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Abstract. In a (linear) parametric optimization problem, the objective
value of each feasible solution is an affine function of a real-valued param-
eter and one is interested in computing a solution for each possible value
of the parameter. For many important parametric optimization prob-
lems including the parametric versions of the shortest path problem, the
assignment problem, and the minimum cost flow problem, however, the
piecewise linear function mapping the parameter to the optimal objec-
tive value of the corresponding non-parametric instance (the optimal
value function) can have super-polynomially many breakpoints (points
of slope change). This implies that any optimal algorithm for such a
problem must output a super-polynomial number of solutions.

We provide a (parametric) fully-polynomial time approximation
scheme for a general class of parametric optimization problems for which
(i) the parameter varies on the nonnegative real line, (ii) the non-
parametric problem is solvable in polynomial time, and (iii) the slopes
and intercepts of the value functions of the feasible solutions are nonneg-
ative, integer values below a polynomial-time computable upper bound.
In particular, under mild assumptions, we obtain the first parametric
FPTAS for each of the specific problems mentioned above.
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1 Introduction

In a linear parametric optimization problem, the objective function value of
a feasible solution does not only depend on the solution itself but also on a
parameter λ ∈ R, where this dependence is given by an affine linear func-
tion of λ. The goal is to find an optimal solution for each possible param-
eter value, where, under some assumptions (e.g., if the set of feasible solu-
tions is finite), an optimal solution can be given by a finite collection of inter-
vals (−∞, λ1], [λ1, λ2], . . . , [λK−1, λK ], [λK ,+∞) together with one feasible solu-
tion for each interval that is optimal for all values of λ within the corresponding
interval.

The function mapping each parameter value λ ∈ R to the optimal objective
value of the non-parametric problem induced by λ is called the optimal value
function (or the optimal cost curve). The above structure of optimal solutions
implies that the optimal value function is piecewise linear and concave in the case
of a minimization problem (convex in case of a maximization problem) and its
breakpoints (points of slope change) are exactly the points λ1, . . . , λK (assuming
that K was chosen as small as possible).

There is a large body of literature that considers linear parametric optimiza-
tion problems in which the objective values of feasible solutions are affine-linear
functions of a real-valued parameter. Prominent examples include the parametric
shortest path problem [4,13,17,23], the parametric assignment problem [8], and
the parametric minimum cost flow problem [3]. Moreover, parametric versions of
general linear programs, mixed integer programs, and nonlinear programs (where
the most general cases consider also non-affine dependence on the parameter as
well as constraints depending on the parameter) are widely studied – see [16] for
an extensive literature review.

The number of breakpoints is a natural measure for the complexity of a para-
metric optimization problem since it determines the number of different solutions
that are needed in order to solve the parametric problem to optimality. More-
over, any instance of a parametric optimization problem with K breakpoints in
the optimal value function can be solved by using a general method of Eisner
and Severance [5], which requires to solve O(K) non-parametric problems for
fixed values of the parameter.

Carstensen [3] shows that the number of breakpoints in the optimal value
function of any parametric binary integer program becomes linear in the num-
ber of variables when the slopes and/or intercepts of the affine-linear functions
are integers in {−M, . . . , M} for some constant M ∈ N. In most parametric
problems, however, the number of possible slopes and intercepts is exponential
and/or the variables are not binary. While there exist some parametric opti-
mization problems such as the parametric minimum spanning tree problem [6]
or several special cases of the parametric maximum flow problem [2,7,15,22]
for which the number of breakpoints is polynomial in the input size even with-
out any additional assumptions, the optimal value function of most parametric
optimization problems can have super-polynomially many breakpoints in the
worst case – see, e.g., [4,19] for the parametric shortest path problem, [8] for the
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parametric assignment problem, and [20] for the parametric minimum cost flow
problem. This, in particular, implies that there cannot exist any polynomial-time
algorithm for these problems even if P = NP, which provides a strong motivation
for the design of approximation algorithms.

