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Abstract. In this paper, we consider the problem of maximizing the
spread of influence through a social network. This optimization problem
is formally defined as follows. We are given a graph G = (V,E), a positive
integer k and a threshold value thr(v) attached to each vertex v ∈ V .
The objective is then to find a subset of k vertices to “activate” such that
the number of activated vertices at the end of a propagation process is
maximum. A vertex v gets activated if at least thr(v) of its neighbors are.
We show that this problem is strongly inapproximable in fpt-time with
respect to (w.r.t.) parameter k even for very restrictive thresholds. For
unanimity thresholds, we prove that the problem is inapproximable in
polynomial time and the decision version is W[1]-hard w.r.t. parameter
k. On the positive side, it becomes r(n)-approximable in fpt-time w.r.t.
parameter k for any strictly increasing function r. Moreover, we give
an fpt-time algorithm to solve the decision version for bounded degree
graphs.

1 Introduction

Optimization problems that involve a diffusion process in a graph are well studied
[17,13,8,1,11,7,3,18]. Such problems share the common property that, according
to a specified propagation rule, a chosen subset of vertices activates all or a fixed
fraction of the vertices, where initially all but the chosen vertices are inactive.
Such optimization problems model the spread of influence or information in
social networks via word-of-mouth recommendations, of diseases in populations,
or of faults in distributed computing [17,13,11]. One representative problem that
appears in this context is the influence maximization problem introduced by
Kempe et al. [13]. This problem asks for a given directed graph to choose a vertex
subset of size less than a fixed number such that the total number of activated
vertices at the end of the propagation process is maximum. The authors show
that the problem is polynomial-time ( e

e−1 +ε)-approximable for any ε > 0 under
some stochastic propagation models, but NP-hard to approximate within a ratio
of n1−ε for any ε > 0 for general propagation rules.

In this paper, we use the following deterministic propagation model. We are
given an undirected graph, a threshold value thr(v) associated to each vertex
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v, and the following propagation rule: a vertex becomes active if at least thr(v)
many neighbors of v are active. The propagation process proceeds in several
rounds and stops when no further vertex become active. Given such a model, we
can ask to find and activate a minimum-size vertex subset such that all or a fixed
fraction of the vertices become active. This problem is known as the minimum
target set selection problem introduced by Chen [8]. It has been shown NP-
hard even for bounded degree bipartite graphs when all thresholds are at most
two [8]. Moreover, the problem was surprisingly shown to be hard to approximate

within a ratio O(2log
1−ε n) for any ε > 0 even for constant degree graphs and

when all thresholds are at most two [8]. The same inapproximability result holds
for general graphs with majority thresholds [8]. For unanimity thresholds, this
problem is polynomial-time equivalent to the vertex cover problem [8] and thus
admits a 2-approximation and is hard to approximate with a ratio better than
1.36. Concerning the parameterized complexity, the problem is W[2]-hard with
respect to (w.r.t.) the solution size, even on bipartite graphs of diameter four with
majority thresholds or thresholds at most two [15]. Furthermore, it is W[1]-hard
w.r.t. each of the parameters “treewidth”, “cluster vertex deletion number”,
and “pathwidth” [3,9]. On the positive side, the problem is fixed-parameter
tractable w.r.t. each of the single parameters “vertex cover number”, “feedback
edge set size”, and “bandwidth” [15,9]. If the input graph is complete, or has
a bounded tree-width and bounded thresholds then the problem is polynomial-
time solvable [15,3].

With regards to the motivation for this study, it can be seen that minimum
target set selection is strongly intractable from both parameterized complexity
and polynomial-time approximability. This well motivates the study of this prob-
lem from a parameterized approximation perspective (the reader is referred to
the survey of Marx [14] for more details). More precisely, we consider the maxi-
mization version called maximum k-influence. This problem is defined similarly
to influence maximization except that we use the above deterministic propaga-
tion model. Notice that the NP-hardness of minimum target set selection implies
the NP-hardness for maximum k-influence. In this paper, we therefore focus our
work on the polynomial-time and parameterized approximability of this problem.

Our results. Concerning the approximability of the problem, there are two possi-
bilities of measuring the value of a solution. Either we count the initially chosen
vertices plus the vertices activated by the propagation process or we do not
(denoted by Max Closed k-Influence and Max Open k-Influence, re-
spectively). Observe that whether or not counting the chosen vertices might
change the approximation factor. In this paper, we consider both cases and our
approximability results are summarized in Table 1.

While minimum target set selection is both constant-approximable in poly-
nomial time and fixed-parameter tractable for the unanimity case, this does not
hold anymore for our problem. Indeed, we prove that, in this case, Max Closed
k-Influence (resp. Max Open k-Influence) is strongly inapproximable in
polynomial-time and the decision version, denoted by (k, `)-Influence, is W[1]-
hard w.r.t. combined parameter k and `. However, we show that Max Closed



Parameterized Approximability of Influence in Social Networks 3

Max Open k-Influence Max Closed k-Influence

Thresholds Bounds poly-time fpt-time poly-time fpt-time

General
Upper n n n n
Lower n1−ε,∀ε > 0 n1−ε,∀ε > 0 n1−ε,∀ε > 0 n1−ε,∀ε > 0

Constant
Upper n n n n

Lower n
1
2
−ε,∀ε > 0 n

1
2
−ε,∀ε > 0 n

1
2
−ε,∀ε > 0 n

1
2
−ε,∀ε > 0 [Th. 2]

Majority
Upper n n n n
Lower n1−ε,∀ε > 0 n1−ε,∀ε > 0 n1−ε,∀ε > 0 n1−ε,∀ε > 0[Th. 1]

Unanimity
Upper 2k [Th. 5] r(n), ∀r [Th. 2] 2k r(n),∀r
Lower n1−ε,∀ε > 0 [Th. 4] ? 1 + ε [Th. 7] ?

Table 1. Table of the approximation results for Max Open k-Influence and Max
Closed k-Influence.

k-Influence (resp. Max Open k-Influence) becomes approximable if we
are allowed to use fpt-time and (k, `)-Influence gets fixed-parameter tractable
w.r.t combined parameter k and ∆, where ∆ is the maximum degree of the input
graph.

