technique of scaling in order to provide an fptas. In order to obtain a
solution with an error bounded by e, we need a lower bound of opt(I). Moreover,
for obtaining a polynomial algorithm, we have to use a lower bound that is
polynomially related to an upper bound.

When I is an instance of MIN-MAX P, consider I the instance of MIN-MAX P
derived from I where each scenario s € S is represented by a vector (¢5,...,¢,),

s
te;

with ¢ = [ | and ¢ is an upper bound of the size of any feasible solution of I.

Let z* and " denote respectively an optimal solution of instance I and I. Let
val(z, s) denote the value of a solution z in scenario s for I. We have

L
c < %(Ef +1), forall s € S,



and thus, val(T*, ) < %M(fﬂ s)+eL, forall s € S,

which implies max,cs val(T*, s) < & max,eg val(T*, s) + L.
Since T* is an optimal solution in I, we have
t(I) = val(T*, 5) < val(z*
opt(I) max va (", s) < maxva (z*,s)
and thus, the value of fxn optimal solution of I has, in I, the value
£ —_—
magval(f*, s) < - magwal(x*, s)+eL <opt(I)+eL <opt(I)(1+e).
se sE
A similar result can be obtained for MIN-MAX REGRET P. Let I be an
instance of MIN-MAX REGRET P and let I denote the instance derived from
I, by scaling each entry ¢ as follows: ¢ = LQ;EJ, where ¢ is an upper bound
of the size of any feasible solution of I. Let z* and =" denote respectively an
optimal solution of instance / and I and let =, T denote respectively, an optimal
solution of instance I and [ in scenario s.
Then, we have, for all s € S,

val(T*, s) —val(zh, s) < ?tval(f*, s) —wal(xy,s) + gL
< E—(val(f* s) —wal(xk,s)) + =)

-2 ’ 5 2

el — — €

< = —x . —* <
<3 (val(ZT*, s) — val(Z:, s)) + 2L

and thus

—% * ‘SL T (=% AT E
rsneagc{val( T, s) —wal(zs, )} < r;leasx{ 5 (val(z*, s) — val(T, s))} + 2L

< gleag{;f(m(x*,s) —WLl(xZ,S))} +iL

< max{val(z*, s) —val(z%, s) +val(zi,s) — %m(f*, s)H+ °rL
ses s s 2t s 2

< max{val(z*, s) — val(zk, s) + val(T:, s) — ém(f* )+ °rL
ses s 8 2t . 2

< r?eagc{val(x*7 s) —wal(z},8)} +eL < opt(I)(1+e¢)

We show in the following that such a solution Z* of instance I for MIN-MAX
P or MIN-MAX REGRET P can be obtained in polynomial time in || and 1.
The bounds L and U can be computed in time p(|I|) by hypothesis. In order
to compute an optimal solution for I, we apply the algorithm (that exists by
hypothesis) that runs in time r(|I|, U(T)).

In the case where I is an instance of MIN-MAX P, since opt(I) < % <
i% < ta(7))

—, and ¢, 7 are non decreasing, the total time for computing the (1+¢)-
approximation is p(|1)) + (T, UMD) < p(1) + (T a(TNLEH) < (1)) +
r(|7], (7)) L),

In the case where I is an instance of MIN-MAX REGRET P, since opt(I) <
%ngiz(l) +t < 2;—5 +t< % + t, and ¢,r are non decreasing, the total time
for computing the (1 + e)-approximation is (k + L)p(|]) + r(|I],U(I)) < (k +
Dp(1) + (T a(TDLD) < (k + Dp(11]) + (111, ()2 4 ). 0



We discuss now the two conditions of the previous theorem. The following
result shows that the first condition can be satisfied easily if the underlying
problem P is solvable in polynomial time.

Proposition 1. If a minimization problem P is solvable in polynomial time,
then for any instance on a set of k scenarios of MIN-MAX P and MIN-MAX
REGRET P, there exist a lower and an upper bound L and U of opt computable
in polynomial time, such that U < kL.