So far, only very few approximation algorithms are known for parametric
optimization problems. Approximation schemes for the parametric version of
the 0-1 knapsack problem have been presented in [9,12], and an approximation
for the variant of the 0-1 knapsack problem in which the weights of the items
(instead of the profits) depend on the parameter has recently been provided
in [10]. Moreover, an approximation scheme for a class of parametric discrete
optimization problems on graphs, whose technique could potentially be general-
ized to further problems, has been proposed in [11].

Our Contribution. We provide a (parametric) fully-polynomial time approxi-
mation scheme (FPTAS) for a general class of parametric optimization problems.
This means that, for any problem from this class and any given ε > 0, there
exists an algorithm with running time polynomial in the input size and 1/ε that
computes a partition of the set R≥0 of possible parameter values into polyno-
mially many intervals together with a solution for each interval that (1 + ε)-
approximates all feasible solutions for all values of λ within the interval.

Our FPTAS can be viewed as an approximate version of the well-known
Eisner-Severance method for parametric optimization problems [5]. It applies
to all parametric optimization problems for which the parameter varies on the
nonnegative real line, the non-parametric problem is solvable in polynomial time,
and the slopes and intercepts of the value functions of the feasible solutions are
nonnegative, integer values below a polynomial-time computable upper bound.
In particular, under mild assumptions, we obtain the first parametric FPTAS for
the parametric versions of the shortest path problem, the assignment problem,
and a general class of mixed integer linear programming problems over integral
polytopes, which includes the minimum cost flow problem as a special case. As
we discuss when presenting the applications of our method in Sect. 4, the number
of breakpoints can be super-polynomial for each of these parametric problems
even under our assumptions, which implies that the problems do not admit any
polynomial-time exact algorithms.

2 Preliminaries

In the following, we consider a general parametric minimization or maximization
problem Π of the following form:

min /max fλ(x) := a(x) + λ · b(x)
s. t. x ∈ X (1)

We assume that the functions a, b : X → N0 defining the intercepts and
slopes of the value functions, respectively, take only nonnegative integer values
and are polynomial-time computable. Moreover, we assume that we can compute
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a rational upper bound UB such that a(x), b(x) ≤ UB for all x ∈ X in polynomial
time. In particular, this implies that UB is of polynomial encoding length.1

For any fixed value λ ≥ 0, we let Πλ denote the non-parametric problem
obtained from Π by fixing the parameter value to λ. We assume that, for
each λ ≥ 0, this non-parametric problem Πλ can be solved exactly in poly-
nomial time by an algorithm alg. The running time of alg will be denoted
by Talg, where we assume that this running time is at least as large as the time
needed in order to compute the objective value fλ(x) = a(x) + λ · b(x) of any
feasible solution x of Πλ.2

The above assumptions directly imply that the optimal value function map-
ping λ ∈ R≥0 to the optimal objective value of the non-parametric problem Πλ

is piecewise linear, increasing, and concave (for minimization problems) or con-
vex (for maximization problems): Since there are at most UB + 1 possible inte-
ger values for each of a(x) and b(x), the function mapping λ to the objective
value fλ(x) = a(x) + λ · b(x) of a given feasible solution x ∈ X is one of at
most (UB+1)2 many different affine functions. Consequently, the optimal value
function given as λ �→ min /max{fλ(x) : x ∈ X} is the minimum/maximum of
finitely many affine functions. The finitely many values of λ at which the slope of
the optimal value function (or, equivalently, the set of optimal solutions of Πλ)
changes are called breakpoints of the optimal value function.

Even though all our results apply to minimization as well as maximization
problems, we focus on minimization problems in the rest of the paper in order
to simplify the exposition. All our arguments can be straightforwardly adapted
to maximization problems.