Our paper is organized as follows. In Section 2, after introducing some pre-
liminaries, we establish some basic lemmas. In Section 3 we study Max Open
k-Influence and Max Closed k-Influence with majority thresholds and
thresholds at most two. In Section 4 we study the case of unanimity thresholds
in general graphs and in bounded degree graphs. Conclusions are provided in
Section 5. Due to space limitation, some proofs are given in Appendix.

2 Preliminaries & Basic Observations

In this section, we provide basic backgrounds, give the notation used throughout
this paper as well as the statement of the studied problems and establish some
lemmas.

Graph terminology. Let G = (V,E) be an undirected graph. For a subset S ⊆ V ,
G[S] is the subgraph induced by S. The open neighborhood of a vertex v ∈ V ,
denoted by N(v), is the set of all neighbors of v. The closed neighborhood of a
vertex v, denotedN [v], is the setN(v)∪{v}. Furthermore, for a vertex set V ′ ⊂ V
we set N(V ′) =

⋃
v∈V ′ N(v) and N [V ′] =

⋃
v∈V ′ N [v]. The set Nk[v], called the

k-neighborhood of v, denotes the set of vertices which are at distance at most
k from v (thus N1[v] = N [v]). The degree of a vertex v is denoted by degG(v)
or deg(v) if G is clear from the context. The maximum degree of the graph G
is denoted by ∆G. Again, we skip the subscript if G is clear from the context.
Two vertices are twins if they have the same neighborhood. They are said true
twins if they are moreover neighbors, false twins otherwise.

Cardinality constrained problem. The problems studied in this paper are cardi-
nality constrained. We use the notations and definitions from [5]. A cardinality
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constrained optimization problem is a quadruple A = (B, Φ, k, obj), where B is
a finite set called solution base, Φ : 2B → {0, 1, 2, . . .} ∪ {−∞,+∞} an objective
function, k a non-negative integer and obj ∈ {min,max}. The goal is then to
find a solution S ⊆ B of cardinality k so as to maximize (or minimize) the objec-
tive value Φ(S). If S is not a feasible solution we set Φ(S) = −∞ if obj = max
and Φ(S) = +∞ otherwise.

Parameterized complexity. A parameterized problem (I, k) is said fixed-parameter
tractable (or in the class FPT) w.r.t. parameter k if it can be solved with a param-
eterized algorithm with time complexity f(k) · |I|c, where f is any computable
function and c is a constant (one can see [10,16]). Parameterized algorithms do
not necessarily exist, it is possible to prove that a problem do not have a parame-
terized algorithm via fpt-reductions. The parameterized complexity hierarchy is
composed of the classes FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ W[P]. It is unlikely to find
parameterized algorithm for a problem that is hard in W[1] under fpt-reduction.

Approximation. Given an optimization problem Π and an instance I of this
problem, we denote by |I| the size of I, by optΠ(I) the optimum value of I and
by val(I, S) the value of a feasible solution S of I. The performance ratio of S

(or approximation factor) is r(I, S) = max
{
val(I,S)
optΠ(I) ,

optΠ(I)
val(I,S)

}
. The error of S,

ε(I, S), is defined by ε(I, S) = r(I, S) − 1. For a function f (resp. a constant
c > 1), an algorithm is a f(n)-approximation (resp. a c-approximation) if for
any instance I of Π it returns a solution S such that r(I, S) ≤ f(n) (resp.
r(I, S) ≤ c).

An optimization problem is polynomial-time constant approximable (resp.
has a polynomial-time approximation scheme) if, for some constant c > 1 (resp.
every constant ε > 0), there exists a polynomial-time c-approximation (resp.
(1 + ε)-approximation) for it.

An optimization problem is f(n)-approximable in fpt-time w.r.t. parameter
k if there exists an f(n)-approximation running in time g(k) · |I|c, where k
is a positive integer depending on I, g is any computable function and c is a
constant [14]. For a cardinality constrained problem a possible choice for the
parameter is the cardinality of the solutions.

Problems definition. Let G = (V,E) be an undirected graph and thr : V → N a
threshold function. In this paper, we consider majority thresholds i.e. for each

v ∈ V, thr(v) = dd(v)2 e, unanimity thresholds i.e. for each v ∈ V, thr(v) = deg(v),
and constant thresholds i.e. for each v ∈ V, thr(v) ≤ c for some constant c > 1.
Initially, all vertices are inactivated and we select a subset S ⊆ V of k vertices.
The propagation unfolds in discrete steps. At time step 0, all vertices in S are
activated. At time step t+ 1, a vertex v is activated if and only if the number of
its activated neighbors at time t is at least thr(v). We apply the rule iteratively
until no more activations are possible. Given that S is the set of initial activated
vertices, the open activated vertices, denoted by σ(S), is the set of newly activated
vertices at the end of the propagation process. The closed activated vertices,
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denoted by σ[S], is the set σ(S)∪S. The optimization problems we consider are
then defined as follows.

Max Open k-Influence
Input: A graph G = (V,E), a threshold function thr : V → N, and an integer
k.
Output: A subset S ⊆ V , |S| ≤ k such that |σ(S)| is maximum.

Similarly, the Max Closed k-Influence problem asks for a set S such that
|σ[S]| is maximum. The corresponding decision version (k, `)-Influence is also
studied. Notice that, in this case, considering either the open or closed activated
vertices is equivalent.

(k, `)-Influence
Input: A graph G = (V,E), a threshold function thr : V → N, and two
integers k and `.
Output: Is there a subset S ⊆ V , |S| ≤ k such that |σ(S)| ≥ ` ?

In the following, we state and prove some lemmas that will be used later in
the paper.

Lemma 1. Let r be any computable function. If Max Open k-Influence is
r(n)-approximable then Max Closed k-Influence is also r(n)-approximable
where n is the input size.

Lemma 2. Let I be an instance of a cardinality constrained optimization prob-
lem A = (B, Φ, k, obj). If A is r1(k)-approximable in fpt-time w.r.t. parameter
k for some strictly increasing function r1 then it is also r2(|B|)-approximable in
fpt-time w.r.t. parameter k for any strictly increasing function r2.

Proof. Let r−11 and r−12 be the inverse functions of r1 and r2, respectively. We
distinguish the following two cases.

Case 1: k ≤ r−11 (r2(|B|)). In this case, we apply the r1(k)-approximation
algorithm and directly get the r2(|B|)-approximation in time f(k) · |B|O(1) for
some computable function f .