Proof. Consider an instance I of MIN-MAX P defined on a set S of k scenarios
where each scenario s € S is represented by (cf,...,c5,) and let X be the set
of feasible solutions of I. We define the following instance I’ of a single scenario

problem mingex Y . 1val(z,s) obtained by taking objective function coeffi-
cients ¢, = Zle %, i=1,...,m. Let 2* be an optimal solution of I’. We take

as lower and upper bounds L = 3 ¢ tval(z*,s) and U = maxseg val(z*, s).
Clearly, we have

1 1
L= ;Iél)l(l;g %val(:p, s) < gg; E(r?eag(val(x, s)) = min maxval(z, s) = opt

z€X s€S
and 1
i < * < * = - * =kL
irél)l(lr?ggval(x,s) < rgleagval(x ,8) < g val(z*,s) =k g kval(w ,8) =k

ses ses

Consider now an instance I of MIN-MAX REGRET P defined on a set S of
k scenarios and let X be the set of feasible solutions of I. Let 2* € X be an
optimal solution of the single scenario instance I’ derived from I as for the min-
max case. We take as lower and upper bounds L = Y __¢ +(val(z*,s) — val?)
and U = maxses(val(z*, s) — val?). Clearly, we have

1
L= :ICIél)r(l p Sez;(val(x, s) —wall) < Lnel)l(l Ek; r;leag(val(x, s) —wval}) = opt
and
i l —wval}) < l(x*,s)—wval}) < l(z*,s)—val}) = kL

min Igleagc(va (x,8)—wvall) < gleaéc(va (%, 8)—wall) < ;(va (", 8)—wvall)

If any instance of P of size n is solvable in time p(n), where p is a polynomial,
then bounds L and U are computable in O(p(|I]/k)). O

If P is polynomially approximable, then the first condition of Theorem 1
can be satisfied for MIN-MAX P. More precisely, if P is f(n)-approximable
where f(n) is a polynomial, given an instance I of MIN-MaAX P, let T be an
f(|I|/k)-approximate solution in I’ (defined as in the proof of Proposition 1),
then we have L = m > ses pval(Z,s) and U = max,eg val(%,s), and thus
U <kf(1]/k)L.

The second condition of Theorem 1 can be weakened for MIN-MAX P by
requiring only a pseudo-polynomial algorithm, that is an algorithm polynomial
in |I] and maz(I) = max;c]. Indeed, knowing an upper bound U, we can
eliminate any variable z; such that ¢; > U on at least one scenario s € S.
Condition 2 is then satisfied applying the pseudo-polynomial algorithm on this
modified instance.



MiIN-MAX and MIN-MAX REGRET versions of some problems, like shortest
path, knapsack, admit pseudo-polynomial time algorithms based on dynamic
programming [6]. For some dynamic programming formulations, we can easily
obtain algorithms satisfying condition 2, by discarding partial solutions with
value more than U on at least one scenario. We illustrate this approach in section
4.1 for the shortest path problem.

For other problems, which are not known to admit pseudo-polynomial al-
gorithms based on dynamic programming, specific algorithms are required. We
present an algorithm verifying condition 2 for MIN-MAX SPANNING TREE (sec-
tion 4.2).

Unfortunately, these algorithms cannot be adapted directly in order to obtain
algorithms satisfying condition 2 for min-max regret versions. The basic difficulty
here is that, if we can find an algorithm in r(|I|,U(I)) for any instance I of MIN-
Max P, the direct extension of this algorithm for the corresponding instance
I' of MIN-MAX REGRET P will be in r(|I'|,U(I") + optmaz) Where optmes =
maxgseg val¥ is a value which is not necessarily polynomially related to U(I”).

However, for problems whose feasible solutions have a fixed size such as
spanning tree, we reduced the min-max regret version to a min-max version in
[2]. In this context, we need to consider instances where some coeflicients are
negative and possibly non integral but any feasible solution has a non-negative
integral value. For an optimization problem P, we denote by P’ the extension
of P to these instances. More precisely, we proved the following theorem.