Definition 1. For α ≥ 1, an α-approximation (I1, x1), . . . , (Ik, xk) for an
instance of a parametric optimization problem Π consists of a cover of R≥0

by finitely many intervals I1, . . . , Ik together with corresponding feasible solu-
tions x1, . . . , xk such that, for each j ∈ {1, . . . , k}, the solution xj is an α-
approximation for the corresponding instance of the non-parametric problem Πλ

for all values λ ∈ Ij, i.e.,

fλ(xj) ≤ α · fλ(x) for all x ∈ X and all λ ∈ Ij .

An algorithm A that computes an α-approximation in polynomial time for
every instance of Π is called an α-approximation algorithm for Π.

A polynomial-time approximation scheme (PTAS) for Π is a family (Aε)ε>0

of algorithms such that, for every ε > 0, algorithm Aε is a (1+ε)-approximation

1 Note that, the numerical value of UB can still be exponential in the input size of
the problem, so there can still exist exponentially many different slopes b(x) and
intercepts a(x).

2 This technical assumption – which is satisfied for most relevant algorithms – is made
in order to be able to express the running time of our algorithm in terms of Talg. If
the assumption is removed, our results still hold when replacing Talg in the running
time of our algorithm by the maximum of Talg and the time needed for computing
any value fλ(x).
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algorithm for Π. A PTAS (Aε)ε>0 for Π is called a fully polynomial-time
approximation scheme (FPTAS) if the running time of Aε is additionally poly-
nomial in 1/ε.

3 An FPTAS

We now present our FPTAS for the general parametric optimization problem (1).
To this end, we first describe the general functioning of the algorithm before
formally stating and proving several auxiliary results needed for proving its cor-
rectness and analyzing its running time.

The algorithm, which is formally stated in Algorithm 1, starts by computing
an upper bound UB on the values of a(·) and b(·), which is possible in poly-
nomial time by our assumptions on the problem. It then starts with the initial
parameter interval [λmin, λmax], where λmin := 1

UB+1 is chosen such that an opti-
mal solution xmin of the non-parametric problem Πλmin is optimal for Πλ for all
λ ∈ [0, λmin] and λmax := UB + 1 is chosen such that an optimal solution xmax

of the non-parametric problem Πλmax is optimal for Πλ for all λ ∈ [λmax,+∞)
(see Lemma 3).

The algorithm maintains a queue Q whose elements ([λ�, λr], x�, xr) consist
of a subinterval [λ�, λr] of the interval [λmin, λmax] and optimal solutions x�, xr

of the respective non-parametric problems Πλ�
,Πλr

at the interval boundaries.
The queue is initialized as Q = {([λmin, λmax], xmin, xmax)}, where xmin, xmax

are optimal for Πλmin ,Πλmax , respectively.
Afterwards, in each iteration, the algorithm extracts an element

([λ�, λr], x�, xr) from the queue and checks whether one of the two solutions x�, xr

obtained at the boundaries of the parameter interval [λ�, λr] is a (1 + ε)-
approximate solution also at the other boundary of the interval. In this case,
Lemma 1 below implies that this boundary solution is a (1 + ε)-approximate
solution within the whole interval [λ�, λr] and the pair consisting of the inter-
val [λ�, λr] and this (1 + ε)-approximate solution is added to the solution set S.
Otherwise, [λ�, λr] is bisected into the two subintervals [λ�, λm] and [λm, λr],
where λm :=

√
λ� · λr is the geometric mean of λ� and λr. This means that an

optimal solution xm of Πλm
is computed and the two triples ([λ�, λm], x�, xm)

and ([λm, λr], xm, xr) are added to the queue in order to be explored.
This iterative subdivision of the initial parameter interval [λmin, λmax] can

be viewed as creating a binary tree: the root corresponds to the initialization,
in which the two non-parametric problems Πλmin and Πλmax are solved. Each
other internal node of the tree corresponds to an interval [λ�, λr] that is further
subdivided into [λ�, λm] and [λm, λr], which requires the solution of one non-
parametric problem Πλm

. In order to bound the total number of non-parametric
problems solved within the algorithm, it is, thus, sufficient to upper bound the
number of nodes in this binary tree.