Case 2: k > r−11 (r2(|B|)). We then have |B| < r−12 (r1(k)). In this case,
we solve the problem exactly by brute-force. If obj = max (resp. obj = min)
then try all possible subset S ⊆ B of size k and take the one that maximizes
(resp. minimizes) the objective value Φ(S). The running time is then O(|B|k) =

O(r−12 (r1(k))
k
).

The overall running time is then O(max{r−12 (r1(k))
k
, f(k) · |B|O(1)}) =

O∗(max{r−12 (r1(k))
k
, f(k)}). �

It is worth pointing out that a problem which is proven inapproximable in
fpt-time obviously implies that it is not approximable in polynomial time with
the same ratio. Therefore, fpt-time inapproximability can be considered as a
“stronger” result than polynomial-time inapproximability.
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3 Parameterized inapproximability

In this section, we consider the parameterized approximability of both Max
Closed k-Influence and Max Open k-Influence. We show that these prob-
lems are W[2]-hard to approximate within n1−ε and n

1
2−ε for any ε ∈ (0, 1) for

majority thresholds and thresholds at most two, respectively. To do so, we use
the following construction from Dominating Set as the starting point. The
Dominating Set problem asks, given an undirected graph G = (V,E) and an
integer k, whether there is a vertex subset S ⊆ V , |S| ≤ k, such that N [S] = V .

Basic Reduction. From an instance (G = (V,E), k) of Dominating Set, we
construct a bipartite graph G′ = (V ′, E′) as follows. For each vertex v ∈ V we
add two vertices vt and vb (t and b respectively standing for top and bottom)
to V ′. For each vertex v ∈ V and for each vertex w ∈ N [v] add the edge {vt, wb}.
Finally, set thr(vt) = degG′(v

t) and thr(vb) = 1 for every top vertex vt and every
bottom vertex vb, respectively.

The previous construction has the following property.

Lemma 3. Let G′ = (V ′, E′) be the graph obtained from a graph G using the
above construction. Then G admits a dominating set of size k if and only if G′

admits a subset S′ ⊆ V ′ of size k such that σ[S′] = V ′.

Inapproximability results. We are now ready to prove the main results of this
section.

Theorem 1. For any ε ∈ (0, 1), Max Closed k-Influence and Max Open
k-Influence with majority thresholds cannot be approximated within n1−ε in
fpt-time w.r.t. parameter k even on bipartite graphs, unless FPT = W[2].

Proof. By Lemma 1, it suffices to show the result for Max Closed k-Influence.
We construct a polynomial-time reduction from Dominating Set to Max
Closed (k + 1)-Influence with majority. In this reduction, we will make use
of the `-edge gadget, for some integer `. An `-edge between two vertices u and
v consists of ` vertices of threshold one adjacent to both u and v.

Given an instance I = (G = (V,E), k) of Dominating Set with n = |V |,
m = |E|, we define an instance I ′ of Max Closed (k + 1)-Influence. We
start with the basic reduction and modify G′ and the function thr as follows.
Replace every edge {vt, vb} by an (k + 2)-edge between vt and vb. Moreover,
for a given constant β = 8−5ε

ε , let L = dnβe and we add nL more vertices
x11, . . . , x

1
n, . . . , x

L
1 , . . . , x

L
n . For i = 1, . . . , n, vertex x1i is adjacent to all the bot-

tom vertices. Moreover, for any j = 2, . . . , L, each xji is adjacent to xj−1k , for any
i, k ∈ {1, . . . , n}. We also add a vertex w and an n+(k+2)(degG(v)−1)-edge be-
tween w and vb, for any bottom vertex vb. For i = 1, . . . , n, vertex x1i is adjacent
to w. For i = 1, . . . , n add n pending-vertices (i.e. degree one vertices) adjacent
to xLi . For any vertex vt add (degG(v) + 1)(k + 2) pending-vertices adjacent to
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vt. Add also n+n2 +(k+2)(2m−n) pending-vertices adjacent to w. All vertices
of the graph G′ have the majority thresholds (see also Figure 1).

We claim that if I is a yes-instance then opt(I ′) ≥ nL ≥ nβ+1; otherwise
opt(I ′) < n4. Let n′ = |V ′|, notice that we have n′ ≤ n4 + nL.

Suppose that there exists a dominating set S ⊆ V in G of size at most k.
Consider the solution S′ for I ′ containing the corresponding top vertices and
vertex w. After the first round, all vertices belonging to the edge gadgets which
top vertex is in S′ are activated. Since S is a dominating set in G, after the
second round, all the bottom vertices are activated. Indeed degG′(v

b) = 2(n +
(k+2) degG(v)) and after the first round vb has at least k+2 neighbors activated
belonging to an (k+2)-edge between vb and some ut ∈ V and n+(k+2)(degG(v)−
1) neighbors activated belonging to an n + (k + 2)(degG(v) − 1)-edge between
vb and w. Thus, every vertex x1i gets active after the third round, and generally

after the jth round, j = 4, . . . , L+ 2 the vertices xj−2i are activated, and at the
(L+3)th round all pending-vertices adjacent to xLi are activated. Therefore, the
size of an optimal solution is at least nL ≥ nβ+1.

Suppose that there is no dominating set in G of size k. Without loss of
generality, we may assume that no pending-vertices are in a solution of I ′ since
they all have threshold one. If w does not take part of a solution in I ′, then no
vertex x1i could be activated and in this case opt(I ′) is less than n′ − nL ≤ n4.
Consider now the solutions of I ′ of size k + 1 that contain w. Observe that if a
top-vertex vt gets active through bottom-vertices then vt can not activate any
other bottom-vertices. Indeed, as a contradiction, suppose that vt is adjacent to
a non-activated bottom-vertex. It follows that vt could not have been activated
because of its threshold and that no pending-vertices are part of the solution, a
contradiction. Notice also that it is not possible to activate a bottom vertex by
selecting some x1i vertices since of their threshold. Moreover, since there is no
dominating set of size k, any subset of k top vertices cannot activate all bottom
vertices, therefore no vertex xki , i = 1, . . . , n, k = 1, . . . , L can be activated.
Hence, less than n′ − nL vertices can be activated in G′ and the size of an
optimal solution is at most n4.