Theorem 2. ([2]) For any polynomial-time solvable minimization problem P
whose feasible solutions have a fized size and for any function f: N — (1,00), if
MIN-MAX P’ has a polynomial-time f(n)-approximation algorithm, then MIN-
Max REGRET P has a polynomial-time f(n)-approzimation algorithm.

4 Applications

In this section, we apply the previous results to min-max (regret) shortest path,
and minimum spanning tree. We also compare the running time for our algo-
rithms and for the fptas obtained using an approximation of the non-dominated
set, and show a significant improvement.

4.1 Shortest Path

In [6], Kouvelis and Yu proved the NP-hardness of min-max and min-max regret
versions of shortest path, even for two scenarios.

Consider an instance I defined by a directed graph G = (V, A), with V =
{1,...,n} and |A] = m, and a set S of k scenarios giving for each arc (i,7) € A
its cost ¢j; under scenario s. Denote by c¢;; the vector of size k formed by cj;,
s € S. We are interested in optimal paths from 1 to any other vertex.

We give now pseudo-polynomial algorithms satisfying condition 2 of Theo-
rem 1 for MIN-MAX (REGRET) SHORTEST PATH.



Proposition 2. Given U an upper bound on the optimal value, then MIN-MAX
SHORTEST PATH and MIN-MAX REGRET SHORTEST PATH can be solved in time
O(nmU*).

Proof. We propose for each problem, an enumeration algorithm based on a dy-
namic programming formulation, that produces the set of all vectors of values
(or regrets), for which all coordinates are less than or equal to U, and selects
from this set an optimal vector. Let u = (U, ...,U) denote the vector of size k.

Considering first MIN-MAX SHORTEST PATH, we describe an algorithm that
computes at each stage ¢, the set le of all possible vectors of values at most U
corresponding to paths from 1 to j of length at most ¢, £ = 1,...,n—1, j =
2,...,n. The algorithm starts by initializing V;° = {(0,...,0)}, where (0,...,0)
is a vector of size k and computes Vf at each stage ¢ for each vertex j, £ =
1,....,n—1,7=2,...,n as follows:

Vi =Uier—p{v/ =v ¢ 0" € V7 and o7 < u} 3)
Finally, the algorithm selects, as an optimal vector, a vector in Vj"_1 such
that its largest coordinate is minimum, for j =2,...,n.

Consider now MIN-MAX REGRET SHORTEST PATH. Let (val})!, s € S, i =
1,...,n, be the value of a shortest path in graph G from 1 to ¢ under scenario
s and let (val*)” be the vector of size k of these values (val*)?, s € S.

We describe an algorithm that computes at each stage ¢, the set Rﬁ of all
possible vectors of regrets at most U corresponding to paths from 1 to j of
length at most ¢, £ =1,...,n—1, j = 2,...,n. Consider arc (i,j) € A and let
P; be a path in G from 1 to i of regret ri = val(P;,s) — (val?)i, s € S. Denote
by P; the path constructed from P; by adding arc (¢,j). The regret of P; is
r] = wal(P;,s)+¢j; — (val)) =1+ (val) +c;; — (val)?, s € S. The algorithm
starts by initializing R = {(0,...,0)} and for 1 </ <n—1and 2 <j <n let

R§ = Uiep—l(]‘){r‘j =" 4 (val*)" + Cij — (val*)? : r' € Rffl and 7 <u} (4)

Finally, the algorithm selects, as an optimal vector, a vector in R;’_l such
that its largest coordinate is minimum, for j = 2,...,n.

We point out that, for both algorithms, any path of interest can be obtained
using standard bookkeeping techniques that do not affect the complexity of these
algorithms.

In order to prove the correctness of these algorithms, we show that anfl,

resp. R;-kl, contains all vectors of values, resp. regrets, at most U corresponding
to paths from 1 to j, j = 2,...,n. For this, we need to justify that we can
eliminate, at any stage, any vector which violates the upper bound U, without
losing any vector at the end.