We now prove the auxiliary results mentioned in the algorithm description
above. The first lemma shows that a solution that is optimal at one boundary
of a parameter interval and simultaneously α-approximate at the other interval
boundary must be α-approximate within the whole interval.
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Algorithm 1. An FPTAS for parametric optimization problems
input : an instance of a parametric optimization problem Π as in (1), ε > 0, an exact

algorithm alg for the non-parametric version of Π
output: a (1 + ε)-approximation for Π

1 Compute an upper bound UB such that a(x), b(x) ≤ UB for all x ∈ X
2 λmin ← 1

UB+1
; λmax ← UB+ 1

3 xmin ← alg(λmin); xmax ← alg(λmax)
4 Q ← {([λmin, λmax], xmin, xmax)} /* queue of intervals still to be considered */

5 S ← {([0, λmin], xmin), [λmax,+∞), xmax)} /* solution set */

6 while Q �= ∅ do
7 Extract some element ([λ�, λr], x�, xr) from Q
8 if fλ�

(xr) ≤ (1 + ε) · fλ�
(x�) then

9 S ← S ∪ {([λ�, λr], xr)}
10 else if fλr (x

�) ≤ (1 + ε) · fλr (x
r) then

11 S ← S ∪ {([λ�, λr], x�)}
12 else
13 λm ← √

λ� · λr

14 xm ← alg(λm)
15 Q ← Q ∪ {([λ�, λm], x�, xm), ([λm, λr], xm, xr)}

16 return S

Lemma 1. Let [λ, λ̄] ⊂ R≥0 be an interval, and let x, x̄ ∈ X be optimal solutions
of Πλ and Πλ̄, respectively. Then, for any α ≥ 1:

(1) If fλ̄(x) ≤ α · fλ̄(x̄), then fλ(x) ≤ α · fλ(x) for all x ∈ X and all λ ∈ [λ, λ̄].
(2) If fλ(x̄) ≤ α · fλ(x), then fλ(x̄) ≤ α · fλ(x) for all x ∈ X and all λ ∈ [λ, λ̄].

Proof. We only prove (1) – the proof of (2) is analogous.
Let fλ̄(x) ≤ α·fλ̄(x̄), i.e., a(x)+λ̄b(x) ≤ α·(a(x̄)+λ̄b(x̄)). Fix some λ ∈ [λ, λ̄].

Then λ = γλ + (1 − γ)λ̄ for some γ ∈ [0, 1] and, for each x ∈ X, we have:

fλ(x) = a(x) + λb(x)
= a(x) + (γλ + (1 − γ)λ̄) · b(x)
= γ · [a(x) + λb(x)] + (1 − γ) · [a(x) + λ̄b(x)]
≤ γ · [a(x) + λb(x)] + (1 − γ) · α · [a(x̄) + λ̄b(x̄)]
≤ γ · [a(x) + λb(x)] + (1 − γ) · α · [a(x) + λ̄b(x)]
≤ α · [a(x) + (γλ + (1 − γ)λ̄)b(x)]
= α · fλ(x)

Here, the first inequality follows by the assumption of (1), and the second inequal-
ity follows since x, x̄ are optimal solutions of Πλ and Πλ̄, respectively. 
�

The following lemma shows that a solution that is optimal for some value λ∗

of the parameter is always (1 + ε)-approximate in a neighborhood of λ∗.
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Lemma 2. For λ∗ ∈ [0,∞) and ε > 0, let λ = 1
1+ε · λ∗ and λ̄ = (1 + ε) · λ∗.

Also, let x∗ be an optimal solution for Πλ∗ . Then fλ(x∗) ≤ (1+ ε) · fλ(x) for all
x ∈ X and all λ ∈ [λ, λ̄].