Assume now that there is an fpt-time nε-approximation algorithm A for Max
Closed (k+1)-Influence with majority threshold. Thus, if I is a yes-instance,

the algorithm gives a solution of value A(I ′) ≥ nβ+1

(n′)1−ε >
nβ+1

n(1−ε)(β+5) = n4 since

n′ ≤ n4 + nL < n5L. If I is a no-instance, the solution value is A(I ′) < n4.
Hence, the approximation algorithm A can distinguish in fpt-time between yes-
instances and no-instances for Dominating Set implying that FPT = W[2]
since this last problem is W[2]-hard [10]. �

Theorem 2. For any ε ∈ (0, 12 ), Max Closed k-Influence and Max Open

k-Influence with thresholds at most two cannot be approximated within n
1
2−ε

in fpt-time w.r.t. parameter k even on bipartite graphs, unless FPT = W[2].

Using Lemma 2, Theorem 1, and Theorem 2 we can deduce the following
corollary.
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v5 v4

v3v2

v1

G : G′ :

vt1

vb1

vt2

vb2

vt3

vb3

vt4

vb4

vt5

vb5

x11 x12 . . . x15

x21 x22 . . . x25

...
...

...

xL1 xL2 . . . xL5

w

Fig. 1. The graph G′ obtained after carrying out the modifications of Theorem 1. A
thick edge represents an `-edge for some ` > 0. A “star” vertex v represents a vertex

adjacent to
degG′ (v)

2
pending-vertices.

Corollary 1. For any strictly increasing function r, Max Closed k-
Influence and Max Open k-Influence with thresholds at most two or major-
ity thresholds cannot be approximated within r(k) in fpt-time w.r.t. parameter k
unless FPT = W[2].

4 Unanimity thresholds

For the unanimity thresholds case, we will give some results on general graphs
before focusing on bounded degree graphs and regular graphs.

4.1 General graphs

In this section, we first show that, in the unanimity case, (k, `)-Influence is
W[1]-hard w.r.t. parameter k + ` and Max Open k-Influence is not approx-
imable within n1−ε for any ε ∈ (0, 1) in polynomial time, unless NP = ZPP.
However, if we are allowed to use fpt-time then Max Open k-Influence with
unanimity is r(n)-approximable in fpt-time w.r.t. parameter k for any strictly
increasing function r.

Theorem 3. (k, `)-Influence with unanimity thresholds is W[1]-hard w.r.t.
the combined parameters k and ` even for bipartite graphs.

Theorem 4. For any ε ∈ (0, 1), Max Open k-Influence with unanimity
thresholds cannot be approximated within n1−ε in polynomial time, unless NP =
ZPP.

Theorem 5. Max Open k-Influence and Max Closed k-Influence with
unanimity thresholds are 2k-approximable in polynomial time.
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Using Lemma 2 and Theorem 5 we directly get the following.

Corollary 2. For any strictly increasing function r, Max Open k-Influence
and Max Closed k-Influence with unanimity thresholds are r(n)-approximable
in fpt-time w.r.t. parameter k.

For example, Max Open k-Influence is log(n)-approximable in time

O∗(2k2
k

).

Finding dense subgraphs. In the following we show that Max Open k-
Influence with unanimity thresholds is at least as difficult to approximate
as the Densest k-Subgraph problem, that consists of finding in a graph a
subset of vertices of cardinality k that induces a maximum number of edges. In
particular, any positive approximation result for Max Open k-Influence with
unanimity would directly transfers to Densest k-Subgraph.

Theorem 6. For any strictly increasing function r, if Max Open k-
Influence is r(n)-approximable in fpt-time w.r.t. parameter k then Densest
k-Subgraph is r(n)-approximable in fpt-time w.r.t. parameter k.

Using Theorem 6 and Corollary 2, we have the following corollary, indepen-
dently established in [4].

Corollary 3. For any strictly increasing function r, Densest k-Subgraph is
r(n)-approximable in fpt-time w.r.t. parameter k.

4.2 Bounded degree graphs and regular graphs

We show in the following that Max Open k-Influence and thus Max Closed
k-Influence are constant approximable in polynomial time on bounded degree
graphs with unanimity thresholds. Moreover, Max Closed k-Influence and
then Max Open k-Influence have no polynomial-time approximation scheme
even on 3-regular graphs if P 6= NP. Moreover, we show that (k, `)-Influence
is in FPT w.r.t. parameter k.

Lemma 4. Max Open k-Influence and Max Closed k-Influence with
unanimity thresholds on bounded degree graphs are constant approximable in
polynomial time.

Theorem 7. Max Open k-Influence and Max Closed k-Influence with
unanimity thresholds have no polynomial-time approximation scheme even on
3-regular graphs for k = θ(n), unless P = NP.

In Theorem 3 we showed that (k, `)-Influence with unanimity thresholds
is W[1]-hard w.r.t. parameters k and `. In the following we give several fixed-
parameter tractability results for (k, `)-Influence w.r.t. parameter k on regular
graphs and bounded degree graphs with unanimity thresholds. First we show
that using results of Cai et al. [6] we can obtain fixed-parameter tractable algo-
rithms. Then we establish an explicit and more efficient combinatorial algorithm.
Using [6] we can show:



10 Cristina Bazgan, Morgan Chopin, André Nichterlein, and Florian Sikora

Theorem 8. (k, `)-Influence with unanimity thresholds can be solved

in 2O(k∆3)n2 log n time where ∆ denotes the maximum degree and
in 2O(k2 log k)n log n time for regular graphs.

While the previous results use general frameworks to solve the problem, we
now give a direct combinatorial algorithm for (k, `)-Influence with unanimity
thresholds on bounded degree graphs. For this algorithm we need the following
definition and observation.

Definition 1. Let (α, β) be a pair of positive integers, G = (V,E) an undirected
graph with unanimity thresholds, and v ∈ V a vertex. We call v a realizing vertex
for the pair (α, β) if there exists a vertex subset V ′ ⊆ N2α−1[v] of size |V ′| ≤ α
such that |σ(V ′)| ≥ β and σ[V ′] is connected. Furthermore, we call σ[V ′] a
realization of the pair (α, β).

We show first that in bounded degree graphs the problem of deciding whether a
vertex is a realizing vertex for a pair of positive integers (α, β) is fixed-parameter
tractable w.r.t. parameter α.

Lemma 5. Checking whether a vertex v is a realizing vertex for a pair of positive
integers (α, β) can be done in ∆O(α2) time, where ∆ is the maximum degree.