Indeed, for the min-max version, if such a solution v is obtained then any of
its extensions computed in (3) would also violate U due to the non-negativity of
vectors ¢;;.

Similarly, for the min-max regret version, if such a solution r* is obtained
then any of its extensions computed in (4) would also violate U since vectors of
the form (val*)’ + ¢;; — (val*)’ are non-negative.

Both algorithms can be implemented in time O(nmU*). a



Corollary 1. MIN-MAX (REGRET) SHORTEST PATH are in FPTAS.

Proof. Using Theorem 1, Propositions 1 and 2, we derive an fptas whose running

time is O(m’;},:+1 ). O

Warburton describes in [11] an fptas for approximating the non-dominated
set for the multi-objective version of the shortest path problem. From this fptas,

Warburton derives an fptas for MIN-MAX SHORTEST PATH in acyclic graphs

. . . 2k+1 . . .
with running time O(Zy=z ), whereas our running time, for general graphs, is

better.

4.2 Minimum Spanning Tree

In [6], Kouvelis and Yu proved the NP-hardness of min-max and min-max regret
versions of minimum spanning tree, even for two scenarios. We first describe
algorithms for MIN-MAX SPANNING TREE with running time polynomial in a
suitably chosen upper bound on the optimal value.

Consider an instance of MIN-MAX SPANNING TREE represented by a graph
G = (V,E) where |V| = n, |[E| = m, c¢j; is the cost of edge (4,j) in scenario
s€ S and |S| =k.

Proposition 3. Given U an upper bound on the optimal value, then MIN-MAX
SPANNING TREE can be solved in time O(mn*U* logU).

Proof. We can solve MIN-MAX SPANNING TREE using an extension of the matrix
tree theorem to the multiple scenarios case as presented in section 2.3.

The optimal value opt of MIN-MAX SPANNING TREE can be computed by
considering, for each monomial in (2), the largest power vy,q; = maxs—1,..  Us.
The minimum value of v,,4, over all monomials corresponds to opt.

Actually, instead of computing all monomials, we can use, as suggested in
[5], the algorithm presented in [7]. When applied to matrix A, (y1,...,yx), this
algorithm can compute the determinant polynomial up to a specified degree
in each variable in opposition to the classical method of Edmonds [4]. In this
case, it is sufficient to compute the polynomial determinant up to degree U in
each variable ys for s = 1,..., k. The algorithm in [7] requires O(n*) multipli-
cations and additions of polynomials. The time needed to multiply two mul-
tivariate polynomials of maximum degree d, in variable ys for s = 1,... )k is
ng:l dglog H];:l ds [1]. Thus, the running time to compute the polynomial de-
terminant is O(n*U¥ log U).

Once an optimal vector is identified, a corresponding spanning tree can be
constructed using self reducibility [8]. It consists of testing iteratively, for each
edge if the graph obtained by contracting this edge admits a spanning tree of the
required vector of adjusted values on all scenarios (subtracting iteratively the
vector of costs ¢, s € S, for each edge (i, j) being tested to the required vector of
values). In at most m— (n—1) iterations such a spanning tree is obtained. Hence,
the self reducibility requires O(m) computations of determinant polynomial. O



Corollary 2. MIN-MAX SPANNING TREE is in FPTAS.

Proof. Using Theorem 1, Propositions 1 and 3, we derive an fptas whose running
mnk+4

time is O(™— log 2). a

Corollary 3. MIN-MAX REGRET SPANNING TREE is in FPTAS.

Proof. Notice that Theorem 1 and Proposition 3 remain true even for the in-
stances of spanning tree where some coefficients are negative but any feasible
solution has a non-negative value. Thus, MIN-MAX SPANNING TREE' is in FP-
TAS. The result follows from Theorem 2. The running time of the fptas is
O(m2 " Jog 1), O

ek

In this case, we obtain fptas with better running times for MIN-MaX (RE-
GRET) SPANNING TREE. Indeed, the running time of the fptas obtained in
[2] using the general multi-objective approximation scheme presented in [9] is

O(% (log U)* log ).
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