Proof. First, note that x∗ is (1 + ε)-approximate for Πλ̄: Let x̄ be an optimal
solution for Πλ̄. Then we have

fλ̄(x∗) = a(x∗) + λ̄ · b(x∗)
= a(x∗) + (1 + ε) · λ∗ · b(x∗)
≤ (1 + ε) · (a(x∗) + λ∗ · b(x∗))
= (1 + ε) · fλ∗(x∗)
≤ (1 + ε) · fλ̄(x̄),

where the last inequality is due to the monotonicity of the optimal cost curve.
Moreover, x∗ is (1 + ε)-approximate for Πλ: Let x be an optimal solution for
Πλ and let x0 be an optimal solution for Π0. Then, since λ = 1

1+ε · λ∗ =
1

1+ε · λ∗ + ε
1+ε · 0, we have

fλ(x∗) ≤ fλ∗(x∗)

≤ fλ∗(x∗) + ε · f0(x0)

= (1 + ε) ·
(

1
1 + ε

· fλ∗(x∗) +
ε

1 + ε
· f0(x0)

)

≤ (1 + ε) · fλ(x),

where the first inequality is due to the monotonicity of λ �→ fλ(x∗) and the
last inequality is due to the concavity of the optimal cost curve. Now, the claim
follows from applying Lemma 1. 
�
The next result justifies our choice of the initial parameter interval [λmin, λmax].

Lemma 3. Let λmin := 1
UB+1 and λmax := UB + 1 as in Algorithm 1. Then

the solution xmin = alg(λmin) is optimal for Πλ for all λ ∈ [0, λmin] and the
solution xmax = alg(λmax) is optimal for Πλ for all λ ∈ [λmax,+∞).

Proof. Let λ ∈ [λmax,+∞) and x ∈ X be an arbitrary solution. Since xmax

is optimal for Πλmax , we have fλmax(x
max) ≤ fλmax(x), i.e., a(xmax) + (UB +

1) · b(xmax) ≤ a(x) + (UB + 1) · b(x). Reordering terms, and using that 0 ≤
a(x), a(xmax) ≤ UB, we obtain that

b(xmax) − b(x) ≤ a(x) − a(xmax)
UB + 1

≤ UB
UB + 1

< 1.

Since b(xmax) − b(x) ∈ Z by integrality of the values of b, this implies that
b(xmax)−b(x) ≤ 0, i.e., b(xmax) ≤ b(x). Consequently, using that xmax is optimal
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for Πλmax , we obtain

fλ(xmax) = fλmax(x
max)︸ ︷︷ ︸

≤fλmax (x)

+ (λ − λmax)︸ ︷︷ ︸
≥0

· b(xmax)︸ ︷︷ ︸
≤b(x)

≤ fλmax(x) + (λ − λmax) · b(x)
= fλ(x).

Since x ∈ X was arbitrary, this proves the optimality of xmax for Πλ.
Now, consider the interval [0, λmin]. We know that xmin is optimal for Πλmin .

Analogously to the above arguments, we can show that a(xmin) ≤ a(x), i.e.,
f0(xmin) ≤ f0(x), for all x ∈ X. Thus, for any λ ∈ [0, λmin], we obtain fλ(xmin) ≤
fλ(x) by applying Lemma 1. 
�

We are now ready to show that Algorithm 1 yields an FPTAS for the para-
metric optimization problem (1):

Theorem 1. Algorithm 1 returns a (1 + ε)-approximation of the parametric
problem in time

O
(

TUB + Talg · 1
ε

· log UB
)

,

where TUB denotes the time needed for computing the upper bound UB and Talg

denotes the running time of alg.

Proof. In order to prove the approximation guarantee, we first note that, at
the beginning of each iteration of the while loop starting in line 6, the intervals
corresponding to the first components of the elements of Q ∪ S form a cover
of R≥0. Since Q = ∅ at termination, the approximation guarantee follows if we
show that, for each element (Î , x̂) in the final solution set S returned by the
algorithm, we have fλ(x̂) ≤ (1 + ε) · fλ(x) for all x ∈ X and all λ ∈ Î.