Consider in the following the Connected (k, `)-Influence problem that
is (k, `)-Influence with the additional requirement that G[σ[S]] has to be
connected. Note that with Lemma 5 we can show that Connected (k, `)-
Influence is fixed parameter tractable w.r.t. parameter k on bounded degree
graphs. Indeed, observe that two vertices in σ(S) cannot be adjacent since we
consider unanimity thresholds. From this and the requirement that G[σ[S]] is
connected, it follows that G[σ[S]] has a diameter of at most 2k. Hence, the algo-
rithm for Connected (k, `)-Influence checks for each vertex v ∈ V whether v
is a realizing vertex for the pair (k, `). By Lemma 5 this gives an overall running

time of ∆O(k2) · n.
We can extend the algorithm for the connected case to deal with the case

where G[σ[S]] is not connected. The general idea is as follows. For each connected
component Ci of G[σ[S]] the algorithm guesses the number of vertices in S ∩Ci
and in σ(S) ∩ Ci. This gives an integer pair (ki, `i) for each connected com-
ponent in G[σ[S]]. Similar to the connected case, the algorithm will determine
realizations for these pairs and the union of these realizations give S and σ(S).
Unlike the connected case, it is not enough to look for just one realization of a
pair (ki, `i) since the realizations of different pairs may be not disjoint and, thus,
vertices may be counted twice as being activated. To avoid the double-counting
we show that if there are “many” different realizations for a pair (ki, `i), then
there always exist a realization being disjoint to all realizations of the other
pairs. Now consider only the integer pairs that do not have “many” different
realizations. Since there are only “few” different realizations possible, the graph
induced by all the vertices contained in all these realizations is “small”. Thus,
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Algorithm 1 The pseudocode of the algorithm solving the decision problem
(k, `)-Influence. The guessing part in the algorithm behind Lemma 5 is used
in Line 7 as subroutine. The final check in Line 19 is done by brute force checking
all possibilities.

1: procedure solveInfluence(G, thr, k, `)
2: Guess x ∈ {1, . . . , k} . x: number of connected components of G[σ[S]]
3: Guess (k1, `1), . . . , (kx, `x) such that

∑x
i=1 ki = k and

∑x
i=1 `i = `

4: Initialize c1 = c2 = . . . = cx ← 0 . one counter for each integer pair (ki, `i)
5: for each vertex v ∈ V do . determine realizing vertices
6: for i← 1 to x do
7: if v is a realizing vertex for the pair (ki, `i) then . see Lemma 5
8: ci ← ci + 1
9: T (v, i) = “yes”

10: else
11: T (v, i) = “no”

12: initialize X ← ∅ . X stores all pairs with “few” realizations
13: for i← 1 to x do
14: if ci ≤ 2 · x ·∆4k then
15: X ← X ∪ {i}
16: for each vertex v ∈ V do . remove vertices not realizing any pair in X
17: if ∀i ∈ X : T (v, i) = “no” then
18: delete v from G.
19: if all pairs (ki, `i), i ∈ X, can be realized in the remaining graph then
20: return ‘YES’
21: else
22: return ‘NO’

the algorithm can guess the realizations of the pairs having only “few” realiza-
tions and afterwards add greedily disjoint realizations of pairs having “many”
realizations. See Algorithm 1 for the pseudocode.

Theorem 9. Algorithm 1 solves (k, `)-Influence with unanimity thresholds

in 2O(k2 log(k∆)) · n time, where ∆ is the maximum degree of the input graph.

5 Conclusions

We established in this paper results concerning the parameterized complexity
and the polynomial-time and fpt-time approximation of two problems modeling
the spread of influence in social networks, Max Open k-Influence and Max
Closed k-Influence.

In the case of unanimity thresholds, we show that Max Open k-Influence
is at least as hard to approximate as Densest k-Subgraph, a well-studied
problem. We established that Densest k-Subgraph is r(n)-approximable for
any strictly increasing function r in fpt-time w.r.t. parameter k. An interest-
ing open question consists of determining whether Max Open k-Influence
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is constant approximable in fpt-time. Such a positive result would improve the
approximation in fpt-time for Densest k-Subgraph.

In the case of thresholds bounded by two, we could try to improve the non-
approximability bound to n1−ε, ∀ε > 0.

Another interesting open question is to study the approximation of min target
set selection problem in fpt-time with respect to the optimum value or other
structural parameters.
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A Appendix

A.1 Proof of Lemma 1

Proof. Let A be an r(n)-approximation algorithm for Max Open k-Influence.
Let I be an instance of Max Closed k-Influence and opt(I) its optimum

value. When we apply A on I it returns a solution S such that |σ(S)| ≥ opt(I)−k
r(n)

and then |σ[S]| = k + |σ(S)| ≥ opt(I)
r(n) . �

A.2 Proof of Lemma 3

Proof. The construction is illustrated on Figure 2. For the forward direction,
suppose there exists a dominating set S ⊆ V in G of size k. Consider the solution
S′ ⊆ V ′ containing the corresponding top vertices. After the first round, all
bottom vertices are activated since they have thresholds 1 and S is a dominating
set. Finally, after the second round, all top vertices are activated too. For the
reverse direction, suppose there is a subset S′ ⊆ V ′ of size k in G′ such that
σ[S′] = V ′. We can assume w.l.o.g. that S′ contains no bottom vertex. Since all
bottom vertices are activated we have that {vi : vti ∈ S′} is a dominating set in
G. �

v5 v4

v3v2

v1

G

vt1

vb1

vt2

vb2

vt3

vb3

vt4

vb4

vt5

vb5

G′

Fig. 2. Sample construction of the bipartite graph G′ from a graph G of Dominating
Set. All vertices vti , 1 ≤ i ≤ 5 have thresholds degG′(v

t
i) while all vertices vbi , 1 ≤ i ≤ 5

have thresholds 1.

A.3 Proof of Theorem 2

Proof. By Lemma 1, it suffices to prove the result for Max Closed k-
Influence. We construct a polynomial-time reduction from Dominating Set
to Max Closed (k+1)-Influence with thresholds at most two. In this reduc-
tion, we will make use of the directed edge gadget. A directed edge from a vertex
u to another vertex v consists of a 4-cycle {a, b, c, d} such that a and u as well
as c and v are adjacent. Moreover thr(a) = thr(b) = thr(d) = 1 and thr(c) = 2.
The idea is that the vertices in the directed edge gadget become active if u is
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activated but not if v is activated. Hence, the activation process may go from u
to v via the gadget but not in the reverse direction. In the rest of the proof,
we may assume that no vertices from {a, b, c, d} are part of a solution of Max
Closed k-Influence. Indeed, it is always as good to take vertex u instead.

Given an instance I = (G = (V,E), k) of Dominating Set with n = |V |,
we define an instance I ′ of Max Closed k-Influence. We start with the ba-
sic reduction and modify G′ and the function thr as follows. Set the thresholds
of top-vertices to two. Replace every edge between a top vertex vt and a bot-
tom vertex vb by a directed edge from vt to vb. For j = 1, . . . , nβ add a path
pj1, . . . , p

j
n−1 of length n−1 and nβ pending-vertices with threshold one adjacent

to pjn−1 where β = 3.5−ε
2ε . For i = 2, . . . , n insert a directed edge from vbi to all

the vertices pji−1, j ∈ {1, . . . , nβ}. Furthermore, insert a directed edge from vb1
to all the vertices pj1, j ∈ {1, . . . , nβ}. Finally, set the thresholds of vertices lying
in the added paths to two. This completes the construction (see Figure 3). Let
n′ = |V ′|, notice that we have n′ < 2n+ 4n2 + 5nβ+1 + nβnβ < nβ+2 + n2β

We claim that if I is a yes-instance then opt(I ′) ≥ n2β ; otherwise opt(I ′) <
nβ+3.

Suppose that there exists a dominating set S ⊆ V in G of size at most k.
Consider the solution S′ for I ′ containing the corresponding top vertices. Since
S is a dominating set in G, after the fourth round, all the bottom vertices are
activated. Thus, after n + 6 rounds, all the vertices in the paths are activated.
It follows that in the next round all the pending-vertices are activated and the
optimum value is then at least n2β .

Suppose that there is no dominating set in G of size k. Consider a solution
S′ for I ′ of size k. Without loss of generality, we may assume that no pending-
vertices or bottom vertices are contained in S′ since they all have threshold one.
For the reason previously mentioned, we know that no vertices from the directed
edge gadgets are in S′. It follows that S′ only contains top-vertices or vertices
lying in the added paths. If the solution contains only top-vertices and since
there is no dominating set of size k in G then at least one bottom-vertex is not
activated. Moreover, because of the directed edges the activated bottom-vertices
cannot activate new top-vertices. Thus at least one vertex of each path cannot
be activated implying that no pending-vertices can be activated. This leads to
a solution of size at most n′ − n2β ≤ nβ+2. Now suppose that some vertices are
taken from the added paths. Because of the directed edges, these last vertices
cannot activate any bottom-vertices. Since at least one vertex of each path cannot
be activated through its neighbors it follows that at most knβ pending-vertices
can be activated. The optimum solution is thus less than nβ+2 + knβ < nβ+3.

Assume now that there is an fpt-time n
1
2−ε-approximation algorithm A for

Max Closed k-Influence with threshold at most two. Thus, if I is a yes-

instance, the algorithm gives a solution of value A(I ′) ≥ n2β

n′0.5−ε >
n2β

n(0.5−ε)(2β+1) >

nβ+3 since n′ ≤ nβ+2 + n2β < n2β+1. If I is a no-instance, the solution value
is A(I ′) < nβ+3. Hence, the approximation algorithm A can distinguish in fpt-
time between yes-instances and no-instances for Dominating Set implying
that FPT = W[2] since this last problem is W[2]-hard [10]. �
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v5 v4

v3v2

v1

G : G′ :

p11

p21

pn
β

1

p12

p22
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β

2

p13

p23

pn
β

3
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p24

pn
β

4

...

vt1

vb1

vt2

vb2

vt3

vb3

vt4

vb4

vt5

vb5

Fig. 3. The graph G′ obtained from G after carrying out the modifications of Theo-
rem 2. An arc (u, v) represents a directed edge gadget from u to v. A “star” vertex
represents a vertex adjacent to nβ pending-vertices.

A.4 Proof of Theorem 3

Proof. We construct a fpt-reduction from Clique to (k, `)-Influence. Given an
instance (G = (V,E), k) of Clique, we construct an instance (G′ = (V ′, E′), k, `)
of (k, `)-Influence as follows. For each vertex v ∈ V add a copy v′ to V ′. For
each edge {u, v} ∈ E, add k + 1 edge-vertices e1uv, . . . , e

k+1
uv adjacent to both

u′ and v′. Set ` = (k + 1)
(
k
2

)
and thr(u) = degG′(u) for all u ∈ V ′ (see also

Figure 4).

We claim that there is a clique of size k in G if and only if there exists a
subset S ⊆ V ′ of size k such that |σ(S)| ≥ `.

“⇒”: Assume that there is a clique C ⊆ V of size k in G. One can easily
verify that the set S = {v′ ∈ V ′ : v ∈ C} activates |σ(S)| ≥ (k + 1)

(
k
2

)
= `

edge-vertices in G′ since C is clique.

“⇐”: Suppose that there exists a subset S ⊆ V ′ of size k such that |σ(S)| ≥ `.
We may assume without loss of generality that no edge-vertices belong to S.
Indeed, each edge-vertex is adjacent to only vertices with threshold at least
k+1. Thus choosing some edge-vertices to S cannot activate any new vertices in
G′. Since the solution S activates at least (k + 1)

(
k
2

)
edge-vertices, this implies

that S is a clique in G. �
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v1

v2

v3

G

v′1

v′2

v′3

e112

e123

e212

e223

e312

e323

G′

Fig. 4. Illustration of the reduction from an instance (G, k) of Clique to an instance
(G′, k, `) of (k, `)-Influence, where k = 2 and ` = 3.

A.5 Proof of Theorem 4

Proof. We will show how to transform an r(n)-approximation algorithm for Max
Open k-Influence into another one with the same ratio for Max Indepen-
dent Set. Consider the instance Ik of Max Open k-Influence consisting of a
graph G = (V,E), an integer k and unanimity threshold. One can note and easily
check that the following holds. Given a solution S ⊆ V of Ik, σ(S) is obtained in
only one step of the diffusion process and is an independent set. Therefore there
exists an integer k∗ ∈ [1, n] such that σ(OPT (Ik∗)) is the maximum independent
set in G, where OPT (Ik∗) is the optimal solution of Ik∗ .