Consider an arbitrary element (Î , x̂) ∈ S. If (Î , x̂) = ([0, λmin], xmin) or
(Î , x̂) = ([λmax,+∞), xmax), then the solution x̂ is optimal for Πλ for all λ ∈ Î
by Lemma 3.

Otherwise, Î = [λ̂�, λ̂r] and (Î , x̂) was added to S within the while loop
starting in line 6, i.e., either in line 9 or in line 11. In this case, the solution x̂
must be optimal for Πλ̂�

or for Πλ̂r
: Whenever an element ([λ�, λr], x�, xr) is

added to the queue Q, the solution x� is optimal for Πλ�
and the solution xr is

optimal for Πλr
. Consequently, whenever ([λ�, λr], x�) or ([λ�, λr], xr) is added

to S, the contained solution is optimal for Πλ�
or for Πλr

, respectively. Thus,
if (Î , x̂) = ([λ̂�, λ̂r], x̂) was added to S in line 9 or 11, the solution x̂ satisfies
fλ(x̂) ≤ (1 + ε) · fλ(x) for all x ∈ X and all λ ∈ Î by the if-statement in the
previous line of the algorithm and Lemma 1.

We prove now the bound on the running time. Starting with the initial inter-
val [0, λmax], the algorithm iteratively extracts an element ([λ�, λr], x�, xr) from
the queue Q and checks whether the interval [λ�, λr] has to be further bisected
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into two subintervals [λ�, λm] and [λm, λr] that need to be further explored.
This process of bisecting can be viewed as creating a full binary tree: the
root corresponds to the initial element ([λmin, λmax], xmin, xmax), for which the
two non-parametric problems Πλmin and Πλmax are solved. Each other node
corresponds to an element ([λ�, λr], x�, xr) that is extracted from Q in some
iteration of the while loop, where x� and xr are optimal for Πλ�

and Πλr
,

respectively. If the interval [λ�, λr] is not bisected into [λ�, λm] and [λm, λr],
the corresponding node is a leaf of the tree, for which no non-parametric
problem is solved. Otherwise, the node corresponding to ([λ�, λr], x�, xr) is an
internal node, for which the optimal solution xm of the non-parametric prob-
lem Πλm

with λm =
√

λ� · λr is computed, and whose two children correspond
to ([λ�, λm], x�, xm) and ([λm, λr], xm, xr). In order to bound the total number
of non-parametric problems solved within the algorithm, it is, thus, sufficient to
bound the number of (internal) nodes in this full binary tree. This is done by
bounding the height of the tree.

In order to bound the height of the tree, we observe that due to Lemma 2,
the algorithm never bisects an interval [λ�, λr], for which λ� ≤ (1 + ε) · λr,
i.e., for which the ratio between λr and λ� satisfies λr

λ�
≤ 1 + ε. Also note that

λm =
√

λ� · λr and, thus, for any subdivision {[λ�, λm], [λm, λr]} of [λ�, λr] in
the algorithm, we have

λm

λ�
=

λr

λm
=

√
λr

λ�
=

(
λr

λ�

) 1
2

.

Hence, for both intervals [λ�, λm] and [λm, λr] in the subdivision, the ratio
between the upper and lower boundary equals the square root of the corre-
sponding ratio of the previous interval [λ�, λr].

This implies that an interval [λ�,k, λr,k] resulting from k consecutive subdi-
visions of an interval [λ�, λr] satisfies

λ�,k

λr,k
=

(
λ�

λr

) 1
2k

.

Thus, starting from the initial interval [λmin, λmax] = [ 1
UB+1 ,UB + 1], for

which the ratio is λmax
λmin

= (UB + 1)2, there can be at most
⌈
log2

(
log((UB+1)2)

log(1+ε)

)⌉
consecutive subdivisions until the ratio between the interval boundaries becomes
less or equal to 1 + ε, which upper bounds the height of the tree by⌈
log2

(
log((UB+1)2)

log(1+ε)

)⌉
+ 1.

Since any binary tree of height h has at most 2h−1 − 1 internal nodes, we
obtain an upper bound of

2

⌈
log2

(
log((UB+1)2)

log(1+ε)

)⌉
− 1 ∈ O

(
log UB

ε

)

for the number of internal nodes of the tree generated by the algorithm.



34 C. Bazgan et al.

Adding the time TUB needed for computing the upper bound UB at the
beginning of the algorithm, this proves the claimed bound on the running time.


�

4 Applications

In this section, we show that our general result applies to the parametric versions
of many well-known, classical optimization problems including the parametric
shortest path problem, the parametric assignment problem, and a general class of
parametric mixed integer linear programs that includes the parametric minimum
cost flow problem. As will be discussed below, for each of these parametric
problems, the number of breakpoints in the optimal value function can be super-
polynomial, which implies that solving the parametric problem exactly requires
the generation of a super-polynomial number of solutions.

Parametric Shortest Path Problem. In the single-pair version of the para-
metric shortest path problem, we are given a directed graph G = (V,R) together
with a source node s ∈ V and a destination node t ∈ V , where s �= t. Each
arc r ∈ R has a parametric length of the form ar + λ · br, where ar, br ∈ N0 are
nonnegative integers. The goal is to compute an s-t-path Pλ of minimum total
length

∑
r∈Pλ

(ar + λ · br) for each λ ≥ 0.
Since the arc lengths ar + λ · br are nonnegative for each λ ≥ 0, one can

restrict to simple s-t-paths as feasible solutions, and an upper bound UB as
required in Algorithm 1 is given by summing up the n − 1 largest values ar and
summing up the n − 1 largest values br and taking the maximum of these two
sums, which can easily be computed in polynomial time. The non-parametric
problem Πλ can be solved in polynomial time O(m+n log n) for any fixed λ ≥ 0
by Dijkstra’s algorithm, where n = |V | and m = |R| (see, e.g., [21]). Hence,
Theorem 1 yields an FPTAS with running time O (

1
ε · (m + n log n) · log nC

)
,

where C denotes the maximum among all values ar, br.
On the other hand, the number of breakpoints in the optimal value function

is at least nΩ(log n) in the worst case even under our assumptions of nonnegative,
integer values ar, br and for λ ∈ R≥0 [4,19].

Parametric Assignment Problem. In the parametric assignment problem,
we are given a bipartite, undirected graph G = (U, V,E) with |U | = |V | = n and
|E| = m. Each edge e ∈ E has a parametric weight of the form ae +λ · be, where
ae, be ∈ N0 are nonnegative integers. The goal is to compute an assignment Aλ

of minimum total weight
∑

e∈Aλ
(ae + λ · be) for each λ ≥ 0.

Similar to the parametric shortest path problem, an upper bound UB as
required in Algorithm 1 is given by summing up the n largest values ar and
summing up the n largest values br and taking the maximum of these two sums.
The non-parametric problem Πλ can be solved in polynomial time O(n3) for
any fixed value λ ≥ 0 (see, e.g., [21]). Hence, Theorem 1 yields an FPTAS
with running time O (

1
ε · n3 · log nC

)
, where C denotes the maximum among all

values ae, be.
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On the other hand, applying the well-known transformation from the shortest
s-t-path problem to the assignment problem (see, e.g., [14]) to the instances of the
shortest s-t-path problem with super-polynomially many breakpoints presented
in [4,19] shows that the number of breakpoints in the parametric assignment
problem can be super-polynomial as well (see also [8]).

Parametric MIPs over Integral Polytopes. A very general class of problems
our results can be applied to are parametric mixed integer linear programs (para-
metric MIPs) with nonnegative, integer objective function coefficients whose fea-
sible set is of the form P ∩ (Zp ×R

n−p), where P ⊆ R
n
≥0 is an integral polytope.