Suppose that Max Open k-Influence has an f(n)-approximation algo-

rithm A, we then have |σ(A(Ik∗))| ≥ |σ(OPT (Ik∗ ))|
f(n) , where A(Ik∗) is a solution

given by A for the instance Ik∗ . It follows from the previous observation that
σ(A(Ik∗)) is an independent set in G and an f(n)-approximate solution.

Now, it suffices to apply the approximation algorithm A for each k = 1, . . . , n
and return the approximate solution Smax that has the largest value. Given
this solution, we have |σ(Smax)| ≥ |σ(A(Ik∗))|. Hence, we get a polynomial-time
f(n)-approximation algorithm for Max Independent Set problem. Since Max
Independent Set cannot be approximated within n1−ε for any ε ∈ (0, 1) unless
NP = ZPP [12], the result follows. �

A.6 Proof of Theorem 5

Proof. By Lemma 1, it suffices to show the result for Max Open k-Influence.
The polynomial-time algorithm consists in the following two steps: (i) Find F ,
the largest “false-twins set” such that deg(v) ≤ k, ∀v ∈ F , and (ii) Return
N(F ). The first step can be done for example by searching for the largest set of
identical lines with at most k ones in the adjacency matrix of the graph. Since F
is a false-twins set with vertices of degree at most k, the size of the neighborhood
of F is also bounded by k. Consider the activation of the set N(F ). After one
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round, this will activate |σ(N(F ))| ≥ |F | vertices, since all the neighborhood of
the vertices in F are activated.

To complete the proof, observe that for any target set of size at most k, there
is at most 2k different “false-twins sets”. Therefore, any optimal solution could
activate at most 2k · |F | vertices, providing the claimed approximation ratio. �

A.7 Proof of Theorem 6

The notion of an E-reduction (error-preserving reduction) was introduced by
Khanna et al. 1999. A problem Π is called E-reducible to a problem Π ′, if there
exist polynomial-time computable functions f , g and a constant β such that

– f maps an instance I of Π to an instance I ′ of Π ′ such that opt(I) and
opt(I ′) are related by a polynomial factor, i.e. there exists a polynomial p(n)
such that opt(I ′) ≤ p(|I|)opt(I),

– g maps solutions S′ of I ′ to solutions S of I such that ε(I, S) ≤ βε(I ′, S′).

An important property of an E-reduction is that it can be applied uniformly
to all levels of approximability; that is, if Π is E-reducible to Π ′ and Π ′ belongs
to C then Π belongs to C as well, where C is a class of optimization problems
with any kind of approximation guarantee.

Proof. We give an E-reduction from Densest k-Subgraph to Max Open k-
Influence. Consider an instance I of Densest k-Subgraph formed by a graph
G = (V,E) and we construct an instance I ′ of Max Open k-Influence with
unanimity thresholds consisting of graph G′ = (V ′, E′) as follows: for each vertex
v ∈ V add a copy v′ to V ′; for each edge {u, v} ∈ E add a vertex euv to V ′,
moreover add k + 1 vertices x1, . . . , xk+1. For any edge {u, v} ∈ E add edges
{u′, euv}, {euv, v′} to E′, and add an edge between xi and v′ for any 1 ≤ j ≤ k+1.

Let S ⊆ V , |S| = k be an optimum solution for I that is opt(I) is the number
of edges induced by S. The set S′ = {v′ : v ∈ S} is such that σ(S) = opt(I)
since no x vertex will be activated. Thus opt(I ′) ≥ opt(I).

Given any solution S′ ⊆ V ′ of size k, we can consider that S′ contains only
vertices of type v′ such that v ∈ V . Thus the set S = {v : v′ ∈ S′} has value
val(S) = val(S′). Moreover if S′ is optimal, then opt(I) ≥ opt(I ′) and thus
opt(I) = opt(I ′). Therefore, we have ε(I, S) = ε(I ′, S′). ut

A.8 Proof of Lemma 4

Proof. By Lemma 1, it suffices to show the result for Max Open k-Influence.
Indeed on graphs of degree bounded by ∆, the optimum is bounded by k · ∆
and we can construct in polynomial time a solution S of value at least b k∆c
by considering iteratively vertices with disjoint neighborhoods and putting their
neighbors in S. �
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A.9 Proof of Theorem 7

Proof. By Lemma 1, it suffices to show the result for Max Closed k-
Influence. We show that if Max Closed k-Influence with unanimity thresh-
olds has a polynomial-time approximation scheme Aε′ , ε

′ ∈ (0, 1), on 3-regular
graphs when k = θ(n), then Min Vertex Cover has also a polynomial-time ap-
proximation scheme on 3-regular graphs. Consider G = (V,E) a 3-regular graph.
Clearly, a minimum vertex cover has a value opt(G) satisfying n

2 ≤ opt(G) < n.
For any ε ∈ (0, 1), we apply the polynomial-time approximation scheme Aε′

that establishes an (1 + ε′)-approximation for Max Closed k-Influence on
graph G for each k between n

2 and n and ε′ = ε
2−ε . By applying Aε′ on G for k

between n
2 and n, we obtain a solution Sk ⊂ V of size k such that Sk ∪ σ(Sk)

is an (1 + ε′)-approximation. The set V \ σ(Sk) is a vertex cover in G of size
denoted by valk. We show in the following that the best solution obtained in
this way is an (1 + ε)-approximation for Min Vertex Cover on G. Indeed the
best solution obtained in this way has a value val∗ ≤ val`, where val` is the
value of the solution obtained for ` = opt(G). Thus val` = |V \ σ(S`)|. Since
|S` ∪ σ(S`)| is an (1 + ε′)-approximation and the optimum solution activates

all vertices, we have |S` ∪ σ(S`)| ≥ n
1+ε′ and |V \ (S` ∪ σ(S`))| ≤ n ε′

1+ε′ . Thus

val∗ ≤ val` ≤ `+n ε′

1+ε′ ≤ `(1 + 2ε′

1+ ε′ ) = `(1 + ε). The theorem follows from the
fact that Min Vertex Cover has no polynomial-time approximation scheme
on 3-regular graphs, unless P = NP [2]. �

A.10 Proof of Theorem 8

Proof. For graphs of maximum degree ∆, we simply apply the result from [6,
Theorem 4] with i = 3.