More formally, consider a parametric MIP of the form

min /max (a + λb)T x

s.t. Ax = d

Bx ≤ e

x ≥ 0

x ∈ Z
p × R

n−p

where A,B are rational matrices with n rows, d, e are rational vectors of the
appropriate length, and a, b ∈ N

n
0 are nonnegative, integer vectors. We assume

that the polyhedron P := {x ∈ R
n : Ax = d, Bx ≤ e, x ≥ 0} ⊆ R

n is an integral
polytope, i.e., it is bounded and each of its (finitely many) extreme points is an
integral point.

Since, for each λ ≥ 0, there exists an extreme point of P that is optimal for
the non-parametric problem Πλ, one can restrict to the extreme points when
solving the problem. Since x̄ ∈ N

n
0 for each extreme point x̄ of P and since

a, b ∈ N
n
0 , the values a(x̄) = aT x̄ and b(x̄) = bT x̄ are nonnegative integers. In

order to solve the non-parametric problem Πλ for any fixed value λ ≥ 0, we can
simply solve the linear programming relaxation min /max{(a+λb)T x : x ∈ P} in
polynomial time. This yields an optimal extreme point of P , which is integral by
our assumptions. Similarly, an upper bound UB as required in Algorithm 1 can
be computed in polynomial time by solving the two linear programs max{aT x :
x ∈ P} and max{bT x : x ∈ P} and taking the maximum of the two resulting
(integral) optimal objective values.

While Theorem 1 yields an FPTAS for any parametric MIP as above, it is
well known that the number of breakpoints in the optimal value function can be
exponential in the number n of variables [3,18].

An important parametric optimization problem that can be viewed as a spe-
cial case of a parametric MIP as above is the parametric minimum cost flow
problem, in which we are given a directed graph G = (V,R) together with a
source node s ∈ V and a destination node t ∈ V , where s �= t, and an integral
desired flow value F ∈ N0. Each arc r ∈ R has an integral capacity ur ∈ N0

and a parametric cost of the form ar + λ · br, where ar, br ∈ N0 are nonnega-
tive integers. The goal is to compute a feasible s-t-flow x with flow value F of
minimum total cost

∑
r∈R(ar + λ · br) · xr for each λ ≥ 0. Here, a large variety

of (strongly) polynomial algorithms exist for the non-parametric problem, see,



36 C. Bazgan et al.

e.g., [1]. An upper bound UB can either be obtained by solving two linear pro-
grams as above, or by taking the maximum of

∑
r∈R ar · ur and

∑
r∈R br · ur.

Using the latter and applying the enhanced capacity scaling algorithm to solve
the non-parametric problem, which runs in O((m · log n)(m + n · log n)) time on
a graph with n nodes and m arcs [1], Theorem 1 yields an FPTAS with running
time O (

1
ε · (m · log n)(m + n · log n) · log mCU

)
, where C denotes the maximum

among all values ar, br, and U := maxr∈R ur.
On the other hand, the optimal value function can have Ω(2n) break-

points even under our assumptions of nonnegative, integer values ar, br and for
λ ∈ R≥0 [20].

Acknowledgments. We thank Sven O. Krumke for pointing out a possible improve-
ment of the running time of a first version of our algorithm.
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22. Scutellà, M.G.: A note on the parametric maximum flow problem and some related
reoptimization issues. Ann. Oper. Res. 150(1), 231–244 (2007)

23. Young, N.E., Tarjan, R.E., Orlin, J.B.: Faster parametric shortest path and
minimum-balance algorithms. Networks 21(2), 205–221 (2006)

https://doi.org/10.1007/11841036_50
https://doi.org/10.1007/11841036_50

	An FPTAS for a General Class of Parametric Optimization Problems
	1 Introduction
	2 Preliminaries
	3 An FPTAS
	4 Applications
	References