Let G be a ∆-regular graph. When ∆ > k, any k vertices of the graph form a
solution since no vertex outside the set becomes active. Hence, we assume in the
following that ∆ ≤ k. Since G is regular, it follows that any subset S, |S| = k can
activate at most k vertices. Hence, the graph G[S ∪ σ(S)] contains at most 2k
vertices and, thus, ` ≤ k. Furthermore, since we consider unanimity thresholds,
every vertex v ∈ σ(S) has exactly ∆ neighbors in S and, thus, |NG[S∪σ(S)](v)| =
∆ and NG[S∪σ(S)](v) ⊆ S. Our fpt-algorithm solving (k, `)-Influence runs in
two phases:

Phase 1: Guess a graph H being isomorphic to G[S ∪ σ(S)].
Phase 2: Check whether H is a subgraph of G.

Phase 1 is realized by simply iterating over all possible graphs H with k+ ` ver-
tices. A simple upper bound on the number of different graphs with k+` vertices

is 2(k+`2 ) ≤ 24k
2

. Hence, in Phase 1 the algorithm tries at most O(24k
2

) possibil-
ities. Note that Phase 2 can be done in 2O(∆k log k)n log n using a result from [6,

Theorem 1]. Altogether this gives a running time of O(24k
2

2O(∆k log k)n log n).

Since ∆ ≤ k, this gives 2O(k2 log k)n log n. The correctness of the algorithm fol-
lows from the exhaustive search. ut
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A.11 Proof of Lemma 5

Proof. The algorithm solving the problem checks for all vertex subsets V ′ of
size α in N2α−1[v] whether V ′ activates at least β vertices and whether σ[V ′]
is connected. Since we consider unanimity thresholds it follows that σ[V ′] ⊆
N2α[v].

The correctness of this algorithm results from the exhaustive search. We
study in the following the running time: The (2α − 1)th neighborhood of any
vertex contains at most ∆(∆2α)/(∆ − 1) + 1 ≤ 2∆2α vertices. Hence, there
are 2α∆(2α)α possibilities to choose the α vertices forming V ′. For each choice
of V ′ the algorithm has to check how many vertices are activated by V ′. Since
this can be done in linear time and there are O(∆∆2α) edges, this gives an-

other O(∆2α+1) term. Altogether, we obtain a running time of O(2α∆2α2+2α+1)

= ∆O(α2). ut

A.12 Proof of Theorem 9

Proof. Let S be a solution set, that is, S ⊂ V , |S| ≤ k and σ(S) ≥ `. In the
following we show that Algorithm 1 decides whether such set S exists or not
in 2O(k2 log(k∆)) · n time. We remark that the algorithm can be adapted to also
give such set S if it exists. First we prove the correctness of the algorithm and
then show the running time bound.

Correctness: We now show that a solution set S exists if and only if the
algorithm returns “YES”.

“⇒:” Assume that S is the solution set. Observe that G[σ[S]] consists of
at most k connected components and, thus, the guesses in Lines 2 and 3 are
correct. Clearly, in the solution set S there is a realization for each pair (ki, `i).
Furthermore observe that in Line 13 it holds that X ⊆ {1, . . . , x} and that in the
loop starting in Line 16 only vertices that cannot realize any pair corresponding
to X are deleted. Hence, there exists a realization for the pairs corresponding
to X in the remaining graph. Since the checking in Line 19 is done by trying all
possibilities, the algorithm returns “YES”.

“⇐:” Now assume that the algorithm returns “YES”. Observe that this im-
plies that in Line 19 there exists a realization for the all the pairs corresponding
to X. Hence, it remains to show that for each pair j ∈ {1, . . . , x} \ X there
exists a realization in G. (Clearly, if all pairs are realized then the union of the
realizations form the vertex set σ[S] such that |S| = k.) To see that there ex-
ist realizations for these pairs observe the following: The (4k)th neighborhood
of any vertex contains at most 2∆4k vertices. Thus, if in the case of two pairs
(k1, `1), (k2, `2) the value of the second counter is c2 > 2∆4k, then we can deduce
that for every realizing vertex v1 for (k1, `1) there exists a realizing vertex v2
for (k2, `2) such that the distance d between v1 and v2 is more than 4k. Since
d > 4k, it follows that the realizations for (k1, `1) and (k2, `2) do not overlap.
(If two realizations would overlap then some vertices in σ(S) may be counted
twice.) Generalizing this argument to x integer pairs (k1, `1), . . . , (kx, `x) yields
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the following: If there exists an i ∈ {1, . . . , x} such that ci > x · 2 · ∆4k, then
for any realization of the pairs (kj , `j) with i 6= j there exists a non-overlapping
realization of (ki, `i). Thus, we can ignore the pair (ki, `i) where ci > x · 2 ·∆4k

in the remaining algorithm and can assume that (ki, `i) is realized.
Observe that from the Lines 5 to 16 it follows that for all j ∈ {1, . . . , x} \X

we have cj > x ·2 ·∆4k. Thus, from the argumentation in the previous paragraph
it follows that there exist non-overlapping realizations for all pairs corresponding
to {1, . . . , x} \X. Thus, there exists a solution set S as required.

Running time: Observe that ` ≤ ∆k as described in the proof of Lemma 4.
Thus, the guessing in Lines 2 and 3 can clearly be done in O(k · kk(∆k)k) =

O(k2k+1∆k). By Lemma 5 the checking in Line 7 can be done in ∆O(k2i ) time.

Thus, the loop in Line 5 requires n ·
∑x
i=1∆

O(k2i ) ≤ ∆O(k2) · x · n time. Clearly,
the loop in Line 13 needs O(x) ≤ O(k) time. Furthermore, the loop in Line 16
needs O(k · n) time. For the checking in Line 19 observe the following. After
deleting the vertices in the loop in Line 16 the remaining graph can have at
most

∑
i∈X ci ≤ x · 2 · x · ∆4k vertices. Furthermore,

∑
i∈X ki ≤ k and, thus,

there are at most (2 ·x2 ·∆4k)k candidate subsets for the solution set S. Checking
whether

∑
i∈X ki chosen vertices activate

∑
i∈X `i other vertices can be done

in (2 ·x2 ·∆4k)2 time. Hence, the checking in Line 19 can be done in ∆O(k2) time.

Putting all together we arrive at a running time of (k∆)O(k2)·n = 2O(k2 log(k∆))·n.
ut
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